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Abstract

In this paper, we first design a time optimal control problem for the heat equation with sampled-data controls,
and then use it to approximate a time optimal control problem for the heat equation with distributed controls.

The study of such a time optimal sampled-data control problem is not easy, because it may have infinitely many
optimal controls. We find connections among this problem, a minimal norm sampled-data control problem and a
minimization problem. And obtain some properties on these problems. Based on these, we not only build up error
estimates for optimal time and optimal controls between the time optimal sampled-data control problem and the
time optimal distributed control problem, in terms of the sampling period, but also prove that such estimates are
optimal in some sense.

Résumé

Contrôles à données échantionnées en temps optimal pour l’équation de la chaleur. Dans cet article,
nous concevons d’abord un problème pour l’équation de la chaleur avec les contrôles à données échantillonnés,
puis l’utiliser pour approacher un problème de contrôle en temps minimal pour l’équation de la chaleur avec des
contrôles distribués.

L’étude d’un tel problème n’est pas facile puisqu’il peut avoir un nombre infini de contrôles optimals. Nous
trouvons des connexions entre ce problème, un problème de contrôle à donn es chantillonnes, et un problème de
minimisation, et nous obtenons des propriétés sur ces problmes. Selon ces résultats, nous établissons non seulemnt
des estimations d’erreur entre les deux problèmes en question, en termes de période d’échantillonnage, mais aussi
nous prouvons que ces estimations sont optimales dans certain sens.
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1. Introduction

1.1. Motivation and problems

In most published literature on time optimal control problems, controls are distributed in time, i.e.,
they can vary at each instant of time. However, in practical application, it is more convenient to use
controls which vary only finite times. Sampled-data controls are such kind of controls (see for instance
[1,8,13,19,23]). In this paper, we will design and study a time optimal control problem for the heat equation
with sampled-data controls. And then we use it to approximate a time optimal control problem for the
heat equation with distributed controls, through building up several error estimates for optimal time and
optimal controls between these two problems, in terms of the sampling period. Such errors estimates have
laid foundation for us to replace distributed controls by sampled-data controls in time optimal control
problems for heat equations.

Throughout this paper, R+ , (0,∞); Ω ⊂ Rd (d ∈ N+ , {1, 2, . . .}) is a bounded domain with a C2

boundary ∂Ω; ω ⊂ Ω is an open and nonempty subset with its characteristic function χω; λ1 is the first
eigenvalue of −∆ with the homogeneous Dirichlet boundary condition over Ω; Br(0) denotes the closed
ball in L2(Ω), centered at 0 and of radius r > 0; for each measurable set A in R, |A| denotes its Lebesgue
measure; 〈·, ·〉 and ‖ · ‖ denote the usual inner product and norm of L2(Ω), respectively; 〈·, ·〉ω and ‖ · ‖ω
stand for the usual inner product and norm in L2(ω), respectively.

First, we introduce a time optimal distributed control problem for the heat equation. Throughout this
paper, we fix the initial state y0 and the target ball Br(0) in the following way:

r > 0 and y0 ∈ L2(Ω) \Br(0). (1)

For each M > 0, we consider the following time optimal distributed control problem:

(T P)M : T (M) = inf
{
t̂ > 0 : ∃ û ∈ UM s.t. y(t̂; y0, û) ∈ Br(0)

}
, (2)

where

UM ,
{
u ∈ L2(R+ × Ω) : ‖u‖L2(R+×Ω) ≤M

}
,

and where y(·; y0, u) is the solution to the following distributed controlled heat equation:
∂ty −∆y = χωu in R+ × Ω,

y = 0 on R+ × ∂Ω,

y(0) = y0 in Ω.

(3)

Since y(t; y0, 0)→ 0 as t→∞, we find that T (M) <∞ for all M > 0. About (T P)M , we introduce some
concepts in the following definition:

Definition 1.1 (i) The number T (M) is called the optimal time; û ∈ UM is called an admissible control
if y(t̂; y0, û) ∈ Br(0) for some t̂ > 0; u∗ ∈ UM is called an optimal control if y(T (M); y0, u

∗) ∈ Br(0). (ii)
Two optimal controls are said to be different (or the same), if they are different (or the same) on their
effective domain

(
0, T (M)

)
× Ω.

Several notes on the problem (T P)M are given in order:

• It is shown in Theorem 3.1 that for each M > 0, (T P)M has a unique optimal control.

2



• In many time optimal distributed control problems for heat equations, controls are taken from
L∞(R+;L2(Ω)). However, the current setting is also significant (see, for instance, [16] and [38]).

Next, we are going to design a time optimal sampled-data control problem for the heat equation. For
this purpose, we define the following space of sampled-data controls (where δ > 0 is arbitrarily fixed):

L2
δ(R+ × Ω) ,

{
uδ ∈ L2(R+ × Ω) : uδ ,

∞∑
i=1

χ((i−1)δ,iδ]u
i, {ui}∞i=1 ⊂ L2(Ω)

}
, (4)

endowed with the L2(R+ × Ω)-norm. Here and in what follows, χ((i−1)δ,iδ] denotes the characteristic

function of the interval
(
(i−1)δ, iδ

]
for each i ∈ N+. The numbers δ, 2δ, . . ., iδ, . . . are called the sampling

instants, while δ is called the sampling period. Each uδ in the space L2
δ(R+×Ω) is called a sampled-data

control. For each uδ ∈ L2
δ(R+×Ω) and each z0 ∈ L2(Ω), write y(·; z0, uδ) for the solution to the following

sampled-data controlled heat equation:
∂ty −∆y = χωuδ in R+ × Ω,

y = 0 on R+ × ∂Ω,

y(0) = z0 in Ω.

(5)

For each M > 0 and δ > 0, we consider the following time optimal sampled-data control problem:

(T P)Mδ : Tδ(M) = inf
{
kδ : ∃ k ∈ N+,∃uδ ∈ UMδ s.t. y(kδ; y0, uδ) ∈ Br(0)

}
, (6)

where

UMδ ,
{
uδ ∈ L2

δ(R+ × Ω) : ‖uδ‖L2(R+×Ω) ≤M
}
. (7)

Since y(t; y0, 0)→ 0 as t→∞, we see that Tδ(M) <∞ for all M ≥ 0 and δ > 0. With respect to (T P)Mδ ,
we introduce some concepts in the following definition:

Definition 1.2 (i) The number Tδ(M) is called the optimal time; uδ ∈ UMδ is called an admissible control

if y(k̂δ; y0, uδ) ∈ Br(0) for some k̂ ∈ N+; u∗δ ∈ UMδ is called an optimal control if y(Tδ(M); y0, u
∗
δ) ∈ Br(0).

(ii) A control u∗δ is called the optimal control with the minimal norm, if u∗δ is an optimal control and satis-
fies that ‖u∗δ‖L2((0,Tδ(M))×Ω) ≤ ‖v∗δ‖L2((0,Tδ(M))×Ω) for any optimal control v∗δ . (iii) Two optimal controls
are said to be different (or the same), if they are different (or the same) over (0, Tδ(M))× Ω.

Several notes on this problem are given in order:

• The optimal time Tδ(M) is a multiple of δ (see (6)). For each M > 0 and each δ > 0, (T P)Mδ has a
unique optimal control with the minimal norm (see (ii) in Theorem 3.1); There are infinitely many
pairs (M, δ) so that (T P)Mδ has infinitely many different optimal controls (see Theorem 3.2).

• We may design a time optimal sampled-data control problem in another way: To find a control u∗δ
in UMδ so that y(·; y0, u

∗
δ) enters Br(0) in the shortest time T̂δ(M) (which may not be a multiple

of δ). We denote this problem by (T̂ P)Mδ . Several reasons for us to design time optimal sampled-
data control problem to be (T P)Mδ are as follows: (i) Each sampled-data control uδ has the form:∑∞
i=1 χ((i−1)δ,iδ]u

i with some {ui}∞i=1 ⊂ L2(Ω). From the perspective of sampled-data controls, each
ui should be active in the whole subinterval ((i−1)δ, iδ]. Thus, our definition for T (M) is reasonable.

(ii) In the definition (T̂ P)Mδ , in order to make sure if the control process should be finished, we need
to observe the solution (of the controlled equation) at each time. However, in our definition (T P)Mδ ,
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we only need to observe the solution at time points iδ, with i = 1, 2, . . .. (iii) Our design on (T P)Mδ
might provide a right way to approach numerically (T P)M via a discretized time optimal control
problem. For instance, if we semi-discretize (T P)M in time variable, then our design on (T P)Mδ can
be borrowed to define a semi-discretized (in the time variable) time optimal control problem. The

reason is as follows: For the problem (T P)
M

, we do not know the optimal time T (M) before the
computation. Thus, if we want to semi-discretize the problem in time, we do not know how to choose
the mesh size δ so that T (M) = kδ for integer k ≥ 1. On the other hand, if borrow our definition

(T P)
M
δ , we can pass the above-mentioned barrier.

1.2. Main results

Recall that y0 and r are given by (1). The main results of this paper are presented in the following three
theorems.

Theorem 1.3 Let M > 0. Then the following conclusions are true:
(i) There is δ0 , δ0(M,y0, r) > 0 so that

0 ≤ Tδ(M)− T (M) ≤ 2δ for all δ ∈ (0, δ0). (8)

(ii) For each η ∈ (0, 1), there exists a measurable set AM,η ⊂ (0, 1) (depending also on y0 and r) with
limh→0+

1
h |AM,η ∩ (0, h)| = η so that

δ > Tδ(M)− T (M) > (1− η)δ for each δ ∈ AM,η. (9)

Theorem 1.4 Let M > 0 and u∗ be the optimal control to (T P)M . For each δ > 0, let u∗δ be the optimal
control with the minimal norm to (T P)Mδ . Then the following conclusions are true:

(i) There is C , C(M,y0, r) > 0 so that

‖u∗δ − u∗‖L2((0,T (M))×Ω) ≤Cδ for each δ > 0. (10)

(ii) For each η ∈ (0, 1), there is a measurable set AM,η ⊂ (0, 1) (depending also on y0 and r) with
limh→0+

1
h |AM,η ∩ (0, h)| = η so that

‖u∗δ − u∗‖L2((0,T (M))×Ω) ≥
1

2
λ

3/2
1 r(1− η)δ for each δ ∈ AM,η. (11)

Theorem 1.5 Let M > 0 and u∗ be the optimal control to (T P)M . Then the following conclusions are
true:

(i) There is C , C(M,y0, r) > 0 so that

‖uδ − u∗‖L2((0,T (M))×Ω) ≤C
√
δ for each δ > 0, (12)

where uδ is any optimal control to (T P)Mδ .
(ii) For each η ∈ (0, 1), there is a measurable set AM,η ⊂ (0, 1) (depending also on y0 and r) with

limh→0+
1
h |AM,η ∩ (0, h)| = η so that for each δ ∈ AM,η, there is an optimal control ûδ to (T P)Mδ so that

‖ûδ − u∗‖L2((0,T (M))×Ω) ≥ CM
√

(1− η)δ, (13)

for some positive constant CM , CM (y0, r).
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Several remarks on the main results are given in order.

• Theorem 1.3 and Theorem 1.4 present two facts. First, the error between Tδ(M) and T (M) and the
error between u∗M and u∗M,δ have the order 1 with respect to the sampling period δ. Second, this
order is optimal, because of the lower bound estimates (9) and (11), and because of the property
that limh→0+

1
h |AM,η ∩ (0, h)| = η with any η ∈ (0, 1). Notice that when δ ∈ (0, 1) \ AM,η, (9) may

not be true (see Theorem 6.2, as well as Remark 6.3).

• Theorem 1.5, as well as Theorem 1.4, presents two facts. First, in (T P)Mδ , the optimal control with
the minimal norm differs from some of other optimal controls, from perspective of the order of the
errors. Second, the order of the error between any optimal control of (T P)Mδ and the optimal control
to (T P)M is 1/2, with respect to δ. Moreover, this order is optimal in the sense (ii) of Theorem 1.5.

• Since we aim to approximate u∗ by u∗δ and because the efficient domain of u∗ is (0, T (M))× Ω, we
take the L2((0, T (M))× Ω)-norm in the estimates in Theorem 1.4 and Theorem 1.5.

• There have been many publications on optimal sampled-data control problems (with fixed ending
time point). In [6] (see also [5]), the authors built up the Pontryagin maximum principle for some
optimal sampled-data control problems. In [7], the authors showed that for some LQ problem, the
optimal sampled-data control converges to the optimal distributed control as the sampling period
tends to zero. In [33], the authors built up some error estimates between the optimal distributed
control and the optimal sampled-data control for some periodic heat equations. About more works
on sampled-data controls, we would like to mention [1,3,4,8,13,14,19,20,23,32] and the references
therein.

• There have been some literatures on the approximations of time optimal control problems for the
parabolic equations. We refer to [15,41] for semi-discrete finite element approximations, and [34,43]
for perturbations of equations. About more works on time optimal control problems, we would like
to mention [2,10,11,16,17,18,21,22,25,27,30,31,35,37,38,39,40,42,44] and the references therein.

• About approximations of time optimal sampled-data controls, we have not found any literature in
the past publications.

1.3. The strategy to get the main results

The strategy to prove the main theorems is as follows: We first introduce two norm optimal control
problems which correspond to time optimal control problems (T P)M and (T P)Mδ respectively; then get
error estimates between the above two norm optimal control problems (in terms of δ); finally, obtain the
desired error estimates between (T P)M and (T P)Mδ (in terms of δ), through using connections between
the time optimal control problems and the corresponding norm optimal control problems (see (iii) of
Theorem 3.1 and Theorem 4.1, respectively).

To explain our strategy more clearly, we will introduce two norm optimal control problems. The first
one corresponds to (T P)M and is as:

(NP)T : N (T ) , inf{‖v‖L2((0,T )×Ω) : y(T ; y0, v) ∈ Br(0)}, (14)

where T > 0 and y(·; y0, v) is the solution of (3) with u being replaced by the zero extension of v over
R+. The second one corresponds to (T P)Mδ and is defined by

(NP)kδδ : Nδ(kδ) , inf{‖vδ‖L2
δ
((0,kδ)×Ω) : y(kδ; y0, vδ) ∈ Br(0)}, (15)

where (δ, k) ∈ R+ × N+,

L2
δ((0, kδ)× Ω) , {f |(0,kδ)×Ω : f ∈ L2

δ(R+ × Ω)}, (16)

5



and y(·; y0, vδ) is the solution of (3) with u being replaced by the zero extension of vδ over R+. (In the
definition of (NP)kδδ , kδ denotes the length of the time interval and δ is the mesh size.)

Some concepts about the above two norm optimal control problems are given in the following definition:

Definition 1.6 (i) In the problem (NP)T , N (T ) is called the optimal norm; v ∈ L2((0, T )×Ω) is called
an admissible control if y(T ; y0, v) ∈ Br(0); v∗ is called an optimal control if y(T ; y0, v

∗) ∈ Br(0) and
‖v∗‖L2((0,T )×Ω) = N (T ).

(ii) In the problem (NP)kδδ , Nδ(kδ) is called the optimal norm; vδ ∈ L2
δ((0, kδ) × Ω) is called an ad-

missible control if y(kδ; y0, vδ) ∈ Br(0); and v∗δ is called an optimal control if y(kδ; y0, v
∗
δ ) ∈ Br(0) and

‖v∗δ‖L2
δ
((0,kδ)×Ω) = Nδ(kδ).

We mention that both (NP)T and (NP)kδδ have unique nonzero solutions (see Theorems 4.2-4.3).
Inspired by [9], we study the above two minimal norm control problems by two minimization problems.
The first one corresponds to (NP)T and reads

(JP )T : V (T ) , inf
z∈L2(Ω)

JT (z) , inf
z∈L2(Ω)

[1

2
‖χωϕ(·;T, z)‖2L2((0,T )×Ω)

+〈y0, ϕ(0;T, z)〉+ r‖z‖
]
, (17)

where ϕ(·;T, z) is the solution to the adjoint heat equation:
∂tϕ+ ∆ϕ = 0 in [0, T )× Ω,

ϕ = 0 on [0, T )× ∂Ω,

ϕ(T ) = z ∈ L2(Ω).

(18)

(Throughout this paper, we treat ϕ(·;T, z) as a function from [0, T ] to L2(Ω).) The second minimization
problem corresponds to (NP)kδδ and is as:

(JP )kδδ : Vδ(kδ) , inf
z∈L2(Ω)

Jkδδ (z) , inf
z∈L2(Ω)

[1

2
‖χωϕδ(·; kδ, z)‖2L2((0,kδ)×Ω)

+〈y0, ϕ(0; kδ, z)〉+ r‖z‖
]
, (19)

where ϕδ(·; kδ, z) is defined by

ϕδ(t; kδ, z) ,
k∑
i=1

χ((i−1)δ,iδ](t)
1

δ

iδ∫
(i−1)δ

ϕ(s; kδ, z) ds for each t ∈ (0, kδ]. (20)

We mention that both (JP )T and (JP )kδδ have unique nonzero minimizers in L2(Ω) (see Theorems 4.2-
4.3).

We prove Theorem 1.3 by the following steps:

(a) Build up connections between (T P)Mδ and (NP)
Tδ(M)
δ (see (iii) of Theorem 3.1); and connections

between (T P)M and (NP)T (M) (see Theorem 4.1).
(b) Obtain the lower and upper bounds of the error N (T1)−N (T2) for two different time points T1, T2

(see Theorem 5.2).
(c) Compute the error estimate |N (kδ)−Nδ(kδ)| (see Theorem 5.3).
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(d) Get (i) of Theorem 1.3, with the aid of the above (a)-(c).
(e) By using the above (a)-(c) again, we build up sets AM,η and obtain related properties in Theorem

5.4, which leads to (ii) of Theorem 1.3.

The steps to prove Theorem 1.4 and Theorem 1.5 are as follows:

(1) Build up connections between (T P)Mδ and (NP)
Tδ(M)
δ (see (iii) of Theorem 3.1), and connections

between (T P)M and (NP)T (M) (see Theorem 4.1).
(2) With the aid of the connections obtained in (1), we can transfer the estimate in (i) of Theorem 1.4

into an estimate between optimal controls of (NP)T (M) and (NP)
Tδ(M)
δ .

(3) Find connections between (NP)
Tδ(M)
δ (or (NP)T (M)) and (JP )

Tδ(M)
δ (or (JP )T (M)) (see Theorem

4.3 and Theorem 4.2, respectively).

(4) Obtain the error estimate between the minimizers of (JP )T (M) and (JP )
Tδ(M)
δ .

(5) Using the connections obtained in (3) and the estimate obtained in (4), we get an error estimate

between optimal controls of (NP)T (M) and (NP)
Tδ(M)
δ . This, along with results in (2), leads to the

estimate in (i) of Theorem 1.4.
(6) Using connections obtained in (1) and (3), and using Theorem 5.4, we prove the estimate in (ii) of

Theorem 1.4.
(7) Obtain the least order of the diameter of the set OM,δ (in the space L2((0, T (M))×Ω)), in terms

of δ, (see Lemma 6.1). Here,

OM,δ , {uδ|(0,T (M))×Ω : uδ is an optimal control to (T P)Mδ }. (21)

(8) Derive the estimates in Theorem 1.5, with the aid of Lemma 6.1 and the estimates in Theorem 1.4.

We would like to give the following note:
– The above introduced strategy was used to study other properties of time optimal distributed control

problems (see, for instance, [34] and [42]). It could be used to study numerical approximations of
time optimal distributed control problems, via discrete time optimal control problems.

The rest of the paper is organized as follows: Section 2 shows a kind of approximate null controllabil-
ity for the equation (5). Section 3 concerns with the existence and uniqueness of time optimal control
problems. Section 4 provides some connections among time optimal control problems, norm optimal con-
trol problems and some minimization problems. Section 5 presents several auxiliary estimates. Section 6
proves the main results. Section 7 (Appendix) gives one lemma, which was taken from [36] and presents an
equivalence between controllability and observability in an abstract setting. Since [36] has not appeared,
we put it and the proof in Appendix.

2. L2-approximate null controllability with a cost

In this section, we present a kind of approximate null controllability for the sampled-data controlled
equation (5). Such controllability will be defined in the next Definition 2.1 and will play a key role in
getting some estimates in Section 5.

Definition 2.1 (i) Let (δ, k) ∈ R+ × N+. Equation (5) is said to have the L2-approximate null control-
lability with a cost over [0, kδ], if for any ε > 0, there is C(ε, δ, k) > 0 so that for each z0 ∈ L2(Ω), there
is uz0δ ∈ L2

δ((0, kδ)× Ω) (see (16)) satisfying that

7



1

C(ε, δ, k)
‖uz0δ ‖

2
L2((0,kδ)×Ω) +

1

ε
‖y(kδ; z0, u

z0
δ )‖2 ≤ ‖z0‖2. (22)

(ii) Equation (5) is said to have the L2-approximate null controllability with a cost, if it has the L2-
approximate null controllability with a cost over [0, kδ], for each (δ, k) ∈ R+ × N+.

To prove the L2-approximate null controllability with a cost for Equation (5), we need some prelimi-
naries. For each f ∈ L2(R+ × Ω) and δ > 0, we let

f̄δ(t) ,
∞∑
i=1

χ((i−1)δ,iδ](t)
1

δ

iδ∫
(i−1)δ

f(s) ds for each t ∈ R+. (23)

Lemma 2.2 For each f, g ∈ L2(R+ × Ω) and each δ > 0,

〈f̄δ, g〉L2(R+×Ω) = 〈f, ḡδ〉L2(R+×Ω) = 〈f̄δ, ḡδ〉L2(R+×Ω). (24)

Proof. Arbitrarily fix δ > 0 and f, g ∈ L2(R+ × Ω). To prove (24), it suffices to show

〈f̄δ, g〉L2(R+×Ω) = 〈f̄δ, ḡδ〉L2(R+×Ω). (25)

By (23), one can directly check that

〈f̄δ, g〉L2(R+×Ω) =

∞∑
i=1

〈f̄δ, g〉L2(((i−1)δ,iδ)×Ω) =

∞∑
i=1

〈
f̄δ(iδ),

iδ∫
(i−1)δ

g(t) dt
〉

=

∞∑
i=1

〈
f̄δ(iδ), ḡδ(iδ)

〉
δ =

∞∑
i=1

〈f̄δ, ḡδ〉L2(((i−1)δ,iδ)×Ω) = 〈f̄δ, ḡδ〉L2(R+×Ω),

which leads to (25). This ends the proof of this lemma.
2

The following interpolation inequality plays an important role in the proof of the L2-approximate null
controllability with a cost.

Lemma 2.3 There exists C , C(Ω, ω) > 0 so that for each S, T with 0 < S < T and each θ ∈ (0, 1),

‖ϕ(0;T, z)‖ ≤ eC(1+ 1
θ(T−S)

)‖z‖θ
∥∥∥ 1

S

S∫
0

χωϕ(t;T, z) dt
∥∥∥1−θ

for all z ∈ L2(Ω). (26)

Proof. Let 0 < S < T . Arbitrarily fix z ∈ L2(Ω). We define a function fz over Ω by

fz ,
1

S

S∫
0

e∆(S−t)z dt. (27)

By [29, (iii) of Theorem 2.1], there is C , C(Ω, ω) > 0 so that for each θ ∈ (0, 1),

‖e∆(T−S)fz‖ ≤ eC(1+ 1
θ(T−S)

)‖fz‖θ‖χωe∆(T−S)fz‖1−θ. (28)

Two facts are given in order: First, it follows from (27) that
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‖fz‖ ≤ ‖z‖ and e∆(T−S)fz =
1

S

S∫
0

ϕ(t;T, z) dt. (29)

Second, write {λj}∞j=1 for the family of all eigenvalues of −∆ with the zero Dirichlet boundary condition
so that λ1 < λ2 ≤ · · ·. Let {ej}∞j=1 be the family of the corresponding normalized eigenvectors. Let

z =
∑∞
j=1 zjej for some {zj}∞j=1 ∈ l2. Then it follows that

1

S

S∫
0

e∆(T−t)z dt =

∞∑
j=1

( 1

S

S∫
0

eλjt dt
)
e−λjT zjej .

Since 1
S

∫ S
0
eλjt dt ≥ 1 for each j ∈ N+, it follows from (27) and the above equality that

‖e∆(T−S)fz‖=
∥∥∥ 1

S

S∫
0

e∆(T−t)z dt
∥∥∥ ≥ ‖e∆T z‖ = ‖ϕ(0;T, z)‖. (30)

Finally, the facts (29) and (30), along with (28), lead to (26). This ends the proof.
2

The next Theorem 2.4 contains the main results of this section. The conclusion (iii) in Theorem 2.4
will play an important role in our further studies.

Theorem 2.4 The following conclusions are true:
(i) Equation (5) has the L2-approximate null controllability with a cost if and only if given ε > 0, δ > 0

and k ∈ N+, there is C(ε, δ, k) > 0 (which also depends on Ω and ω) so that

‖ϕ(0; kδ, z)‖2 ≤ C(ε, δ, k)‖χωϕδ(·; kδ, z)‖2L2((0,kδ)×Ω) + ε‖z‖2 for all z ∈ L2(Ω), (31)

where ϕδ(·; kδ, z) is given by (20).
(ii) Given δ > 0 and k ≥ 2, Equation (5) has the L2-approximate null controllability with a cost over

[0, kδ].
(iii) Given ε > 0, δ > 0 and k ≥ 2, the constants C(ε, δ, k) in (31) and (22) can be taken as

C(ε, δ, k) = eC[1+1/(kδ)]/ε with C , C(Ω, ω). (32)

Proof. We first prove the conclusion (i). Arbitrarily fix δ > 0, k ∈ N+ and ε > 0. We will put our
problems under the framework of [36, Lemma 5.1] (which is cited as Lemma 7.1 in our appendix) in the
following manner: Let X , L2(Ω), Y , L2

δ((0, kδ)×Ω) and Z , L2(Ω). Define operators R : Z → X and
O : Z → Y by

Rz , ϕ(0; kδ, z) and Oz , χωϕδ(·; kδ, z) for all z ∈ Z.

One can directly check that R∗ : X∗ → Z∗ and O∗ : Y ∗ → Z∗ are given respectively by

R∗z0 = y(kδ; z0, 0), z0 ∈ L2(Ω); O∗uδ = y(kδ; 0, uδ), uδ ∈ L2
δ((0, kδ)× Ω).

From these, Definition 2.1 and (31), we can apply [36, Lemma 5.1] (see also Lemma 7.1 in Appendix) to
get the conclusion (i) of Theorem 2.4.

We next prove the conclusions (ii) and (iii). Arbitrarily fix ε > 0, δ > 0 and k ≥ 2. By the conclusion
(i), we find that it suffices to show (31) with the triplet (ε, δ, k). To this end, we use (26) (where T = kδ,
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S = [k/2]δ and θ = 1/2, with [k/2] the integer so that k/2 − 1 < [k/2] ≤ k/2) to get that for each
z ∈ L2(Ω),

‖ϕ(0; kδ, z)‖2 ≤ e2C(1+ 2
kδ−[k/2]δ

)
∥∥∥ 1

[k/2]δ

[k/2]δ∫
0

ϕ(t; kδ, z) dt
∥∥∥
ω
‖z‖,

where C is given by (26). Then by Young’s inequality, we find that for each z ∈ L2(Ω),

‖ϕ(0; kδ, z)‖2 ≤ 1

ε
e4C(1+ 2

kδ−[k/2]δ
) 1

([k/2]δ)2

∥∥∥ [k/2]δ∫
0

ϕ(t; kδ, z) dt
∥∥∥2

ω
+ ε‖z‖2. (33)

Two observations are given in order: First, it follows from (20) that for each z ∈ L2(Ω),

∥∥∥ [k/2]δ∫
0

ϕ(t; kδ, z) dt
∥∥∥
ω
≤

[k/2]∑
i=1

∥∥∥1

δ

iδ∫
(i−1)δ

ϕ(t; kδ, z) dt
∥∥∥
ω
δ

= ‖χωϕδ(·; kδ, z)‖L1(0,[k/2]δ;L2(Ω)) ≤
√

[k/2]δ‖χωϕδ(·; kδ, z)‖L2((0,kδ)×Ω); (34)

Second, since

k/4 ≤ [k/2] ≤ k/2 and 1/([k/2]δ) ≤ e4+1/kδ,

one can directly check that

e4C
(

1+ 2
kδ−[k/2]δ

)
1

[k/2]δ
≤ e16(C+1)(1+ 1

kδ ). (35)

Finally, from (33), (34) and (35), we get (31), with C(ε, δ, k) given by (32), where C(Ω, ω) may differ
from that in (35). This proves (ii), as well as (iii).

In summary, we end the proof of Theorem 2.4.
2

3. Existence and uniqueness of optimal controls

In this section, we will prove that for each M > 0, (T P)M has the unique optimal control, while for
some (M, δ), (T P)Mδ has infinitely many optimal controls. The later may cause difficulties in our studies.
Fortunately, we observe that the optimal control with the minimal norm to (T P)Mδ (see Definition 1.2) is
unique. The first main theorem in this section is stated in the next Theorem 3.1. It deserves mentioning
what follows: The conclusion (iii) of Theorem 3.1 should belong to the materials in the next section. The
reason that we put it here is that we will use it in the proof of the non-uniqueness of optimal controls to
(T P)Mδ . More precisely, in the proof of Lemma 3.4, we will use it.

Theorem 3.1 Let M > 0. The following conclusions are true:
(i) The problem (T P)M has a unique optimal control.
(ii) For each δ > 0, (T P)Mδ has a unique optimal control with the minimal norm.
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(iii) Let u∗δ (with δ > 0) be the optimal control with the minimal norm to (T P)Mδ . Then u∗δ |(0,Tδ(M))×Ω

(the restriction of u∗δ over (0, Tδ(M))×Ω) is an optimal control to (NP)
Tδ(M)
δ and the L2((0, Tδ(M))×Ω)-

norm of u∗δ is Nδ(Tδ(M)).

Proof. Arbitrarily fix M > 0. We will prove conclusions (i), (ii) and (iii) one by one.

(i) Because limt→+∞ y(t; y0, 0) = 0 in L2(Ω), the null control is an admissible control to (T P)M , which
implies that (T P)M has an admissible control. Then by the standard way as that used in the proof of
[10, Lemma 1.1], one can show that (T P)M has an optimal control.

To show the uniqueness of the optimal control to (T P)M , we first notice that each optimal control u∗

to (T P)M has the property that

‖u∗‖L2(0,T (M))×Ω) = M. (36)

(The property (36) can be proved by the same way as that used to show [16, Lemma 4.3].) Next, we notice
that if u∗1 and u∗2 are optimal controls to (T P)M , then (u∗1 + u∗2)/2 is also an optimal control to (T P)M .
From this, (36) and the parallelogram law in L2((0, T (M)) × Ω), we can easily use the contradiction
argument to get the uniqueness. This ends the proof of the conclusion (i).

(ii) Arbitrarily fix δ > 0. We first show that (T P)Mδ has an optimal control. Indeed, since the null
control is clearly an admissible control to (T P)Mδ , it follows by the definition of Tδ(M) (see (6)) that

there exists k̂ ∈ N+ so that

Tδ(M) = k̂δ. (37)

Meanwhile, since y0 ∈ L2(Ω) \ Br(0) (see (1)), by the definition of the infimum in (6), we see that there
is k0 ∈ N+ and u0

δ ∈ L2
δ(R+ × Ω) so that

Tδ(M) ≤ k0δ ≤ Tδ(M) + δ/2; (38)

y(k0δ; y0, u
0
δ) ∈ Br(0) and ‖u0

δ‖L2(R+×Ω) ≤M. (39)

From (37) and (38), we find that k̂δ ≤ k0δ ≤ k̂δ + δ/2, which leads to that k0 = k̂. This, along with
(37) and (39), yields that Tδ(M) = k0δ ∈ (0,∞), which, together with (39), implies that u0

δ is an optimal
control to (T P)Mδ .

Next, we will prove that (T P)Mδ has a unique optimal control with the minimal norm. Indeed, since
L2
δ(R+ × Ω) is a closed subspace of L2(R+ × Ω), by Definition 1.2, one can use a standard way (i.e.,

taking a minimization sequence) to show the existence of the optimal control with the minimal norm to
(T P)Mδ . To show the uniqueness, we let u1 and u2 be two optimal controls with the minimal norm. By
Definition 1.2, one can easily check that (u1 + u2)/2 is also an optimal control with the minimal norm to
(T P)Mδ . By making use of Definition 1.2 again, we find that

‖u1‖L2((0,Tδ(M))×Ω) = ‖u2‖L2((0,Tδ(M))×Ω) = ‖(u1 + u2)/2‖L2((0,Tδ(M))×Ω).

These, along with the parallelogram law for L2((0, Tδ(M))× Ω), yield that

(u1 − u2)/2 = 0 in L2((0, Tδ(M))× Ω), i.e., u1 = u2.

So (T P)Mδ has a unique optimal control with the minimal norm.

(iii) Let u∗δ be the optimal control with the minimal norm to (T P)Mδ . We will show that u∗δ |(0,Tδ(M))×Ω

is an optimal control to (NP)
Tδ(M)
δ . Indeed, we have that
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y(Tδ(M); y0, u
∗
δ) ∈ Br(0) and ‖u∗δ‖L2

δ
(R+×Ω) ≤M, (40)

from which, one can easily check that u∗δ |(0,Tδ(M))×Ω is an admissible control to (NP)
Tδ(M)
δ . Then by the

optimality of Nδ(Tδ(M)) and the second inequality in (40), we see that

Nδ(Tδ(M)) ≤ ‖u∗δ |(0,Tδ(M))×Ω‖L2
δ
((0,Tδ(M))×Ω) ≤M <∞. (41)

Meanwhile, since (NP)
Tδ(M)
δ has an admissible control, we can use a standard argument (see for instance

the proof of [10, Lemma 1.1]) to show that (NP)
Tδ(M)
δ has an optimal control v∗δ . Write ṽ∗δ for the zero

extension of v∗δ over R+ × Ω. Then we have that

y(Tδ(M); y0, ṽ
∗
δ ) ∈ Br(0) and ‖ṽ∗δ‖L2

δ
(R+×Ω) = Nδ(Tδ(M)). (42)

From (42) and (41), it follows that ṽ∗δ is an optimal control to (T P)Mδ . Since u∗δ is the optimal control
with the minimal norm to (T P)Mδ , we see from (41), (ii) of Definition 1.2 and the second equality in (42)
that

Nδ(Tδ(M))≤ ‖u∗δ‖L2
δ
((0,Tδ(M))×Ω)

≤ ‖ṽ∗δ‖L2
δ
((0,Tδ(M))×Ω) = Nδ(Tδ(M)).

The above, together with the first conclusion in (40), implies that u∗δ |(0,Tδ(M))×Ω is an optimal control to

(NP)
Tδ(M)
δ and that

‖u∗δ‖L2
δ
((0,Tδ(M))×Ω) = Nδ(Tδ(M)).

In summary, we end the proof of Theorem 3.1.
2

The next theorem concerns with the non-uniqueness of optimal controls to (T P)Mδ .

Theorem 3.2 There are sequences {Mn} dense in R+ and {δn} ⊂ R+, with limn→∞ δn = 0, so that for
each n, the problem (T P)Mn

δn
has infinitely many different optimal controls.

To prove Theorem 3.2, we need two lemmas.

Lemma 3.3 For each (M, δ) ∈ R+ × R+ with 2δ ≤ Tδ(M) <∞, it stands that

Nδ(Tδ(M)) ≤M < Nδ(Tδ(M)− δ). (43)

Proof. Let (M, δ) ∈ R+ × R+ so that 2δ ≤ Tδ(M) <∞. Then by (6), we see that

Tδ(M) = k̂δ for some integer k̂ ≥ 2. (44)

Thus, (43) is equivalent to the following inequality:

Nδ(k̂δ) ≤M < Nδ((k̂ − 1)δ). (45)

To prove (45), we let u1
δ be an optimal control to (T P)Mδ . Then we have that

‖u1
δ‖L2

δ
(R+×Ω) ≤M and y(Tδ(M); y0, u

1
δ) ∈ Br(0). (46)

According to (46) and (44), u1
δ |(0,k̂δ)×Ω is an admissible control to (NP)k̂δδ . Then by the optimality of

Nδ(k̂δ) and the first inequality in (46), we get that
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Nδ(k̂δ) ≤ ‖u1
δ‖L2

δ
((0,k̂δ)×Ω) ≤M,

which leads to the first inequality in (45).
We now show the second inequality in (45). By contradiction, we suppose that

Nδ((k̂ − 1)δ) ≤M. (47)

Then we would obtain from (47) that (NP)
(k̂−1)δ
δ has an admissible control, since M < ∞. Thus, by

a standard way (see for instance the proof of [10, Lemma 1.1]), one can prove that (NP)
(k̂−1)δ
δ has an

optimal control v1
δ . Hence,

‖v1
δ‖L2

δ
((0,(k̂−1)δ)×Ω) = Nδ((k̂ − 1)δ) and y((k̂ − 1)δ; y0, v

1
δ ) ∈ Br(0). (48)

Write ṽ1
δ for the zero extension of v1

δ over R+ × Ω. From (48) and (47), we find that ṽ1
δ is an admissible

control to (T P)Mδ . Then by the optimality of Tδ(M), we get that Tδ(M) ≤ (k̂ − 1)δ, which contradicts
(44). Thus, the second inequality in (45) is true. We end the proof of this lemma.

2

Lemma 3.4 For each M > 0 and N > 0, there exists an integer n ≥ N so that 2/2n ≤ T1/2n(M) <∞.

Proof. It is clear that T1/2n(M) <∞ for all M > 0 and n ∈ N+. Thus, we only need to show that for any
M > 0 and N > 0, 2/2n ≤ T1/2n(M) for some n ≥ N . By contradiction, suppose that it were not true.
Then there would be M > 0 and N > 0 so that

T1/2n(M) < 2/2n for all n ≥ N. (49)

Let u∗n, with n ≥ N , be an optimal control to (T P)M1/2n (see (ii) of Theorem 3.1). Then we have that

y(T1/2n(M); y0, u
∗
n) ∈ Br(0) and ‖u∗n‖L2(R+×Ω) ≤M for all n ≥ N. (50)

By the last inequality in (50), Hölder’s inequality and (49), we can easily check that

T1/2n (M)∫
0

e∆(T1/2n (M)−t)χωu
∗
n(t, ·)dt→ 0, as n→∞.

This, along with (49) and the first conclusion in (50), yields that

y0 = lim
n→∞

y(T1/2n(M); y0, u
∗
n) ∈ Br(0),

which contradicts the assumption that y0 ∈ L2(Ω) \Br(0) (see (1)). This ends the proof.
2

We are now on the position to prove Theorem 3.2.

Proof of Theorem 3.2. Choose a sequence {Mn}∞n=1 dense in R+ so that

{Mn}∞n=1 ⊂ R+ \ {N1/2k(j/2k) : k, j ∈ N+}. (51)

By Lemma 3.4, there exists an increasing subsequence {kn}∞n=1 (in N+), with limn→∞ kn =∞, so that

2/2kn ≤ T1/2kn (Mn) <∞ for each n ∈ N+. (52)

Write δn , 1/2kn , n ∈ N+. Then, by (52), we can apply Lemma 3.3 to get that

13



Nδn(Tδn(Mn)) ≤Mn < Nδn(Tδn(Mn)− δn).

This, along with (51), yields that

Nδn(Tδn(Mn)) < Mn < Nδn(Tδn(Mn)− δn). (53)

The key to show Theorem 3.2 is to claim that for each n ∈ N+, (T P)Mn

δn
has at least two different

optimal controls. By contradiction, we suppose that for some n0 ∈ N+, (T P)
Mn0

δn0
had a unique optimal

control. To get a contradiction, we define two convex subsets in L2(Ω) as follows:

An0
,
{
y(Tδn0

(Mn0
); y0, uδn0

) : ‖uδn0
‖L2

δn0
(R+×Ω) ≤ Nδn0

(Tδn0
(Mn0))

}
,

Bn0
,
{
y(Tδn0

(Mn0
); 0, vδn0

) : ‖vδn0
‖L2

δn0
(R+×Ω) ≤Mn0

−Nδn0
(Tδn0

(Mn0
))
}
.

We first show that

An0
∩Br(0) = {η̂} for some η̂ ∈ L2(Ω), (54)

i.e., An0 ∩Br(0) contains only one element. In fact, by (ii) and (iii) of Theorem 3.1, the optimal control

with the minimal norm u∗δn0
to (T P)

Mn0

δn0
satisfies that

y(Tδn0
(Mn0

); y0, u
∗
δn0

) ∈ Br(0) and ‖u∗δn0
‖L2

δn0
(R+×Ω) = Nδn0

(Tδn0
(Mn0

)).

These imply that An0 ∩Br(0) 6= ∅. We next show that An0 ∩Br(0) contains only one element. Suppose,
by contradiction, that it contained two different elements y1 and y2. Then by the definition of An0

, there
would be two different controls u1 and u2 so that

y1 = y(Tδn0
(Mn0

); y0, u1), ‖u1‖L2
δn0

(R+×Ω) ≤ Nδn0
(Tδn0

(Mn0
)); (55)

y2 = y(Tδn0
(Mn0

); y0, u2), ‖u2‖L2
δn0

(R+×Ω) ≤ Nδn0
(Tδn0

(Mn0
)). (56)

Since y1, y2 ∈ Br(0), we have that (y1 + y2)/2 ∈ Br(0). From this (55) and (56), one can easily check that

(y1 + y2)/2 ∈ An0 ∩Br(0). (57)

Meanwhile, since u1 6= u2, by the second inequality in (55) and the second inequality in (56), using the
parallelogram law, we find that

‖(u1 + u2)/2‖L2
δn0

(R+×Ω) < Nδn0
(Tδn0

(Mn0
)), (58)

which, together with (53), indicates that

‖(u1 + u2)/2‖L2
δn0

(R+×Ω) < Mn0 .

From this and (57), we see that (u1 + u2)/2 is an optimal control to (T P)
Mn0

δn0
. This, along with Defini-

tion 1.2 and the conclusions (ii) and (iii) of Theorem 3.1, yields that

‖(u1 + u2)/2‖L2
δn0

(R+×Ω) ≥ Nδn0
(Tδn0

(Mn0
)),

which contradicts (58). Hence, (54) is true.
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Next, by the definitions of An0
and Bn0

, one can easily check that each element of (An0
+Bn0

)∩Br(0)
can be expressed as:

y(Tδn0
(Mn0); y0, u

∗
n0

) with u∗n0
an optimal control to (T P)

Mn0

δn0
. (59)

Since it was assumed that (T P)
Mn0

δn0
had a unique optimal control, it follows from (59) that (An0 +Bn0)∩

Br(0) contains only one element. This, along with (54), yields that

(An0
+Bn0

) ∩Br(0) = An0
∩Br(0) = {η̂} for some η̂ ∈ L2(Ω). (60)

By (60), we can apply the Hahn-Banach separation theorem to find η∗ ∈ L2(Ω), with ‖η∗‖ = r > 0, so
that

sup
w∈An0

+Bn0

〈w, η∗〉 ≤ inf
z∈Br(0)

〈z, η∗〉.

This, along with (60), yields that

sup
w∈η̂+Bn0

〈w, η∗〉 ≤ 〈η̂, η∗〉, i.e., sup
w∈Bn0

〈w, η∗〉 ≤ 0. (61)

From now on and throughout the proof of Theorem 3.2, we simply write Tδn0
for Tδn0

(Mn0
); simply

write ϕ(·) and ϕδn0
(·) for ϕ(·; Tδn0

, η∗) (see (18)) and ϕδn0
(·; Tδn0

, η∗) (see (20)), respectively.

Arbitrarily fix uδn0
∈ L2

δn0
(R+ ×Ω). Three facts are given in order. Fact one: Since Mn0 > Nδn0

(Tδn0
)

(see (53)), it follows from the definition of Bn0
that

y(Tδn0
; 0, uδn0

) ∈ λBn0
, with λ =

‖uδn0
‖L2

δn0
(R+×Ω)

Mn0 −Nδn0
(Tδn0

)
.

This, along with (61), yields that

〈y(Tδn0
; 0, uδn0

), η∗〉 ≤ 0. (62)

Fact two: One can directly check that

〈uδn0
, χωϕ〉L2((0,Tδn0

)×Ω) = 〈y(Tδn0
; 0, uδn0

), η∗〉. (63)

Fact three: we have that

〈uδn0
, χωϕ〉L2((0,Tδn0

)×Ω) = 〈uδn0
, χωϕδn0

〉L2((0,Tδn0
)×Ω). (64)

The proof of (64) is as follows: Let f = uδn0
and let g be the zero extension of χωϕ over R+. Since

uδn0
∈ L2

δn0
(R+ × Ω), it follows by (4), (23) and (20) that f̄δn0

= uδn0
and ḡδn0

= ϕδn0
(where ϕδn0

is

treated as its zero extension over R+). Then, by Lemma 2.2, we obtain (64).
Now, from facts (62), (63) and (64), we see that

〈uδn0
, χωϕδn0

〉L2((0,Tδn0
)×Ω) ≤ 0.

Since uδn0
was arbitrarily taken from L2

δn0
(R+ × Ω), the above inequality implies that
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χωϕδn0
(t) = 0 in L2(Ω), a.e. t ∈ (0, Tδn0

). (65)

Since Tδn0
≥ 2δn0 (see (52)), we apply (65) and Lemma 2.3 (where T = Tδn0

and S = δn0) to get that

ϕ(0) = 0 in L2(Ω). Then from the backward uniqueness property for the heat equation (see, for instance,
[26]), we deduce that η∗ = 0. This leads to a contradiction. Hence, we ends the proof of the key claim:
For each n ∈ N+, (T P)Mn

δn
has at least two different optimal controls.

Finally, we observe that any convex combination of optimal controls to (T P)Mn

δn
(with n ∈ N+) is still

an optimal control to (T P)Mn

δn
. Therefore, for each n ∈ N+, (T P)Mn

δn
has infinitely many different optimal

controls. This ends the proof of Theorem 3.2.
2

4. Connections among different problems

This section presents connections among (T P)Mδ , (NP)kδδ and (JP )kδδ (and among (T P)M , (NP)T and
(JP )T ). We define that

T ∗ , sup{t > 0 : e∆ty0 6∈ Br(0)}; (66)

PT∗ , {(δ, k) : δ > 0, k ∈ N+ s.t. 2δ ≤ kδ < T ∗}. (67)

We mention that 0 < T ∗ <∞ because of (1) (since the semigroup {e∆t}t≥0 has the exponential decay).

4.1. Connections between time optimal control problems and norm optimal control problems

We first present the following equivalence theorem. We will omit its proof, because it can be proved by
the same way as one of proofs of [34, Proposition 4.1], [43, Proposition 3.1] and [42, Theorem 1.1 and
Theorem 2.1].

Theorem 4.1 Let T ∗ be given by (66). Then the following conclusions are true:
(i) The function T → N (T ) is strictly decreasing and continuous from (0, T ∗) onto (0,+∞). Moreover,

limT→T∗−N (T ) = 0.
(ii) When M > 0 and T ∈ (0, T ∗), N (T (M)) = M and T (N (T )) = T .
(iii) The function M → T (M) is strictly decreasing and continuous from (0,+∞) onto (0, T ∗).
(iv) For each M > 0, the optimal control to (T P)M , when restricted on (0, T (M))× Ω, is the optimal

control to (NP)T (M). For each T ∈ (0, T ∗), the zero extension of the optimal control to (NP)T (M) is the
optimal control to (T P)M .

We next recall (iii) of Theorem 3.1 for the connections between (T P)Mδ and (NP)
Tδ(M)
δ .

4.2. Connections between norm optimal control problems and the minimization problems

The first theorem of this subsection concerns with connections between problems (NP)T and (JP )T

(given by (17)). Its proof can be done by the same methods as those in the proofs of of Lemma 3.5 and
Proposition 3.6 in [34]. We omit it here.
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Theorem 4.2 Let T ∈ (0, T ∗) with T ∗ given by (66). Then the following conclusions are true:
(i) The problem (JP )T has a unique nonzero minimizer z∗ in L2(Ω).
(ii) Problem (NP)T has a unique optimal control v∗ (treated as a function from (0, T ) to L2(Ω)), which

satisfies that

v∗(t) = χωϕ(t;T, z∗) in L2(Ω), a.e. t ∈ (0, T ), (68)

and that

y(T ; y0, v
∗) = −rz∗/‖z∗‖. (69)

(iii) It holds that V (T ) = − 1
2N (T )2 = − 1

2‖χωϕ(·;T, z∗)‖2L2((0,T )×Ω).

The next theorem deals with connections between (NP)kδδ (given by (15)) and (JP )kδδ (given by (19)).
Recall (20) for the definition of ϕ(·; kδ, z).

Theorem 4.3 Let (δ, k) ∈ PT∗ (given by (67)). Then the following conclusions are true:
(i) The problem (JP )kδδ has a unique minimizer z∗δ in L2(Ω). Moreover, z∗δ 6= 0 and

χωϕδ(t; kδ, z
∗
δ ) 6= 0 for all t ∈

(
0, (k − 1)δ

]
. (70)

(ii) Problem (NP)kδδ has a unique optimal control v∗δ (treated as a piece-wise constant function from
(0, kδ] to L2(Ω)), which verifies that

v∗δ (t) = χωϕδ(t; kδ, z
∗
δ ) in L2(Ω), a.e. t ∈ (0, kδ], (71)

(where z∗δ is the minimizer of (JP )kδδ ) and that

y(kδ; y0, v
∗
δ ) = −rz∗δ/‖z∗δ‖. (72)

(iii) Vδ(kδ) = − 1
2Nδ(kδ)

2 = − 1
2‖χωϕδ(·; kδ, z

∗
δ )‖2L2((0,kδ)×Ω).

Proof. (i) First of all, we show the existence of minimizers of (JP )kδδ . Indeed, by (19), one can easily see
that Jkδδ is continuous and convex over L2(Ω). We now show its coercivity. Since (δ, k) ∈ PT∗ (given by
(67)), we have that k ≥ 2. Thus, we can apply Theorem 2.4 to see that both (31) and (32) are true. By

taking ε =
(

r
2‖y0‖

)2
in (31), we find that for each z ∈ L2(Ω),

‖ϕ(0; kδ, z)‖2 ≤ eC(1+ 1
kδ )
(2‖y0‖

r

)2

‖χωϕδ(·; kδ, z)‖2L2((0,kδ)×Ω) +
( r

2‖y0‖

)2

‖z‖2

≤
(
e
C
2 (1+ 1

kδ ) 2‖y0‖
r
‖χωϕδ(·; kδ, z)‖L2((0,kδ)×Ω) +

r

2‖y0‖
‖z‖
)2

,

where C , C(Ω, ω) is given by (32). The above, along with the Cauchy-Schwarz inequality, yields that
for each z ∈ L2(Ω),

〈y0, ϕ(0; kδ, z)〉 ≥ −
(
2e

C
2 (1+ 1

kδ )‖y0‖2r−1
)
‖χωϕδ(·; kδ, z)‖L2((0,kδ)×Ω) −

r

2
‖z‖.

From this and (19), one can easily check that

Jkδδ (z) ≥ r

2
‖z‖ − 2eC(1+ 1

kδ )‖y0‖4r−2 for each z ∈ L2(Ω), (73)

which leads to the coercivity of Jkδδ over L2(Ω). Hence, Jkδδ has at least one minimizer in L2(Ω).
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Next, we claim that 0 is not a minimizer of Jkδδ . By contradiction, suppose that it were not true. Then
we would find from (19) that for all z ∈ L2(Ω) and ε > 0,

0 ≤ Jkδδ (εz)− Jkδδ (0)

ε
=
ε

2
‖χωϕδ(·; kδ, z)‖2L2((0,kδ)×Ω) + 〈y0, ϕ(0; kδ, z)〉+ r‖z‖.

Sending ε to 0 in the above leads to that

〈e∆kδy0, z〉+ r‖z‖ = 〈y0, ϕ(0; kδ, z)〉+ r‖z‖ ≥ 0 for all z ∈ L2(Ω).

This yields that

‖e∆kδy0‖ = sup
z∈L2(Ω)\{0}

〈e∆kδy0, z〉/‖z‖ ≤ r.

Since y0 ∈ L2(Ω) \Br(0) (see (1)), the above, along with (66), indicates that kδ ≥ T ∗, which contradicts
the assumption that (δ, k) ∈ PT∗ (given by (67)). Thus, 0 is not a minimizer of Jkδδ .

We now show the uniqueness of the minimizer of Jkδδ . To this end, we claim that the first term on
the right hand side of (19) is strictly convex. When this claim is proved, it follows from (19) that Jkδδ is
strictly convex over L2(Ω). So its minimizer is unique.

To show the above claim, we first observe from (20) that

ϕδ(t; kδ, λz1 + µz2) = λϕδ(t; kδ, z1) + µϕδ(t; kδ, z2) for all λ, µ ∈ R. (74)

By this, we see that the first term on the right hand side of (19) is convex. Next, we suppose, by
contradiction, that this term were not strictly convex. Then, by the convexity of this term, there would
be λ̂ ∈ (0, 1) and z1, z2 ∈ L2(Ω), with z1 6= z2, so that

kδ∫
0

‖χωϕδ(t; kδ, λ̂z1 + (1− λ̂)z2)‖2 dt

= λ̂

kδ∫
0

‖χωϕδ(t; kδ, z1)‖2 dt+ (1− λ̂)

kδ∫
0

‖χωϕδ(t; kδ, z2)‖2 dt,

which, along with (74), yields that for each t ∈ (0, kδ),

‖λ̂χωϕδ(t; kδ, z1) + (1− λ̂)χωϕδ(t; kδ, z1)‖2 = λ̂‖χωϕδ(t; kδ, z1)‖2 + (1− λ̂)‖χωϕδ(t; kδ, z2)‖2.

From this and the strict convexity of ‖ · ‖2, we see that for each t ∈ (0, kδ),

χωϕδ(t; kδ, z1) = χωϕδ(t; kδ, z2), i.e., χωϕδ(t; kδ, z1 − z2) = 0. (75)

Notice that k ≥ 2. Thus, we can apply Lemma 2.3 (where S = (k − 1)δ, T = kδ and z = z1 − z2), and
use (75) to obtain that ϕ(0; kδ, z1 − z2) = 0. This, together with the backward uniqueness of the heat
equation, yields that z1 = z2 in L2(Ω), which leads to a contradiction. Hence, the first term on the right
hand side of (19) is strictly convex.

In summary, conclude that Jkδδ has a unique minimizer z∗δ 6= 0.
Finally, we prove that the minimizer z∗δ satisfies (70). By contradiction, suppose that it were not true.

Then we would have that
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χωϕδ(t0; kδ, z∗δ ) = 0 for some t0 ∈
(
0, (k − 1)δ

]
. (76)

Since ϕδ(·; kδ, z∗δ ) is a piece-wise constant function from (0, kδ] to L2(Ω) (see (20)), it follows from (76)
that

χωϕδ(·; kδ, z∗δ ) = 0 over
(
(i0 − 1)δ, i0δ

]
for some i0 ∈ {1, · · · , k − 1}. (77)

By (77), we can apply Lemma 2.3 (where T = (k + 1− i0)δ, S = δ and z = e∆(i0−1)δ)z∗δ ) to get that

0 = ϕ(0; (k + 1− i0)δ, e∆(i0−1)δ)z∗δ ) = ϕ((i0 − 1)δ; kδ, z∗δ ).

This, along with the backward uniqueness for the heat equation, yields that z∗δ = 0 in L2(Ω), which leads
to a contradiction. Therefore, (70) holds. This ends the proof of the conclusion (i) of Theorem 4.3.

(ii) Let z∗δ be the minimizer of Jkδδ . Let v∗δ be given by (71). It suffices to show that v∗δ is the unique
optimal control to (NP)kδδ and satisfies (72). From now on and throughout the proof of Theorem 4.3, we
simply write ϕ(·) and ϕδ(·) for ϕ(·; kδ, z∗δ ) and ϕδ(·; kδ, z∗δ ).

We first show that v∗δ is an admissible control to (NP)kδδ and satisfies (72). By (19), one can easily
check that the Euler-Lagrange equation associated with the minimizer z∗δ is as follows:

〈χωϕδ(·), ϕδ(·; kδ, z)〉L2((0,kδ)×Ω) + 〈y0, e
∆kδz〉+ 〈r z∗δ

‖z∗δ‖
, z〉 = 0, ∀ z ∈ L2(Ω). (78)

We claim that for each z ∈ L2(Ω),

〈χωϕδ(·), χωϕδ(·; kδ, z)〉L2((0,kδ)×Ω) = 〈χωϕδ(·), χωϕ(·; kδ, z)〉L2((0,kδ)×Ω). (79)

To this end, we arbitrarily fix z ∈ L2(Ω). Let f(·) and g(·) be the zero extensions of χωϕ(·) and χωϕ(·; kδ, z)
over R+. Then by (23) and (20), we see that

f̄δ(·) = χωϕδ(·) and ḡδ(·) = χωϕδ(·; kδ, z) over R+,

where ϕδ(·) and ϕδ(·; kδ, z) are treated as their zero extensions over R+. Then by Lemma 2.2, we have
that

〈f̄δ, ḡδ〉L2(R+×Ω) = 〈f̄δ, g〉L2(R+×Ω),

which leads to (79). Now, from (78) and (79), it follows that for each z ∈ L2(Ω),

〈χωϕδ(·), χωϕδ(·; kδ, z)〉L2((0,kδ)×Ω) = 〈v∗δ (·), χωϕ(·; kδ, z)〉L2((0,kδ)×Ω) = 〈y(kδ; 0, v∗δ ), z〉.

This, along with (78), yields that

y(kδ; y0, v
∗
δ ) + rz∗δ/‖z∗δ‖ = 0. (80)

From (80), v∗δ is an admissible control to (NP)kδδ , and satisfies (72).
We next prove that v∗δ is an optimal control to (NP)kδδ . To this end, we arbitrarily fix an admissible

control vδ to (NP)kδδ . Then we have that ‖y(kδ; y0, vδ)‖ ≤ r. This, together with (80), implies that

〈y(kδ; 0, v∗δ ), z∗δ 〉 = 〈y(kδ; y0, v
∗
δ ), z∗δ 〉 − 〈e∆kδy0, z

∗
δ 〉 = −r‖z∗δ‖ − 〈e∆kδy0, z

∗
δ 〉

≤ 〈y(kδ; y0, vδ), z
∗
δ 〉 − 〈e∆kδy0, z

∗
δ 〉 = 〈y(kδ; 0, vδ), z

∗
δ 〉. (81)

Meanwhile, by Lemma 2.2 (where (f, g) are taken as the zero extensions of (v∗δ , χωϕ) and (vδ, χωϕ),
respectively), and by (23) and (20), one can easily verify that
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〈v∗δ , χωϕδ〉L2((0,kδ)×Ω)) = 〈v∗δ , χωϕ〉L2((0,kδ)×Ω); 〈vδ, χωϕδ〉L2((0,kδ)×Ω)) = 〈vδ, χωϕ〉L2((0,kδ)×Ω). (82)

Since vδ and v∗δ are piece-wise constant functions (see (16) and (4)), it follows from (71), (82) and (81)
that

‖v∗δ‖L2((0,kδ)×Ω)‖χωϕδ‖L2((0,kδ)×Ω) = 〈v∗δ , χωϕδ〉L2((0,kδ)×Ω)

= 〈v∗δ , χωϕ〉L2((0,kδ)×Ω) = 〈y(kδ; 0, v∗δ ), z∗δ 〉
≤ 〈y(kδ; 0, vδ), z

∗
δ 〉 = 〈vδ, χωϕ〉L2((0,kδ)×Ω)

= 〈vδ, χωϕδ〉L2((0,kδ)×Ω) ≤ ‖vδ‖L2((0,kδ)×Ω)‖χωϕδ‖L2((0,kδ)×Ω).

This, along with (70), yields that ‖v∗δ‖L2((0,kδ)×Ω) ≤ ‖vδ‖L2((0,kδ)×Ω). Because vδ is an arbitrarily fixed

admissible control to (NP)kδδ , we see that v∗δ is an optimal control to (NP)kδδ .
Finally, we prove the uniqueness of the optimal control to (NP)kδδ . By contradiction, we suppose that

(NP)kδδ had two different optimal controls v∗δ,1 and v∗δ,2. Then one could easily check that (v∗δ,1 + v∗δ,2)/2
is still an optimal control. Since v∗δ,1 6= v∗δ,2, we can use the parallelogram law to get that

‖(v∗δ,1 + v∗δ,2)/2‖L2((0,kδ)×Ω) < Nδ(kδ),

which contradicts the optimality of Nδ(kδ) to (NP)kδδ . This proves the conclusion (ii) of Theorem 4.3.

(iii) Taking z = z∗δ in (78) leads to that

〈y0, ϕ(0)〉+ r‖z∗δ‖ = −‖χωϕδ‖2L2((0,kδ)×Ω).

Since z∗δ is the minimizer of Jkδδ , the above equality, along with (19), indicates that

Vδ(kδ) = Jkδδ (z∗δ ) = −1

2
‖χωϕδ‖2L2((0,kδ)×Ω). (83)

Meanwhile, from (ii) of Theorem 4.3, we see that

Nδ(kδ) = ‖v∗δ‖L2((0,kδ)×Ω) = ‖χωϕδ‖L2((0,kδ)×Ω).

This, along with (83) leads to the conclusion (iii) of Theorem 4.3.

In summary, we end the proof of Theorem 4.3.
2

5. Several auxiliary estimates

This section presents several estimates, as well as properties, on minimizers (of Jkδδ and JT ), the minimal
norm functions and the minimal time functions. These estimate will play important roles in the proofs of
the main theorems.

5.1. Some estimates on minimizers

The following theorem concerns with the H1
0 (Ω)-estimates on the minimizers of the functionals Jkδδ and

JT .
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Theorem 5.1 Let (δ, k) ∈ PT∗ (given by (67)) and 0 < T < T ∗ (given by (66)). Write z∗δ and z∗ for the
minimizers of Jkδδ and JT , respectively. Then the following conclusions are true:

(i) There is a positive constant C1 , C1(Ω, ω) so that

‖z∗δ‖ ≤ eC1(1+ 1
kδ )‖y0‖4r−3; (84)

‖∂tϕ(·; kδ, z∗δ )‖L2(0,kδ;L2(Ω)) ≤ ‖z∗δ‖H1
0 (Ω) ≤ eC1(1+ 1

kδ )‖y0‖6r−5. (85)

(ii) There is a positive constant C2 , C2(Ω, ω) so that

‖z∗‖ ≤ eC2(1+ 1
T )‖y0‖4r−3; (86)

‖∂tϕ(·; kδ, z∗)‖L2(0,T ;L2(Ω)) ≤ ‖z∗‖H1
0 (Ω) ≤ eC2(1+ 1

T )‖y0‖6r−5. (87)

Proof. Throughout the proof, C(Ω, ω) stands for a positive constant depending only on Ω and ω. It may
vary in different contexts.

(i) We begin with proving (84). From (73), we find that

r

2
‖z∗δ‖ − 2eC(1+ 1

kδ )‖y0‖4r−2 ≤ Jkδδ (z∗δ ), for some C = C(Ω, ω).

Since z∗δ is the minimizer of Jkδδ , the above inequality, along with (19), implies that

r

2
‖z∗δ‖ − 2eC(1+ 1

kδ )‖y0‖4r−2 ≤ Jkδδ (0) = 0,

which leads to (84).
To show (85), we need two estimates related to the optimal control u∗δ of (NP)kδδ . We first claim that

‖u∗δ‖L2((0,kδ)×Ω) ≤ eC(1+ 1
kδ )‖y0‖2r−1 for some C , C(Ω, ω). (88)

Indeed, since (δ, k) ∈ PT∗ (given by (67)), we have that k ≥ 2. Thus, by (ii) of Theorem 2.4, Equation
(5) has the L2-approximate null controllability with a cost. From this, Definition 2.1 (see (22)), and (iii)
of Theorem 2.4 (see (32)), we find that for ε0 = (r/‖y0‖)2, there is uδ ∈ L2

δ((0, kδ)× Ω) so that

ε0

eC(1+ 1
kδ )
‖uδ‖2L2((0,kδ)×Ω) +

1

ε0
‖y(kδ; y0, uδ)‖2 ≤ ‖y0‖2 for some C , C(Ω, ω). (89)

Since ε0 = (r/‖y0‖)2, it follows from (89) that uδ is an admissible control to (NP)kδδ . Then by the
optimality of u∗δ and Nδ(kδ), and by (89), we find that

‖u∗δ‖L2((0,kδ)×Ω) = Nδ(kδ) ≤ ‖uδ‖L2((0,kδ)×Ω) ≤ e
C
2 (1+ 1

kδ )‖y0‖2r−1,

which leads to (88).
Next, we claim that

‖y(kδ; y0, u
∗
δ)‖H1

0 (Ω) ≤ eC(1+ 1
kδ )‖y0‖2r−1 for some C , C(Ω, ω). (90)

For this purpose, we consider the following equation:
∂ty −∆y = f in R+ × Ω,

y = 0 on R+ × ∂Ω,

y(0) = z in Ω,

(91)
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where z ∈ C∞0 (Ω) and f ∈ C∞0 (R+ × Ω). Multiplying y on both sides of Equation (91), by the Poincaré

and Cauchy-Schwarz inequalities, we obtain that there exists Ĉ , Ĉ(Ω) > 0 so that for each S > 0,

S∫
0

∫
Ω

|∇y(t, x)|2 dxdt ≤ Ĉ
S∫

0

∫
Ω

|f(t, x)|2 dxdt+

∫
Ω

|z(x)|2 dx. (92)

Meanwhile, multiplying −t∆y on both sides of Equation (91) and then integrating it over Ω, after some
computations, we obtain that for each S > 0,

∫
Ω

S|∇y(S, x)|2 dx ≤
S∫

0

∫
Ω

t|f(t, x)|2 dxdt+

S∫
0

∫
Ω

|∇y(t, x)|2 dxdt. (93)

From (93) and (92), we deduce that for each S > 0, z ∈ C∞0 (Ω) and f ∈ C∞0 (R+ × Ω),

∫
Ω

|∇y(S, x)|2 dx ≤ eĈ(1+1/S)
[ S∫

0

∫
Ω

|f(t, x)|2 dxdt+

∫
Ω

|z(x)|2 dx
]
.

Then by a standard density argument, we can easily derive from the above inequality that

‖y(kδ; y0, u
∗
δ)‖H1

0 (Ω) ≤ eĈ(1+ 1
kδ )
(
‖u∗δ‖L2((0,kδ)×Ω) + ‖y0‖

)
.

Since ‖y0‖ > r, the above, along with (88), leads to (90).
We now show the second inequality in (85). From (72), we see that

‖z∗δ‖H1
0 (Ω) =

‖z∗δ‖
r
‖y(kδ; y0, u

∗
δ)‖H1

0 (Ω),

which, together with (84) and (90), leads to the second inequality in (85).
Then, we show the first inequality in (85). Simply write ϕ(·) for ϕ(·; kδ, z∗δ ). Multiplying by ∆ϕ on both

sides of the equation satisfied by ϕ(·; kδ, z∗δ ), and then integrating it over Ω, after some computations, we
obtain that∫

Ω

|∇ϕ(0, x)|2 dx+

kδ∫
0

∫
Ω

|∆ϕ(t, x)|2 dxdt =

∫
Ω

|∇ϕ(kδ, x)|2 dx.

From this, it follows that

kδ∫
0

∫
Ω

|∂tϕ(t, x)|2 dxdt =

kδ∫
0

∫
Ω

|∆ϕ(t, x)|2 dxdt ≤
∫
Ω

|∇z∗δ (x)|2 dx,

which leads to the first inequality in (85). This ends the proof of the conclusion (i).

(ii) Arbitrarily fix k0 ∈ N+ so that k0 ≥ max{2, 2/T}. For each integer k ≥ k0, let nk be the integer so
that

kT − 1 < nk ≤ kT. (94)

We first claim
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lim inf
k→∞

V1/k(nk/k) ≤ V (T ) for all k ≥ k0. (95)

In fact, for each k ≥ k0, (NP)
nk/k
1/k has a unique optimal control v∗k (see (ii) of Theorem 4.3). Then, by

(94), one can easily check that the zero extension of v∗k over (0, T ) is an admissible control to (NP)T .
From this and the optimality of N (T ), one can easily check that

N (T ) ≤ N1/k(nk/k) for all k ≥ k0. (96)

Since 0 < T < T ∗ and because (1/k, nk) ∈ PT∗ (given by (67)) for all k ≥ k0 (which follows from (94)
and (67)), we can apply (iii) of Theorem 4.2 and (iii) of Theorem 4.3 (with (δ, k)=(1/k, nk)), and use
(96) to obtain (95).

For each integer k ≥ k0, write z∗1/k for the minimizer of (JP )
nk/k
1/k . The key is to show that on a

subsequence of {z∗1/k}k≥k0 , still denoted in the same manner,

z∗1/k → z∗ weakly in H1
0 (Ω); strongly in L2(Ω), as k →∞. (97)

(Here, z∗ is the minimizer of (JP )T .) To this end, we notice that (1/k, nk) ∈ PT∗ (given by (67)) for all
k ≥ k0 (which follows from (94) and (67)). Thus, we can use the second inequality in (85) (where δ = 1/k;
k = nk) to find that {z∗1/k}k≥k0 is bounded in H1

0 (Ω). So there exists a subsequence of {z∗1/k}k≥k0 , still

denoted in the same manner, and some ẑ ∈ H1
0 (Ω) so that

z∗1/k → ẑ weakly in H1
0 (Ω); strongly in L2(Ω), as k →∞. (98)

From the above, we see that in order to show (97), it suffices to prove that z∗ = ẑ. For this purpose, we
first claim that for each k ≥ k0,

‖ϕ(0;T, ẑ)− ϕ(0;nk/k, z
∗
1/k)‖

≤ sup
0≤s≤t̂≤s+ 1

k≤T
‖ϕ(t̂;T, ẑ)− ϕ(s;T, ẑ)‖+ ‖ẑ − z∗1/k‖; (99)

‖ϕ(t;T, ẑ)− ϕ1/k(t;nk/k, z
∗
1/k)‖

≤ 2 sup
0≤s≤t̂≤s+ 1

k≤T
‖ϕ(t̂;T, ẑ)− ϕ(s;T, ẑ)‖+ ‖ẑ − z∗1/k‖, ∀ t ∈ (0, nk/k). (100)

To show (99), we arbitrarily fix k ≥ k0. By (94), we see that 0 ≤ T − nk/k ≤ 1/k. This, along with the
time-invariance of Equation (18), yields

‖ϕ(0;T, ẑ)− ϕ(0;nk/k, ẑ)‖= ‖ϕ(0;T, ẑ)− ϕ(T − nk/k;T, ẑ)‖
≤ sup

0≤s≤t≤s+ 1
k≤T
‖ϕ(t;T, ẑ)− ϕ(s;T, ẑ)‖ (101)

Meanwhile, since {et∆ : t ≥ 0} is contractive, we have that

‖ϕ(0;nk/k, ẑ)− ϕ(0;nk/k, z
∗
1/k)‖ ≤ ‖ẑ − z∗1/k‖. (102)

Using the triangle inequality, by (101) and (102), we obtain (99).
To show (100), we arbitrarily fix k ≥ k0 and t ∈ (0, nk/k). Three facts are given in order. Fact one:

Since 0 ≤ T − nk/k ≤ 1/k, we can use the time-invariance of Equation (18) to get that
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‖ϕ(t;T, ẑ)− ϕ(t;nk/k, ẑ)‖= ‖ϕ(t;T, ẑ)− ϕ(T − nk/k + t;T, ẑ)‖
≤ sup

0≤s≤t̂≤s+ 1
k≤T
‖ϕ(t̂;T, ẑ)− ϕ(s;T, ẑ)‖. (103)

Fact two: Since 0 ≤ T − nk/k ≤ 1/k, by (20) and the time-invariance of Equation (18), we can easily
check that

‖ϕ(t;nk/k, ẑ)− ϕ1/k(t;nk/k, ẑ)‖ (104)

=
∥∥∥ nk∑
i=1

χ((i−1)/k,i/k](t)k

i/k∫
(i−1)/k

[
ϕ(t;nk/k, ẑ)− ϕ(s;nk/k, ẑ)

]
ds
∥∥∥

≤ sup
0≤s≤t̂≤s+ 1

k≤nk/k
‖ϕ(t̂;nk/k, ẑ)− ϕ(s;nk/k, ẑ)‖

≤ sup
0≤s≤t̂≤s+ 1

k≤T
‖ϕ(t̂;T, ẑ)− ϕ(s;T, ẑ)‖.

Fact three: Since {et∆ : t ≥ 0} is contractive, by (20), we see that

‖ϕ1/k(t;nk/k, ẑ)− ϕ1/k(t;nk/k, z
∗
1/k)‖ = ‖ϕ1/k(t;nk/k, ẑ − z∗1/k)‖ ≤ ‖ẑ − z∗1/k‖. (105)

The above three facts (103), (104) and (105), together with the triangle inequality, leads to (100).
Two observations are given in order: First, since ϕ(·;T, ẑ) is uniformly continuous on [0, T ], we see that

two supremums in (99) and (100) tend to zero as k →∞. Second, it follows by (94) that limk→∞ nk/k = T .
From these two observations, (98), (99) and (100), one can easily check that

〈y0, ϕ(0;T, ẑ)〉= lim
k→∞

〈y0, ϕ(0;nk/k, z
∗
1/k)〉;

T∫
0

‖χωϕ(t;T, ẑ)‖2 dt= lim
k→∞

nk/k∫
0

‖χωϕ1/k(t;nk/k, z
∗
1/k)‖2 dt.

These, together with (17), (19) and (98), indicate that

JT (ẑ) = lim
k→∞

J
nk/k
1/k (z∗1/k) = lim

k→∞
V1/k(nk/k).

This, along with (95) and (17), yields that

JT (ẑ) = V (T ) = inf
z∈L2(Ω)

JT (z).

Hence, ẑ is a minimizer of JT . Then, by the uniqueness of the minimizer, we see that ẑ = z∗. Hence, (97)
is true.

Finally, since 0 < T < T ∗ and because (1/k, nk) ∈ PT∗ (given by (67)) for all k ≥ k0 (which follows
from (94) and (67)), the conclusion (i) in Theorem 5.1 is available for (δ, k)=(1/k, nk). Thus, by (84), the
second inequality in (85) (with (δ, k)=(1/k, nk)) and (97), using the fact that nk/k → T (see (94)), we
can easily obtain (86) and the second inequality in (87). Besides, by the same way as that used to prove
the first inequality in (85), we get the first inequality in (87).

In summary, we end the proof of Theorem 5.1.
2
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5.2. Some estimates related to minimal norm functions

Several inequalities related to the minimal norm functions T → N (T ) and kδ → Nδ(kδ) will be presented
in the following two theorems.

Theorem 5.2 There is C3 , C3(Ω, ω) > 0 so that for each pair (T1, T2), with 0 < T1 ≤ T2 < T ∗ (given
by (66)),

λ
3/2
1 r(T2 − T1) ≤ N (T1)−N (T2) ≤ eC3(1+ 1

T1
)‖y0‖(T2 − T1). (106)

Proof. Arbitrarily fix a pair (T1, T2), with 0 < T1 < T2 < T ∗ (where T ∗ is given by (66)). The proof is
organized by the following two steps:

Step 1. To show the first inequality in (106)
By (i) of Theorem 4.1, we have that

M1 , N (T1) > N (T2) ,M2. (107)

Then by (iii) in Theorem 4.1, we see that

0 < T (M1) = T1 < T2 = T (M2) < T ∗. (108)

Let u∗1 be an optimal control to (T P)M1 . Then we find that

‖y(T (M1); y0, u
∗
1)‖ ≤ r and ‖u∗1‖L2(R+×Ω) ≤M1. (109)

It follows from the first inequality in (109) that∥∥y(T (M1); y0,
M2

M1
u∗1)
∥∥≤ ∥∥y(T (M1); y0,

M2

M1
u∗1)− y(T (M1); y0, u

∗
1)
∥∥

+‖y(T (M1); y0, u
∗
1)‖

≤ M1 −M2

M1

T (M1)∫
0

‖e∆(T (M1)−t)χωu
∗
1(t, ·)‖dt+ r.

Since

‖e∆t‖L(L2(Ω),L2(Ω)) ≤ e−λ1t for each t ≥ 0,

the above, along with Hölder’s inequality and the second inequality in (109), yields that∥∥y(T (M1); y0,
M2

M1
u∗1)
∥∥≤ r +

M1 −M2

M1

1√
2λ1

M1

≤ r + (M1 −M2)/
√
λ1. (110)

Next, we define a control u2 over R+ as follows:

u2(t) =


M2

M1
u∗1(t), t ∈ (0, T (M1)],

0, t ∈ (T (M1),∞).
(111)

From (111) and the second inequality in (109), it follows that
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‖u2‖L2(R+×Ω) ≤M2. (112)

Meanwhile, we let

T̂ ,
1

λ1
ln
(

1 +
1

λ
1/2
1 r

(M1 −M2)
)
≤ 1

λ
3/2
1 r

(M1 −M2). (113)

Since u2 = 0 over
(
T (M1),∞

)
, by (111), (110) and (113), one can easily check that

‖y(T (M1) + T̂ ; y0, u2)‖ ≤ e−λ1T̂ ‖y(T (M1); y0, u2)‖

≤ e−λ1T̂
(
r + (M1 −M2)/λ

1/2
1

)
= r. (114)

Now, it follows from (112) and (114) that u2 is an admissible control to (T P)M2 , which drives the solution

to Br(y0) at time T (M1) + T̂ . This, along with the optimality of T (M2), yields that

T (M2) ≤ T (M1) + T̂ .

From this, (108) and (113), we find that

T2 − T1 = T (M2)− T (M1) ≤ T̂ ≤ 1

λ
3/2
1 r

(M1 −M2).

Since M1 , N (T1) and M2 , N (T2) (see (107)), the above leads to the first inequality in (106). This
ends the proof of Step 1.

Step 2. To show the second inequality in (106)
Let z∗1 be the minimizer of JT1 . Throughout this step, we simply write ϕ1(·) and ϕ2(·) for ϕ(·;T1, z

∗
1) and

ϕ(·;T2, z
∗
1) respectively. First, we claim that

‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω) ≤ e

C21(1+ 1
T1

)N (T1) for some C21 , C21(Ω, ω). (115)

(Here and throughout the proof, we take the norm of H2(Ω) ∩ H1
0 (Ω) as: ‖f‖H2(Ω)∩H1

0 (Ω) , ‖∆f‖.)
Indeed, according to [28, Theorem 6.13 in Chapter 2], there is C22 , C22(Ω) > 0 so that

‖∆e∆s‖L(L2(Ω),L2(Ω)) ≤ C22/s for each s > 0.

From this, we see that

‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω) = ‖∆ϕ2(T2 − T1)‖ = ‖∆e∆

T1
2 ϕ2(T2 − T1/2)‖ ≤ 2C22

T1
‖ϕ2(T2 − T1/2)‖.

This, along with [12, Proposition 3.1], yields that for some C23 , C23(Ω, ω) > 0,

‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω) ≤

2C22

T1
eC23(1+ 2

T1
)‖χωϕ2‖L2((T2−T1/2,T2)×Ω). (116)

Meanwhile, by (ii) of Theorem 4.2 and the time-invariance of Equation (18), we see that

N (T1) = ‖χωϕ1‖L2((0,T1)×Ω) = ‖χωϕ2‖L2((T2−T1,T2)×Ω).

This, along with (116), yields that
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‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω) ≤ e2C22e

1
T1 eC23(1+ 2

T1
)N (T1),

which leads to (115).
Next, since 0 < T1 ≤ T2 < T ∗ (given by (66)), it follows by (i) and (ii) of Theorem 4.1 that N (T1) ≥

N (T2). From this and (iii) of Theorem 4.2, it follows that

V (T1) = −1

2
N (T1)2 ≤ −1

2
N (T2)2 = V (T2). (117)

This, along with (17), yields that

0≤ V (T2)− V (T1) ≤ JT2(z∗1)− JT1(z∗1)

≤ 1

2

[ T2∫
0

‖χωϕ2(t)‖2 dt−
T1∫
0

‖χωϕ1(t)‖2 dt
]

+ 〈y0, ϕ2(0)− ϕ1(0)〉. (118)

At the same time, by the time-invariance of Equation (18), we have that

ϕ1(t) = ϕ2(t+ T2 − T1) for each t ∈ (0, T1). (119)

Since the semigroup {e∆t}t≥0 is contractive, from (119), we see that

T2∫
0

‖χωϕ2(t)‖2 dt−
T1∫
0

‖χωϕ1(t)‖2 dt ≤ (T2 − T1)‖ϕ2(T2 − T1)‖2. (120)

From (119), we also have that

〈y0, ϕ2(0)− ϕ1(0)〉 = 〈y0, ϕ2(0)− ϕ2(T2 − T1)〉

≤ ‖y0‖
∥∥ T2−T1∫

0

∂tϕ2(t) dt
∥∥ = ‖y0‖

∥∥ T2−T1∫
0

e∆(T2−T1−t)∆ϕ2(T2 − T1) dt
∥∥

≤ (T2 − T1)‖y0‖‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω). (121)

Now, by (118), (120) and (121), we obtain that there exists Ĉ , Ĉ(Ω) > 0 so that

0≤ V (T2)− V (T1)

≤ Ĉ(T2 − T1)
[
‖ϕ2(T2 − T1)‖2H2(Ω)∩H1

0 (Ω) + ‖y0‖‖ϕ2(T2 − T1)‖H2(Ω)∩H1
0 (Ω)

]
.

By this, (117) and (115), we get that

N (T1)−N (T2)≤ 2

N (T2) +N (T1)

(
V (T2)− V (T1)

)
≤ 2ĈeC21(1+ 1

T1
)(N (T1) + ‖y0‖)(T2 − T1). (122)

Finally, by [12, Proposition 3.1], we can find uT1
∈ L2((0, T1)× Ω) so that

y(T1; y0, uT1
) = 0 and ‖uT1

‖L2((0,T1)×Ω) ≤ eC24(1+ 1
T1

)‖y0‖ for some C24 , C24(Ω, ω).

From the first equality in the above, we see that uT1
is an admissible to (NP)T1 . This, along with the

second inequality in the above and the optimality of N (T1), indicates
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N (T1) ≤ ‖uT1
‖L2((0,T1)×Ω) ≤ eC24(1+ 1

T1
)‖y0‖,

which, along with (122), leads to the second inequality in (106) for some C3 , C3(Ω, ω).

In summary, we finish the proof of Theorem 5.2.
2

Theorem 5.3 Let PT∗ and T ∗ be given by (67) and (66), respectively. Then there is C4 , C4(Ω, ω) > 0
so that for each (δ, k) ∈ PT∗ ,

0 ≤ Nδ(kδ)−N (kδ) ≤ eC4(1+T∗+ 1
kδ+ 1

T∗−kδ )‖y0‖12r−11δ2. (123)

Proof. Arbitrarily fix (δ, k) ∈ PT∗ (given by (67)). Let z∗δ be the minimizer of Jkδδ . Throughout the proof
of Theorem 5.3, we simply write respectively ϕ(·) and ϕδ(·) for ϕ(·; kδ, z∗δ ) (see (18)) and ϕ(·; kδ, z∗δ ) (see
(20)). We organize the proof by several steps as follows:

Step 1. To prove that

0 ≤ V (kδ)− Vδ(kδ) ≤ ‖χωϕ‖2L2((0,kδ)×Ω) − ‖χωϕδ‖
2
L2((0,kδ)×Ω) (124)

Since L2
δ((0, kδ) × Ω) ⊂ L2((0, kδ) × Ω) (see (4)), we find that each admissible control to (NP)kδδ is

also an admissible control to (NP)kδ. This, along with (14) and (15), yields that N (kδ) ≤ Nδ(kδ), from
which, as well as (iii) of Theorems 4.2 and (iii) of Theorem 4.3, it follows that

Vδ(kδ) = −1

2
Nδ(kδ)2 ≤ −1

2
N (kδ)2 = V (kδ). (125)

This, along with (17) and (19), yields that

0≤ V (kδ)− Vδ(kδ) ≤ Jkδ(z∗δ )− Jkδδ (z∗δ )

≤ 1

2

[
‖χωϕ‖2L2((0,kδ)×Ω) − ‖χωϕδ‖

2
L2((0,kδ)×Ω)

]
,

which leads to (124).

Step 2. To show that

‖χωϕ‖2L2((0,kδ)×Ω) − ‖χωϕδ‖
2
L2((0,kδ)×Ω) = ‖χωϕ− χωϕδ‖2L2((0,kδ)×Ω) (126)

First, we claim that for each f ∈ L2(R+ × Ω),

‖f‖2L2(R+×Ω) = ‖f̄δ‖2L2(R+×Ω) + ‖f − f̄δ‖2L2(R+×Ω), (127)

where f̄δ is given by (23). Indeed, for an arbitrarily fixed f ∈ L2(R+ × Ω), one can directly check that

‖f‖2L2(R+×Ω) = ‖f̄δ‖2L2(R+×Ω) + ‖f − f̄δ‖2L2(R+×Ω) + 2〈f̄δ, f − f̄δ〉L2(R+×Ω). (128)

Meanwhile, it follows by (23) that ḡδ = 0, where g , f − f̄δ. Then by Lemma 2.2, we obtain that

〈f̄δ, f − f̄δ〉L2(R+×Ω) = 〈f̄δ, g〉L2(R+×Ω) = 〈f̄δ, ḡδ〉L2(R+×Ω) = 0.

This, along with (128), leads to (127).
Next, by taking f to be the zero extension of ϕ over R+ × Ω in (127), we obtain (126). Here, we used

the fact that in this case, f̄δ is the zero extension of χωϕδ over R+×Ω, which follows from (23) and (20).

Step 3. To verify that there exists C41 , C41(Ω, ω) > 0 so that
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‖χωϕ− χωϕδ‖2L2((0,kδ)×Ω) ≤ e
C41(1+kδ+ 1

kδ )‖y0‖12r−10δ2 (129)

From (20), it follows that

kδ∫
0

‖χωϕ(t)− χωϕδ(t)‖2 dt =

k∑
j=1

jδ∫
(j−1)δ

∥∥∥χωϕ(t)− 1

δ

jδ∫
(j−1)δ

χωϕ(s) ds
∥∥∥2

dt

=

k∑
j=1

jδ∫
(j−1)δ

∥∥∥1

δ

jδ∫
(j−1)δ

t∫
s

χω∂τϕ(τ) dτds
∥∥∥2

dt ≤
k∑
j=1

jδ∫
(j−1)δ

( jδ∫
(j−1)δ

‖∂τϕ(τ)‖dτ
)2

dt.

Applying the Hölder inequality to the above leads to that

‖χωϕ− χωϕδ‖2L2((0,kδ)×Ω) ≤ δ
2‖∂tϕ‖2L2((0,kδ)×Ω).

This, along with (85), implies (129) for some C41 , C41(Ω, ω).

Step 4. To show (123)
We first claim that

N (kδ) ≥ e−
2
λ1
− 1
T∗−kδ r. (130)

In fact, by (i) of Theorem 4.1, we have that

lim
T2→T∗−

N (T2) = 0.

This, along with the first inequality in (106) (where T1 = kδ), yields that

N (kδ) = lim
T2→T∗−

(N (kδ)−N (T2))

≥ lim
T2→T∗−

λ
3/2
1 r(T2 − kδ) = λ

3/2
1 r(T ∗ − kδ). (131)

Since we clearly have that

λ1 ≥ e−
1
λ1 and T ∗ − kδ ≥ e−

1
T∗−kδ ,

(130) follows from (131) at once.
Meanwhile, from (124), (126) and (129), we obtain that

0 ≤ V (kδ)− Vδ(kδ) ≤ eC41(1+kδ+ 1
kδ )‖y0‖12r−10δ2.

From this, (125) and (130), we find that

0 ≤ Nδ(kδ)−N (kδ) =
2V (kδ)− 2Vδ(kδ)

N (kδ) +Nδ(kδ)

≤ 2e
2
λ1

+ 1
T∗−kδ eC41(1+kδ+ 1

kδ )‖y0‖12r−11δ2.

Since kδ < T ∗, the above leads to (123) for some C4 , C4(Ω, ω).

In summary, we end the proof of Theorem 5.3.
2
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5.3. Some properties on minimal time functions

Some inequalities, as well as properties, related to the minimal time functions M → Tδ(M) and M →
T (M) will be given in this subsection.

Theorem 5.4 For each M > 0 and η ∈ (0, 1), there is a measurable subset AM,η ⊂ (0, 1) (depending
also on y0 and r), with limh→0+

1
h |AM,η ∩ (0, h)| = η, so that for each δ ∈ AM,η, there is aδ ∈ (0, η) so

that

Tδ(M)− T (M) = (1− aδ)δ and M ≥ Nδ(Tδ(M)) +
1

2
λ

3/2
1 r(1− η)δ. (132)

Proof. Arbitrarily fix M > 0 and η ∈ (0, 1). For each k ∈ N+ and a ∈ (0, η), we define a subset of R+ in
the following manner:

Bk,aM,η , {δ > 0 : (k + a)δ = T (M)}. (133)

We then define another subset of R+ as follows:

BM,η , ∪k∈N+ ∪a∈(0,η) Bk,aM,η. (134)

The rest proof is divided into the following two steps:

Step 1. To prove that limh→0+
1
h |BM,η ∩ (0, h)| = η

From (133), we see that

∪a∈(0,η)Bk,aM,η = (T (M)/(k + η), T (M)/k) for each k ∈ N+.

From this and (134), it follows that

BM,η = ∪k∈N+ (T (M)/(k + η), T (M)/k) . (135)

For each j ∈ N+, we let hj , T (M)/j. For each h ∈ (0, T (M)), we let j(h) be the integer so that
hj(h)+1 ≤ h < hj(h). Then, by (135), one can easily verify that

lim
h→0+

|BM,η ∩ (0, hj(h))|
hj(h)

= η; lim
h→0+

hj(h)+1

h
= lim
h→0+

hj(h)

h
= 1; (136)

hj(h)+1

h

|BM,η ∩ (0, hj(h)+1)|
hj(h)+1

≤ |BM,η ∩ (0, h)|
h

≤
|BM,η ∩ (0, hj(h))|

hj(h)

hj(h)

h
. (137)

From (136) and (137), we can easily obtain the conclusion in Step 1.

Step 2. To show (132)
We first claim that for each δ ∈ BM,η ∩ (0, 1), there is a unique pair (kδ, aδ) so that

(kδ + aδ)δ = T (M) with kδ ∈ N+ and aδ ∈ (0, η). (138)

Indeed, the existence of such a pair follows from (134) and (133) at once, while the uniqueness of such
pairs can be directly checked.

Thus, for each δ ∈ BM,η∩ (0, 1), we can define kδ to be the first component of the unique pair satisfying
(138). We next claim that there exists δ1

M,η ∈ (0, 1) so that

30



M ≥ Nδ((kδ + 1)δ) +
1

2
λ

3/2
1 r(1− η)δ for each δ ∈ BM,η ∩ (0, δ1

M,η). (139)

To this end, we notice that T (M) < T ∗ (see (iii) of Theorem 4.1). Arbitrarily fix δ ∈ BM,η ∩ (0, 1) so that

0 < δ < min{T (M)/2, (T ∗ − T (M))/2}. (140)

(The existence of such δ is ensured by (135).) Then it follows from (140) and (138) that

2δ < T (M) < (kδ + 1)δ < T (M) + δ < (T ∗ + T (M))/2 < T ∗.

This, along with the definition of PT∗ (see (67)), yields that

(δ, kδ) ∈ PT∗ and 2δ < T (M) < (kδ + 1)δ < T ∗.

By these, we can apply Theorem 5.3 (with (δ, k) = (δ, kδ)) and Theorem 5.2 (with T1 = T (M) and
T2 = (kδ + 1)δ) to get that

Nδ((kδ + 1)δ)≤N ((kδ + 1)δ) + e
C4

[
1+T∗+ 1

(kδ+1)δ
+ 1
T∗−(kδ+1)δ

]
‖y0‖12r−11δ2

≤N (T (M))− λ3/2
1 r

(
(kδ + 1)δ − T (M)

)
+

e
C4

[
1+T∗+ 1

(kδ+1)δ
+ 1
T∗−(kδ+1)δ

]
‖y0‖12r−11δ2, (141)

where C4 is given by (123). Meanwhile, by (138) and (140), we find that

(kδ + 1)δ − T (M) ≥ (1− η)δ and T (M) < (kδ + 1)δ < (T ∗ + T (M))/2.

These, along with (141) and (ii) of Theorem 4.1, yield that

Nδ((kδ + 1)δ)≤N (T (M))− λ3/2
1 r(1− η)δ + eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−11δ2

=M − λ3/2
1 r(1− η)δ + eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−11δ2.

By this and (140), we obtain (139).
Define a set AM,η in the following manner:

AM,η , BM,η ∩ (0, δ1
M,η), with δ1

M,η given by (139). (142)

We now show that the second conclusion in (132) holds for each δ in AM,η defined by (142). To this end,
we arbitrarily fix δ ∈ AM,η. We claim that

Tδ(M) ≤ (kδ + 1)δ and Tδ(M) > kδδ. (143)

To show the first inequality in (143), we let uδ be an admissible control to (NP)
(kδ+1)δ
δ and let ũδ be the

zero extension of uδ over R+ × Ω. Since Nδ((kδ + 1)δ) ≤ M (see (139)), one can easily check that ũδ is
an admissible control (to (T P)Mδ ), which drives the solution to Br(0) at time (kδ + 1)δ. This, along with
the optimality of Tδ(M), leads to the first inequality in (143). To prove the second inequality in (143), we
notice that UMδ ⊂ UM . This, along with (2) and (6), yields that T (M) ≤ Tδ(M). From this and (138),
we obtain the second inequality in (143).

Since Tδ(M) is a multiple of δ (see (7)), it follows from (143) that

Tδ(M) = (kδ + 1)δ. (144)

This, along with (139), implies that the second conclusion in (132).
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Finally, from (144) and (138), we see that the first conclusion in (132) is true for each δ ∈ AM,η defined
by (142).

In summary, we end the proof of Theorem 5.4.
2

6. The proofs of the main theorems

In this section, we will prove Theorems 1.3-1.5. The strategies to show them have been introduced in
Subsection 1.3.

6.1. The proof of Theorem 1.3

Proof of Theorem 1.3. We will prove the conclusions (i) and (ii) in Theorem 1.3 one by one.

(i) Arbitrarily fix M > 0. Recall that T ∗ is given by (66). From the conclusion (iii) in Theorem 4.1, it
follows

0 < T (M) < T ∗. (145)

We take δ so that

0 < δ < min
{
T (M)/2,

(
T ∗ − T (M)

)
/4
}
, δ1. (146)

Let k̂δ ∈ N satisfy that

(k̂δ − 1)δ < T (M) ≤ k̂δδ. (147)

We first claim that

Nδ((k̂δ + 1)δ) ≤M + eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−11δ2 − λ3/2

1 rδ. (148)

Indeed, from the definition of PT∗ (given by (67)) and (145)-(147), one can easily check that

0 < T (M) < (k̂δ + 1)δ < T ∗ and (δ, k̂δ + 1) ∈ PT∗ . (149)

Three facts are given in order: (a) By the second conclusion in (149), we can apply Theorem 5.3, with

(δ, k) = (δ, k̂δ + 1), to obtain that

Nδ((k̂δ + 1)δ) ≤ N ((k̂δ + 1)δ) + e
C4

[
1+T∗+ 1

(k̂δ+1)δ
+ 1

T∗−(k̂δ+1)δ

]
‖y0‖12r−11δ2,

where C4 , C4(Ω, ω) is given by (123). (b) By the first conclusion in (149), we can use the first inequality

in (106) in Theorem 5.2 (where T1 = T (M) and T2 = (k̂δ + 1)δ) to get that

N ((k̂δ + 1)δ)≤N (T (M))− λ3/2
1 r|(k̂δ + 1)δ − T (M)|

≤N (T (M))− λ3/2
1 rδ;

(c) By (ii) of Theorem 4.1, we have that N (T (M)) = M .
From above three facts (a)-(c), we find that
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Nδ((k̂δ + 1)δ) ≤M + e
C4

[
1+T∗+ 1

(k̂δ+1)δ
+ 1

T∗−(k̂δ+1)δ

]
‖y0‖12r−11δ2 − λ3/2

1 rδ. (150)

Meanwhile, from (147), (146) and (145), one can easily check that

T (M) ≤ (k̂δ − 1)δ + 2δ ≤ T (M) +
T ∗ − T (M)

2
=
T ∗ + T (M)

2
.

This, along with (150), leads to (148).
We next claim that

Tδ(M) ≤ (k̂δ + 1)δ for each 0 < δ < δ0 , min{δ1, δ2}), (151)

where δ1 is given by (146) and δ2 is defined by

δ2 ,
1

2
λ

3/2
1 e−C4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖−12r12. (152)

In fact, for an arbitrarily fixed δ ∈ (0, δ0), by (148) and (152), after some computations, we find that

M ≥ Nδ((k̂δ + 1)δ) +
1

2
λ

3/2
1 rδ > Nδ((k̂δ + 1)δ). (153)

Let uδ be the zero extension of an admissible control (to (NP)
(k̂δ+1)δ
δ ) over R+ ×Ω. Then by (153), one

can easily check that uδ is an admissible control (to (T P)Mδ ), which drives the solution to Br(0) at time

(k̂δ + 1)δ. This, along with the optimality of Tδ(M), leads to (151).
We now show (8) with δ0 given by (151). For this purpose, we arbitrarily fix δ ∈ (0, δ0). Since UMδ ⊂ UM ,

it follows by (2) and (6) that T (M) ≤ Tδ(M). This, along with (147) and (151), leads to (8), which ends
the proof of the conclusion (i).

(ii) Let AM,η, with M > 0 and η ∈ (0, 1), be given by Theorem 5.4. Then the conclusion (ii) of Theorem
1.3 follows from the first conclusion in (132) at once.

In summary, we end the proof of Theorem 1.3.
2

6.2. The proof of Theorem 1.4

Proof of Theorem 1.4. For each M > 0 and δ > 0, we let u∗M and u∗δ,M be the optimal control and the

optimal control with the minimal norm to (T P)M and (T P)Mδ respectively (see Theorem 3.1). We will
prove the conclusions (i)-(ii) one by one.

(i) Let M > 0. Let δ0 = δ0(M,y0, r) and C3 = C3(Ω, ω) be given by Theorem 1.3 and Theorem 5.2,
respectively. Arbitrarily fix δ > 0. In the proof of (i) of Theorem 1.4, we simply write u∗ and u∗δ for u∗M
and u∗δ,M , respectively.

Since Tδ(M) is a multiple of δ (see (6)), we can write

Tδ(M) , kδδ with kδ ∈ N+. (154)

In the case that

δ ≥ min
{
δ0,

T ∗ − T (M)

4
,
T (M)

3
,

M

4eC3(1+ 1
T (M)

)(1 + ‖y0‖)

}
, (155)

one can easily show (10). In fact, it follows from (155) that
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‖u∗ − u∗δ‖L2(R+×Ω) ≤ ‖u∗‖L2(R+×Ω) + ‖u∗δ‖L2(R+×Ω)

≤ 2M ≤ 6M

T (M)
δ , Ĉ(M,y0, r)δ. (156)

Thus, we only need to show (10) for the case that

0 < δ < min
{
δ0,

T ∗ − T (M)

4
,
T (M)

3
,

M

4eC3(1+ 1
T (M)

)(1 + ‖y0‖)

}
. (157)

For this purpose, some preliminaries are needed. First we claim that

0 < T (M) ≤ Tδ(M) ≤ (T (M) + T ∗)/2 < T ∗. (158)

Indeed, (158) follows from the next three facts at once. Fact one: From Theorem 4.1, we have that
0 < T (M) < T ∗; Fact two: Since UMδ ⊂ UM , we find from (2) and (6) that T (M) ≤ Tδ(M); Fact three:
By Theorem 1.3 and (157), we see that

Tδ(M) ≤ T (M) + 2δ ≤ (T (M) + T ∗)/2.

Then it follows from (158), (157) and the definition of PT∗ (given by (67)) that

3δ ≤ Tδ(M) < T ∗, i.e., (δ, Tδ(M)/δ) , (δ, kδ) ∈ PT∗ , with kδ given by (154). (159)

Next, we let z∗ 6= 0 and z∗δ 6= 0 be the minimizers of JT (M) and J
Tδ(M)
δ , respectively (see Theorem 4.2

and Theorem 4.3). Write

ẑ∗ , z∗/‖z∗‖ and ẑ∗δ , z∗δ/‖z∗δ‖. (160)

By (iii) of Theorem 4.1, the restriction of u∗ over (0, T (M))×Ω is the optimal control to (NP)T (M). (It
can be treated as a function from (0, T (M)) to L2(Ω).) Then by (ii) of Theorem 4.2 (with T = T (M) ∈
(0, T ∗)), we see that u∗(·) = χωϕ(·; T (M), z∗) over (0, T (M)). Meanwhile, by (ii) of Theorem 4.1, we find
that N (Tδ(M)) = M . These, along with (160), yield that

u∗(t) = χωϕ(t; T (M), z∗) = M
χωϕ(t; T (M), ẑ∗)

‖χωϕ(·; T (M), ẑ∗)‖L2((0,T (M))×Ω)
a.e. t ∈ (0, T (M)). (161)

Finally, it follows from (iii) of Theorem 3.1 that the restriction of u∗δ over (0, Tδ(M))×Ω is an optimal

control to (NP)
Tδ(M)
δ . (It can be treated as a function from (0, Tδ(M)) to L2(Ω).) This, along with the

fact that u∗δ is an optimal control to (T P)Mδ , yields that

Nδ(Tδ(M)) = ‖u∗δ‖L2((0,Tδ(M))×Ω) ≤ ‖u∗δ‖L2(R+×Ω) ≤M. (162)

Meanwhile, by (159), we can apply Theorem 4.3 (with (δ, k) = (δ, Tδ(M)/δ) , (δ, kδ)), as well as (160),
to obtain that

u∗δ(t) = χωϕδ(t; Tδ(M), z∗δ ) = Mδ
χωϕδ(t; Tδ(M), ẑ∗δ )

‖χωϕδ(·; Tδ(M), ẑ∗δ )‖L2((0,Tδ(M))×Ω)
a.e. t ∈ (0, Tδ(M)). (163)

Here, ϕδ(·; Tδ(M), z∗δ ) and ϕδ(·; Tδ(M), ẑ∗δ ) are given by (20) with (δ, k) = (δ, kδ) and Mδ is defined by

Mδ , Nδ(Tδ(M)). (164)

We now prove (10) for an arbitrarily fixed δ (satisfying (157)) by several steps.
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Step 1. To show that

‖y(T (M); y0, u
∗
δ)‖H2(Ω)∩H1

0 (Ω) ≤ ‖y0‖/T (M) + 2
(√
Tδ(M)‖z∗δ‖H1

0 (Ω) + ‖z∗δ‖
)

(165)

One can easily check the following two estimates:

‖y(T (M); y0, u
∗
δ)‖H2(Ω)∩H1

0 (Ω) ≤ ‖e∆T (M)y0‖H2(Ω)∩H1
0 (Ω) + ‖y(T (M); 0, u∗δ)‖H2(Ω)∩H1

0 (Ω);

‖e∆T (M)y0‖H2(Ω)∩H1
0 (Ω) = ‖∆e∆T (M)y0‖ ≤ ‖y0‖/T (M).

From these, we see that to prove (165), it suffices to show that

‖y(T (M); 0, u∗δ)‖H2(Ω)∩H1
0 (Ω) ≤ 2

(√
Tδ(M)‖z∗δ‖H1

0 (Ω) + ‖z∗δ‖
)
. (166)

For this purpose, let k̄ be the integer so that k̄δ < T (M) ≤ (k̄+ 1)δ. Because T (M) ≤ Tδ(M) (see (158))
and Tδ(M) is a multiple of δ (see (6)), we find that Tδ(M) ≥ (k̄ + 1)δ. Since u∗δ is a piece-wise constant
function over (0, Tδ(M)), and because

∆e∆(T (M)−t)fdt = − d

dt
(e∆(T (M)−t)f) for each f ∈ L2(Ω),

one can easily check that

∆y(T (M); 0, u∗δ) = ∆

T (M)∫
k̄δ

e∆(T (M)−t)χωu
∗
δ((k̄ + 1)δ) dt+

k̄∑
j=1

∆

jδ∫
(j−1)δ

e∆(T (M)−t)χωu
∗
δ(jδ) dt

=

k̄∑
j=1

e∆(T (M)−jδ)χω
(
u∗δ((j + 1)δ)− u∗δ(jδ)

)
+ e∆T (M)χωu

∗
δ(δ)− χωu∗δ((k̄ + 1)δ).

This yields that

‖y(T (M); 0, u∗δ)‖H2(Ω)∩H1
0 (Ω) = ‖∆y(T (M); 0, u∗δ)‖

≤
k̄∑
j=1

‖u∗δ((j + 1)δ)− u∗δ(jδ)‖+ ‖u∗δ(δ)‖+ ‖u∗δ((k̄ + 1)δ)‖. (167)

Meanwhile, from the first equality in (163), one can easily verify that when j = 1, . . . , k̄,

‖u∗δ((j + 1)δ)− u∗δ(jδ)‖

=
∥∥∥1

δ

jδ∫
(j−1)δ

χωϕ(s+ δ; Tδ(M), z∗δ ) ds− 1

δ

jδ∫
(j−1)δ

χωϕ(s; Tδ(M), z∗δ ) ds
∥∥∥

=
∥∥∥χω 1

δ

jδ∫
(j−1)δ

s+δ∫
s

∂τϕ(τ ; Tδ(M), z∗δ ) dτds
∥∥∥ ≤ (j+1)δ∫

(j−1)δ

‖∂τϕ(τ ; Tδ(M), z∗δ )‖ dτ.

This, along with (167), (163), (164) and the contractivity of {e∆t}t≥0, yields that
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‖y(T (M); 0, u∗δ)‖H2(Ω)∩H1
0 (Ω) ≤ 2

Tδ(M)∫
0

‖∂τϕ(τ ; Tδ(M), z∗δ )‖ dτ + 2‖z∗δ‖. (168)

Since ‖∂τϕ(·; Tδ(M), z∗δ )‖L2((0,Tδ(M))×Ω) ≤ ‖z∗δ‖H1
0 (Ω) (see (85)), by applying the Hölder inequality to

(168), we obtain (166). This ends the proof of (165).

Step 2. To show that

‖ϕ(·; T (M), z∗δ )− ϕδ(·; Tδ(M), z∗δ )‖L2((0,T (M))×Ω) ≤ ‖z∗δ‖H1
0 (Ω)(|Tδ(M)− T (M)|+ δ) (169)

Observe that

‖ϕ(·; T (M), z∗δ )− ϕδ(·; Tδ(M), z∗δ )‖L2((0,T (M))×Ω)

≤ ‖ϕ(·; T (M), z∗δ )− ϕ(·; Tδ(M), z∗δ )‖L2((0,T (M))×Ω)

+‖ϕ(·; Tδ(M), z∗δ )− ϕδ(·; Tδ(M), z∗δ )‖L2((0,T (M))×Ω)

, I1 + I2.

We first claim that

I1 ≤ ‖z∗δ‖H1
0 (Ω)(Tδ(M)− T (M)). (170)

Write {λj}∞j=1 for the family of all eigenvalues of −∆ with the zero Dirichlet boundary condition so that
λ1 < λ2 ≤ · · ·. Let {ej}∞j=1 be the family of the corresponding normalized eigenvectors. Write

z∗δ =

∞∑
j=1

ajej with {aj}∞j=1 ⊂ R.

From this, it follows that for each t ∈ [0, T (M)],

ϕ(t; T (M), z∗δ ) =

∞∑
j=1

aje
−λj(T (M)−t)ej and ϕ(t; Tδ(M), z∗δ ) =

∞∑
j=1

aje
−λj(Tδ(M)−t)ej .

This yields that

I1 =
∥∥∥ ∞∑
j=1

ajλj(Tδ(M)− T (M))
( 1∫

0

e−sλj(Tδ(M)−T (M)ds
)
e−λj(T (M)−t)ej

∥∥∥
L2((0,T (M))×Ω)

≤ (Tδ(M)− T (M))
( ∞∑
j=1

a2
jλ

2
j

)1/2

= ‖z∗δ‖H1
0 (Ω)(Tδ(M)− T (M)),

which leads to (170).
We next estimate I2. Since Tδ(M) = kδδ (see (154)) and because Tδ(M) ≥ T (M), we see from (20)

that

I2
2 ≤

Tδ(M)∫
0

‖ϕ(·; Tδ(M), z∗δ )− ϕδ(·; Tδ(M), z∗δ )‖2 dt
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=

kδ∑
j=1

jδ∫
(j−1)δ

∥∥∥ϕ(t; Tδ(M), z∗δ )− 1

δ

jδ∫
(j−1)δ

ϕ(s; Tδ(M), z∗δ ) ds
∥∥∥2

dt

≤
kδ∑
j=1

jδ∫
(j−1)δ

 jδ∫
(j−1)δ

‖∂τϕ(τ ; Tδ(M), z∗δ )‖ dτ


2

dt.

By using the Hölder inequality in the above and by (85), we see that

I2 ≤ ‖∂τϕ(·; Tδ(M), z∗δ )‖L2((0,Tδ(M))×Ω)δ ≤ ‖z∗δ‖H1
0 (Ω)δ.

Finally, (169) follows from the above estimates on I1 and I2.

Step 3. To prove that

|T (M)− Tδ(M)|+ |M −Mδ| ≤ 2eC3(1+ 1
T (M)

)(1 + ‖y0‖)δ , C1(M,y0)δ (171)

By (159), we can use Theorem 5.3, with (δ, k) = (δ, kδ) (where kδ is given by (154)), to see that
Nδ(Tδ(M)) ≥ N (Tδ(M)). By (162) and (164), we find that M ≤ Mδ. These, along with (ii) of Theorem
4.1, yield that

0 ≤M −Mδ = N (T (M))−Nδ(Tδ(M)) ≤ N (T (M))−N (Tδ(M)). (172)

Meanwhile, by (158), we can use Theorem 5.2 (with T1 = T (M) and T2 = Tδ(M)) to see that

N (T (M))−N (Tδ(M)) ≤ eC3(Ω,ω)(1+1/T (M))‖y0‖(Tδ(M)− T (M)).

where C3(Ω, ω) is given by (106). The above, along with (172), yields that

|M −Mδ| ≤ eC3(Ω,ω)(1+1/T (M))‖y0‖|Tδ(M)− T (M)|.

Since δ ∈ (0, δ0), the above, along with Theorem 1.3, leads to (171).

Step 4. To show that

‖ẑ∗ − ẑ∗δ‖ ≤ C2(M,y0, r)δ (173)

Define an affiliated control ûδ from R+ to L2(Ω) by

ûδ(t) ,M
χωϕ(t; T (M), ẑ∗δ )

‖χωϕ(·; T (M), ẑ∗δ )‖L2((0,T (M))×Ω)
, t ∈ (0, T (M)); ûδ(t) , 0, t ∈ [T (M),∞). (174)

We divide the rest of the proof of Step 4 by several parts.

Part 4.1. To prove that

〈ẑ∗ − ẑ∗δ , ẑ∗ − ẑ∗δ 〉 ≤ −
1

r

〈
ẑ∗ − ẑ∗δ , y(T (M); y0, ûδ)− y(Tδ(M); y0, u

∗
δ)
〉

(175)

By (161) and (174), one can directly check that

0 ≤ 〈χωϕ(t; T (M), ẑ∗)− χωϕ(t; T (M), ẑ∗δ ), u∗(t, ·)− ûδ(t, ·)
〉

for a.e. t ∈ (0, T (M)).

Hence, we have that
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0≤
〈
χωϕ(·; T (M), ẑ∗)− χωϕ(·; T (M), ẑ∗δ ), u∗ − ûδ

〉
L2((0,T (M))×Ω)

=
〈
ẑ∗ − ẑ∗δ , y(T (M); y0, u

∗)− y(T (M); y0, ûδ)
〉
.

This, along with (69), (72) and (160), yields that

〈ẑ∗ − ẑ∗δ , ẑ∗ − ẑ∗δ 〉 =
〈
ẑ∗ − ẑ∗δ ,−

1

r

(
y(T (M); y0, u

∗)− y(Tδ(M); y0, u
∗
δ)
)〉

≤−1

r

〈
ẑ∗ − ẑ∗δ , y(T (M); y0, ûδ)− y(Tδ(M); y0, u

∗
δ)
〉
,

which leads to (175).

Part 4.2. To show that there exists C21 , C21(Ω) > 0 so that

‖y(T (M); y0, ûδ)− y(Tδ(M); y0, u
∗
δ)‖ ≤C21

[(
1 +

1

T (M)
+
√
T ∗
)
(‖y0‖+ ‖z∗δ‖H1

0 (Ω))

×(Tδ(M)− T (M)) + ‖ûδ − u∗δ‖L2((0,T (M))×Ω)

]
(176)

Three facts are given in order. Fact one: By the Hölder inequality, we find that for some C22 , C22(Ω) > 0,

‖y(T (M); y0, ûδ)− y(T (M); y0, u
∗
δ)‖ =

∥∥ T (M)∫
0

e∆(T (M)−t)χω(ûδ − u∗δ)(t, ·) dt
∥∥

≤
T (M)∫
0

e−λ1(T (M)−t)‖(ûδ − u∗δ)(t, ·)‖ dt ≤ C22‖ûδ − u∗δ‖L2((0,T (M))×Ω); (177)

Fact two: Since ‖u∗δ‖L∞(0,Tδ(M);L2(Ω)) ≤ ‖z∗δ‖ (which follows from (163) and (20)), and because T (M) ≤
Tδ(M) (see (158)), we find that

‖y(T (M); y0, u
∗
δ)− y(Tδ(M); y0, u

∗
δ)‖

≤ ‖y(T (M); y0, u
∗
δ)− e∆(Tδ(M)−T (M))y(T (M); y0, u

∗
δ)‖+

∥∥∥ Tδ(M)∫
T (M)

e∆(Tδ(M)−t)χωu
∗
δ(t, ·) dt

∥∥∥
≤
(
Tδ(M)− T (M)

) [
‖y(T (M); y0, u

∗
δ)‖H2(Ω)∩H1

0 (Ω) + ‖z∗δ‖
]
. (178)

Fact three: By (158), we see that

Tδ(M) < T ∗. (179)

Now, by the triangle inequality, (177), (165), (178), (179) and the Poincaré inequality, we obtain (176)
for some C21 = C21(Ω).

Part 4.3. To show that there exists C23 , C23(Ω) > 1 so that

‖ûδ − u∗δ‖L2((0,T (M))×Ω) ≤ C23

(
1 + ‖z∗δ‖4H1

0 (Ω)

)(
1 +

1

M

)(
|Tδ(M)− T (M)|+ δ + |M −Mδ|

)
(180)

Recall (160) for the definition of ẑ∗δ . In Part 4.3, we simply write respectively ϕ(·) and ϕδ(·) for
ϕ(·; T (M), ẑ∗δ ) and ϕδ(·; Tδ(M), ẑ∗δ ); simply write ‖ · ‖0,T (M), ‖ · ‖0,Tδ(M) and ‖ · ‖T (M),Tδ(M) for ‖ ·
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‖L2((0,T (M))×Ω), ‖ · ‖L2((0,Tδ(M))×Ω) and ‖ · ‖L2((T (M),Tδ(M))×Ω), respectively. From (174) and (163), using
the triangle inequality, we obtain that

‖ûδ − u∗δ‖0,T (M) =
∥∥∥M χωϕ

‖χωϕ‖0,T (M)
−Mδ

χωϕδ
‖χωϕδ‖0,Tδ(M)

∥∥∥
0,T (M)

≤Mδ

∥∥∥ χωϕ

‖χωϕ‖0,T (M)
− χωϕδ
‖χωϕδ‖0,Tδ(M)

∥∥∥
0,T (M)

+ |M −Mδ|. (181)

By direct computations, we find that

χωϕ

‖χωϕ‖0,T (M)
− χωϕδ
‖χωϕδ‖0,Tδ(M)

(182)

=
χωϕ(‖χωϕδ‖0,Tδ(M) − ‖χωϕ‖0,T (M))

‖χωϕ‖0,T (M)‖χωϕδ‖0,Tδ(M)
+

χωϕ− χωϕδ
‖χωϕδ‖0,Tδ(M)

;

∣∣‖χωϕδ‖0,Tδ(M) − ‖χωϕ‖0,T (M)

∣∣
≤

∣∣‖χωϕδ‖20,T (M) − ‖χωϕ‖
2
0,T (M)

∣∣+ ‖χωϕδ‖2T (M),Tδ(M)

‖χωϕδ‖0,Tδ(M) + ‖χωϕ‖0,T (M)

≤ ‖χωϕ− χωϕδ‖0,T (M) +
‖χωϕδ‖2T (M),Tδ(M)

‖χωϕδ‖0,Tδ(M)
. (183)

From (181), (182) and (183), we deduce that

‖ûδ − u∗δ‖0,T (M) ≤
Mδ

‖χωϕδ‖0,Tδ(M)

[
2‖χωϕ− χωϕδ‖0,T (M) +

‖χωϕδ‖2T (M),Tδ(M)

‖χωϕδ‖0,Tδ(M)

]
+|M −Mδ|. (184)

Meanwhile, by (163) and (160), we see that Mδ = ‖z∗δ‖‖χωϕδ‖0,Tδ(M). This, together with (184) and
(160), yields that

‖ûδ − u∗δ‖0,T (M) ≤ ‖z∗δ‖
[
2‖ϕ(·; T (M), z∗δ )− ϕδ(·; Tδ(M), z∗δ )‖0,T (M)

+
‖z∗δ‖
Mδ
‖χωϕδ(·; Tδ(M), z∗δ )‖2T (M),Tδ(M)

]
+ |M −Mδ|. (185)

Since ‖ϕδ(t; Tδ(M), z∗δ )‖ ≤ ‖z∗δ‖ for each t ∈ (0, Tδ(M)) (which follows from (20)), we find from (185) and
(169) that

‖ûδ − u∗δ‖0,T (M) ≤
(

1 + 2‖z∗δ‖H1
0 (Ω)‖z∗δ‖+

‖z∗δ‖4

Mδ

)(
|Tδ(M)− T (M)|+ δ + |M −Mδ|

)
.

At the same time, it follows from (171) and (157) that

Mδ ≥M − 2eC3(1+ 1
T (M)

)(1 + ‖y0‖)δ ≥M/2.

The above two inequalities, along with the Poincaré inequality, yield (180).

Part 4.4. To show (173)
By (176) and (180), we can easily check that
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‖y(T (M); y0, ûδ)− y(Tδ(M); y0, u
∗
δ)‖

≤C21C23

(
1 +

1

T (M)
+
√
T ∗
)(

1 + ‖y0‖+ ‖z∗δ‖H1
0 (Ω) + ‖z∗δ‖4H1

0 (Ω)

)
×
(
1 +

1

M

)
×
(
|Tδ(M)− T (M)|+ |Mδ −M |+ δ

)
. (186)

Meanwhile, by (159), we can use Theorem 5.1 (with (δ, k) = (δ, kδ), where kδ is given by (154)), as well
as (158), to get that

1 + ‖y0‖+ ‖z∗δ‖H1
0 (Ω) + ‖z∗δ‖4H1

0 (Ω) ≤ 4eC1(1+ 1
T (M)

)‖y0‖24r−20, (187)

where C1 = C1(Ω, ω) is given by (85). This, along with (186), leads to that

‖y(T (M); y0, ûδ)− y(Tδ(M); y0, u
∗
δ)‖ ≤ Ĉ3

(
1 +

1

M

)(
|Tδ(M)− T (M)|+ |Mδ −M |+ δ

)
, (188)

where

Ĉ3 , Ĉ3(M,y0, r) , 4C21C23

(
1 +

1

T (M)
+
√
T ∗
)
eC1(1+ 1

T (M)
)‖y0‖24r−20.

Now it follows from (175) that

‖ẑ∗ − ẑ∗δ‖2 ≤
1

2
‖ẑ∗ − ẑ∗δ‖2 +

1

2r2
‖y(T (M); y0, ûδ)− y(Tδ(M); y0, u

∗
δ)‖2.

This, along with (188) and (171), yields (173) with

C2(M,y0, r) ,
1

r

[
Ĉ3(M,y0, r)

(
1 +

1

M

)
(C1(M,y0) + 1)

]
,

which ends the proof of Step 4.

Step 5. To show that

‖u∗ − u∗δ‖L2((0,T (M))×Ω) ≤ C4(M,y0, r)δ (189)

Recall (160) for the definitions of ẑ∗δ and ẑ∗. In Step 5, we simply write ϕ1(·) and ϕ2(·) for ϕ(·; T (M), ẑ∗)
and ϕ(·; T (M), ẑ∗δ ), respectively; simply write ‖ · ‖0,T (M) for ‖ · ‖L2((0,T (M))×Ω). By (161) and (174), we
see that

‖u∗ − ûδ‖0,T (M) ≤M
∥∥∥ χωϕ1

‖χωϕ1‖0,T (M)
− χωϕ2

‖χωϕ2‖0,T (M)

∥∥∥
0,T (M)

≤ 2M

‖χωϕ1‖0,T (M)
‖χωϕ1 − χωϕ2‖0,T (M). (190)

Meanwhile, from (161) and (160), we find that

M = ‖z∗‖‖χωϕ1‖0,T (M).

This, along with (190), yields that

‖u∗ − ûδ‖0,T (M) ≤ 2‖z∗‖‖ϕ1 − ϕ2‖0,T (M) ≤ 2‖z∗‖‖ẑ∗ − ẑ∗δ‖. (191)

By (191), (180) and the triangle inequality, then using (173), we see that
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‖u∗ − u∗δ‖0,T (M) ≤ 2C2(M,y0, r)‖z∗‖δ
+C23(1 + ‖z∗δ‖4H1

0 (Ω))
(
|Tδ(M)− T (M)|+ δ + |M −Mδ|

)
.

From this, (187) and (171), we obtain (189), with

C4(M,y0, r) , (1 + eC1(1+T∗+ 1
T (M)

)‖y0‖24r−20)(8C2 + C23(1 + C1)),

where C1 = C1(M,y0) is given by (171), C2 = C2(M,y0, r) is given by (173) and C23 = C23(Ω) is given
by (180). This ends the proof of Step 5.

In summary, we end the proof of the conclusion (i) in Theorem 1.4.

(ii) Arbitrarily fix M > 0 and η > 0. Let AM,η be given by Theorem 5.4. Then, by Theorem 5.4, we
see that

lim
h→0+

1

h
|AM,η ∩ (0, h)| = η

and that for each δ ∈ AM,η,

M −Nδ(Tδ(M)) ≥ 1

2
λ

3/2
1 r(1− η)δ. (192)

Arbitrarily fix δ ∈ AM,η. Let u∗M and u∗M,δ be the optimal control to (T P)M and the optimal control

optimal with the minimal norm to (T P)Mδ , respectively. (see Theorem 3.1.) Three facts are given in order:
(a) By Theorem 4.1, one can easily check

‖u∗M‖L2((0,T (M))×Ω) = N (T (M)) = M ;

(b) From (iii) of Theorem 3.1, we see that

‖u∗M,δ‖L2((0,Tδ(M))×Ω) = Nδ(Tδ(M));

(c) Since UMδ ⊂ UM , by (2) and (6), we find that T (M) ≤ Tδ(M). Combining the above facts (a)-(c)
with (192), we find that

‖u∗M − u∗M,δ‖L2((0,T (M))×Ω) ≥ ‖u∗M‖L2((0,T (M))×Ω) − ‖u∗M,δ‖L2((0,T (M))×Ω)

≥M −Nδ(Tδ(M)) ≥ 1

2
λ

3/2
1 r(1− η)δ,

which leads to (11). Thus, the conclusion (ii) in Theorem 1.4 is true.
In summary, we end the proof of Theorem 1.4.

2

6.3. The proof of Theorem 1.5

This subsection devotes to the proof of Theorem 1.5. To show (13) in Theorem 1.5, we need the next
lemma which gives a lower bound for the diameter of the subset OM,δ (in L2((0, T (M))× Ω)), which is
defined by (21).

Lemma 6.1 Let M > 0. Then there is δM , δM (y0, r) > 0 so that for each η ∈ (0, 1) and δ ∈
AM,η ∩ (0, δM ) (where AM,η is given by Theorem 5.4),
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diamOM,δ , sup{‖uδ − vδ‖L2((0,T (M))×Ω) : uδ, vδ ∈ OM,δ}

≥ ĈM
√

(1− η)δ for some ĈM , ĈM (y0, r). (193)

Proof. Arbitrarily fix M > 0. Let δ0 > 0 be given by (i) of Theorem 1.3. From (i) and (ii) of Theorem
4.1, we see that 0 < T (M) < T ∗. Thus we can take a positive number δ1 in the following manner:

δ1 , min{δ0, T (M)/2, (T ∗ − T (M))/2}. (194)

Arbitrarily fix η ∈ (0, 1) and δ ∈ AM,η ∩ (0, δ1). From (194) and Theorem 1.3, we see that

2δ < T (M) ≤ Tδ(M) ≤ T (M) + 2δ < T ∗. (195)

Meanwhile, it follows from the second conclusion in (132) in Theorem 5.4 that

Mδ , Nδ(Tδ(M)) ≤M − 1

2
λ

3/2
1 r(1− η)δ. (196)

To show (193), it suffices to find a subset O2
M,δ ⊂ OM,δ so that for some ĈM , CM (y0, r), ĈM

√
(1− η)δ

is a lower bound for the “diamO2
M,δ”. To this end, we first introduce an affiliated subset O1

M,δ ⊂ OM,δ

in the following manner: Let u∗δ be the optimal control with the minimal norm to (T P)Mδ (see (iii) of
Theorem 3.1). Arbitrarily fix v̂δ ∈ L2

δ((0, Tδ(M))× Ω) so that supp v̂δ ⊂ (0, T (M))× Ω, 〈v̂δ, u∗δ〉L2((0,Tδ(M))×Ω) = 0,

‖v̂δ‖L2((0,Tδ(M))×Ω) = 1, 〈y(Tδ(M); 0, u∗δ), y(Tδ(M); 0, v̂δ)〉 ≤ 0.
(197)

(The existence of such v̂δ can be easily verified.) Define O1
M,δ to be the set of all solutions uδ to the

following problem:

uδ = αu∗δ + βv̂δ, α, β ∈ R; ‖uδ‖L2((0,Tδ(M))×Ω) ≤M ; ‖y(Tδ(M); y0, uδ)‖ ≤ r. (198)

From (198), we see that O1
M,δ ⊂ OM,δ.

We next characterize elements in O1
M,δ via studying the problem (198). To this end, we first claim

‖u∗δ‖L2(0,Tδ(M)) = Nδ(Tδ(M)) ,Mδ,

‖y(Tδ(M); y0, u
∗
δ)‖ = r,

〈y(Tδ(M); y0, u
∗
δ), y(Tδ(M); 0, u∗δ)〉 = −rM

2
δ

‖z∗δ‖
,

〈y(Tδ(M); y0, u
∗
δ), y(Tδ(M); 0, v̂δ)〉 = 0,

(199)

where z∗δ denotes the minimizer of (JP )
Tδ(M)
δ . Indeed, the first equality in (199) follows from (iii) of

Theorem 3.1; To show the second one, two facts are given in order. Fact one: From (iii) of Theorem 3.1,
we see that the restriction of u∗δ over (0, Tδ(M)), denoted in the same manner, is an optimal control to

(NP)
Tδ(M)
δ . Fact two: By (195) and the definition of PT∗ (given by (67)), we find that (δ, Tδ(M)/δ) ∈ PT∗ .

By these two facts, we can use (72) in Theorem 4.3 (with (δ, k) = (δ, Tδ(M)/δ)) to obtain the second
equality in (199); To show the third equality in (199), we recall the above two facts. Then we can apply
(ii) in Theorem 4.3 (with (δ, k) = (δ, Tδ(M)/δ)) to get that
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〈y(Tδ(M); y0, u
∗
δ), y(Tδ(M); 0, u∗δ)〉 =

〈
− r z∗δ
‖z∗δ‖

, y(Tδ(M); 0, u∗δ)
〉

=− r

‖z∗δ‖
〈χωϕ(·; Tδ(M), z∗δ ), u∗δ〉L2((0,Tδ(M))×Ω)

=− r

‖z∗δ‖
〈χωϕδ(·; Tδ(M), z∗δ ), u∗δ〉L2((0,Tδ(M))×Ω) = − r

‖z∗δ‖
‖u∗δ‖2L2((0,Tδ(M))×Ω). (200)

(The first equality on the last line of (200) is obtained by the same way as that used to show (82).) Then
the third equality in (199) follows from (200) and the first equality in (199) at once; To show the last
equality in (199), we still recall the above two facts (given in the proof of the second equality in (199)).
Then we can apply (ii) in Theorem 4.3 (with (δ, k) = (δ, Tδ(M)/δ)) to see that

〈y(Tδ(M); y0, u
∗
δ), y(Tδ(M); 0, v̂δ)〉 =

〈
− r z∗δ
‖z∗δ‖

, y(Tδ(M); 0, v̂δ)
〉

=− r

‖z∗δ‖
〈χωϕ(·; Tδ(M), z∗δ ), v̂δ〉L2((0,Tδ(M))×Ω)

=− r

‖z∗δ‖
〈χωϕδ(·; Tδ(M), z∗δ ), v̂δ〉L2((0,Tδ(M))×Ω) = − r

‖z∗δ‖
〈u∗δ , v̂δ〉L2((0,Tδ(M))×Ω). (201)

(The first equality on the last line in (201) is obtained by the same way as that used to show (82).) From
(201) and (197), we are led to the last equality in (199). Hence, (199) has been proved.

With the aid of (199), we can characterize elements uδ of O1
M,δ as follows:

uδ = αu∗δ + βv̂δ, α, β ∈ R,

α2M2
δ + β2 ≤M2,

a2
δβ

2 + 2(α− 1)bδβ ≤ 2(α− 1)
rM2

δ

‖z∗δ‖
− (α− 1)2c2δ ,

(202)

where the pair (aδ, bδ, cδ) is given by
aδ , ‖y(Tδ(M); 0, v̂δ)‖,

bδ , 〈y(Tδ(M); 0, u∗δ), y(Tδ(M); 0, v̂δ)〉,

cδ , ‖y(Tδ(M); 0, u∗δ)‖.

(203)

Indeed, for each uδ = αu∗δ + βv̂δ, with α, β ∈ R, we have that

y(Tδ(M); y0, uδ) = y(Tδ(M); y0, u
∗
δ) + (α− 1)y(Tδ(M); y0, u

∗
δ) + βy(Tδ(M); 0, v̂δ).

Thus, from (199), (197) and (198), we can easily verify that uδ is a solution to the problem (198) if and
only if uδ is a solution to the problem (202).

We now on the position to introduce the desired subset O2
M,δ. Define a number λ̂ by

λ̂ , min

{
rM3

δ

‖z∗δ‖c2δ(M −Mδ)
,

1

2

}
. (204)

(Notice that since δ ∈ AM,η, it follows from (132) in Theorem 5.4 that M > Mδ.) Let O2
M,δ be the set of

solutions uδ to the following problem:
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
uδ = αu∗δ + βv̂δ, α = 1 + λ̂

M −Mδ

Mδ
, β > 0,

β2 ≤M(1− λ̂)(M −Mδ),

a2
δβ

2 ≤ λ̂rMδ(M −Mδ)

‖z∗δ‖
.

(205)

We claim that

O2
M,δ ⊂ O1

M,δ ⊂ OM,δ. (206)

Since the second conclusion in (206) has been proved, we only need to show the first one. Arbitrarily fix

ûδ , α̂u∗δ + β̂v̂δ ∈ O2
M,δ. We will show that (ûδ, α̂, β̂) satisfies (202). Since λ̂ ∈ (0, 1) and M > Mδ (see

(204) and (196)), it follows from (205) that

α̂2M2
δ + β̂2 ≤

(
Mδ + λ̂(M −Mδ)

)2
+M(1− λ̂)(M −Mδ)

=M2 − (1− λ̂)(M −Mδ)
(
M − (1− λ̂)(M −Mδ)

)
≤M2.

Meanwhile, since bδ ≤ 0 (see (203) and (197)), we find from (205) and (204) that

a2
δ β̂

2 + 2(α− 1)bδβ̂ ≤ a2
δ β̂

2 ≤ λ̂rMδ(M −Mδ)

‖z∗δ‖

= (α̂− 1)
rM2

δ

‖z∗δ‖
≤ 2(α̂− 1)

rM2
δ

‖z∗δ‖
− (α̂− 1)2c2δ .

From these, we see that (ûδ, α̂, β̂) verifies (202). Hence, (206) is true. By (206), (205) and (197), we find
that

diamOM,δ ≥ sup{‖uδ − u∗δ‖L2((0,T (M))×Ω) : uδ ∈ O2
M,δ} ≥ β‖v̂δ‖L2((0,T (M))×Ω) = β, (207)

when β satisfies that

0 < β2 ≤ min
{
M(1− λ̂)(M −Mδ),

λ̂rMδ(M −Mδ)

a2
δ‖z∗δ‖

}
.

(Here, we agree that 1
0 ,∞.) Then by (207) and (204), we get that

diamOM,δ ≥ CM,δ min{
√
M −Mδ, 1}, (208)

where CM,δ is defined by

CM,δ , CM,δ(y0, r) , min
{√M

2
,

rM2
δ

aδcδ‖z∗δ‖
,

√
rMδ

2a2
δ‖z∗δ‖

}
. (209)

To get a lower bound of CM,δ w.r.t. δ, we first present the following inequalities (their proofs will be given
at the end of the proof of this lemma):

aδ ≤
1√
2λ1

; cδ ≤
Mδ√
2λ1

; Mδ ≥M − 2eC3(1+ 1
T (M)

)‖y0‖δ; ‖z∗δ‖ ≤ e
C1(1+ 1

T (M)
)‖y0‖4r−3, (210)

where C3 and C1 are given by Theorem 5.2 and (i) of Theorem 5.1, respectively. We next define
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δM , δM (y0, r) , min

{
δ1,

1

4
Me−C3(1+ 1

T (M)
)‖y0‖−1, λ

−3/2
1 r−1

}
, (211)

where δ1 is given by (194). From (210) and (211), we have that

Mδ ≥M/2 for each δ ∈ AM,η ∩ (0, δM ).

This, along with (209) and (210), yields that for each δ ∈ AM,η ∩ (0, δM ),

CM,δ ≥min
{√M

2
,

2λ1rMδ

‖z∗δ‖
,

√
λ1rMδ

‖z∗δ‖

}
≥ min

{√M

2
,
λ1rM

‖z∗δ‖
,

√
λ1rM

2‖z∗δ‖

}
.

By this and the last inequality in (210), we can find C ′M , C ′M (y0, r) > 0 so that CM,δ ≥ C ′M , when
δ ∈ AM,η ∩ (0, δM ). (Hence, C ′M is a lower bound for CM,δ w.r.t. δ.) This, along with (208), (196) and
(211), yields that for each δ ∈ AM,η ∩ (0, δM ),

diamOM,δ ≥ C ′M min
{√1

2
λ

3/2
1 r(1− η)δ, 1

}
=
( 1√

2
C ′Mλ

3/4
1

√
r
)√

(1− η)δ.

By the above and (211), we obtain (193), with ĈM = 1√
2
C ′Mλ

3/4
1

√
r.

Finally, we show (210). By the Hölder inequality, (203) and (197), we find that

aδ ≤
Tδ(M)∫

0

‖e∆(Tδ(M)−t)‖L(L2(Ω),L2(Ω))‖v̂δ(t, ·)‖dt ≤
Tδ(M)∫

0

e−λ1(Tδ(M)−t)‖v̂δ(t, ·)‖ dt ≤ 1/
√

2λ1.

Similarly, from (203) and (199), we can obtain the estimate for cδ in (210). We now show the third
inequality in (210). By (195) and the definition of PT∗ (given by (67)), we have that

0 < T (M) < T ∗, (δ, Tδ(M)/δ) ∈ PT∗ and 0 < Tδ(M)− T (M) < 2δ. (212)

From the first two conclusions in (212), we can apply (ii) of Theorem 4.1 and the first inequality in (123)
in Theorem 5.3 (with (δ, k) = (δ, Tδ(M)/δ)), as well as (196), to get that

M −Mδ = N (T (M))−Nδ(Tδ(M)) ≤ N (T (M))−N (Tδ(M)). (213)

From (213), the second inequality in (106) in Theorem 5.2, with T1 = T (M) and T2 = Tδ(M), (Notice
that Tδ(M) > T (M).) and the last inequality in (212), we can easily derive the last inequality in (210).
Hence, (210) is true. This ends the proof of Lemma 6.1.

2

We are now on the position to prove Theorem 1.5.

Proof of Theorem 1.5. Let M > 0. For each δ > 0, we let u∗ and u∗δ be the optimal control and the
optimal control with the minimal norm to (T P)M and (T P)Mδ respectively (see Theorem 3.1). We will
prove the conclusions (i)-(ii) of Theorem 1.5 one by one.

(i) For each δ > 0, there are only two possibilities: either (155) or (157) holds. In the case when δ
verifies (155), we can obtain (12) by the similar way to that used to show (10). We next consider the case
that δ satisfies (157). Recall (21) for the subset OM,δ (which consists of all optimal controls to (T P)Mδ ).
Then it follows from Definition 1.2 that
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‖u∗δ‖L2((0,Tδ(M))×Ω) ≤ ‖vδ‖L2((0,Tδ(M))×Ω) ≤M for each vδ ∈ OM,δ. (214)

Arbitrarily fix vδ ∈ OM,δ. One can directly check that

λvδ + (1− λ)u∗δ ∈ OM,δ for each λ ∈ (0, 1).

From this and (214), we find that for each λ ∈ (0, 1),

‖u∗δ‖2L2((0,Tδ(M))×Ω) ≤ ‖λ(vδ − u∗δ) + u∗δ‖2L2((0,Tδ(M))×Ω)

= ‖u∗δ‖2L2((0,Tδ(M))×Ω) + 2λ〈vδ − u∗δ , u∗δ〉L2((0,Tδ(M))×Ω)

+λ2‖vδ − u∗δ‖2L2((0,Tδ(M))×Ω).

Dividing the above by λ and then sending λ→∞, we obtain that

〈u∗δ , u∗δ〉L2((0,Tδ(M))×Ω) ≤ 〈vδ, u∗δ〉L2((0,Tδ(M))×Ω).

From this, (214) and (163) (as well as (164)), one can directly check that

‖vδ − u∗δ‖2L2((0,Tδ(M))×Ω) ≤ 2M(M −Nδ(Tδ(M))) , 2M(M −Mδ). (215)

(Here, we used the fact that M ≥ Nδ(Tδ(M)), which follows from (iii) of Theorem 3.1.) Hence, from
(189), (215) and (171), we find that

‖u∗ − uδ‖L2((0,T (M))×Ω) ≤ ‖u∗ − u∗δ‖L2((0,T (M))×Ω) + ‖u∗δ − uδ‖L2((0,T (M))×Ω)

≤
[
C4(M,y0, r) + 2MC1(M,y0)

]
δ , C5(M,y0, r)δ,

where C1(M,y0) and C4(M,y0, r) are respectively given by (171) and (189). This ends the proof of the
conclusion (i) of Theorem 1.5.

(ii) We mainly use Lemma 6.1 to prove (13). Arbitrarily fix η ∈ (0, 1). Let AM,η be given by Theorem

5.4. Let ĈM and δM be given by Lemma 6.1. Arbitrarily fix δ ∈ AM,η ∩ (0, δM ). We claim that there is
ûM,δ ∈ OM,δ so that

‖ûM,δ − u∗δ‖L2((0,T (M))×Ω) ≥ ĈM
√

(1− η)δ/3. (216)

By contradiction, we suppose that it were not true. Then we would find that

‖vδ − u∗δ‖L2((0,T (M))×Ω) ≤ ĈM
√

(1− η)δ/3, ∀ vδ ∈ OM,δ.

This, along with the definition of OM,δ (see (193)), implies that

diamOM,δ ≤ sup{‖v1
δ − v2

δ‖L2((0,T (M))×Ω) : v1
δ , v

2
δ ∈ OM,δ}

≤ sup{2‖vδ − u∗δ‖L2((0,T (M))×Ω) : vδ ∈ OM,δ}

≤ 2ĈM
√

(1− η)δ/3,

which contradicts Lemma 6.1. Thus, (216) is true.
Now, we arbitrarily fix ûM,δ ∈ OM,δ satisfying (216). Then by (216) and by (i) of Theorem 1.4, there

is C(M,y0, r) > 0 so that

‖ûM,δ − u∗‖L2((0,T (M))×Ω) ≥ ‖ûM,δ − u∗δ‖L2((0,T (M))×Ω) − ‖u∗δ − u∗‖L2((0,T (M))×Ω)

≥ ĈM
√

(1− η)δ/3− C(M,y0, r)δ. (217)

Write
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δM,η , min
{
δM ,

(
ĈM/(6C(M,y0, r))

)2
(1− η)

}
; ÂM,η , AM,η ∩ (0, δM,η). (218)

Then, one can easily check that

lim
h→0+

1

h
|ÂM,η ∩ (0, h)| = η.

From (217), and (218), one can easily verify that

‖ûM,δ − u∗‖L2((0,T (M))×Ω) ≥ ĈM
√

(1− η)δ/6 for each δ ∈ ÂM,η,

which leads to (13), with CM , ĈM/6. This ends the proof of Theorem 1.5.
2

6.4. Further discussions on the main results

From (ii) of Theorem 1.3, we see that when δ ∈ AM,η, Tδ(M)− T (M) has a lower bound (1− η)δ. The
next Theorem 6.2 tells us that when δ /∈ AM,η, (1− η)δ will not be a lower bound for Tδ(M)− T (M).

Theorem 6.2 Let M > 0. Then there is k0 ∈ N+ and {δk}∞k=k0
⊂ R+, with limk→∞ δk = 0, so that

when k ≥ k0,

Tδk(M)− T (M) = CMδ
2
k for some CM , CM (y0, r). (219)

Proof. Arbitrarily fix η ∈ (0, 1). Let

k̂0 , 4aT (M), with a , a(M,y0, r) , 2λ
−3/2
1 eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−12. (220)

We define a sequence {δk}∞k=k0
of R+ in the following manner:

δk ,
2T (M)

(k + 1) +
√

(k + 1)2 − 4aT (M)
, k ≥ k̂0. (221)

One can easily check that

δk ∈ (0, 1/a) and (k + 1)δk − aδ2
k = T (M) for all k ≥ k̂0. (222)

We now claim that there exists k0 ≥ k̂0 so that

M ≥ Nδk((k + 1)δk) +
1

2
λ

3/2
1 raδ2

k for all k ≥ k0. (223)

In fact, by (221), we can choose k̂1 ≥ k0 large enough so that

0 < δk < min{T (M)/2, (T ∗ − T (M))/2}, when k ≥ k̂1. (224)

Arbitrarily fix k ≥ k̂1. Since T (M) < T ∗ (see (iii) in Theorem 4.1), from (224) and (222), we can easily
check that

2δk < T (M) < (k + 1)δk < T (M) + δk < (T ∗ + T (M))/2 < T ∗.

These, along with the definition of PT∗ (given by (67)), yield that

47



2δk < T (M) < (k + 1)δk < T ∗ and (δk, k + 1) ∈ PT∗ . (225)

By (225), we can apply Theorem 5.3 (see the second inequality in (123), where (δ, k) is replaced by
(δ, k + 1)) and Theorem 5.2 (see the first inequality in (106), with T1 = T (M) and T2 = (k + 1)δk) to
obtain that

Nδk((k + 1)δk)≤N ((k + 1)δk) + e
C4

[
1+T∗+ 1

(k+1)δk
+ 1
T∗−(k+1)δk

]
‖y0‖12r−11δ2

k

≤N (T (M))− λ3/2
1 r

(
(k + 1)δk − T (M)

)
+

e
C4

[
1+T∗+ 1

(k+1)δk
+ 1
T∗−(k+1)δk

]
‖y0‖12r−11δ2

k, (226)

where C4 , C4(Ω, ω) is given by (123). Meanwhile, by (222) and (224), we find that

(k + 1)δk − T (M) = aδ2
k and T (M) < (k + 1)δk < (T ∗ + T (M))/2.

These, along with (226) and (ii) of Theorem 4.1, yield that

Nδk((k + 1)δk)≤N (T (M))− λ3/2
1 raδ2

k + eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−11δ2

k

=M − λ3/2
1 raδ2

k + eC4

[
1+T∗+ 1

T (M)
+ 2
T∗−T (M)

]
‖y0‖12r−11δ2

k.

This, together with (220), leads to (223), with k0 = k̂1.

Next, we arbitrarily fix k ≥ k0 , k̂1. Let uδk be an admissible control to (NP)
(k+1)δk
δk

. Let ũδk be the

zero extension of uδk over R+ ×Ω. Then by (223), one can easily check that ũδk is an admissible control
(to (T P)Mδk ), which drives the solution to Br(0) at time (k + 1)δk. This, along with the optimality of
Tδ(M), yields that

Tδk(M) ≤ (k + 1)δk. (227)

Meanwhile, Since UMδk ⊂ U
M , we find from (2) and (6) that T (M) ≤ Tδk(M). From this and (222), we

get that

Tδk(M) ≥ kδk + δk(1− aδk) > kδk. (228)

Since Tδk(M) is a multiple of δk (see (7)), from (227) and (228), we obtain that

Tδk(M) = (k + 1)δk.

This, along with (222) and (220), yields (219), with CM = a(M,y0, r) and with k0 given by (223). Thus,
we end the proof of Theorem 6.2.

2

Remark 6.3 (i) The above theorem implies that the following conclusion is not true: For each M > 0,
there exists δ1 > 0 and C > 0 so that

|Tδ(M)− T (M)| ≥ Cδ for each δ ∈ (0, δ1).

(ii) We think of that the similar result to that in Theorem 1.3 can be obtained for optimal controls. But
it seems for us that the corresponding proof will be more complicated.
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7. Appendix

The next lemma is a copy of [36, Lemma 5.1] without proof.

Lemma 7.1 ([36], Lemma 5.1) Let K be either R or C. Let X, Y and Z be three Banach spaces over
K, with their dual spaces X∗, Y ∗ and Z∗. Let R ∈ L(Z,X) and O ∈ L(Z, Y ). Then the following two
propositions are equivalent:
(i) There exists Ĉ0 > 0 and ε̂0 > 0 so that for each z ∈ Z,

‖Rz‖2X ≤ Ĉ0‖Oz‖2Y + ε̂0‖z‖2Z . (229)

(ii) There is C0 > 0 and ε0 > 0 so that for each x∗ ∈ X∗, there is y∗ ∈ Y ∗ satisfying that

1

C0
‖y∗‖2Y ∗ +

1

ε0
‖R∗x∗ −O∗y∗‖2Z∗ ≤ ‖x∗‖2X∗ . (230)

Furthermore, when one of the above two propositions holds, the pairs (C0, ε0) and (Ĉ0, ε̂0) can be chosen
to be the same.
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[26] F. Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 43 (1990) 127–136.
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