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Abstract

In this paper, we first design a time optimal control problem for the heat equation with sampled-data controls,
and then use it to approximate a time optimal control problem for the heat equation with distributed controls.

The study of such a time optimal sampled-data control problem is not easy, because it may have infinitely many
optimal controls. We find connections among this problem, a minimal norm sampled-data control problem and a
minimization problem. And obtain some properties on these problems. Based on these, we not only build up error
estimates for optimal time and optimal controls between the time optimal sampled-data control problem and the
time optimal distributed control problem, in terms of the sampling period, but also prove that such estimates are
optimal in some sense.

Résumé

Controles a données échantionnées en temps optimal pour 1’équation de la chaleur. Dans cet article,
nous concevons d’abord un probleme pour ’équation de la chaleur avec les controles a données échantillonnés,
puis 'utiliser pour approacher un probleme de controle en temps minimal pour ’équation de la chaleur avec des
controles distribués.

L’étude d’un tel probleme n’est pas facile puisqu’il peut avoir un nombre infini de controles optimals. Nous
trouvons des connexions entre ce probleme, un probleme de controle & donn es chantillonnes, et un probleme de
minimisation, et nous obtenons des propriétés sur ces problmes. Selon ces résultats, nous établissons non seulemnt
des estimations d’erreur entre les deux problemes en question, en termes de période d’échantillonnage, mais aussi
nous prouvons que ces estimations sont optimales dans certain sens.
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1. Introduction
1.1. Motivation and problems

In most published literature on time optimal control problems, controls are distributed in time, i.e.,
they can vary at each instant of time. However, in practical application, it is more convenient to use
controls which vary only finite times. Sampled-data controls are such kind of controls (see for instance
[1,8,13,19,23]). In this paper, we will design and study a time optimal control problem for the heat equation
with sampled-data controls. And then we use it to approximate a time optimal control problem for the
heat equation with distributed controls, through building up several error estimates for optimal time and
optimal controls between these two problems, in terms of the sampling period. Such errors estimates have
laid foundation for us to replace distributed controls by sampled-data controls in time optimal control
problems for heat equations.

Throughout this paper, R £ (0,00); @ C R? (d € Nt £ {1,2,...}) is a bounded domain with a C?
boundary 09; w C € is an open and nonempty subset with its characteristic function x,,; A1 is the first
eigenvalue of —A with the homogeneous Dirichlet boundary condition over €2; B,.(0) denotes the closed
ball in L?(£2), centered at 0 and of radius 7 > 0; for each measurable set A in R, |.A| denotes its Lebesgue
measure; (-,-) and || - || denote the usual inner product and norm of L?(£2), respectively; (-,-),, and || - ||
stand for the usual inner product and norm in L?(w), respectively.

First, we introduce a time optimal distributed control problem for the heat equation. Throughout this
paper, we fix the initial state yo and the target ball B,.(0) in the following way:

r>0 and yo € L*(Q)\ B,(0). (1)
For each M > 0, we consider the following time optimal distributed control problem:

(TP)M: T(M)=inf{i>0: JaeU™ st. y(f;y0,7) € B,(0)}, (2)
where

UM L {ue LR x Q) : ull 2@+ <o) < M},

and where y(-; yo,u) is the solution to the following distributed controlled heat equation:

Oy — Ay = xou in RT x Q,
y=0 on R* x 9Q, (3)
y(0) =yo in .

Since y(t; y0,0) — 0 as t — oo, we find that 7 (M) < oo for all M > 0. About (TP)M, we introduce some

concepts in the following definition:

Definition 1.1 (i) The number T (M) is called the optimal time; i € UM is called an admissible control
if y(t; yo, 1) € B.(0) for some t > 0; u* € UM is called an optimal control if y(T (M);yo,u*) € B,.(0). (ii)
Two optimal controls are said to be different (or the same), if they are different (or the same) on their

effective domain (0, T (M)) x €.

Several notes on the problem (7P)M are given in order:
e It is shown in Theorem 3.1 that for each M > 0, (TP)M has a unique optimal control.
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e In many time optimal distributed control problems for heat equations, controls are taken from
L>(R*; L?(Q)). However, the current setting is also significant (see, for instance, [16] and [38]).

Next, we are going to design a time optimal sampled-data control problem for the heat equation. For
this purpose, we define the following space of sampled-data controls (where § > 0 is arbitrarily fixed):

Li(R* x Q) £ {Ué €LP(RY x Q) 1 us £ x(—nsisu’s {u'}, C L2(Q)}» (4)
=1

endowed with the L?(RT x Q)-norm. Here and in what follows, X((i—1)s,i5) denotes the characteristic
function of the interval ((z —1)4, ié] for each i € NT. The numbers §, 24, .. .,id, ... are called the sampling
instants, while § is called the sampling period. Each us in the space Lg(}R+ x 1) is called a sampled-data
control. For each us € L3(RT x Q) and each zy € L?(2), write y(+; 20, us) for the solution to the following
sampled-data controlled heat equation:

Oy — Ay = xus in RT x €,

y=0 on R* x 09, (5)

y(0) = 2o in Q.

For each M > 0 and ¢ > 0, we consider the following time optimal sampled-data control problem:

(TP);":+ Ts(M)=inf{ks : 3k € N, Jus € Uy s.t. y(kd; yo,us) € B-(0)}, (6)
where
U 2 {us € ;R x Q) ¢ us|regexoy < M} . (7)

Since y(t;yo,0) — 0 as t — oo, we see that T5(M) < oo for all M > 0 and 6 > 0. With respect to (TP)M,
we introduce some concepts in the following definition:

Definition 1.2 (i) The number Ts(M) is called the optimal time; us € UM is called an admissible control
ify(/%é; Yo, us) € B (0) for some ke Nt; u} € UM is called an optimal control if y(Ts(M); yo, u}) € B.(0).
(i) A control u} is called the optimal control with the minimal norm, if u} is an optimal control and satis-
fies that [Juj] 120,75 )y x) < 10512 (0,75 () x ) for any optimal control vy. (iii) Two optimal controls
are said to be different (or the same), if they are different (or the same) over (0, Ts(M)) x Q.

Several notes on this problem are given in order:

e The optimal time 75(M) is a multiple of § (see (6)). For each M > 0 and each § > 0, (TP)¥ has a
unique optimal control with the minimal norm (see (ii) in Theorem 3.1); There are infinitely many
pairs (M, §) so that (TP)M has infinitely many different optimal controls (see Theorem 3.2).

e We may design a time optimal sampled-data control problem in another way: To find a control u}
in UM so that y(-;yo,ul) enters B,(0) in the shortest time 75(M) (which may not be a multiple
of §). We denote this problem by (7/'73)(]5\4 . Several reasons for us to design time optimal sampled-
data control problem to be (TP)M are as follows: (i) Each sampled-data control us has the form:
> X((i—1)s,is) " with some {u’}22, C L*(Q2). From the perspective of sampled-data controls, each

u* should be active in the whole subinterval ((i —1)d, ¢6]. Thus, our definition for 7 (M) is reasonable.

(ii) In the definition (’77\3)5;\4 , in order to make sure if the control process should be finished, we need
to observe the solution (of the controlled equation) at each time. However, in our definition (7P)},
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we only need to observe the solution at time points 8, with i = 1,2,.... (iii) Our design on (7P)¥
might provide a right way to approach numerically (7P)M via a discretized time optimal control
problem. For instance, if we semi-discretize (7P)M in time variable, then our design on (7P)¥ can
be borrowed to define a semi-discretized (in the time variable) time optimal control problem. The
reason is as follows: For the problem (TP)M, we do not know the optimal time 7 (M) before the
computation. Thus, if we want to semi-discretize the problem in time, we do not know how to choose
the mesh size ¢ so that T(M) = ko for integer k£ > 1. On the other hand, if borrow our definition
(TP)(];M, we can pass the above-mentioned barrier.

1.2. Main results

Recall that yo and r are given by (1). The main results of this paper are presented in the following three
theorems.

Theorem 1.3 Let M > 0. Then the following conclusions are true:
(i) There is 5o = 6o(M,yo,7) > 0 so that

0<Ts(M)—T(M) <26 forall § € (0,0). (8)

)
(i1) For each n € (0,1), there exists a measurable set Ay, C (0,1) (depending also on yo and r) with
limy, o+ 3| Az, N (0, )] so that

="
0> Ts(M)—T(M)>(1—mn)d for each 6 € Apyy. (9)

Theorem 1.4 Let M > 0 and u* be the optimal control to (TP)M. For each § > 0, let u} be the optimal
control with the minimal norm to (TP)}. Then the following conclusions are true:
(i) There is C = C(M,yo,7) > 0 so that

lus — ™|l 20, 7(ar))x) < C6 for each 6 > 0. (10)
(i1) For each n € (0,1), there is a measurable set Ay, C (0,1) (depending also on yo and r) with
limy, o+ 3| Aary N (0,h)] =1 so that

* * 1
lus — ™|l 20, 7(0)) x ) > 5)3/27"(1 —n)d for each 6 € Anr,p. (11)

Theorem 1.5 Let M > 0 and u* be the optimal control to (TP)M. Then the following conclusions are
true:
(i) There is C = C(M,yo,7) > 0 so that

||U5 — U*”L?((O,T(M))XQ) < C\/g fOT each § > 0, (12)

where ug is any optimal control to (TP)M.
(ii) For each n € (0,1), there is a measurable set Apr, C (0,1) (depending also on yo and r) with
limy, o+ 3 |Aary N (0, h)| =10 so that for each § € Apr,, there is an optimal control is to (TP)} so that

lis — || 20,7 (a))x) = Curv/ (1 — 1), (13)

for some positive constant Cyy 2 Car(yo,T).



Several remarks on the main results are given in order.

e Theorem 1.3 and Theorem 1.4 present two facts. First, the error between 7s(M) and 7 (M) and the
error between ujy, and ujy, ; have the order 1 with respect to the sampling period 4. Second, this
order is optimal, because of the lower bound estimates (9) and (11), and because of the property
that limy, o+ Ay N (0, k)] = n with any 1 € (0,1). Notice that when 6 € (0,1) \ Axz,y, (9) may
not be true (see Theorem 6.2, as well as Remark 6.3).

e Theorem 1.5, as well as Theorem 1.4, presents two facts. First, in (7P)}, the optimal control with
the minimal norm differs from some of other optimal controls, from perspective of the order of the
errors. Second, the order of the error between any optimal control of (7P) f;” and the optimal control
to (TP)M is 1/2, with respect to d. Moreover, this order is optimal in the sense (ii) of Theorem 1.5.

e Since we aim to approximate u* by u} and because the efficient domain of v* is (0,7 (M)) x Q, we
take the L2((0, 7 (M)) x Q)-norm in the estimates in Theorem 1.4 and Theorem 1.5.

e There have been many publications on optimal sampled-data control problems (with fixed ending
time point). In [6] (see also [5]), the authors built up the Pontryagin maximum principle for some
optimal sampled-data control problems. In [7], the authors showed that for some LQ problem, the
optimal sampled-data control converges to the optimal distributed control as the sampling period
tends to zero. In [33], the authors built up some error estimates between the optimal distributed
control and the optimal sampled-data control for some periodic heat equations. About more works
on sampled-data controls, we would like to mention [1,3,4,8,13,14,19,20,23,32] and the references
therein.

e There have been some literatures on the approximations of time optimal control problems for the
parabolic equations. We refer to [15,41] for semi-discrete finite element approximations, and [34,43]
for perturbations of equations. About more works on time optimal control problems, we would like
to mention [2,10,11,16,17,18,21,22,25,27,30,31,35,37,38,39,40,42,44] and the references therein.

e About approximations of time optimal sampled-data controls, we have not found any literature in
the past publications.

1.3. The strategy to get the main results

The strategy to prove the main theorems is as follows: We first introduce two norm optimal control
problems which correspond to time optimal control problems (7P)* and (TP)M respectively; then get
error estimates between the above two norm optimal control problems (in terms of ¢); finally, obtain the
desired error estimates between (7P)M and (TP)¥ (in terms of §), through using connections between
the time optimal control problems and the corresponding norm optimal control problems (see (iii) of
Theorem 3.1 and Theorem 4.1, respectively).

To explain our strategy more clearly, we will introduce two norm optimal control problems. The first
one corresponds to (7P)M and is as:

NPT N(T) = inf{[[v]l L2 0,m)x0) : ¥(Tiy0,v) € Br(0)}, (14)

where T' > 0 and y(-;yo,v) is the solution of (3) with u being replaced by the zero extension of v over
R*. The second one corresponds to (7P)M and is defined by

(NP)F : N3(ko) 2 inf{||vs| L2 (o,k5)x2) : ¥(kd;y0,vs) € Br(0)}, (15)
where (,k) € RT x N,
L2((0,k8) x Q) 2 {florsxa : f € LARY x Q)}, (16)
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and y(-;yo,vs) is the solution of (3) with u being replaced by the zero extension of vs over RT. (In the
definition of (N'P)%°| k4 denotes the length of the time interval and ¢ is the mesh size.)

Some concepts about the above two norm optimal control problems are given in the following definition:

Definition 1.6 (i) In the problem (N'P)T, N'(T) is called the optimal norm; v € L?((0,T) x Q) is called
an admissible control if y(T;yo,v) € B-(0); v* is called an optimal control if y(T;yo,v*) € B,-(0) and
HU*||L2((0,T)><Q) =N(T).

(ii) In the problem (N'P)%, Ni(kS) is called the optimal norm; vs € L2((0,k8) x Q) is called an ad-
missible control if y(kd;yo,vs) € Br(0); and vy is called an optimal control if y(ko;yo,vi) € B, (0) and

V3l 22 (0.68) x2) = N (k).

We mention that both (NP)? and (NP)% have unique nonzero solutions (see Theorems 4.2-4.3).
Inspired by [9], we study the above two minimal norm control problems by two minimization problems.
The first one corresponds to (NP)T and reads

1
T . A T NA 4 . 2
PV E TS it [SIee(s T2 o)

+{o,0(0; T, 2)) +rllzl|, (17)

where ¢(+; T, z) is the solution to the adjoint heat equation:

Op+Ap =0 in [0,T) x Q,
=0 on [0,T) x 99, (18)
o(T) =z € L*(Q).

(Throughout this paper, we treat ¢(; T, 2) as a function from [0,7] to L?(£2).) The second minimization
problem corresponds to (NP)k? and is as:

. : 1.
(IP)NT: Vs(ke) 2 inf JS)E nf [ Sla®s(ik6 ) ks

z€L2(Q) z€L2(Q)
+(yo, p(0; k3, 2)) + 7llz]l|, (19)
where g (+; k6, 2) is defined by
A is
_ A 1
s (t; ko, z) = ZX((i_l)M(g] (t)g / p(s; k6, z)ds for each ¢ € (0, kd]. (20)
i=1 ,
(i—1)8

We mention that both (JP)? and (JP)% have unique nonzero minimizers in L?(f2) (see Theorems 4.2-
4.3).
We prove Theorem 1.3 by the following steps:
(a) Build up connections between (7P)¥ and (J\/"P)Z—‘S(M) (see (iii) of Theorem 3.1); and connections
between (7P)M and (N'P)7M) (see Theorem 4.1).
(b) Obtain the lower and upper bounds of the error N'(T}) — N (T3) for two different time points 77, Tb
(see Theorem 5.2).
(c) Compute the error estimate [N (kd) — Ny(kd)| (see Theorem 5.3).
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(d) Get (i) of Theorem 1.3, with the aid of the above (a)-(c).
(e) By using the above (a)-(c) again, we build up sets A, and obtain related properties in Theorem
5.4, which leads to (ii) of Theorem 1.3.

The steps to prove Theorem 1.4 and Theorem 1.5 are as follows:
(1) Build up connections between (TP)¥ and (NP)?(M) (see (iii) of Theorem 3.1), and connections
between (7P)M and (N'P)7M) (see Theorem 4.1).
(2) With the aid of the connections obtained in (1), we can transfer the estimate in (i) of Theorem 1.4
into an estimate between optimal controls of (NP)7 ) and (N ’P)Z—‘S(M).

(3) Find connections between (./\/P)Z%(M) (or (NP)T(M)Y and (JP);‘;(M) (or (JP)T(M)) (see Theorem
4.3 and Theorem 4.2, respectively).

(4) Obtain the error estimate between the minimizers of (JP)7 ) and (JP)Z—‘S(M).

(5) Using the connections obtained in (3) and the estimate obtained in (4), we get an error estimate
between optimal controls of (NP)7 M) and (NP)Z—&(M). This, along with results in (2), leads to the
estimate in (i) of Theorem 1.4.

(6) Using connections obtained in (1) and (3), and using Theorem 5.4, we prove the estimate in (ii) of
Theorem 1.4.

(7) Obtain the least order of the diameter of the set Oy 5 (in the space L2((0, 7 (M)) x €)), in terms
of 9, (see Lemma 6.1). Here,

Ows 2 {us|(o,7(myxa © us is an optimal control to (7P);"}. (21)

(8) Derive the estimates in Theorem 1.5, with the aid of Lemma 6.1 and the estimates in Theorem 1.4.

We would like to give the following note:
— The above introduced strategy was used to study other properties of time optimal distributed control
problems (see, for instance, [34] and [42]). It could be used to study numerical approximations of
time optimal distributed control problems, via discrete time optimal control problems.

The rest of the paper is organized as follows: Section 2 shows a kind of approximate null controllabil-
ity for the equation (5). Section 3 concerns with the existence and uniqueness of time optimal control
problems. Section 4 provides some connections among time optimal control problems, norm optimal con-
trol problems and some minimization problems. Section 5 presents several auxiliary estimates. Section 6
proves the main results. Section 7 (Appendix) gives one lemma, which was taken from [36] and presents an
equivalence between controllability and observability in an abstract setting. Since [36] has not appeared,
we put it and the proof in Appendix.

2. L2-approximate null controllability with a cost

In this section, we present a kind of approximate null controllability for the sampled-data controlled
equation (5). Such controllability will be defined in the next Definition 2.1 and will play a key role in
getting some estimates in Section 5.

Definition 2.1 (i) Let (6,k) € RT x N*. Equation (5) is said to have the L?-approzimate null control-
lability with a cost over [0, kd], if for any € > 0, there is C(e,8,k) > 0 so that for each zo € L*(Q), there
is ui® € L3((0,k6) x Q) (see (16)) satisfying that



1 . 1 )
m||u§0||i2((0,ka)xg) + g”y(kd’ Zo’uéo)H2 < ||ZO||2 (22)

(ii) Equation (5) is said to have the L*-approzimate null controllability with a cost, if it has the L*-
approzimate null controllability with a cost over [0, k4], for each (6,k) € RT x NT.

To prove the L2-approximate null controllability with a cost for Equation (5), we need some prelimi-
naries. For each f € L2(RT x ) and § > 0, we let

ZX(Z 1)8,i5]( 5 / f(s)ds for each t € RY. (23)
=1 (i=1)s

Lemma 2.2 For each f, g € L*(R" x Q) and each 6 > 0,

(f5, 9) L2+ x0) = (f>Gs) 12(r+ x) = (f5, o) L2(R+ x0)- (24)
Proof. Arbitrarily fix 6 > 0 and f, g € L?(R* x Q). To prove (24), it suffices to show

(f5, 9V 2@+ x0) = (fs, Fs) 2R+ x)- (25)
y (23), one can directly check that

- - i
(f5, 9 r2®ex0) = Z<f6ag>L2(((i—1)6,z’6)xQ) = Z <f5(i5)7 / g(?) dt>

=1 i=1 (i—1)s
Z (i6), gs(i6) )0 = Z<JF6’§6>L2(((i—1)6,i5)><9) = (f5,5) 2R+ %)
=1 i=1

which leads to (25). This ends the proof of this lemma.
a

The following interpolation inequality plays an important role in the proof of the L?-approximate null
controllability with a cost.

Lemma 2.3 There exists C = C(Q,w) > 0 so that for each S, T with 0 < S < T and each § € (0,1),

s
1 1-6
lp(0; T, 2)|| < eCut 9<T175>)||z||9H§ /Xwgo(t; T,z) dtH for all z € L*(Q). (26)
0

Proof. Let 0 < S < T. Arbitrarily fix z € L?(Q). We define a function f* over Q by

0|~

S
fra / (S=0) 2 dt. (27)
0

By [29, (iii) of Theorem 2.1], there is C' £ C(£2,w) > 0 so that for each 6 € (0, 1),

[eAT=5) p7|| < COFTT=7) | £2(|9| x0T 2|0 (28)

Two facts are given in order: First, it follows from (27) that
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s
£ < ol and A9 7 = & [ o, z)at (29)
0
Second, write {);}32; for the family of all eigenvalues of —A with the zero Dirichlet boundary condition
so that Ay < Ay < ---. Let {ej};?';l be the family of the corresponding normalized eigenvectors. Let
z =377, zje; for some {2;}52, € [*. Then it follows that
s o s
= /BA(Tft)zdt = Z (% /e/\jtdt)efAszjej.
r =1

J 0

Wl

Since % fOS etitdt > 1 for each j € NT, it follows from (27) and the above equality that
. s
8791 = |5 [ AT0zat] = [Tl = (05T ) (30)
0
Finally, the facts (29) and (30), along with (28), lead to (26). This ends the proof.
O

The next Theorem 2.4 contains the main results of this section. The conclusion (iii) in Theorem 2.4
will play an important role in our further studies.

Theorem 2.4 The following conclusions are true:
(i) Equation (5) has the L?-approzimate null controllability with a cost if and only if given e > 0, § > 0
and k € NT, there is C(e,8,k) > 0 (which also depends on Q and w) so that

(05 k8, 2)[|” < C(e, 8, k)| xwPs (5 k0, 2)|| T2 ((0.15)x ) + ll2I1° for all = € L*(9), (31)

where @g(+; ko, z) is given by (20).

(ii) Given § > 0 and k > 2, Equation (5) has the L*-approzimate null controllability with a cost over
[0, kd].

(iti) Given e >0, 0 > 0 and k > 2, the constants C(e,d,k) in (31) and (22) can be taken as

Cle, 8, k) = BTV EI /o yyith C £ C(Q,w). (32)

Proof. We first prove the conclusion (i). Arbitrarily fix § > 0, ¥ € NT and ¢ > 0. We will put our
problems under the framework of [36, Lemma 5.1] (which is cited as Lemma 7.1 in our appendix) in the
following manner: Let X = L2(Q), Y £ L2((0,kd) x Q) and Z £ L?*(Q). Define operators R : Z — X and
O:Z—=Y by

Rz 2 p(0;kd, 2) and Oz = x,@s(+;kd,2) forall z € Z.
One can directly check that R* : X* — Z* and O* : Y* — Z* are given respectively by
R*z0 = y(kd; 20,0), 20 € L*(Q); O*us = y(kd;0,us), us € L((0,kd) x Q).

From these, Definition 2.1 and (31), we can apply [36, Lemma 5.1] (see also Lemma 7.1 in Appendix) to
get the conclusion (i) of Theorem 2.4.

We next prove the conclusions (ii) and (iii). Arbitrarily fix € > 0, § > 0 and k > 2. By the conclusion
(i), we find that it suffices to show (31) with the triplet (e, d, k). To this end, we use (26) (where T' = k0,
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S = [k/2]6 and 0 = 1/2, with [k/2] the integer so that k/2 — 1 < [k/2] < k/2) to get that for each
z € L*(Q),

[k/2]6
2 1
loOskt2)? < 2R o [kt )] el
0

where C is given by (26). Then by Young’s inequality, we find that for each z € L?(Q),

[k/2]6
1 1 2
||<p(0;k:6,z)H2§ge4c(1+ké*ﬁc/?]é)i([kﬂ]é)zH / ot k6, 2) dt| + ¢l 2|12 (33)
0

Two observations are given in order: First, it follows from (20) that for each z € L?(Q),

[k:/2]5 [k:/?] i
1
H / <p(t;k5,z)dtH SZHE / go(t;k(Y,z)dtH )
0 =l Gl
= [IXwPs(; k9, 2) | 10,1k /28522 () < V/[E/2]0]1XwPs (5 k0, 2) || L2 ((0,k5) x2)} (34)

Second, since
k/4 < [k/2] < k/2 and 1/([k/2]8) < /K3
one can directly check that

10(1 =) L o 1scn 4+ 35
‘ Kj28 = ¢ : (35)

Finally, from (33), (34) and (35), we get (31), with C(e,d, k) given by (32), where C(€,w) may differ
from that in (35). This proves (ii), as well as (iii).
In summary, we end the proof of Theorem 2.4.

3. Existence and uniqueness of optimal controls

In this section, we will prove that for each M > 0, (TP)M has the unique optimal control, while for
some (M, d), (TP)¥ has infinitely many optimal controls. The later may cause difficulties in our studies.
Fortunately, we observe that the optimal control with the minimal norm to (7P)} (see Definition 1.2) is
unique. The first main theorem in this section is stated in the next Theorem 3.1. It deserves mentioning
what follows: The conclusion (iii) of Theorem 3.1 should belong to the materials in the next section. The
reason that we put it here is that we will use it in the proof of the non-uniqueness of optimal controls to
(TP)X. More precisely, in the proof of Lemma 3.4, we will use it.

Theorem 3.1 Let M > 0. The following conclusions are true:
(i) The problem (TP)M has a unique optimal control.
(ii) For each § > 0, (TP)M has a unique optimal control with the minimal norm.
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(iii) Let uj (with & > 0) be the optimal control with the minimal norm to (TP)Y. Then u}| 0,75 (a))x9
(the restriction of u} over (0, T5(M)) x Q) is an optimal control to (J\/‘P)Z—’S(M) and the L((0, T5(M)) x Q)-
norm of u} is Ns(Ts(M)).

Proof. Arbitrarily fix M > 0. We will prove conclusions (i), (ii) and (iii) one by one.

(i) Because lim;_, 4 o0 y(t; y0,0) = 0 in L2(Q), the null control is an admissible control to (7P)M, which
implies that (7)™ has an admissible control. Then by the standard way as that used in the proof of
[10, Lemma 1.1], one can show that (7P)* has an optimal control.

To show the uniqueness of the optimal control to (T’P)M , we first notice that each optimal control u*
to (TP)M has the property that

lu* || 20,7 (ar))x2) = M. (36)

(The property (36) can be proved by the same way as that used to show [16, Lemma 4.3].) Next, we notice
that if v and w3 are optimal controls to (7P)M, then (u} + u3)/2 is also an optimal control to (7P).
From this, (36) and the parallelogram law in L2?((0,7(M)) x Q), we can easily use the contradiction
argument to get the uniqueness. This ends the proof of the conclusion (i).

(ii) Arbitrarily fix § > 0. We first show that (7P)¥ has an optimal control. Indeed, since the null
control is clearly an admissible control to (TP)}, it follows by the definition of 75(M) (see (6)) that
there exists k € NT so that

T5(M) = ko. (37)
Meanwhile, since yo € L%(Q2) \ B,-(0) (see (1)), by the definition of the infimum in (6), we see that there
is ko € NT and v € LZ(RT x Q) so that

Ts(M) < kod < Ts(M) +5/2; (38)

y(kod; yo, ug) € Br(0) and [[u||z2r+x0) < M. (39)

From (37) and (38), we find that k§ < kod < kd + 6/2, which leads to that ko = k. This, along with
(37) and (39), yields that T5(M) = kod € (0, 00), which, together with (39), implies that uJ is an optimal
control to (TP)M.

Next, we will prove that (7P) (];‘4 has a unique optimal control with the minimal norm. Indeed, since
LE(RT x Q) is a closed subspace of L2(RT x ), by Definition 1.2, one can use a standard way (i.e.,
taking a minimization sequence) to show the existence of the optimal control with the minimal norm to
(TP)(J;” . To show the uniqueness, we let u; and us be two optimal controls with the minimal norm. By
Definition 1.2, one can easily check that (u; 4+ u2)/2 is also an optimal control with the minimal norm to
(TP)X. By making use of Definition 1.2 again, we find that

w1l 20,75 )y x) = lluall 20,75 () x) = (w1 + u2)/2[ 20,75 (M) x ) -
These, along with the parallelogram law for L2((0, 75(M)) x Q), yield that
(uy —ug)/2 =0 in L*((0,T5(M)) x Q), ie., u; = us.

So (TP)M has a unique optimal control with the minimal norm.

(iii) Let u} be the optimal control with the minimal norm to (7P)}. We will show that u} |, 7; (ar)x0
is an optimal control to (N’ P)g_s(M). Indeed, we have that
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y(Ts(M); yo, us) € Br(0) and [lugl|p2m+xq) < M, (40)

from which, one can easily check that uj]o,7;(ar))xo is an admissible control to (J\/’P)Z—‘;(M). Then by the
optimality of Ns(75(M)) and the second inequality in (40), we see that

Ns(Ts(M)) < lluzlo, 75 (an)xall L2075y x0) < M < . (41)

Meanwhile, since (A P)Z—J(M) has an admissible control, we can use a standard argument (see for instance

the proof of [10, Lemma 1.1]) to show that (NP)Z—‘S(M) has an optimal control vy. Write v} for the zero
extension of v} over RT x Q. Then we have that

y(T5(M);y0,75) € B(0) and |5 2w+ x) = Ns(Ts(M)). (42)

From (42) and (41), it follows that % is an optimal control to (7P)¥. Since u} is the optimal control
with the minimal norm to (TP)}, we see from (41), (ii) of Definition 1.2 and the second equality in (42)
that

Ns(Ts(M)) < [lusll L2075 (ary) x2)
<1051l 220,75 (aryy x2) = N (Ts(M)).

The above, together with the first conclusion in (40), implies that u3|(o,7;(a))xo is an optimal control to
(NP)?UW) and that

lull L2 (0,75 (aryy x ) = No(Ts(M)).
In summary, we end the proof of Theorem 3.1.

The next theorem concerns with the non-uniqueness of optimal controls to (TP)¥.

Theorem 3.2 There are sequences {M,} dense in RY and {5, } C R*, with lim,,_,o 0, = 0, so that for
each n, the problem ('T’P)évi" has infinitely many different optimal controls.

To prove Theorem 3.2, we need two lemmas.

Lemma 3.3 For each (M,§) € RT x RT with 20 < T5(M) < oo, it stands that

Ns(Ts(M)) < M < N5(Ts(M) = 6). (43)
Proof. Let (M, ) € RT x R so that 26 < 75(M) < oo. Then by (6), we see that

T5(M) = k& for some integer k > 2. (44)
Thus, (43) is equivalent to the following inequality:

Ni(k6) < M < Ni((k —1)6). (45)
To prove (45), we let u} be an optimal control to (7P)}. Then we have that

||u(15||L§(R+><Q) <M and y(T5(M);yo,us) € B.(0). (46)

According to (46) and (44), “<1$|(0,1%5)x9 is an admissible control to (NP)§5. Then by the optimality of
Ns(k6) and the first inequality in (46), we get that
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N (ko) < ||uzls||L§((o,1;5)xsz) <M,

which leads to the first inequality in (45).
We now show the second inequality in (45). By contradiction, we suppose that

Ns((k—1)8) < M. (47)

Then we would obtain from (47) that (N P)gk71)6 has an admissible control, since M < oo. Thus, by

a standard way (see for instance the proof of [10, Lemma 1.1]), one can prove that (NP)gk71)6 has an
optimal control v}. Hence,
||v§||L§((O7(I%—1)5)><Q) = Ns((k—1)8) and y((k —1)8;y0,v5) € B (0). (48)

Write 9} for the zero extension of v} over RT x Q. From (48) and (47), we find that v} is an admissible
control to (TP)M. Then by the optimality of T5(M), we get that 75(M) < (k — 1)§, which contradicts
(44). Thus, the second inequality in (45) is true. We end the proof of this lemma.

O

Lemma 3.4 For each M >0 and N > 0, there exists an integer n > N so that 2/2" < Ty jon (M) < o0.

Proof. It is clear that Ty jon (M) < oo for all M > 0 and n € NT. Thus, we only need to show that for any
M > 0and N >0, 2/2" < Ty/9n(M) for some n > N. By contradiction, suppose that it were not true.
Then there would be M > 0 and N > 0 so that

Tijon (M) < 2/2" for all n > N. (49)

Let w}, with n > N, be an optimal control to (TP){V/IQH (see (ii) of Theorem 3.1). Then we have that

Y(Trjon (M);y0,uy,) € Br(0) and [Juy,[|z2r+x0) < M for all n> N. (50)
By the last inequality in (50), Holder’s inequality and (49), we can easily check that
T1/2n (M)

eATian M=y (t,)dt — 0, as n — oo,

0

This, along with (49) and the first conclusion in (50), yields that
yo = lim y(T1 2 (M); o, un) € Br(0),

which contradicts the assumption that yo € L2(Q2) \ B,.(0) (see (1)). This ends the proof.

a
We are now on the position to prove Theorem 3.2.
Proof of Theorem 3.2. Choose a sequence { M, }2°; dense in RT so that
{Mn}o2, CRT\ {N1/2k (j/Qk) : k,jeNT} (51)

By Lemma 3.4, there exists an increasing subsequence {k,}>°; (in N*), with lim,,_,  k, = oo, so that
2/2kn < T1 /260 (M) < 00 for each n € N*. (52)
Write 6,, £ 1/2, n € N*. Then, by (52), we can apply Lemma 3.3 to get that
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This, along with (51), yields that

Ns, (75, (Mp)) < My, < N5, (Ts,,(Mp) = 6n). (53)
The key to show Theorem 3.2 is to claim that for each n € N*, (TP)%" has at least two different
optimal controls. By contradiction, we suppose that for some ng € N7, (7'73)?7{;0 had a unique optimal

control. To get a contradiction, we define two convex subsets in L?(£2) as follows:

Ang 2 (YT, (M )0, 5,,) © syl o x) < Noy (T, (M) }

Bu 2 {y(Ts,, (M ):0,05,,) ¢ 05,102 o < Mag = N, (T, (Mao)) } -
We first show that

A, N B,(0) = {#} for some 7 € L*(), (54)
i.e.,, Ap, N B-(0) contains only one element. In fact, by (ii) and (iii) of Theorem 3.1, the optimal control

with the minimal norm uj to (TP)?;[ZO satisfies that

2
LéTI,

Y(T5,y (M, )3 90, u5, ) € Br(0) and [|ug @ x) = No (75, (Mng ).

no

These imply that A,, N B, (0) # . We next show that A,, N B,-(0) contains only one element. Suppose,
by contradiction, that it contained two different elements y; and yo. Then by the definition of A,,, there
would be two different controls u; and uy so that

y1 = y(Ts,, (Mn,); Yo, u1), ||ul||L§n0 ®+x9) < N, (75, (Mn,)); (55)

Y2 = Y(Ts,, (Mn,); Yo, u2), ||u2||L§n0 ®+x9) < Ns, (T5,, (Mn,))- (56)
Since y1,y2 € Br(0), we have that (y1 + y2)/2 € B,-(0). From this (55) and (56), one can easily check that

(Y1 +y2)/2 € Apy N B(0). (57)

Meanwhile, since u; # ug, by the second inequality in (55) and the second inequality in (56), using the
parallelogram law, we find that

1Cur +u2) /2l Lz @+ ) < Nowg (T5, (Mo ) (58)
no
which, together with (53), indicates that

(s + )25z @ e < Moo

From this and (57), we see that (u; + uz2)/2 is an optimal control to (’TP)(JSM"O. This, along with Defini-
ng

tion 1.2 and the conclusions (ii) and (iii) of Theorem 3.1, yields that

[ (ur +u2)/2||L§n0(R+><Q)ZN5 (75,0 (Mny)),

nQo no

which contradicts (58). Hence, (54) is true.
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Next, by the definitions of A,, and By, one can easily check that each element of (A,, + By,) N B,(0)
can be expressed as:

Y(Ts., (Mng); Yo, Up,) With wuy, -~ an optimal control to (T”P)é\;[zo. (59)

Since it was assumed that (TP)%ZO had a unique optimal control, it follows from (59) that (A, + Bpn,) N
B,.(0) contains only one element. This, along with (54), yields that

(Apy + Bny) N B.(0) = A, N B.(0) = {f} for some 7 € L*(). (60)

By (60), we can apply the Hahn-Banach separation theorem to find n* € L?(2), with ||n*|| = r > 0, so
that

sup w,n*) < inf (z,n%).
weAnO+Bn0< > ZEBT(0)< )

This, along with (60), yields that

sup  (w,n") < (4,1%), ie, sup (w,n*) <O0. (61)
wEN+Bn wEBn,

From now on and throughout the proof of Theorem 3.2, we simply write Ts, =~ for Ts, (Mpy,); simply
write () and Ps,, () for o(Ts,,,n%) (see (18)) and ¢6n0(-;73n0,n*) (see (20)), respectively.

Arbitrarily fix us, € L<25n0 (R* x Q). Three facts are given in order. Fact one: Since My, > N, (7s,,)
(see (53)), it follows from the definition of B,,, that

||Ut‘5n0 ||L§n0 (Rt xQ)

T5.,30, € ABp,, with A= '
Y(T5,,5 0, us,,, ) o W My, = Ns, (Ts,,)

This, along with (61), yields that

(y(Ts,,30,us,,),n") <O0. (62)
Fact two: One can directly check that

(U, s XwtP) £2((0,75,, ) x) = (U(T5,3 0,15, ) 1")- (63)

Fact three: we have that

(U8, > XtP) L2((0,T5,, ) x2) = (Us,0> XPs, ) L2((0.T5,, ) x)- (64)

The proof of (64) is as follows: Let f = us,, and let g be the zero extension of x.¢ over R*. Since
o € Lgno (RT x Q), it follows by (4), (23) and (20) that ﬁ;no = us,, and gs, = @5, (where @5, is
treated as its zero extension over RT). Then, by Lemma 2.2, we obtain (64).

Now, from facts (62), (63) and (64), we see that

Us

(U3, X Ps,,, >L2((0,T5n0 yxa) < 0.
Since ug,  was arbitrarily taken from Lgno (R x Q), the above inequality implies that
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XwPs,, (t)=0 in L*(Q), ae. te (0,7s,,)- (65)

Since Ts,,, > 205, (see (52)), we apply (65) and Lemma 2.3 (where T' = 75, and S = d,,) to get that
©(0) = 0in L?(2). Then from the backward uniqueness property for the heat equation (see, for instance,
[26]), we deduce that n* = 0. This leads to a contradiction. Hence, we ends the proof of the key claim:
For each n € NT, (TP)f;\f" has at least two different optimal controls.

Finally, we observe that any convex combination of optimal controls to (TP)?Z" (with n € NT) is still
an optimal control to (7P) é\;[". Therefore, for each n € Nt (TP)é\f" has infinitely many different optimal

controls. This ends the proof of Theorem 3.2.
O

4. Connections among different problems

This section presents connections among (7P)M, (N'P)%% and (JP)% (and among (TP)™, (NP)T and
(JP)T). We define that

T* £sup{t >0 : ey & B, (0)}; (66)

Pr- 2{(0,k) : >0, ke N* st. 20 <kd < T*}. (67)

We mention that 0 < 7* < co because of (1) (since the semigroup {e“*};>¢ has the exponential decay).
4.1. Connections between time optimal control problems and norm optimal control problems

We first present the following equivalence theorem. We will omit its proof, because it can be proved by
the same way as one of proofs of [34, Proposition 4.1], [43, Proposition 3.1] and [42, Theorem 1.1 and
Theorem 2.1].

Theorem 4.1 Let T* be given by (66). Then the following conclusions are true:

(i) The function T — N(T) is strictly decreasing and continuous from (0,T*) onto (0, +00). Moreover,
limT_,T*_ N(T) =0.

(ii) When M >0 and T € (0,7*), N(T(M)) = M and T(N(T)) =T.

(111) The function M — T (M) is strictly decreasing and continuous from (0,+00) onto (0,T*).

(iv) For each M > 0, the optimal control to (TP)M, when restricted on (0,T(M)) x Q, is the optimal
control to (NPYTM) | For each T € (0,T*), the zero extension of the optimal control to (NP)T(M) is the
optimal control to (TP)M.

We next recall (iii) of Theorem 3.1 for the connections between (7P)¥ and (A P)Z—‘S(M).
4.2. Connections between norm optimal control problems and the minimization problems

The first theorem of this subsection concerns with connections between problems (NP)T and (JP)T
(given by (17)). Its proof can be done by the same methods as those in the proofs of of Lemma 3.5 and
Proposition 3.6 in [34]. We omit it here.
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Theorem 4.2 Let T € (0,T*) with T* given by (66). Then the following conclusions are true:

(i) The problem (JP)T has a unique nonzero minimizer z* in L*().

(ii) Problem (N'P)T has a unique optimal control v* (treated as a function from (0,T) to L*(S2)), which
satisfies that

v (t) = xwp(t; T, 2%) in L*(Q), a.e. t e (0,T), (68)
and that
y(T;y0,v") = —rz"/[[2"]]. (69)

(iit) It holds that V(T) = —3N(T)? = =3 Ixwp(: T, 2*) 720,y xe) -

The next theorem deals with connections between (NP)%° (given by (15)) and (JP)%® (given by (19)).
Recall (20) for the definition of B(-; k9, 2).

Theorem 4.3 Let (0,k) € Pr« (given by (67)). Then the following conclusions are true:
(i) The problem (JP)X° has a unique minimizer z% in L?(Q). Moreover, z} # 0 and

XwPs(t; ko, 25) #0 for all t € (07 (k- 1)5]. (70)

(ii) Problem (N'P)X% has a unique optimal control v} (treated as a piece-wise constant function from
(0, k8] to L?(R2)), which verifies that

vi(t) = xoPs(t; k6, 25) in L*(Q), a.e. t € (0,kd], (71)
(where z} is the minimizer of (JP)X°) and that
y(kd; yo,v3) = =23 /1231 (72)

(iid) Vs (k3) = —EN5(k8)2 = —Ll1xws (5 k6. 251122 (o0 )

Proof. (i) First of all, we show the existence of minimizers of (JP)%. Indeed, by (19), one can easily see
that J¥° is continuous and convex over L?(Q). We now show its coercivity. Since (3,k) € Pr~ (given by
(67)), we have that k > 2. Thus, we can apply Theorem 2.4 to see that both (31) and (32) are true. By

taking e = (m)2 in (31), we find that for each z € L?(Q),

Ayl
Ji0; k8, )| < et (220l ||sto5<~;k&z)ﬂiz«omm+(2,, ) 1P
gtz 2yl
§<€2(1+“)  Ixw®s (5 K8, 2|20, k0)x0) + 5 2Ty H|| ||>

where C' £ C(Q,w) is given by (32). The above, along with the Cauchy-Schwarz inequality, yields that
for each z € L?(Q),

. T
(Y0, (0; k0, 2)) > (262(1+’°‘S)HZ/0||2 Mixw®s (5 k6, )| 2 ((0,16)x ) — §HZ|\~

From this and (19), one can easily check that
T (2) 2 Szl — 26707 [y |*r 2 for each = € L¥(%), (73)
which leads to the coercivity of JE over L?(f2). Hence, J¥ has at least one minimizer in L?(9).
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Next, we claim that 0 is not a minimizer of J f‘s. By contradiction, suppose that it were not true. Then
we would find from (19) that for all z € L?(2) and € > 0,

0

_ I () — IR (0)

e _
. = §||Xw<P5('§ k6, 2)|1 220,05y 2) + (W0, 9(0; kG, 2)) + 7| 2]

Sending ¢ to 0 in the above leads to that
(€0, 2) + 7|2l = (yo, 9(0: k6, 2)) +7][2]| 2 0 for all z € L*(Q).
This yields that

vl = sup (eAyo,2)/||2 < 7.
=€ L2(©)\{0}

le

Since yo € L2(2) \ B,.(0) (see (1)), the above, along with (66), indicates that k§ > T*, which contradicts
the assumption that (d,k) € Pr- (given by (67)). Thus, 0 is not a minimizer of J¥°.

We now show the uniqueness of the minimizer of J 55. To this end, we claim that the first term on
the right hand side of (19) is strictly convex. When this claim is proved, it follows from (19) that J¥ is
strictly convex over L?(Q). So its minimizer is unique.

To show the above claim, we first observe from (20) that

Ds(t; kd, Az1 + pza) = APy (t; ko, z1) + pips (t; ko, z2) for all A\, € R. (74)

By this, we see that the first term on the right hand side of (19) is convex. Next, we suppose, by
contradiction, that this term were not strictly convex. Then, by the convexity of this term, there would
be A € (0,1) and 21, 2o € L3(), with z; # 29, so that

ko
/ s k6, ey + (1 — )za) |
0

ko kS
Y / w2 (£ 6, z0) |t + (1~ ) / w25t 1, 20)| |,
0 0

which, along with (74), yields that for each ¢ € (0, k¢),

||5‘Xw¢6(t? ks, Zl) + (1 - X)Xw%(t; ko, Zl)||2 = S‘HXw@&(t? ko, Zl)H2 + (1 - S‘)HXu:@&(t? ks, ZQ)HZ'

From this and the strict convexity of || - ||, we see that for each t € (0, kd),

XwPs(t; K, 21) = X0 Ps(t; k6, 22), e, XwPs(t;kd, 21 — 22) = 0. (75)

Notice that k > 2. Thus, we can apply Lemma 2.3 (where S = (k —1)§, T = kd and z = 21 — 23), and
use (75) to obtain that ¢(0;kd, 21 — z2) = 0. This, together with the backward uniqueness of the heat
equation, yields that z; = 25 in L%(£2), which leads to a contradiction. Hence, the first term on the right
hand side of (19) is strictly convex.

In summary, conclude that J §5 has a unique minimizer z3 # 0.

Finally, we prove that the minimizer z} satisfies (70). By contradiction, suppose that it were not true.
Then we would have that
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XwPs(to; k6, z5) = 0 for some to € (0, (k —1)d]. (76)
Since Ps(+; kd, z}) is a piece-wise constant function from (0, k8] to L*(Q) (see (20)), it follows from (76)
that

Xw®5( k6, 25) =0 over ((ig — 1)8,ipd] for some ig € {1,---,k — 1}. (77)
By (77), we can apply Lemma 2.3 (where T'= (k+ 1 —ip)d, S =6 and z = eA(iofl)‘s)z;) to get that

0= @(0; (k41 —ig)d, 20010 25y — o((ig — 1)8; k6, 23).

This, along with the backward uniqueness for the heat equation, yields that z5 = 0 in L?(Q2), which leads
to a contradiction. Therefore, (70) holds. This ends the proof of the conclusion (i) of Theorem 4.3.

(ii) Let z} be the minimizer of J¥. Let v} be given by (71). It suffices to show that v} is the unique
optimal control to (NP)¥ and satisfies (72). From now on and throughout the proof of Theorem 4.3, we
simply write p(-) and @5(-) for (-3 ko, 25) and @s(-; ko, z5).

We first show that v} is an admissible control to (NP)% and satisfies (72). By (19), one can easily
check that the Euler-Lagrange equation associated with the minimizer zj is as follows:

= 25
<Xw<p§(')u 905('; ]{(5, Z)>L2((O,k6)><9) + <y07 eAk62> + <rmu Z> = Oa Vze LQ(Q) (78)
5

We claim that for each 2z € L?(Q),

(Xw®s (), XwPs (156, 2)) L2((0,k6)x2) = (XwPs (+): Xwp (5 k6, 2)) L2((0,16)x ) - (79)
To this end, we arbitrarily fix z € L?(Q). Let f(-) and g(-) be the zero extensions of x.,¢(-) and x,¢(+; kd, 2)
over R*. Then by (23) and (20), we see that

f5() = xuPs(-) and gs(-) = xwPs(1kd, 2) over RY,

where p;(-) and py(-; kd, 2) are treated as their zero extensions over RT. Then by Lemma 2.2, we have
that

(f5:08) 12@®+ %) = (f5, 9) L2(R+ x5
which leads to (79). Now, from (78) and (79), it follows that for each z € L?(€),

(XwPs (), XwPs (-5 k0, 2)) L2((0,k5)x0) = (U5 (+), Xw (-1 k0, 2)) L2 ((0,k5)x ) = (¥(kd;0,v5), 2).
This, along with (78), yields that
y(kd;yo,v5) +rz5 /25| = 0. (80)

From (80), v} is an admissible control to (NP)%% and satisfies (72).
We next prove that v} is an optimal control to (N P)’g‘s. To this end, we arbitrarily fix an admissible
control vs to (NP)5. Then we have that ||y(kd;yo,vs)|| < 7. This, together with (80), implies that

(y(k6;0,v3), 25) = (y(kd; yo, v3), 25) — (€20, 25) = —rl|z5 || — (€**yo, 25)
< (y(k6;y0,v5), 25) — (e*Fyo, 23) = (y(kd;0,v5), 25). (81)

Meanwhile, by Lemma 2.2 (where (f,g) are taken as the zero extensions of (v}, Xxw¢) and (vs, Xw®),
respectively), and by (23) and (20), one can easily verify that
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(U5, XwPs) L2((0,k6)x Q) = (U5, XwP) L2((0,k5)x )5 (Vs> XwPs) L2((0,k6)x ) = (U8, XwP) L2((0,k8)x )+ (82)
Since vs and v; are piece-wise constant functions (see (16) and (4)), it follows from (71), (82) and (81)
that

195 1| 22 ((0,k8) x ) 1 XwPs | L2 ((0,k8) x 2) = (V5> XwP5) L2 ((0,k8)x2)

= (U5, XwP) L2((0,k6)x ) = (Y(KJ;0,05), 25)

<(y(kd;0,v5), 25) = (U5, Xw$P) L2((0,k6) x )

= (05, XwPs) L2 ((0,k5)x ) < Vsl L2((0,k5)x ) IXwPs5 | L2 ((0,k8) x )

This, along with (70), yields that [|vf|z2(0,k5)x) < [[vsllz2((0,k5)x0)- Because vs is an arbitrarily fixed
admissible control to (NP)k° we see that v} is an optimal control to (NP)k?.

Finally, we prove the uniqueness of the optimal control to (N’ P)’g‘s. By contradiction, we suppose that
(NMP)5° had two different optimal controls v} ; and v},. Then one could easily check that (v}, +v},)/2
is still an optimal control. Since vj #* U5 9, we can use the parallelogram law to get that

(V51 +v52)/2llL2(0,k8)x) < Ns(kd),

which contradicts the optimality of As(kd) to (NP)%. This proves the conclusion (ii) of Theorem 4.3.
(ili) Taking z = 2§ in (78) leads to that

(Yo, 0(0)) + 7251l = *||Xw¢5||%2((o,ks)x9)-
Since zj is the minimizer of J§57 the above equality, along with (19), indicates that
* 1 —
Vs(kd) = J§°(23) = —§||Xw<P5H2L2((o,k5)xQ)- (83)
Meanwhile, from (ii) of Theorem 4.3, we see that

Ns(k6) = llvllz2((0,k6)x2) = IIXwPs |l L2((0,k8)x2)-
This, along with (83) leads to the conclusion (iii) of Theorem 4.3.

In summary, we end the proof of Theorem 4.3.

5. Several auxiliary estimates

This section presents several estimates, as well as properties, on minimizers (of J §5 and JT), the minimal
norm functions and the minimal time functions. These estimate will play important roles in the proofs of
the main theorems.

5.1. Some estimates on minimizers

The following theorem concerns with the HE(f2)-estimates on the minimizers of the functionals J¥° and
JT.
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Theorem 5.1 Let (6,k) € P« (given by (67)) and 0 < T < T* (given by (66)). Write z§ and z* for the
minimizers of J§5 and JT, respectively. Then the following conclusions are true:
(i) There is a positive constant C; = C1(Q,w) so that

[ e [ (84)

10sp(+3 k0, 25) || L2 (0,88:12(22)) < 1125 1 o) < 1 75) |yo |50 (85)
(ii) There is a positive constant Cy = Co(Q2,w) so that

271l < €S0 B o %, (86)

105 k0, 2| 20,7220y < 12" Ny < €92 [y O 2. (87)

Proof. Throughout the proof, C'(Q,w) stands for a positive constant depending only on Q and w. It may
vary in different contexts.

(i) We begin with proving (84). From (73), we find that
gHzg‘H — 260+ ||yo |42 < JF(2%), for some C = C(Q,w).
Since zj is the minimizer of J §‘57 the above inequality, along with (19), implies that
Sl = 26007 o 42 < I (0) = 0,

which leads to (84).
To show (85), we need two estimates related to the optimal control u} of (N'P)k°. We first claim that

lluzllz20,k6)x ) < eC(H%)HyOHQr_l for some C 2 C(Q,w). (88)

Indeed, since (6, k) € Pr- (given by (67)), we have that k£ > 2. Thus, by (ii) of Theorem 2.4, Equation
(5) has the L?-approximate null controllability with a cost. From this, Definition 2.1 (see (22)), and (iii)
of Theorem 2.4 (see (32)), we find that for eg = (r/||yo||)?, there is us € L((0,kd) x Q) so that
€0 1
sl orsyeen + = IS gn.ua)|? < il for some € £ C(@,), (59)
Since g9 = (r/||yol|)?, it follows from (89) that us is an admissible control to (N'P)k%. Then by the
optimality of u} and N;(kd), and by (89), we find that

. C (14 L _
w3 || 220,08y x2) = Ns(kS) < ||usllp2(0.k)x0) < €2 ET5) ||yo[|2r ™2,
which leads to (88).
Next, we claim that
||y(k6;y0,u§)|\Hé(Q) < eC(l"‘ﬁ)HyOH%_l for some C 2 C(Q,w). (90)

For this purpose, we consider the following equation:

Oy —Ay=fin RT xQ,
y=0 on R* x 99, (91)
y(0) =z in Q,
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where z € C§°(Q) and f € C§°(RT x Q). Multiplying y on both sides of Equation (91), by the Poincaré
and Cauchy-Schwarz inequalities, we obtain that there exists C' = C(2) > 0 so that for each S > 0,

S S
|Vy(t,z)|* dedt < C |f(t,2)? dzdt + [ |2(z)]? dz. (92)
/1 /1 /

Meanwhile, multiplying —tAy on both sides of Equation (91) and then integrating it over €, after some
computations, we obtain that for each S > 0,

] S
S|Vy(S,z)|*dz < t|f(t, z)]* dedt + |Vy(t, z)* dzdt. (93)
/ [ [

From (93) and (92), we deduce that for each S > 0, z € C§°(Q2) and f € C§°(RT x Q),

S
/|Vy (S.2)[2 d < Lo+ //|f(t,x)|2dxdt+/|z(x)\2dx]
0 Q Q

Then by a standard density argument, we can easily derive from the above inequality that

lly(ko; yOaué)HHl () <e (H’“’)(|\U§||L2((o,k6)><sz) + ||Z/0||)~

Since |lyo|| > r, the above, along with (88), leads to (90).
We now show the second inequality in (85). From (72), we see that

I 5||

”Zé”Hl(Q ||y(k5§y07u:§)HHg(Q)»

which, together with (84) and (90), leads to the second inequality in (85).

Then, we show the first inequality in (85). Simply write ¢(-) for ¢(+; kd, 25 ). Multiplying by Ay on both
sides of the equation satisfied by ¢(-; kd, z5), and then integrating it over €2, after some computations, we
obtain that

ké

/|V<p(0,a:)|2da:+//|A<p(t,x)\2dxdt:/|w(k5,x)\2dx.
Q 0 Q Q

From this, it follows that

k& ko
//|8t¢(t,x)|2dxdt://|Ag0(t,x)|2dxdt§/\Vz§(x)|2 dx,
0 0 Q

which leads to the first inequality in (85). This ends the proof of the conclusion (i).

(ii) Arbitrarily fix ko € NT so that kg > max{2,2/T'}. For each integer k > ko, let nj be the integer so
that

KT —1 < ny < kT. (94)

We first claim
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likm inf Vy /. (ne/k) < V(T) for all k> k. (95)
— 00

In fact, for each k > ko, (NP)?%k has a unique optimal control v} (see (ii) of Theorem 4.3). Then, by

(94), one can easily check that the zero extension of v} over (0,7 is an admissible control to (NP)7.
From this and the optimality of N'(T'), one can easily check that

N(T) < Nyyp(ne/k) for all k > ko. (96)

Since 0 < T' < T* and because (1/k,ni) € P« (given by (67)) for all k > ko (which follows from (94)
and (67)), we can apply (iii) of Theorem 4.2 and (iii) of Theorem 4.3 (with (4, k)=(1/k,nx)), and use
(96) to obtain (95).

For each integer k£ > ko, write zf/k for the minimizer of (JP)T%k The key is to show that on a
subsequence of {27, x>k, still denoted in the same manner,

z;‘/k — 2% weakly in H3(Q); strongly in L?(Q2), as k — oo. (97)

(Here, z* is the minimizer of (JP)T.) To this end, we notice that (1/k,n;) € Pr- (given by (67)) for all
k > ko (which follows from (94) and (67)). Thus, we can use the second inequality in (85) (where § = 1/k;
k = ng) to find that {Zf/k}kzko is bounded in H{(£2). So there exists a subsequence of {Zf/k}kzkm still
denoted in the same manner, and some 2 € Hg () so that

21, — 2 weakly in Hi(Q); strongly in L*(Q), as k — oo. (98)

From the above, we see that in order to show (97), it suffices to prove that z* = 2. For this purpose, we
first claim that for each k > kg,

(0T, 2) — (05 e/ K, 21 )|
< sup oG T2) — (s T, 2)| + 112 — 214 ls (99)

0<s<i<s+1i<T

lp(t; T, 2) = Py (s /s 21 )|

<2 sup et T, 2) = o(s; T, 2) || + 12 = 25 i ll, V£ € (0,n5/k). (100)
0<s<f<s+1<T

To show (99), we arbitrarily fix k > ko. By (94), we see that 0 < T — ny/k < 1/k. This, along with the
time-invariance of Equation (18), yields

(0T, 2) — (0s e/ K, 2)[| = llp(0; T, 2) — (T — m /5 T, 2) |

< sup lp(t:T,2) — o(s; T, 2)| (101)
0<s<t<s+1i<T

Meanwhile, since {2 : ¢ > 0} is contractive, we have that
10(0; nk [k, 2) — (05 e /K, 27 ) | < 112 = 21l (102)
Using the triangle inequality, by (101) and (102), we obtain (99).

To show (100), we arbitrarily fix & > ko and ¢ € (0,ng/k). Three facts are given in order. Fact one:
Since 0 < T — ny/k < 1/k, we can use the time-invariance of Equation (18) to get that
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ot T, 2) — @(t;ne/k, 2)|| = ot T, 2) — (T — ng [k + 1T, 2) ||
< sup lo(E;T, 2) — o(s; T, 2)||. (103)
0<s<i<stl<T

Fact two: Since 0 < T — ng/k < 1/k, by (20) and the time-invariance of Equation (18), we can easily
check that

lo(t; i /k, 2) — @1 jp(t; i/ K, 2) | (104)
- i/k
= H > X(-1y/misn Ok / [p(t; nk /K, 2) — (551 /k, 2)] dSH
=1 (i—1)/k
< sup (& nk/k, 2) — o(sn/k, 2) |
0§s§f§s+%<nk/k
0<s<t<s++<T

Fact three: Since {e!® : ¢ > 0} is contractive, by (20), we see that

1©1/1 (& 1w/, 2) = BB e/ B 21 ) | = 1@ (G /e 2 = 210 < 12— 20 - (105)

The above three facts (103), (104) and (105), together with the triangle inequality, leads to (100).

Two observations are given in order: First, since ¢(+; T, £) is uniformly continuous on [0, T], we see that
two supremums in (99) and (100) tend to zero as k — oo. Second, it follows by (94) that limy_, o ng/k = T.
From these two observations, (98), (99) and (100), one can easily check that

(Y0, p(0; T, 2)) = lim (yo, ©(0; nk/k, Zr/k»;
k—o0

T ni/k
[ e T2 P ae=tim [ gyl /b sl e
0 0

These, together with (17), (19) and (98), indicate that

JT(2) = lim J/M (2 ) = Jim Vi (/).

k—o0

This, along with (95) and (17), yields that

T(s\ _ _ T

JHE)=V(T) = zelL%f(Q) JE(2).
Hence, 2 is a minimizer of J7. Then, by the uniqueness of the minimizer, we see that 2 = 2*. Hence, (97)
is true.

Finally, since 0 < T < T* and because (1/k,ng) € Pp- (given by (67)) for all k > ko (which follows
from (94) and (67)), the conclusion (i) in Theorem 5.1 is available for (9, k)=(1/k, ny). Thus, by (84), the
second inequality in (85) (with (J, k)=(1/k,nk)) and (97), using the fact that ny/k — T (see (94)), we
can easily obtain (86) and the second inequality in (87). Besides, by the same way as that used to prove
the first inequality in (85), we get the first inequality in (87).

In summary, we end the proof of Theorem 5.1.
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5.2. Some estimates related to minimal norm functions

Several inequalities related to the minimal norm functions 7' — N(T) and kd — Ns(kd) will be presented

in the following two theorems.

Theorem 5.2 There is C3 = C3(,w) > 0 so that for each pair (T1,Ty), with 0 < Ty < Ty < T* (given

by (66)),

N2r(Ty = Ty) < N(Ty) = N(To) < eC 070 |y |[(Ty — T).

(106)

Proof. Arbitrarily fix a pair (71, T5), with 0 < T7 < Ty < T* (where T™* is given by (66)). The proof is

organized by the following two steps:

Step 1. To show the first inequality in (106)
By (i) of Theorem 4.1, we have that

M, &2 N(TY) > N(Ty) & M.

Then by (iii) in Theorem 4.1, we see that
0<T(M)=Ty <Tp =T (M) <T".

Let u} be an optimal control to (7P)M1. Then we find that
1y(T(M1); 9o, up) | <7 and JJujll2 @+ xa) < M.

It follows from the first inequality in (109) that
My My *
[y (T (M) yo, == ui)|| < [Jy(T(M); yo. 2 ui) = y(T (M1 )i yo, i)
M1 Ml
Hlly(T(M); yo, wi) |

T(My)

M, — M.
<= / e TR0y i (£,-) || dt + 1.
1

Since
€2l c(r2(),220)) < e ™M for each t >0,
the above, along with Holder’s inequality and the second inequality in (109), yields that

. M2 * Ml - M2 1
Hy(T(Ml)vyO> EU1)H <r+ Tl\/TTlMl

<7+ (My — M)/ /A

Next, we define a control uy over Rt as follows:

M.
T, te .7,
ug(t) = { M
0, t € (T(My),00).
From (111) and the second inequality in (109), it follows that
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luzl 2@+ o) < Ma. (112)

Meanwhile, we let

— 75 (M1 — Mz)) < (My — My). (113)

)\:13/27"
Since ug = 0 over (7 (M), 00), by (111), (110) and (113), one can easily check that

ly(T(My) + T 9o, ua) || < e [ly(T(Ma); o, us)|
<e T (r 4 (My — My)/A?) =1 (114)

Now, it follows from (112) and (114) that us is an admissible control to (7P)*2, which drives the solution
to By(yo) at time T (M;) + T. This, along with the optimality of T (Ms), yields that

T(Mz) < T (M) +T.
From this, (108) and (113), we find that
1

Ty—Ty =T (M) —T(M)<T < NN
1

(M; — Msy).

Since M; £ N (T1) and My £ N (T3) (see (107)), the above leads to the first inequality in (106). This
ends the proof of Step 1.

Step 2. To show the second inequality in (106)
Let 2 be the minimizer of J7. Throughout this step, we simply write p1(-) and @2(+) for p(-; Ty, 27) and
©(+; Ty, 27) respectively. First, we claim that

l2(To = T)l| 2 @ < e FTON(T1) for some Coy 2 Coy (2, w). (115)

(Here and throughout the proof, we take the norm of H?(Q2) N Hy() as: |[fllm2(@)nmi (o) 2 |Af])
Indeed, according to [28, Theorem 6.13 in Chapter 2], there is Cag = C22(2) > 0 so that

||A€ASHC(L2(Q),L2(Q)) < (Cyy/s for each s> 0.

From this, we see that

Ty 2C
lpa(To = Tl r2(@ynmi @) = [Apa(Te = Th)|| = [[Ae® = o (T — T /2)]| < T [p2(T> — T1/2)|.
This, along with [12, Proposition 3.1], yields that for some Cy3 = Co3(2,w) > 0,
20y ¢ 2
lp2(T2 = TVl m2(@)nmp () < T 23(1+T1)||Xw<P2||L2((T2—T1/2,T2)x9)~ (116)

Meanwhile, by (ii) of Theorem 4.2 and the time-invariance of Equation (18), we see that

N(T1) = [Ixwerllrz(o,m) <) = IXwP2llL2((1e-1 12)x0)-
This, along with (116), yields that
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1 2
lpa(To = To) | 2y o) < €°*2e™ eI TN (TY),

which leads to (115).
Next, since 0 < Ty < To < T* (given by (66)), it follows by (i) and (ii) of Theorem 4.1 that N (T}) >
N (T3). From this and (iii) of Theorem 4.2, it follows that

1 1
V(T) = —5N(Th)* < =5 N(T2)* = V(T2). (117)
This, along with (17), yields that

0<V(Te) — V(Th) < J2(25) — I (27)
T, T
<3 [ et dt = [ Iapa(®l? de] + (o o2(0) = 101 wis)
0 0

At the same time, by the time-invariance of Equation (18), we have that
01(t) = pa(t +To — T1) for each ¢ € (0,T1). (119)

Since the semigroup {e”*};>¢ is contractive, from (119), we see that

T2 Tl
/ Ixwipa ()2 dt - / oo (B2t < (Ts — T1) s (To — T2 (120)
0 0

From (119), we also have that

(Y0, 92(0) = ©1(0)) = (yo, p2(0) — @2(T> — T1))

<lwll| [ dreateyde] =lol]| [ AT 0NGa(T ~ 13) ]
0 0
< (T2 = T)llyolllle2(T = To) || 2 () a2 (2)- (121)

Now, by (118), (120) and (121), we obtain that there exists C' 2 C(Q) > 0 so that
0<V(Tz) - V(T1)
<O = 1) |le2(To = T) Bz gy + 100l l2(T2 = T) |2 oprmycon |-

By this, (117) and (115), we get that

N(T1) = N(T) < m(v(ﬂ) -V (Ty))
< 20“ T N(T) + lyoll)(To — Th). (122)

Finally, by [12, Proposition 3.1], we can find ur, € L?((0,71) x Q) so that

1
y(T1;90,ur,) =0 and [lur, ||L20,1)x0) < O |y || for some Coy 2 Cou(Q,w).

From the first equality in the above, we see that uz, is an admissible to (NP)T:. This, along with the
second inequality in the above and the optimality of A/(T}), indicates
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1
N(T1) < |lur L2 o.myxay < €0 o],

which, along with (122), leads to the second inequality in (106) for some Cs £ C3(Q,w).
In summary, we finish the proof of Theorem 5.2.
O
Theorem 5.3 Let Pr- and T* be given by (67) and (66), respectively. Then there is Cy = Cy(Q,w) > 0
so that for each (0,k) € Pr~,

0 S./V;S(k’(s) —./V'(k(S) < eC4(1+T*+k%;+7T*1_M)||y0||12T71152. (123)

Proof. Arbitrarily fix (6,k) € Pr+ (given by (67)). Let 2} be the minimizer of J¥°. Throughout the proof
of Theorem 5.3, we simply write respectively ¢(-) and Bs(-) for o(-;kd, z§) (see (18)) and B(-; kd, z5) (see
(20)). We organize the proof by several steps as follows:

Step 1. To prove that

0 < V(kd) = Vs(kd) < IxwellF2(0.k8)x0) — IXwPslIT2((0,6)x ) (124)

Since L2((0,kd) x Q) C L2((0,k6) x Q) (see (4)), we find that each admissible control to (NP)k° is
also an admissible control to (NP)*®. This, along with (14) and (15), yields that N (k) < Ns(k§), from
which, as well as (iii) of Theorems 4.2 and (iii) of Theorem 4.3, it follows that

1 1

Vs(ké) = —§N5(k5)2 < —5/\/(/«5)2 =V (ko). (125)
This, along with (17) and (19), yields that

0 <V (k) — Vs(kd) < J*(25) = J5°(25)

1 _
<35 [Ixw @l 720 k8 x0) = IXwPslE2((0,85)x2)) 5
which leads to (124).
Step 2. To show that

Ixw @l 220,85y 2) = IXw0Ps 172015y x2) = [Xw® = XwPslIT2((0.18)x02) (126)
First, we claim that for each f € L2(R* x ),

1172t ey = sl F2 e xay + I1f = Foll T2 @+ <y (127)
where fs is given by (23). Indeed, for an arbitrarily fixed f € L%(R* x ), one can directly check that

||fH2L2(]R+><Q) = Hfé“iz(]RerQ) +f - f5||2L2(R+xQ) + 2<f5af - f6>L2(R+xSZ)- (128)
Meanwhile, it follows by (23) that gs = 0, where g = f — fs. Then by Lemma 2.2, we obtain that

(fo, f = Fo)re@exo) = (f5, 9) 2w+ xa) = (fs, G5) L2+ x0) = 0.

This, along with (128), leads to (127).
Next, by taking f to be the zero extension of ¢ over R* x Q in (127), we obtain (126). Here, we used
the fact that in this case, fs is the zero extension of x,, @5 over RT x 2, which follows from (23) and (20).

Step 3. To werify that there exists Cy1 = Cy1(Q,w) > 0 so that
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_ C 5 _
IXwp = XewBs 120 ks)xary < €71HHE 75 |yo | 121057

From (20), it follows that
ks . 36
/lewso( — XePs(1)] dt = Z / ‘xwp -3
0 =G s j—1)é
J

(4
i& 3o

:zk: f Ha / /XW o(r drds]dt<z / ( / H(()T@(T)||d7')2dt.
=G

-8 (j-1)8 s =G0 (=1)s

Applying the Holder inequality to the above leads to that

X0 = X Ps | 720 ko) x0) < 52101122 ((0,05) x2) -

This, along with (85), implies (129) for some Cy; = Cy1(Q,w).

Step 4. To show (123)
We first claim that

2

N (ko) > e N TR

In fact, by (i) of Theorem 4.1, we have that

lim N(TQ) =0.
To—T*—

This, along with the first inequality in (106) (where T} = k), yields that

N(ES) = lim  (N(k8) — N (T3))

To—T*—

> lm AYPr(Ty — k6) = A320(T* — k6).

To—T*—
Since we clearly have that
AL > e ™ and T — kb > e_T*l—kd‘,

(130) follows from (131) at once.
Meanwhile, from (124), (126) and (129), we obtain that

0.< V(k8) - Vs(kd) < e HRFR) g2 71057,
From this, (125) and (130), we find that

2V (ko) — 2V (ko)
N (k) + Ns(kd)

77575 oCan (14+kS+ ) Hy0||127471152.

0 < Nis(kd) — N(kd) =

<2e*

Since k& < T*, the above leads to (123) for some Cy = Cy4(, w).

In summary, we end the proof of Theorem 5.3.
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5.3. Some properties on minimal time functions

Some inequalities, as well as properties, related to the minimal time functions M — Ts(M) and M —
T (M) will be given in this subsection.

Theorem 5.4 For each M > 0 and n € (0,1), there is a measurable subset Ay, C (0,1) (depending
also on yo and r), with limy,_,o+ %|.AM,,7 N (0,h)| =n, so that for each § € Ap,y, there is as € (0,n) so
that

To(M) — T(M) = (1 a5)3 and M > N5(T5(M)) + 5Xr(1 — )5 (132)

Proof. Arbitrarily fix M > 0 and n € (0,1). For each k € N* and a € (0,7), we define a subset of Rt in
the following manner:

By 2{0>0 : (k+a)d=T(M)}. (133)
We then define another subset of R* as follows:
BM,?] £ Uken+ Uae(0,n) Bﬁ/’[[fn (134)

The rest proof is divided into the following two steps:

Step 1. To prove that limy,_, o+ %|BM777 N(0,h)|=n
From (133), we see that

Uae(om)Bﬁfn =(T(M)/(k+mn), T(M)/k) for each k € N*.
From this and (134), it follows that
By = Uken+ (T(M)/(k +n), T(M)/k). (135)

For each j € N*, we let h; £ T(M)/j. For each h € (0,T(M)), we let j(h) be the integer so that
hjhy+1 < h < hjy. Then, by (135), one can easily verify that

i B 00, By )| —y lim hjm+r _ o hiwy _

= 1; 136
h—0t h](h) h—0t+ h h—0+ h ’ ( )

hjcny+1 1Bty 0 (0, hjry+1)] < |Bary N (0, h)| < 1Bty N (0, Bjny)| Bjn)

< < 137
h hjmy+1 h hijn) h 17
From (136) and (137), we can easily obtain the conclusion in Step 1.
Step 2. To show (132)
We first claim that for each § € Bas,, N (0, 1), there is a unique pair (ks,as) so that
(ks +as)6 = T(M) with ks € Nt and as € (0,7). (138)

Indeed, the existence of such a pair follows from (134) and (133) at once, while the uniqueness of such
pairs can be directly checked.

Thus, for each § € By, N (0, 1), we can define ks to be the first component of the unique pair satisfying
(138). We next claim that there exists d;,, € (0,1) so that
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M > Ny((ks + 1)6) + LXI2r(1 — )5 for each 6 € Bary 01(0,6},,). (139)
To this end, we notice that 7 (M) < T* (see (iii) of Theorem 4.1). Arbitrarily fix 6 € Bz, N (0, 1) so that

0<d<min{T(M)/2,(T*" - T(M))/2}. (140)
(The existence of such 0 is ensured by (135).) Then it follows from (140) and (138) that

20 <T(M) < (ks +1)0 <T(M)+d<(T"+T(M))/2<T".
This, along with the definition of Py« (see (67)), yields that

(0,ks) € Pp- and 26 < T (M) < (ks +1)0 <T™.

By these, we can apply Theorem 5.3 (with (6,k) = (d,ks)) and Theorem 5.2 (with T3 = T (M) and
Ty = (ks + 1)0) to get that

Nil(ks +1)8) S N (ks +1)8) + € 14Tzt retdzms oy
SN(T(M)) = X Pr (ks +1)6 — T(M)) +

L [+ T T T*7<115+1>6]

lyol| 21162, (141)
where Cy is given by (123). Meanwhile, by (138) and (140), we find that

(ks +1)0 —T(M)>(1—n)d and T(M) < (ks +1)0 < (T +T(M))/2.
These, along with (141) and (ii) of Theorem 4.1, yield that

Ni(ks +1)8) SN (T(M)) = A2r(1 = )3 O[Tty 12,012
—M— )\i’/zr(l — )8+ (147" 4 s + =2y ) llyo 121182
By this and (140), we obtain (139).
Define a set Ajy,, in the following manner:
Antn £ By N(0,83,,), with 6y, given by (139). (142)

We now show that the second conclusion in (132) holds for each ¢ in Ay, defined by (142). To this end,
we arbitrarily fix 0 € Ap,. We claim that

To(M) < (ks + 1)§ and T5(M) > ksd. (143)

To show the first inequality in (143), we let us be an admissible control to (N P)gkéﬂ)é and let s be the

zero extension of us over R* x Q. Since Ns((ks + 1)8) < M (see (139)), one can easily check that s is
an admissible control (to (7P)#), which drives the solution to B,.(0) at time (ks + 1)d. This, along with
the optimality of T5(M), leads to the first inequality in (143). To prove the second inequality in (143), we
notice that UM < UM. This, along with (2) and (6), yields that 7 (M) < T5(M). From this and (138),
we obtain the second inequality in (143).

Since T5(M) is a multiple of 0 (see (7)), it follows from (143) that

Ts(M) = (ks +1)0. (144)
This, along with (139), implies that the second conclusion in (132).
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Finally, from (144) and (138), we see that the first conclusion in (132) is true for each 6 € Ay, defined
by (142).

In summary, we end the proof of Theorem 5.4.

6. The proofs of the main theorems

In this section, we will prove Theorems 1.3-1.5. The strategies to show them have been introduced in
Subsection 1.3.

6.1. The proof of Theorem 1.3

Proof of Theorem 1.3. We will prove the conclusions (i) and (ii) in Theorem 1.3 one by one.

(i) Arbitrarily fix M > 0. Recall that 7™ is given by (66). From the conclusion (iii) in Theorem 4.1, it
follows

0<T(M)<T™ (145)
We take § so that

0<d<min{7(M)/2,(T* = T(M))/4} £ 6. (146)
Let ks € N satisfy that

(ks — 1)6 < T(M) < ks?. (147)
We first claim that

Nis((ks +1)8) < M + €% [T + 7y + =] ol 2r~ 1162 — A3/2ps. (148)
Indeed, from the definition of Pr- (given by (67)) and (145)-(147), one can easily check that

0<T(M)< (ks+1)0 <T* and (6, ks +1) € Pr-. (149)

Three facts are given in order: (a) By the second conclusion in (149), we can apply Theorem 5.3, with
(6,k) = (0, ks + 1), to obtain that

Ca [H‘T*"' (lzzé-lf-l)5+T*—(%5+1)6j| llyo||*2r =162,

Nis((ks +1)8) < N((ks +1)8) + e

where Cy = C4(£,w) is given by (123). (b) By the first conclusion in (149), we can use the first inequality
in (106) in Theorem 5.2 (where 77 = T (M) and T> = (ks + 1)) to get that

N((ks + 1)) S N(T(M)) = AX3r|(fes + 1)5 — T (M)
SN(T(M)) =AY ?rs;

(c) By (ii) of Theorem 4.1, we have that N'(T(M)) = M.
From above three facts (a)-(c), we find that
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(SRR

Ns((ks +1)8) < M + e s+ Tk ) g 2r— 1162 — X326, (150)

Meanwhile, from (147), (146) and (145), one can easily check that
T —T(M) T*+T(M)

T(M) < (ks —1)6 425 < T(M) +

2 2
This, along with (150), leads to (148).
We next claim that
Ts(M) < (ks + 1) for each 0 < < 8o 2 min{éy,d}), (151)

where d; is given by (146) and ds is defined by

1 _ * 1 2
02 2 5/\?/26 Ca [H‘T +T(1\4)+T*—T(M):|

In fact, for an arbitrarily fixed § € (0,dp), by (148) and (152), after some computations, we find that

lyoll =22, (152)

M > Ns((ks +1)8) + %Af/zr(s > Ns((ks +1)6). (153)

Let us be the zero extension of an admissible control (to (/\/P)((;k5+1)5) over R* x Q. Then by (153), one
can easily check that us is an admissible control (to (TP)}), which drives the solution to B,.(0) at time
(ks +1)8. This, along with the optimality of T5(M), leads to (151).

We now show (8) with dg given by (151). For this purpose, we arbitrarily fix § € (0,dp). Since UM c UM,
it follows by (2) and (6) that T (M) < T5(M). This, along with (147) and (151), leads to (8), which ends
the proof of the conclusion (i).

(ii) Let Ay, with M > 0 and 5 € (0, 1), be given by Theorem 5.4. Then the conclusion (ii) of Theorem
1.3 follows from the first conclusion in (132) at once.

In summary, we end the proof of Theorem 1.3.

6.2. The proof of Theorem 1.4

Proof of Theorem 1.4. For each M > 0 and § > 0, we let u}, and uj ), be the optimal control and the

optimal control with the minimal norm to (7P)M and (TP)} respectively (see Theorem 3.1). We will
prove the conclusions (i)-(ii) one by one.

(i) Let M > 0. Let 69 = do(M, yo,7) and C5 = C3(Q,w) be given by Theorem 1.3 and Theorem 5.2,
respectively. Arbitrarily fix § > 0. In the proof of (i) of Theorem 1.4, we simply write u* and u} for uj,
and ug s, respectively.

Since T5(M) is a multiple of 4 (see (6)), we can write

Ts(M) £ ks6 with ks € N*t. (154)
In the case that
5> min { g, M T, M L (159)
4 3 4603(1+T(M>)(1+ o)

one can easily show (10). In fact, it follows from (155) that
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flu* — u§||L2(R+><Q) < ||u*HL2(R+><Q) + ||“:§HL2(R+xQ)
6M

< < 540 .
<2M < T(M)6 C(M,yo,7)d (156)

Thus, we only need to show (10) for the case that

T —T(M M M
O<(5<min{60, T(M) T(M) i } (157)
4 3 4P TTI) (14 |lyo )
For this purpose, some preliminaries are needed. First we claim that
O0<T(M)<Ts(M)<(T(M)+T*)/2<T". (158)

Indeed, (158) follows from the next three facts at once. Fact one: From Theorem 4.1, we have that
0 < T(M) < T*; Fact two: Since UM c UM, we find from (2) and (6) that 7 (M) < T5(M); Fact three:
By Theorem 1.3 and (157), we see that

To(M) < T(M) +25 < (T(M) +T7)/2.
Then it follows from (158), (157) and the definition of Pr« (given by (67)) that
36 < Ts(M) <T*, ie., (6,Ts(M)/8)= (0,ks) € Pr-, with ks given by (154). (159)

Next, we let 2* # 0 and z; # 0 be the minimizers of JTM) and Jg—‘S(M), respectively (see Theorem 4.2
and Theorem 4.3). Write

2% 2 2% /||l2*|| and 25 £ z5/||22). e

T (M)) x Q is the optimal control to (NP)7T M), (Tt
) Then by (ii) of Theorem 4.2 (with T'= T(M) €

T(M)). Meanwhile, by (ii) of Theorem 4.1, we find
at

By (iii) of Theorem 4.1, the restriction of u* over (0,

can be treated as a functlon from (0,7 (M)) to L?(£2).
(0,7%)), we see that u*(-) = xu(; T (M), z*) over (0,
that N (Ts(M)) = M. These, along with (160), yield th

Xwp(t; T (M), 2*)

“(t) = Xwp(t: T(M),2*) = M
u*(t) = Xwtp(t; T(M), 27) X0 (5 T(M), 2%) [ L2 (0,7 (1)) <)

ae. t € (0,T(M)). (161)

Finally, it follows from (iii) of Theorem 3.1 that the restriction of u} over (0, 75(M)) x  is an optimal

control to (NP)Z—‘S(M). (It can be treated as a function from (0, 75(M)) to L?(£2).) This, along with the
fact that u} is an optimal control to (TP)M, yields that

Ns(Ts(M)) = [lujll 20,75y <) < N5l 2 @+ x0) < M. (162)

Meanwhile, by (159), we can apply Theorem 4.3 (with (6, k) = (6, T5(M)/8) £ (0, ks)), as well as (160),
to obtain that

Xw@&(t; %(M)a 2;)
IXw®s (5 To(M), 25) | L2 (0,75 (M) x )

Here, @5(; T5(M), z5) and @5(-; Ts(M), 25) are given by (20) with (6, k) = (6, ks) and M; is defined by
Mj & Ny (T3 (M), (164)

We now prove (10) for an arbitrarily fixed ¢ (satisfying (157)) by several steps.

us(t) = Xw@s(t; Ts (M), 25) = Ms

a.e. t € (0,7s(M)). (163)
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Step 1. To show that

l(T D) 90, u) 2@y < Iwoll/ T + 2 (VTS5 iy oy + 112511) (165)

One can easily check the following two estimates:
|y (T (M); yOaué)”H?(Q NHL(Q) < ||€ )yon ©@nHH () T ly(T (M);Oaug)HH?(Q)ﬁHé(Q)Q

AT (M

e Yol mr2(@)nm o) = 18627 Myl < lyoll /T (M).

From these, we see that to prove (165), it suffices to show that
[y(T(M); 0, u) | 2z ) < 2(V Ts(M)[125 || 12 ) + (125 11)- (166)

For this purpose, let k be the integer so that kd < T (M) < (k+1)d. Because T(M) < T5(M) (see (158))
and T5(M) is a multiple of § (see (6)), we find that 75(M) > (k + 1)d. Since u} is a piece-wise constant
function over (0, 75(M)), and because

AeATM=1) gy — f%(eA(T(M)*t)f) for each f € L*(9),

one can easily check that

T (M) s
Ay(T(M);0,u}) = A / AT wx((k41)8 dt+ZA eATAD=Dy uk(56) dt
k6 =Gl

k
= 2 ATON (w3 ((+ 1)8) — u3(36)) + TN x5 (6) — 3 (R +1)9).
j=1

This yields that
[y(T(M); 0, u3) || 2 )nmz @) = 1AY(T(M); 0, ug)||

k
Z 13 (G + 1)8) — ug (o) + [z ()] + w3 (& + 1)a)]l- (167)

Meanwhile, from the first equality in (163), one can easily verify that when j =1,... k,

[ug (7 + 1)8) — us (59)]|

Jo jo
=H§ / xw¢(8+5;73(M)72§)d8—% / XW(S;%(M),ZZ{)dSH
(4-1)8 (4—1)8
Jjo  s+6 (J+1)8
s [ [oemmon | < [ o Ton. )
(j-1) s (4-1)8

This, along with (167), (163), (164) and the contractivity of {e®t},>¢, yields that
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Ts (M)

ly(T(M); 0, u3) | 52 @) ) < 2 / 10-(7; Ts (M), 25)|| dT + 2] 25| (168)
0

Since [|0-¢( Ts(M), 25)[ 20,75 (ary) <) < |25 ]2 ) (see (85)), by applying the Holder inequality to
(168), we obtain (166). This ends the proof of (165).

Step 2. To show that
(s T (M), 25) = 5 (- Ts(M), 25)| L2 (0,7 (M) x ) < 1251 12 ) (I Ts (M) = T(M)| + 6) (169)
Observe that
(5 T (M), z5
<llp(s T (M), z5

+lle (s Ts (M),
21+ L.

) = Ps (5 Ts(M), Z;)”LZ((OT(M))XQ)
y25) — (5 Ts(M )7Z§)HL2((O T(M))x)
z

3) = @5 (5 Ts (M), 25) || L2 (0,7 (ar)) x )

We first claim that
I < 125 g o) (Ts (M) = T(M)). (170)

Write {); } ° , for the family of all eigenvalues of —A with the zero Dirichlet boundary condition so that
AL <Ay < ---. Let {ej} © , be the family of the corresponding normalized eigenvectors. Write

oo
zy = Zajej with {a;}72; CR.
j=1

From this, it follows that for each t € [0, T (M)],

o(t; T(M),z5) = Zajew\j(T(M)ft)e and o(t; Ts(M Zaﬂ /(D=
j=1
This yields that

00 1

Il:‘)zajAj(%( /e SAJ(%(M)_T(M)dS)e_kj(T(M)_t)ej L2((0.7(M))x9)
j=1 ) ,

e 5 o) /2
< (Ts(M (ZM) = 125 g o (To (M) = T(M)),

which leads to (170).
We next estimate I5. Since Ts(M) = ks (see (154)) and because T5(M) > T (M), we see from (20)
that

Ts (M)

I < / o< To(M), 23) — B3 To(M), 23)|> dt

0
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ks J9
1 N
ZZ / H@(t;fs( z5) g / (5 Ts(M Za)dSH dt
=1 1) “1ys

by 09 js

<> [ | [ teemmansar|

= s \G-1)s

By using the Holder inequality in the above and by (85), we see that
I < |07 0(+5 Ts(M), 25) | 22((0,75 (M) x2)0 < (125 | 112 (02) 6
Finally, (169) follows from the above estimates on Iy and Is.
Step 3. To prove that
[T(M) = To(M)| + [M — My| < 27T (14 |lyo )6 2 Cr (M, o) (171)

By (159), we can use Theorem 5.3, with (§,k) = (0,ks) (where ks is given by (154)), to see that
Ns(Ts(M)) > N(T5(M)). By (162) and (164), we find that M < M;. These, along with (ii) of Theorem
4.1, yield that

0< M — My = N(T(M)) = Ny(Tao(M)) < N(T(M)) = N (To(M)). (172)
Meanwhile, by (158), we can use Theorem 5.2 (with T3 = T (M) and T = T5(M)) to see that
N(T(M)) = N(T5(M)) < eC@XOTAD o | (T5(M) — T (M).
where C3(€2,w) is given by (106). The above, along with (172), yields that
|M — M;| < @@ THTAD o ||| T5(M) — T (M)].
Since d € (0,dp), the above, along with Theorem 1.3, leads to (171).
Step 4. To show that
2% = 25|l < C2(M, yo,7)0 (173)
Define an affiliated control i from RT to L%(2) by

Xowtp(t; T (M), 25)
X (3 T (M), 25) L2 0.7y x02)

as(t) & M € (0,7 (M)); ts(t) =0, t € [T(M),00). (174)

We divide the rest of the proof of Step 4 by several parts.
Part 4.1. To prove that

A% ax sk Ak 1 A% A% ~ *
<Z — k5% _z5> < _;<Z —Zsyy(T(M>»y07U6>_y(%(M):meé» (175)
y (161) and (174), one can directly check that

0< <Xw§0(t; T(M)’ é*) - Xw‘p(t;T(M)v 2;)7U*(t7 ) - ﬁzi(tv )> for a.e. ¢ € (0’ T(M))

Hence, we have that
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0< <Xw90(7 T(M)7 2*) - Xw(p(7 T(M)7 2;)’ u* — ﬂ5>L2((O,T(M))><Q)
This, along with (69), (72) and (160), yields that

(2 53,5 = 55) = (2 — 5, L (W(T(M)syo,u) — y(T5(Ms0,3)) )

1 Sk ok ~ *
< —;<Z - 25’y(T(M);y07u5) - y(%(M)vyOau§)>a

which leads to (175).
Part 4.2. To show that there exists Co £ C21(Q2) > 0 so that

ly(T(M); 90, ) — w(T3 (M) 90, u3) | < Con [ (1 + % V) (lyoll + 1123 11 0)

X(To(M) = T(M)) + s = w320, 700y | (176)
Three facts are given in order. Fact one: By the Hélder inequality, we find that for some Cay 2 Coo(2) > 0,

T (M)

ly(T(M): o, is) — y(T (M) o, ud)| = | / ATON=0y (ay — 3 (¢, ) dt
0
T (M)
< / e M TOD=0| 35 — u2)(t, )| dt < Cllits — | 2(c0.am) i (177)
0

Fact two: Since ||uj|| (0,75 (am);22(0)) < l|23]| (which follows from (163) and (20)), and because 7 (M) <
Ts(M) (see (158)), we find that

Iy (T (M); yo,us5) — y(Ts(M); yo, us) ||

Ts (M)
< (T (M0, 5) = TOTODy Ty} + ] [ eATOD 0 i) e
T(M)
< (T(M) = T(M)) [Iy(T(M)s 0, u5) | @y + 1731 - (178)
Fact three: By (158), we see that
Ts(M) < T*. (179)

Now, by the triangle inequality, (177), (165), (178), (179) and the Poincaré inequality, we obtain (176)
for some Co1 = Ca1(9).

Part 4.8. To show that there exists Co3 = Ca3(Q) > 1 so that

A~ * * 1
s — w3l 2o xe) < Cos(1+ 1125 1)) (1 + M)(W(M) —T(M)|+6+|M — Ms|) (180

Recall (160) for the definition of £}. In Part 4.3, we simply write respectively o(-) and @s(-) for
o(5T(M),25) and Bs(-;Ts(M), 25); simply write || - llo.7n), | - llo7sar) and || - lran), 7500y for | -
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|20, 7)< || - 120,730y x0) and || - || L2 (T (ar), 75 (v x ) » Tespectively. From (174) and (163), using
the triangle inequality, we obtain that

X . Xw$ XwPs
s — usllo,r(ar) = HMi - Maf—H
OO IXw®llo,7(ar) 1 Xw@slo,75 (ar) Nlo,7(01)
<My - 2P| ) (181)
||Xw90||o,T(M) lIxw@s 0,75 (M) 10,7 (M)
By direct computations, we find that
Xwf XwPs (182)

IXwPllorry  IXPsllo,75(00)
_ Xe?(Ixw®Psllo.7s a0 — IXw@lloTan) | X — XuPs
IXwPllo, 70y IXwPs ll0,75(a1) IXwPsllo, 75 (a0)”

‘HXw%HO,Ts(M) - HXw(PHO,T(M)!

|‘|Xw¢5||g,T(M) - ||Xw<P||g;r(M)| + ||Xw¢5||$’(M),7:;(M)

IXw®@sll0,75 a1y + Ixw@llo,7(ar)

||Xw¢6||%'(M),7g(M).

< IXw = XwPsllo,7(ar) + oallomscn (183)
w s
From (181), (182) and (183), we deduce that
. * Ms _ ||Xw¢5”%’ M), Ts(M
s — usllo,7(ar) < ——=7——|2lIXw® = XwPsllo,7(ar) + T M) Tl )}
IXw®sllo, 75 (1) IXw®sllo,75 (a)
M — Mj. (184)

Meanwhile, by (163) and (160), we see that Ms = |25/ Xw®@sllo,75(ar)- This, together with (184) and
(160), yields that

s = wsllo,rn < 2512 T, 25) = B5(5 To(M), 25) o,y
sl :
i s (5 T (M), 2) By 7o | +1M — M. (185)

Since ||@5(t; Ts(M), z5)|| < ||z5|| for each t € (0, 75(M)) (which follows from (20)), we find from (185) and
(169) that

~ * * * 2*4
Hw%Mﬂmé(lﬂWNw@WN+uﬂ>(mwﬂﬂMNM+M4AM)

At the same time, it follows from (171) and (157) that
My > M — 2504 700) (1 4 ||yo|)8 > M /2.

The above two inequalities, along with the Poincaré inequality, yield (180).

Part 4.4. To show (173)
By (176) and (180), we can easily check that
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ly(T(M); yo, 4s) — y(Ts(M); yo, uj) ||

1 * *
< (2103 (1 + ) + VT*) (1 + lyoll + 251 20y + ||Za||4}{3(9)>

< (14 27) * (IT5(M) = T + M — M| +9). (186)

Meanwhile, by (159), we can use Theorem 5.1 (with (J, k) = (0, ks), where k; is given by (154)), as well
as (158), to get that

C1(14+ =1~ —
1+ |lyoll + HZ;HH&(Q) + HZEH%I(}(Q) < e 1( +T(M))||y0||24’l” 207 (187)

where Cy = C1(Q,w) is given by (85). This, along with (186), leads to that

(T (M)s g0, 5s) = y(To sy, )| < Co(1+ 22) (T5(M) = TN+ M5 — M| +8), (189)

where

N A 1 .
Cs = Cs5(M, yo,T) = 4C5,Co3 (1 + 7T(M) + \/Z/T*> 601(1+T(M))||y0H24T720.

Now it follows from (175) that
ok 2% (12 1 ok 2% (12 1 ~ *\ (|2
127 = 25117 < 512" = 2517 + 5 2 ly(T(M)s yo. as) — y(Ts (M) yo, ug)|I™

This, along with (188) and (171), yields (173) with

114 1
Ca(M,yo,) £ < | Ca(M, yo,m) (1 + 77) (Cr (M. 30) +1)]
which ends the proof of Step 4.
Step 5. To show that
[w* = usllz2(0,7(a))x0) < Ca(M, yo,7)d (189)

Recall (160) for the definitions of £} and 2*. In Step 5, we simply write p1(-) and pa(-) for (-3 T (M), 2*)
and (-3 T (M), 25), respectively; simply write || - [lo. 7y for || - | L2(0,7(a))x)- By (161) and (174), we
see that

||u* _ a5||0,7’(1\/[) S MH XwP1 o Xw¥P2 H
HXw‘Pl”O,T(M) [l Xw P2 |O,7’(M') 0,7(M)
[Xw1 = Xwp2llo,7(ar)- (190)

~ Ixweerllo,7an
Meanwhile, from (161) and (160), we find that

M = [|2*[[l[xwe1llo,7(a)-
This, along with (190), yields that

[u* = dsllo,7ary < 22" ll1 — 2llo,7ar) < 227 [I[|2" — 25 . (191)

By (191), (180) and the triangle inequality, then using (173), we see that
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lu™ —ujllo, 7y < 202(M, yo,7)||2"[|0
+C23(1+ 1125 () (IT5 (M) = T(M)| + 6 + |M — Ms)).

From this, (187) and (171), we obtain (189), with

Ca(M, yo,r) 2 (1 4 e OHTH7T0) ||y 24 720)(8C, + Cos (1 + C1)),

where C1 = C1(M, ) is given by (171), Cy = Co(M, yo,7) is given by (173) and Caz = Ca3() is given
by (180). This ends the proof of Step 5.
In summary, we end the proof of the conclusion (i) in Theorem 1.4.

(ii) Arbitrarily fix M > 0 and 1 > 0. Let Aps,, be given by Theorem 5.4. Then, by Theorem 5.4, we
see that

1
lim ElAM’n N(0,h)|=n

h—0t

and that for each 6 € Ay,
1 .3/2
M — Ns(T5(M)) > A (= n)0. (192)

Arbitrarily fix § € Ang,y. Let v}, and u}y s be the optimal control to (TP)M and the optimal control

optimal with the minimal norm to (7P)}, respectively. (see Theorem 3.1.) Three facts are given in order:
(a) By Theorem 4.1, one can easily check

luasllz2 0,7y x) = N(T(M)) = M;
(b) From (iii) of Theorem 3.1, we see that
luhs.sll L2075y x ) = Ns(Ts(M));

(c) Since UM c UM, by (2) and (6), we find that T(M) < T5(M). Combining the above facts (a)-(c)
with (192), we find that

luns — udrsllLz o0, 7)) x) 2 luarll 2o, 7)) <) = luarsllLz (o, 7)) x )
1
> M = N5(Ts(M)) 2 50 *r(1 = m)s,

which leads to (11). Thus, the conclusion (ii) in Theorem 1.4 is true.
In summary, we end the proof of Theorem 1.4.

6.3. The proof of Theorem 1.5

This subsection devotes to the proof of Theorem 1.5. To show (13) in Theorem 1.5, we need the next
lemma which gives a lower bound for the diameter of the subset Oy 5 (in L2((0, 7 (M)) x )), which is
defined by (21).

Lemma 6.1 Let M > 0. Then there is 0y = Sp(yo,7) > 0 so that for each n € (0,1) and § €
Aniy N (0,00) (where Angy is given by Theorem 5.4),
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diam Oy 5 = sup{|lus — vsll L2 (0, 7(m))x) © Us, Vs € Onrs}
ZC’M\/(l—n)é for some Chy éCA’M(yO,T). (193)

Proof. Arbitrarily fix M > 0. Let dy > 0 be given by (i) of Theorem 1.3. From (i) and (ii) of Theorem
4.1, we see that 0 < T(M) < T*. Thus we can take a positive number ¢; in the following manner:

81 £ min{8y, T(M)/2,(T* — T(M))/2}. (194)
Arbitrarily fix n € (0,1) and § € A, N (0,91). From (194) and Theorem 1.3, we see that
20 <T(M)<Ts(M) <T(M)+26<T". (195)

Meanwhile, it follows from the second conclusion in (132) in Theorem 5.4 that
1
M;s 2 Ns(T3(M)) < M — 5x§’/2r(1 —n)é. (196)

To show (193), it suffices to find a subset O%/I,é C Oy, so that for some Cy 2 C(yo, ), Cu (I—=mn)
is a lower bound for the “diam (’)12\/[7 s - To this end, we first introduce an affiliated subset Ozl\/f, s COms

in the following manner: Let u} be the optimal control with the minimal norm to (TP)} (see (iii) of
Theorem 3.1). Arbitrarily fix 95 € L3((0,75(M)) x ) so that

supp 05 C (0, T (M)) x Q, (05, us)L2((0,75(a))x2) = 0,

(197)
19512 (0,75 a2y = 1, (Y(Ts(M);0,us),y(Ts(M); 0,95)) < 0.

(The existence of such @5 can be easily verified.) Define O}, 5 to be the set of all solutions us to the
following problem:

us = aus + Bos, a, BER; usllreo,7:00)x) < M; [y(Ts(M); yo, us)|| < 7. (198)
From (198), we see that 011\4,5 C Opns.
We next characterize elements in Ozl\/[, s Via studying the problem (198). To this end, we first claim
luzll 20,7 (ary) = Ns(Ts(M)) & M,
ly(Ts(M); yo, u3)|| =, i
T s, 5) (T30, 08)) =~ )

(Y(Ts(M); o, us),y(Ts(M);0,0s)) = 0,

where 23 denotes the minimizer of (J P)(;T‘S(M). Indeed, the first equality in (199) follows from (iii) of
Theorem 3.1; To show the second one, two facts are given in order. Fact one: From (iii) of Theorem 3.1,
we see that the restriction of u} over (0,75(M)), denoted in the same manner, is an optimal control to
(NP)(Z%(M). Fact two: By (195) and the definition of Py« (given by (67)), we find that (8, Ts(M)/d) € Pr-.
By these two facts, we can use (72) in Theorem 4.3 (with (d,k) = (8, 7T5(M)/d)) to obtain the second
equality in (199); To show the third equality in (199), we recall the above two facts. Then we can apply
(ii) in Theorem 4.3 (with (0, %) = (5, T5(M)/9)) to get that

42



(To(M): o, u3), (T3 (M) 0,uf)) = { — Téiin,y(%(M%O,U;»

r * *
= —WO@@(';%(M), 23),U3) L2((0,73 (M) xQ)

s

T _ . . )
= —WWUJ@(S(';'B(M),Za),u5>L2((0,7Zs(M))XQ) = —m||u6||%2((077—5(M))XQ), (200)
° s

(The first equality on the last line of (200) is obtained by the same way as that used to show (82).) Then
the third equality in (199) follows from (200) and the first equality in (199) at once; To show the last
equality in (199), we still recall the above two facts (given in the proof of the second equality in (199)).
Then we can apply (ii) in Theorem 4.3 (with (4, k) = (6, T5(M)/6)) to see that

e
[EX

T « N
= —mem&w), 25),05) L2((0,T5 (M) x2)
)

(y(’]f;(M),yg,u}‘),y(%(M),O,f/g)) = < -r 7y(775(M)703r[}5)>

T o o r .
= —MO@JS@B(';%(M)aZ&)aU6>L2((0773(M))><Q) = —W<u5,U5>L2((0)73(M))XQ). (201)
0 [

(The first equality on the last line in (201) is obtained by the same way as that used to show (82).) From
(201) and (197), we are led to the last equality in (199). Hence, (199) has been proved.
With the aid of (199), we can characterize elements us of (9]1\/[) s as follows:

us = auy + Bos, o, f € R,
o’ MF + 8% < M?, (202)

202 rM§ 2 2
azf” 4+ 2(a — 1)bsf8 < 2(a — 1)m — (@ —1)c3,
5
where the pair (as, bs, ¢s) is given by
as = [ly(T5(M);0,%s)],
bs = (y(Ts(M); 0,u3), y(Ts(M); 0, 05)), (203)
cs £ [ly(Ts(M); 0,u3)]].

Indeed, for each us = auj + B0s, with o, 8 € R, we have that

Y(Ts(M); yo, us) = y(Ts(M); yo, us) + (o — 1)y(Ts(M); yo, uz) + By(Ts(M); 0, 05).

Thus, from (199), (197) and (198), we can easily verify that us is a solution to the problem (198) if and
only if us is a solution to the problem (202).
We now on the position to introduce the desired subset (9]2\47 s5- Define a number X by

A M3 1
Aémin{ i } (204)
25l (M — Ms)’ 2

(Notice that since § € Ay, it follows from (132) in Theorem 5.4 that M > Mj.) Let O%; 5 be the set of
solutions ugs to the following problem:
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M — M;

u(;:au§+51357a:1+5\ , B>0,
B2 < M(1— N)(M — Ms), (205)
ag 2 < )\TM(;(M — M(;).
- 125
We claim that
Oi1,5 C Ohrs C Owrs (206)

Since the second conclusion in (206) has been proved, we only need to show the first one. Arbitrarily fix
s £ auf + Bis € (9%/[75. We will show that (is, &, §) satisfies (202). Since A € (0,1) and M > M;s (see
(204) and (196)), it follows from (205) that
&2MZ + B2 < (Ms + A(M — Mg))” + M(1 — \)(M — M)
=M?— (1 - A (M — M;)(M — (1= \)(M — M;)) < M.
Meanwhile, since bs < 0 (see (203) and (197)), we find from (205) and (204) that

. . ~  ArMs(M — M,
aZB? +2(a— bsf < a2B? < 5|(|Z”5)
o
M? M?
= (G- 1) <2(G —1)=2 — (& — 1)
125l 25l

From these, we see that (is, &, 3) verifies (202). Hence, (206) is true. By (206), (205) and (197), we find
that

diam Opr,s > sup{|lus — ujll 20,70y x0) : s € (912»1,5} > Bll0sll 20,70y x0) = Bs (207)
when [ satisfies that

0.< 52 < min {M(1 = (M — ay), LMo
2T

(Here, we agree that $ £ co.) Then by (207) and (204), we get that

diam OM,é Z CM,(; min{\/ M — M5, 1}, (208)
where C)y s is defined by
IM  rM? rMs
CM,5 = CM,J(y()vr) £ mln{ 5 6* ) * } (209)
2 " ascs| 25117\ 20325

To get a lower bound of Cjs 5 w.r.t. d, we first present the following inequalities (their proofs will be given
at the end of the proof of this lemma):

! Ms Cs(1+727) Cr(1+ =L 4 3
as < ; cs < s Ms > M —2e7? T (M) 5 ||z5]] < et T r3, 210
P Uy S s M2 lwolla; 11231 < lvol (210)

where C3 and C; are given by Theorem 5.2 and (i) of Theorem 5.1, respectively. We next define

44



1 o 1 4
6M £ (SM(yo,T) £ min {517 ZMG 03(1+T(11\4))“y0||_17>\1 3/27"_1} ) (211)

where 91 is given by (194). From (210) and (211), we have that

Ms > M/2 for each 6 € Apryy N (0,0n1).

This, along with (209) and (210), yields that for each § € A, N

(0,dnr),
2A17’M5 )\17‘M5 )\17"M )\17"M
Cumys >m1n > min \/
27 |755|| [Exal ‘ZJH 2”35

By this and the last inequality in (210), we can find C}, £ C;(yo,7) > 0 so that Cprs > C4,, when
d € Ay N (0,001). (Hence, Cly is a lower bound for Cars w.r.t. 6.) This, along with (208), (196) and
(211), yields that for each 6 € Aar, N (0,0nr),

diam Oprs > Cy min{ %)\?/27“(1 —n)d, 1} = (%C’;VI)\?M\/F) (1 —mn)d.

By the above and (211), we obtain (193), with Cp; = - C’ )\3/4\f.
Finally, we show (210). By the Holder inequality, (203) and (197), we find that

Ts (M) Ts(M)
as < / 2T D=0 212 ), L2 () 185 (2, )| d < / e MTD=D 1552, )| dt < 1//2).
0 0

Similarly, from (203) and (199), we can obtain the estimate for ¢s in (210). We now show the third
inequality in (210). By (195) and the definition of P« (given by (67)), we have that

0<T(M)<T* (867T5(M)/S) € Pr and 0< T5(M)—T(M) < 24. (212)

From the first two conclusions in (212), we can apply (ii) of Theorem 4.1 and the first inequality in (123)
in Theorem 5.3 (with (4, k) = (4, T5(M)/0)), as well as (196), to get that

M — Ms = N(T(M)) = N5(Ts(M)) < N(T(M)) = N (T5(M)). (213)

From (213), the second inequality in (106) in Theorem 5.2, with T3 = T (M) and Ty = T5(M), (Notice
that T5(M) > T(M).) and the last inequality in (212), we can easily derive the last inequality in (210).
Hence, (210) is true. This ends the proof of Lemma 6.1.
O
We are now on the position to prove Theorem 1.5.

Proof of Theorem 1.5. Let M > 0. For each § > 0, we let «* and uj be the optimal control and the
optimal control with the minimal norm to (7P)M and (TP)¥ respectively (see Theorem 3.1). We will
prove the conclusions (i)-(ii) of Theorem 1.5 one by one.

(i) For each 6 > 0, there are only two possibilities: either (155) or (157) holds. In the case when §
verifies (155), we can obtain (12) by the similar way to that used to show (10). We next consider the case
that & satisfies (157). Recall (21) for the subset Oy 5 (which consists of all optimal controls to (7P)).
Then it follows from Definition 1.2 that
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||u:§HL2((O,T5(M))><Q) S HUzYHLZ((O,Tg(M))XQ) S M fOI’ each v§ S OM’J. (214)

Arbitrarily fix vs € Op,s. One can directly check that
Avs + (1 = AN)uj € Onrs for each X € (0,1).
From this and (214), we find that for each A € (0, 1),

luslZ2 (0.7 (ary <) < IAWs = u5) + Uzl 720,75 aryyx )
= ||U§\|%2((0,7:;(M))x9) + 2M(vs — U5, uz) L2((0,75 (M) x9)
+X?||vs — u§||%2((0,7:;(M))><Q)'

Dividing the above by A and then sending A — 0o, we obtain that
(U3, us) L2((0,75 (M) x2) < (U5, UF) L2((0,75(M))x9)-
From this, (214) and (163) (as well as (164)), one can directly check that
v — w5122 (0,75 Ay ) < 2M (M — N5(T5(M))) = 2M (M — Ms). (215)

(Here, we used the fact that M > Nj(75(M)), which follows from (iii) of Theorem 3.1.) Hence, from
(189), (215) and (171), we find that

lu” = wsll 2o, m(am) <) < W = w5l 2o 7(any <) + 145 — usllz2 (0,720 xe)
S [04(Ma y07’r) + 2M01(Ma ZUO)]5 £ 05(M7 9077")57

where C1(M,yo) and C4(M,yo,r) are respectively given by (171) and (189). This ends the proof of the
conclusion (i) of Theorem 1.5.

(ii) We mainly use Lemma 6.1 to prove (13). Arbitrarily fix n € (0,1). Let Aps,, be given by Theorem

5.4. Let Cyr and 0y be given by Lemma 6.1. Arbitrarily fix § € Az, N (0,0,7). We claim that there is
Upn s € OM,(; so that

s — usll (0,7 xey = Car/ (1 —1)d/3. (216)
By contradiction, we suppose that it were not true. Then we would find that
lvs — w3l 20,7 ary ) < Car/ (1= 1)8/3, Vo5 € Ongs.
This, along with the definition of Oy 5 (see (193)), implies that
diam Opr,s < sup{||v; — v3 ||l L2(0. 7)) x0) © v§. V3 € Onrs}
<sup{2[jvs — ujll 20,7 (m))x) ¢ vs € Oms}
<2 /=03 /3,

which contradicts Lemma 6.1. Thus, (216) is true.
Now, we arbitrarily fix @5 € Ops satistying (216). Then by (216) and by (i) of Theorem 1.4, there
is C(M,yo,r) > 0 so that

lanr,s — w20, 7)) x) = 1ar,s — w3l 20,7 a0y xQ) — w5 — w*l| L2(0,7(ar)) x )
Z C’M V (]— - 77)5/3 - C(Ma Yo, 7“)5 (217)
Write
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a2 min {Sr, (Cor /(6C(M, o, ™)) (1= 1)Y; Anr 2 Ansy 0 (0,601)-

Then, one can easily check that

1 -
lim N (0,h)] = 1.
Jim Ay 00, A)] =

From (217), and (218), one can easily verify that

||1ALM7(5 — U*||L2((07T(M))XQ) Z éjvjx/ (1 — T])5/6 for each & € AM,’I]v

which leads to (13), with Cy; £ Cr/6. This ends the proof of Theorem 1.5.

6.4. Further discussions on the main results

(218)

From (ii) of Theorem 1.3, we see that when 0 € A, Ts(M) — T (M) has a lower bound (1 —7)d. The
next Theorem 6.2 tells us that when 6 ¢ Ay, (1 —n)d will not be a lower bound for 7s(M) — T (M).

Theorem 6.2 Let M > 0. Then there is ko € Nt and {0}72, C RT, with limj,_,oc 6 = 0, so that

when k > ko,
Ts. (M) — T(M) = Cpr63 for some Car = Cr(yo, ).
Proof. Arbitrarily fix n € (0,1). Let

ko £ 4aT(M), with a £ a(M,yo,r) £ 2/\1_3/2604 [T+ ey + e ) llyol*2r "2

We define a sequence {03 }72;, of R in the following manner:

27 (M)
(k+1)+/(k+1)2 —4aT (M)’

One can easily check that

Sy 2 k> ko.

6k € (0,1/a) and (k+1)6; — ad? = T(M) for all k > k.
We now claim that there exists kg > lAco so that
1
M > N, ((k +1)5;,) + §A§’/2m5,% for all k > kq.

In fact, by (221), we can choose kv > ko large enough so that

0 < 0 < min{7(M)/2,(T* —T(M))/2}, when k > ki.

(219)

(220)

(221)

(222)

(223)

(224)

Arbitrarily fix k > k;. Since T (M) < T* (see (iii) in Theorem 4.1), from (224) and (222), we can easily

check that

20, <T(M) <(k+1)0 <T(M)+6 < (T*+T(M))/2<T".

These, along with the definition of Pr- (given by (67)), yield that
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25, < T(M) < (k+1)8, < T* and (6, k + 1) € Pre. (225)

By (225), we can apply Theorem 5.3 (see the second inequality in (123), where (4,k) is replaced by
(6,k + 1)) and Theorem 5.2 (see the first inequality in (106), with Ty = T (M) and Ts = (k + 1)dx) to
obtain that

N ((k+1)61) <N ((k + 1)8%) + o [“T**(Hbak +T*7<£+1>ak] llyo | 121162
<N(T(M)) = X320 ((k 4+ 1)8, — T(M)) +

oCi (147" + terbys + =gy ol 1152, (226)
where Cy £ Cy4(Q,w) is given by (123). Meanwhile, by (222) and (224), we find that
(k+1)6 — T(M) = ad} and T(M) < (k+1)8, < (T* +T(M))/2.
These, along with (226) and (ii) of Theorem 4.1, yield that
N ((k+ 1)3) < N(T(M)) — N2ras? + O[T+ 7ty + e | | 1271152
= M — 3282 4 O3 T bt e ] |y 120162,

This, together with (220), leads to (223), with ko = k;.

Next, we arbitrarily fix k > ko 2 k;. Let us, be an admissible control to (J\/’P)g’jﬂ)ék. Let @, be the
zero extension of us, over R x Q. Then by (223), one can easily check that s, is an admissible control
(to (TP)3!), which drives the solution to B,(0) at time (k + 1)d;. This, along with the optimality of
Ts(M), yields that

To (M) < (k +1)0k. (227)

Meanwhile, Since U3 C UM, we find from (2) and (6) that T (M) < T5,(M). From this and (222), we
get that

Ts,, (M) > ko, + 5k(1 — a(Sk) > kép. (228)
Since 75, (M) is a multiple of &y (see (7)), from (227) and (228), we obtain that

Ts. (M) = (k + 1)d.
This, along with (222) and (220), yields (219), with Cpr = a(M, yo,7) and with ko given by (223). Thus,

we end the proof of Theorem 6.2.
O

Remark 6.3 (i) The above theorem implies that the following conclusion is not true: For each M > 0,
there exists 41 > 0 and C > 0 so that

[Ts(M) —T(M)| > C6 for each § € (0,41).

(i) We think of that the similar result to that in Theorem 1.3 can be obtained for optimal controls. But
it seems for us that the corresponding proof will be more complicated.
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7. Appendix

The next lemma is a copy of [36, Lemma 5.1] without proof.

Lemma 7.1 ([36], Lemma 5.1) Let K be either R or C. Let X, Y and Z be three Banach spaces over
K, with their dual spaces X*, Y* and Z*. Let R € L(Z,X) and O € L(Z,Y). Then the following two
propositions are g\quivalent:

(i) There exists Cy > 0 and £y > 0 so that for each z € Z,

IR=11% < CollOzI3 + &oll=]1%- (229)

(i) There is Cy > 0 and g9 > 0 so that for each z* € X*, there is y* € Y* salisfying that
1 * 12 1 * %k * % (|2 * (|12
gl + —llB2” = 0%y [|Z. < fl2”[IX-. (230)
0 €0

Furthermore, when one of the above two propositions holds, the pairs (Co,eq) and (ao,éo) can be chosen
to be the same.
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