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Abstract

Consider the (functional) SDEs in Rd with Hölder continuous drift driven by α-
stable process satisfying (H1). Using Zvonkin type transformation, the convergence
rate of Euler-Maruyama method is obtained. The results are new, especially for the
functional SDEs with irregular drift.
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1 Introduction

Recently, the convergence rate of Euler-Maruyama (EM for short) method for stochastic
differential equations (SDEs for abbreviation) with irregular coefficients has attracted much
attention. For instance, by the Meyer-Tanaka formula, [11] revealed the convergence rate in
L1-norm sense for a range of SDEs, where the drift term is Lipschitzian and the diffusion
term is Hölder continuous with respect to spatial variable; Adopting the Yamada-Watanabe
approximation approach, [3] extended [11] to discuss the strong convergence rate in Lp-norm
sense; Using the Yamada-Watanabe approximation approach and heat kernel estimate, [8]
studied the strong convergence rate in L1-norm sense for a class of non-degenerate SDEs,
where the bounded drift term satisfies weak monotonicity and is of bounded variation with
respect to Gaussian measure and the diffusion term is Hölder continuous. Quite recently, by
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Zvonkin transformation [12], [2] discussed the convergence rate of EM method for the (non-)
degenerate SDEs with Dini continuous drift.

We should remark that all the above results focused on the convergence rate of EM
method for SDEs driven by Brownian motion. As to the Lévy noise, there are also some
results. For example, applying the Zvonkin transformation, [9] obtained the strong con-
vergence rate of EM method with bounded Hölder continuous drift driven by truncated
symmetric α-stable process. When the Lévy measure is absolutely continuous with respect
to Lebesgue measure in Rd, [7] obtained the convergence rate of EM method.

In this paper, we investigate the convergence rate of EM method for SDEs and functional
SDEs (SFDEs) driven by α-stable process with Hölder continuous and bounded drift. We
assume (H1) holds for the α-stable process which contains the case that the Lévy measure
is not absolutely continuous with respect to Lebesgue measure in Rd. By the Zvonkin
transformation, we can change the SDEs with irregular drift to the regular ones, and then
we obtain the convergence rate of EM method.

Before moving on, we firstly recall some knowledge on symmetric α-stable process and the
Poisson random measure, see [10] for more details. Recall that a Rd-valued Lévy process L(t)
is called d-dimensional symmetric α-stable process if the Lévy symbol Ψ has the following
representation:

Ψ(u) =

∫
Rd

[1− cos〈u, x〉]ν(dx).

where

ν(D) =

∫
S

µ(dξ)

∫ ∞
0

1D(rξ)
dr

r1+α
, D ∈ B(Rd),

S = {x ∈ Rd, |x| = 1} and µ is a finite symmetric measure on (S,B(S)), i.e. µ(A) = µ(−A),
∀A ∈ B(S).

It is easy to see that the Lévy process L(t) has the following two properties:

(I) Scaling property: for t > 0, let µt denotes the law of Lt, t > 0, then

µt(A) = µ1(t−
1
αA), A ∈ B(Rd), t > 0.

(II) For any γ > α, we have ∫
{|x|≤1}

|x|γν(dx) <∞.

Refer to [10] for more details. Moreover, the Poisson random measure N associated to L is
defined as follows:

N([0, t], U) =
∑

0≤s≤t

1U(∆L(s)), U ∈ B
(
Rd\{0}

)
, t ≥ 0.

Here ∆L(s) = L(s) − L(s−) denotes the jump size of L at time s ≥ 0. The compensated
Poisson random measure Ñ is defined by

Ñ([0, t], U) = N([0, t], U)− tν(U), U ∈ B
(
Rd\{0}

)
, 0 /∈ Ū , t ≥ 0.
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It follows from Lévy-Itô decomposition that

L(t) =

∫ t

0

∫
|x|≤1

xÑ(ds, dx) +

∫ t

0

∫
|x|>1

xN(ds, dx), t ≥ 0.

In addition, for any T > 0, the predictable σ-algebra P on Ω×[0, T ] is generated by all left
continuous adapted processes. Letting U ∈ B

(
Rd\{0}

)
, consider a P ×B(U)-measurable

mapping F : Ω× [0, T ]× U → Rd. If 0 /∈ Ū , then∫ T

0

∫
U

F (·, s, x)N(ds, dx) =
∑

0≤s≤T

F (·, s,∆L(s))1U(∆L(s))

is a random finite sum. Furthermore, if E
∫ T

0

∫
U
|F (·, s, x)|2ν(dx)ds <∞, one can define the

stochastic process as

Z(t) =

∫ t

0

∫
U

F (·, s, x)Ñ(ds, dx), t ∈ [0, T ].

Notice that we do not assume 0 /∈ Ū . The process Z = (Z(t)) is a L2-martingale with a càdlàg
modification. Moreover, by [5, Lemma 2.4], we have E|Z(t)|2 = E

∫ t
0

∫
U
|F (·, s, x)|2ν(dx)ds.

We will use the following Lp-estimates (see [5, Theorem 2.11]): for any p ≥ 2 and t ∈ [0, T ],
there exists a constant c(p) > 0 such that

E
[

sup
0≤s≤t

|Z(s)|p
]
≤ c(p)E

[(∫ t

0

∫
U

|F (·, s, x)|2ν(dx)ds

) p
2

+

∫ t

0

∫
U

|F (·, s, x)|pν(dx)ds

]

Write M(t) = |Z(t)|2 and A(t) =
∫ t

0

∫
U
|F (·, s, x)|2ν(dx)ds. When p ∈ (0, 2), by Lemma 4.1

(see section 4), we have

E
[

sup
0≤s≤t

|Z(s)|p
]
≤ c(p)E

[(∫ t

0

∫
U

|F (·, s, x)|2ν(dx)ds

) p
2

]
, t ∈ [0, T ].(1.1)

For convenience, we introduce some notations. Denote b·c by the floor function, which
maps a real number to the greatest preceding integer. Let ‖ · ‖ denote the operator norm for
a bounded linear operator. For fixed k ∈ N and β ∈ (0, 1), define set Cβ

b

(
Rd
)

and Ck+β
b

(
Rd
)

as follows.

(1) Denote Cβ
b

(
Rd
)

by the set of Rd-valued bounded functions defined on Rd, which are

β Hölder continuous. The norm of Cβ
b

(
Rd
)

is

‖f‖β := sup
x∈Rd
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
|x− y|β

, f ∈ Cβ
b

(
Rd
)
.

3



(2) Denote Ck+β
b

(
Rd
)

by the set of Rd-valued bounded functions, which have up to k-
ordered continuous derivative and the k-th derivative is β Hölder continuous. The
norm is

‖f‖k+β :=
k∑
i=0

sup
x∈Rd
‖∇if(x)‖+ sup

x 6=y

‖∇kf(x)−∇kf(y)‖
|x− y|β

, f ∈ Ck+β
b

(
Rd
)
.

In particular, C0
b

(
Rd
)

means the set of Rd-valued bounded functions, equipped the norm
‖f‖0 := supx∈Rd |f(x)|, and we usually denote Cb.

Throughout this paper, we assume that

(H1) For fixed α ≥ 1, there exists a positive constant Cα > 0 such that

Ψ(u) ≥ Cα|u|α, u ∈ Rd.

Remark 1.1. Refer to [10] for more details about this assumption. We know there are two
examples satisfying (H1). One is when L is a standard α-stable process, i.e. Ψ(u) = cα|u|α.
In this case, ν has density Cα

|x|d+α with respect to the Lebesgue measure in Rd. Moreover

the spectral measure µ is the uniform distribution on S. Another example is Ψ(u) =
kα(
∑d

i=1 |ui|α) and the Lévy measure ν is singular with respect to the Lebesgue measure
in Rd. More precisely, ν is concentrated on the union of the coordinates axes, i.e.

ν(dy) = cα

d∑
i=1

1Ai
1

|yi|1+α

where Ai = ∩j 6=i{yj = 0}. The spectral measure µ is a linear combination of Dirac measures,

i.e. µ =
∑d

k=1(δek + δ−ek), where (ek) is the canonical basis in Rd.

2 The convergence rate of EM Scheme for SDEs

In this section, we consider the following SDEs on Rd (d ≥ 1):

(2.1) dX(t) = b(X(t))dt+ dL(t), X(0) = x, t ∈ [0, T ],

where b is a Rd → Rd function and L(t) is a d-dimensional symmetric α-stable process
(α ∈ (0, 2)) on a complete filtration probability space (Ω,F , {Ft}t≥0,P), which satisfies
L(0) = 0, P-a.s.

For any m ∈ N, define the EM method as follows:

Xm(t) = x+

∫ t

0

b (Xm(ηm(s))) ds+ L(t), t ∈ [0, T ],

where ηm(s) := bms
T
c T
m

, s ∈ [0, T ]. From now on, we assume m is large enough such that
T
m
< 1. We will give the strong convergence rate of EM method for SDEs (2.1). Besides

(H1), we need one more assumption about the function b.
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(H2) b ∈ Cβ
b

(
Rd
)

for some β ∈ (0, 1) satisfying 2β + α > 2.

In order to transform (2.1) to a SDEs with regular coefficients, for any λ > 0, consider
the following resolvent equation on Rd:

(2.2) λu−L u− b∇u = b,

where

L f(x) =

∫
Rd\{0}

[
f(x+ y)− f(x)− 〈y,∇f(x)〉1{|y|≤1}

]
ν(dy), f ∈ C∞c (Rd).

By [10, Theorem 3.4], we have

Lemma 2.1. Assume (H1) and (H2), then for any λ > 0, there exists an unique solution
u = uλ ∈ Cα+β

b

(
Rd
)

to (2.2). Moreover, for any λ0, there exists a constant cλ0 > 0
independent of b and u such that

λ‖u‖0 + ‖∇u‖α+β−1 ≤ cλ0‖b‖β, λ > λ0.

Finally, we have limλ→∞ ‖∇uλ‖0 = 0.

Lemma 2.2. Assume (H1) and (H2), then for any 0 < p < α,

E |Xm(t)−Xm(ηm(t))|p ≤ C(p, ν)

(
T

m

) p
α

holds for some constant C(p, ν) depending on p and ν.

Proof. By the boundedness of b and the scaling property of L, for any 0 < p < α, noting
that α ≥ 1, we have

E |Xm(t)−Xm(ηm(t))|p ≤ E
∣∣∣∣∫ t

ηm(t)

b(Xm(ηm(s)))ds

∣∣∣∣p + E|L(t)− L(ηm(t))|p

≤ C(p, ν)

[(
T

m

)p
+

(
T

m

) p
α

]
≤ C(p, ν)

(
T

m

) p
α

.

The following lemma gives the regularity representation of Xm by Zvonkin transforma-
tion. The proof of this lemma refer to [10, Lemma 4.2].

Lemma 2.3. Let u be the unique solution given in Lemma 2.1, then for any t ∈ [0, T ] we
have [

Xm(t) + u(Xm(t))
]

=
[
X(0) + u(X(0))

]
+ L(t) + λ

∫ t

0

u (Xm(s)) ds

+

∫ t

0

[I +∇u(Xm(s))] [b(Xm(ηm(s)))− b(Xm(s))] ds

+

∫ t

0

∫
Rd\{0}

[u (Xm(s−) + x)− u (Xm(s−))] Ñ(ds, dx).

(2.3)
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We state the main result of this section as follows.

Theorem 2.4. Assume (H1) and (H2), then for any p > 0 satisfying pβ < α, the estima-
tion

E sup
0≤s≤T

|X(s)−Xm(s)|p ≤ C

(
T

m

) pβ
α

.(2.4)

holds for a positive constant C := C(p, T, ν, λ, α, β) depending on T , p, ν, λ, α and β.

Remark 2.5. When α = 2 and β = 1, the result coincides with the case that the process
L(t) is a Brownian motion and b is Lipschitz continuous.

Remark 2.6. In the multiplicative noise case, [7, Proposition 1] obtained the convergence
rate under condition p ∈ (0, α). In our result Theorem 2.4, this condition becomes more
relaxed, which is p ∈ (0, α/β), β < 1. For this, we need to notice that: in the additive noise
case, though E|X(t)|p is infinite when p > α, (X(t)−Xm(t)) still be a bounded process since
b is bounded.

Proof. Combining Lemma 2.3 with [10, (4.4)], we have

[
X(t) + u(X(t))

]
−
[
Xm(t) + u(Xm(t))

]
=

∫ t

0

λ
[
u(X(s))− u(Xm(s))

]
ds−

∫ t

0

[I +∇u(Xm(s))] [b(Xm(ηm(s)))− b(Xm(s))] ds

+

∫ t

0

∫
Rd\{0}

[u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))] Ñ(ds, dx).

(2.5)

By Lemma 2.1, choosing large enough λ > 0 such that ‖∇u‖0 ≤ 1/3, it follows from (2.5)
that

|X(t)−Xm(t)| ≤ 3

2
Λ1(t) +

3

2
Λ2(t) +

3

2
Λ3(t) +

3

2
Λ4(t),(2.6)

where

Λ1(t) =

∣∣∣∣∫ t

0

∫
|x|>1

[
u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))

]
Ñ(ds, dx)

∣∣∣∣ ,
Λ2(t) =

∫ t

0

λ|u(X(s))− u(Xm(s))|ds,

Λ3(t) =

∣∣∣∣∫ t

0

∫
|x|≤1

[
u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))

]
Ñ(ds, dx)

∣∣∣∣ ,
Λ4(t) =

∫ t

0

| [I +∇u(Xm(s))] [b(Xm(ηm(s)))− b(Xm(s))] |ds.
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Firstly, by assumption (H2), Lemma 2.1, Lemma 2.2 and Hölder inequality, we obtain

E sup
0≤s≤t

Λp
4(s) ≤ c1(p)tp−1E

∫ t

0

| [I +∇u(Xm(s))] [b(Xm(ηm(s)))− b(Xm(s))] |pds

≤ c1(p, T, ν)

(
T

m

) pβ
α

,

(2.7)

where c1(p, T, ν) > 0 is a positive constant depending on p, T, ν. Similarly, we have

E sup
0≤s≤t

Λp
2(s) ≤ c2(p, λ, T )tpE sup

0≤s≤t
|X(s)−Xm(s)|p.(2.8)

Next, we divide two cases to estimate Λ1 and Λ3.
Case 1: 0 < p < 2. By the boundedness of u and the property of ν, it is easy to show

that∫ t

0

∫
|x|>1

∣∣u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))
∣∣2ν(dx)ds <∞.

Since

|u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))|
≤|u(X(s−) + x)− u(Xm(s−) + x)|+ |u(X(s−))− u(Xm(s−))|

≤2

3
|X(s−)−Xm(s−)|,

combining this with (1.1), we obtain

E sup
0≤s≤t

Λp
1(s) ≤ c3(p)t

p
2 ν({|x| > 1})

p
2E sup

s∈[0,t]

|X(s)−Xm(s)|p

= c3(p, ν)t
p
2E sup

s∈[0,t]

|X(s)−Xm(s)|p.
(2.9)

By [10, Lemma 4.1], assumption (H2) and Lemma 2.1, it holds that

|u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))|
≤ 32−(α+β)2α+β−1‖u‖α+β|x|α+β−1|X(s−)−Xm(s−)|.

(2.10)

Since X(t)−Xm(t) is a bounded process, (2.10) and assumption (H2) imply that

E
∫ t

0

∫
|x|≤1

|u(X(s−) + x)− u(X(s−))− u(Xm(s−) + x) + u(Xm(s−))|2ν(dx)ds <∞.

It follows from (1.1) that

E sup
0≤s≤t

Λp
3(s) ≤ c4(p, α, β)E

[∫ t

0

∫
|x|≤1

‖u‖2
α+β|X(s)−Xm(s)|2|x|2(α+β−1)ν(dx)ds

] p
2

≤ c4(p, T, ν, α, β)t
p
2E sup

s∈[0,t]

|X(s)−Xm(s)|p .
(2.11)
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Case 2: p ≥ 2. By (1.1), we get

E sup
0≤s≤t

Λp
1(s) ≤ c3(p)t

p
2 ν({|x| > 1})

p
2E sup

s∈[0,t]

|X(s)−Xm(s)|p

+ c3(p)tν({|x| > 1})E sup
s∈[0,t]

|X(s)−Xm(s)|p

= c3(p, ν)tE sup
s∈[0,t]

|X(s)−Xm(s)|p,

(2.12)

and

E sup
0≤s≤t

Λp
3(s) ≤ c4(p, α, β)E

[∫ t

0

∫
|x|≤1

‖u‖2
α+β|X(s)−Xm(s)|2|x|2(α+β−1)ν(dx)ds

] p
2

+ c4(p, α, β)E
∫ t

0

∫
|x|≤1

‖u‖pα+β|X(s)−Xm(s)|p|x|p(α+β−1)ν(dx)ds

≤ c4(p, T, ν, α, β)tE sup
s∈[0,t]

|X(s)−Xm(s)|p.

(2.13)

Combining formulas (2.6)–(2.13), we get

E sup
0≤s≤t

|X(s)−Xm(s)|p ≤ c1(p, T, ν)

(
T

m

) pβ
α

+ c̃t
p
2
∧1E sup

0≤s≤t
|X(s)−Xm(s)|p.

where c̃ is a constant depending on p, T, ν, λ, α, β. Taking t0 := [2c(p, T, ν, λ, α, β)]−( p2∧1),
we have

E sup
0≤s≤t0

|X(s)−Xm(s)|p ≤ c(p, T, ν)

(
T

m

) pβ
α

.

Finally, by recursion, it is easy to show that

E sup
0≤s≤T

|X(s)−Xm(s)|p ≤ c(p, T, ν) (bT/t0c+ 1)

(
T

m

) pβ
α

,

which completes the proof of Theorem 2.4.

3 The convergence rate of EM Scheme for SFDEs

Fix r > 0, denote D by the set of all Rd-valued càdlàg functions on [−r, 0] equipped with the
uniform norm ‖ξ‖∞ := sups∈[−r,0] |ξ(s)|. For any Rd-valued càdlàg function f on [−r,∞),
define ft ∈ D as ft(θ) = f(t+ θ), θ ∈ [−r, 0].

In this section, we consider the following functional SDEs on Rd (d ≥ 1):

(3.1) dX(t) = b(X(t))dt+B(Xt)dt+ dL(t), X0 = ξ,
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where b : Rd → Rd and B : D → Rd are measurable functions, and L(t) is the Rd-valued
Lévy process introduced in Section 1. Next, we introduce the EM method for SFDEs (3.1),
refer to [1] for more details. For some integers M > T and N > r, define ∆ ∈ (0, 1) as

∆ :=
r

N
=

T

M
.

For any integers k ∈ [−N,∞) and i ∈ [−N,−1], write

ȳ(k∆) = ξ(k∆), −N ≤ k ≤ 0;

ȳ((k + 1)∆) = ȳ(k∆) + b(ȳ(k∆))∆ +B(ȳk∆)∆ + L((k + 1)∆)− L(k∆), k ≥ 0,
(3.2)

where ȳk∆ is a D-valued random variable defined by

(3.3) ȳk∆(s) =
(i+ 1)∆− s

∆
ȳ((k + i)∆) +

s− i∆
∆

ȳ((k + i+ 1)∆), s ∈ [i∆, (i+ 1)∆].

In order to define ȳ−∆, we set ȳ(−(N + 1)∆) = ξ(−N∆). Thus we give a discrete-time
approximation {ȳ(k∆)}k≥0. Following this, we give a continuous-time approximation y(t)
by setting y(t) = ξ(t) when t ∈ [−r, 0]. For t ∈ [0, T ], define

(3.4) y(t) = ξ(0) +

∫ t

0

(b(ȳs(0)) +B(ȳs))ds+ L(t),

where ȳt := ȳb t
∆
c∆. It is easy to see that ȳ(k∆) = y(k∆) for −N ≤ k ≤M . Combining this

and formulas (3.2)–(3.4), we have the following properties:

(N1) ‖ȳk∆‖∞ = sup−N≤i≤0 |ȳ((k + i)∆)|, −1 ≤ k ≤M .

(N2) ‖ȳk∆‖∞ ≤ ‖yk∆‖∞, −1 ≤ k ≤M .

(N3) ‖ȳt‖∞ = ‖ȳb t
∆
c∆‖∞ ≤ ‖yb t

∆
c∆‖∞ ≤ sup−r≤s≤t |y(s)|, t ∈ [0, T ].

In this section, we study the convergence rate of EM method for SFDEs (3.1). Before
moving further, we give the assumptions in this model:

(H2’) b ∈ Cβ
b

(
Rd
)

for some β ∈ (0, 1) satisfying α + β = 2.

(H3) B is a bounded and Lipschitz continuous function, i.e. there exists a left-continuous
nondecreasing function ρ : [−r, 0]→ [0,∞) such that for all ξ, η ∈ D ,

|B(ξ)−B(η)|2 ≤
∫

[−r,0]

|ξ(s)− η(s)|2dρ(s).

(H4) For some p ∈ (0, α), there exists a constant γ > 0 such that

|ξ(s)− ξ(t)|p ≤ γ|s− t|, ∀s, t ∈ [−r, 0].
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Noticing that the assumption (H3) implies [4, (H2)]. Under assumptions (H1), (H2’) and
(H3), it is easy to prove that (3.1) has an unique strong solution by using the result of [4,
Theorem 3.2]. Moreover, for any t ∈ [0, T ], we have

[X(t) + u(X(t))] = [X(0) + u(X(0))] + L(t)

+ λ

∫ t

0

u(X(s))ds+

∫ t

0

(I +∇u(X(s)))B(Xs)ds

+

∫ t

0

∫
Rd\{0}

[u(X(s−) + x)− u(X(s−))]Ñ(ds, dx).

(3.5)

By (2.2), Lemma 2.1 and Itô formula, we give a regularity representation of y(t) by
Zvonkin transformation. For more details of the proof, refer to [10, Lemma 4.2] and [4,
Theorem 3.2].

Lemma 3.1. Let u be in Lemma 2.1, then

[y(t) + u(y(t))] = [y(0) + u(y(0))] + L(t)

+ λ

∫ t

0

u(y(s))ds+

∫ t

0

(I +∇u(y(s)))B(ȳs)ds

+

∫ t

0

(I +∇u(y(s)))(b(ȳs(0))− b(y(s)))ds

+

∫ t

0

∫
Rd\{0}

[u(y(s−) + x)− u(y(s−))]Ñ(ds, dx), t ∈ [0, T ].

(3.6)

The following lemma is useful in the proof of the main result in this section. The proof
is similar to the one of [1, Lemma 3.2], for convenience, we show it in detail.

Lemma 3.2. Assume (H2’), (H3) and (H4), then for p ∈ (0, α) introduced in (H4) and
t ∈ [0, T ]

E|y(t+ s) + ȳt(s)|p ≤ C(p, γ)∆
p
α , s ∈ [−r, 0].(3.7)

Proof. Fix t ∈ [0, T ], s ∈ [−r, 0], let kt = b t
∆
c∆ and ks = b |s|

∆
c∆. For convenience, we write

v = t+ s. Then it is easy to see that 0 ≤ v − kv ≤ ∆. By (3.3), it is clear that

ȳt(s) = ȳkt(s) = ȳ(kv) +
s− ks

∆
(ȳ(kv + ∆)− ȳ(kv)),

which implies that

E|y(t+ s) + ȳt(s)|p ≤ c(p)E|y(v)− ȳ(kv)|p + c(p)E|ȳ(kv + ∆)− ȳ(kv)|p.(3.8)

If kv ≤ −∆, assumption (H4) implies that

E|ȳ(kv + ∆)− ȳ(kv)|p ≤ γ∆.(3.9)
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If kv ≥ 0, since b and B are bounded, using (3.2) we have

E|ȳ(kv + ∆)− ȳ(kv)|p ≤ c∆
p
α .(3.10)

Next, we divide three cases to estimate the first term on the right-hand side of (3.8).
Case1: kv ≥ 0. By (3.4) we have

E|y(v)− ȳ(kv)|p ≤ C(p)

(∣∣∣∣∫ v

kv

(b(ȳs(0)) +B(ȳs))ds

∣∣∣∣p + |L(v)− L(kv)|p
)

≤ C(p)∆
p
α .

(3.11)

Case2: kv ≤ −∆ and v > 0. In this case v ≤ ∆, by assumption (H4) and (3.4), we have

E|y(v)− ȳ(kv)|p ≤ C ′(p)E|y(v)− ȳ(0)|p + C(p)E|y(0)− ȳ(kv)|p

≤ C ′(p)

(∣∣∣∣∫ v

0

(b(ȳs(0)) +B(ȳs))ds

∣∣∣∣p + |L(v)|p
)

+ C(p)γ∆

≤ C ′(p)∆
p
α .

(3.12)

Case3: kv ≤ −∆ and v ≤ 0. By assumption (H4), we have

E|y(v)− ȳ(kv)|p ≤ 2γ∆.(3.13)

Finally, combining formulas (3.8)–(3.13), we obtain (3.7).

Theorem 3.3. Assume (H1), (H2’), (H3) and (H4), then we have

E sup
0≤s≤T

|X(s)− y(s)|p ≤ c∆
pβ
α(3.14)

where p ∈ (0, α) is given in assumption (H4) and c is a positive constant depending on
p, T, ν, λ, α, β, γ.

Proof. Combining (3.5) and (3.6), we have

[X(t) + u(X(t))]− [y(t) + u(y(t))]

=

∫ t

0

λ[u(X(s))− u(y(s))]ds−
∫ t

0

[I +∇u(y(s))][b(ȳs(0))− b(y(s))]ds

+

∫ t

0

∫
Rd\{0}

[u(X(s−) + x)− u(X(s−))− u(y(s−) + x) + u(y(s−))]Ñ(ds, dx)

+

∫ t

0

[(I +∇u(X(s)))B(Xs)− (I +∇u(y(s)))B(ȳs)]ds.

(3.15)

By Lemma 2.1, choosing large enough λ > 0 such that ‖∇u‖0 ≤ 1/3, it follows from (3.15)
that

|X(t)− y(t)| ≤ 3

2
Γ1(t) +

3

2
Γ2(t) +

3

2
Γ3(t) +

3

2
Γ4(t) +

3

2
Γ5(t),(3.16)
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where

Γ1(t) =

∣∣∣∣∫ t

0

∫
|x|>1

[u(X(s−) + x)− u(X(s−))− u(y(s−) + x) + u(y(s−))]Ñ(ds, dx)

∣∣∣∣ ,
Γ2(t) =

∫ t

0

λ|u(X(s))− u(y(s))|ds,

Γ3(t) =

∣∣∣∣∫ t

0

∫
|x|≤1

[u(X(s−) + x)− u(X(s−))− u(y(s−) + x) + u(y(s−))]Ñ(ds, dx)

∣∣∣∣ ,
Γ4(t) =

∫ t

0

[I +∇u(y(s))][b(ȳs(0))− b(y(s))]ds,

Γ5(t) =

∫ t

0

[(I +∇u(X(s)))B(Xs)− (I +∇u(y(s)))B(ȳs)]ds.

Firstly, by assumption (H2), Lemma 2.1 and Hölder inequality, we have

E sup
0≤s≤t

Γp5(s) ≤ c5(p)tp−1E
∫ t

0

|(I +∇u(X(s)))B(Xs)− (I +∇u(y(s)))B(ȳs)|pds

≤ c5(p)tp−1E
∫ t

0

|(I +∇u(X(s)))B(Xs)− (I +∇u(X(s)))B(ys)|pds

+ c5(p)tp−1E
∫ t

0

|(I +∇u(X(s)))B(ys)− (I +∇u(X(s)))B(ȳs)|pds

+ c5(p)tp−1E
∫ t

0

|(I +∇u(X(s)))B(ȳs)− (I +∇u(y(s)))B(ȳs)|pds

≤ c5(p)tp−1

∫ t

0

E sup
0≤q≤s

|X(q)− y(q)|pds

+ c5(p)tp−1E
∫ t

0

∫
[−r,0]

|ys(v)− ȳs(v)|pdρ(v)ds

≤ c5(p, T )tpE sup
0≤s≤t

|X(s)− y(s)|p + c5(p, T )∆
p
α

(3.17)

where c5(p, T ) is a positive constant. Similarly, we have

E sup
0≤s≤t

Γp2(s) ≤ c2(p, λ)tpE sup
0≤s≤t

|X(s)− y(s)|p.(3.18)

Next, by (2.9), we obtain

E sup
0≤s≤t

Γp1(s) ≤ c1(p, T, ν)t
p
2E sup

0≤s≤t
|X(s)− y(s)|p,(3.19)

and by (2.11), it holds that

E sup
0≤s≤t

Γp3(s) ≤ c3(p, T, ν, α, β)t
p
2E sup

0≤s≤t
|X(s)− y(s)|p.(3.20)

12



Fix the constant p ∈ (0, α) given in assumption (H4). Finally, by assumption (H2),
Lemma 2.1, Lemma 2.2, Hölder inequality and Jensen inequality,

E sup
0≤s≤t

Γp4(s) ≤ c4(p)tp−1E
∫ t

0

|(I +∇u(Xm
s ))(b(ȳs(0))− b(y(s))|pds

≤ c4(p, T, ν)∆
pβ
α

(3.21)

holds for a constant c4(p, T, ν) > 0.
Combining formulas (3.16)–(3.21), we get

E sup
0≤s≤t

|X(s)− y(s)|p ≤ c(p, T, ν)∆
pβ
α + c(p, T, ν, λ, α, β, γ)t

p
2E sup

0≤s≤t
|X(s)− y(s)|p.

Taking t0 := [2c(p, T, ν, λ, α, β, γ)]−
p
2 . Since functions b and B are bounded, (X(t)− y(t)) is

a bounded process, and then

E sup
0≤s≤t0

|X(s)− y(s)|p ≤ c(p, T, ν)∆
pβ
α .

Finally, by recursion, it is easy to see that

E sup
0≤s≤T

|X(s)− y(s)|p ≤ c(p, T, ν) (bT/t0c+ 1) ∆
pβ
α .

4 Appendix

Lemma 4.1. [Lenglart’s inequality [6]] Let M(t) be a nonnegative càdlàg process and A(t)
be an increasing predictable process on some probability space. If for any finite stopping time
τ , it holds that

EM(τ) ≤ EA(τ),

then for any p ∈ (0, 1) and stopping time τ , the following inequality holds:

E sup
0≤s≤τ

M(s)p ≤ 2− p
1− p

E[A(τ)]p.
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