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Abstract

A Berry-Esseen bound is obtained for self-normalized martingales under the assumption of finite
moments. The bound coincides with the classical Berry-Esseen bound for standardized mar-
tingales. An example is given to show the optimality of the bound. Applications to Student’s
statistic and autoregressive process are also discussed.
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1. Introduction

Let (Xi)i≥1 be a sequence of independent non-degenerate real-valued random variables with
zero means, and let

Sn =
n∑
i=1

Xi and V 2
n =

n∑
i=1

X2
i

be the partial sum and the partial quadratic sum, respectively. The self-normalized sum is
defined as Sn/Vn. The study of the asymptotic behavior of self-normalized sums has a long
history. When (Xi)i≥1 are i.i.d. in the domain of normal and stable law, Logan et al. [11]
obtained the weak convergence for the self-normalized sum, while Giné et al. [5] proved that
Sn/Vn is asymptotically normal if and only if X1 belongs to the domain of attraction of a
normal law. Under the same necessary and sufficient condition, Csörgő et al. [3] proved a
self-normalized type Donsker’s theorem. For general independent random variables with finite
(2 + δ)th moments, where 0 < δ ≤ 1, Bentkus, Bloznelis and Götze [2] (see also Bentkus and
Götze [1] for i.i.d. case) have obtained the following Berry-Esseen bound : If E|Xi|2+δ <∞ for
δ ∈ (0, 1], then these exists an absolute constant C such that

sup
x

∣∣∣P(Sn/Vn ≤ x)− Φ(x)
∣∣∣ ≤ C B−2−δn

n∑
i=1

E|Xi|2+δ,
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where B2
n =

∑n
i=1EX

2
i , and Φ (x) is the standard normal distribution function. It is worth

noting that the last bound coincides with the classical Berry-Esseen bound for standardized
partial sums Sn/Bn and it is the best possible. For the related error of P(Sn/Vn ≥ x) to 1−Φ(x),
we refer to Shao [12], Jing, Shao and Wang [9]. In these papers, self-normalized Cramér type
moderate deviation theorems have been established. We also refer to de la Peña, Lai and
Shao [4], Shao and Wang [13] and Shao and Zhou [14] for surveys on recent developments on
self-normalized limit theory.

Despite the fact that the case for self-normalized sums of independent random variables is
well studied, we are not aware of Berry-Esseen bounds for self-normalized martingales in the
literature. The main purpose of this paper is to fill this gap.

We first recall some Berry-Esseen bounds for standardized martingale difference sequence.
Let (Xi,Fi)i=0,...,n be a finite sequence of martingale differences defined on a probability space
(Ω,F ,P), where X0 = 0 and {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ-fields. Set

S0 = 0, Sk =
k∑
i=1

Xi, k = 1, ..., n. (1)

Then S = (Sk,Fk)k=0,...,n is a martingale. Let [S] and 〈S〉 be, respectively, the squared variance
and the conditional variance of the martingale S, that is

[S]0 = 0, [S]k =
k∑
i=1

X2
i

and

〈S〉0 = 0, 〈S〉k =
k∑
i=1

E[X2
i |Fi−1], k = 1, ..., n.

Suppose that E|Xi|2p <∞ for some p > 1 and all i = 1, ..., n. Define

Nn =
n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p. (2)

When p ∈ (1, 2], Heyde and Brown [8] (see also Theorem 3.10 of Hall and Heyde [7]) proved
that there exits a constant Cp depending only on p such that

sup
x∈R

∣∣∣P(Sn ≤ x)− Φ (x)
∣∣∣ ≤ CpN

1/(2p+1)
n . (3)

Later, Haeusler [6] gave an extension of (3) to all p ∈ (1,∞). Moreover, Haeusler also gave an
example to justify that his bound is asymptotically the best possible. It is remarked that the
(Xi)1≤i≤n is standardized, that is,

∑n
i=1EX

2
i is close to 1.
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In this paper, we prove that the Berry-Esseen bound (3) also holds for self-normalized
martingales Sn/

√
[S]n and normalized martingales Sn/

√
〈S〉n. Moreover, we also justify the

optimality of our bounds. Applications to Student’s statistic and autoregressive process are
discussed.

The paper is organized as follows. Our main results are stated and discussed in Section 2.
The applications are given in Section 3. Proofs of theorems are deferred to Section 4.

2. Main results

The following theorem gives a counterpart of Haeusler’s result [6] for self-normalized mar-
tingales.

Theorem 2.1. Suppose that E|Xi|2p <∞ for some p > 1 and all i = 1, ..., n. Then there exits
a constant Cp depending only on p such that

sup
x∈R

∣∣∣P( Sn√
[S]n

≤ x
)
− Φ (x)

∣∣∣ ≤ CpN
1/(2p+1)
n , (4)

where Nn is defined by (2). Moreover, there exit a sequence of martingale differences (Xi,Fi)i=0,...,n

and a positive constant cp depending only on p such that

sup
x∈R

∣∣∣P( Sn√
[S]n

≤ x
)
− Φ (x)

∣∣∣N−1/(2p+1)
n ≥ cp. (5)

Clearly, inequality (5) shows that the bound (4) is asymptotically the best possible.
For a stationary martingale difference sequence, the term

∑n
i=1E|Xi|2p is of order n1−p.

Then inequality (4) implies the following corollary.

Corollary 2.1. Let (Xi,Fi)i≥1 be a stationary martingale difference sequence. Suppose that
E|X1|2p <∞ for some p > 1. Then there exits a constant cp, which does not depend on n, such
that

sup
x∈R

∣∣∣P( Sn√
[S]n

≤ x
)
− Φ (x)

∣∣∣ ≤ cp

(
n1−p + E|〈S〉n − 1|p

)1/(2p+1)

. (6)

The next theorem gives a Berry-Esseen bound for normalized martingales Sn/
√
〈S〉n.

Theorem 2.2. Under the assumptions of Theorem 2.1, the inequalities (4) and (5) hold when
Sn/
√

[S]n is replaced by Sn/
√
〈S〉n.

For a stationary martingale difference sequence, the following result is a consequence of the
last theorem.

Corollary 2.2. Assume the conditions of Corollary 2.1. Inequality (6) holds when Sn/
√

[S]n
is replaced by Sn/

√
〈S〉n.
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3. Applications

3.1. Application to Student’s t-statistic

The study of self-normalized partial sums originates from Student’s t-statistic. The Studen-
t’s t-statistic Tn is defined by

Tn =
√
nXn/σ̂,

where

Xn =
Sn
n

and σ̂2 =
n∑
i=1

(Xi −Xn)2

n− 1
.

It is known that for all x ≥ 0,

P
(
Tn > x

)
= P

(
Sn√
[S]n

> x
( n

n+ x2 − 1

)1/2)
.

When (Xi)i≥1 is a sequence of i.i.d. random variables, Bentkus and Götze [1] proved that if
E|Xi|2+δ <∞ for all i = 1, ..., n and some δ ∈ (0, 1], then

sup
x∈R

∣∣∣P(Tn ≤ x)− Φ(x)
∣∣∣ = O

(
n−δ/2

)
. (7)

For martingales, we have the following analogue.

Corollary 3.1. Let (Xi,Fi)i≥1 be a stationary martingale difference sequence. Suppose that
E|X1|2p <∞ for some p > 1. Then there exits a constant Cp, which does not depend on n, such

that (6) holds when P(Sn/
√

[S]n ≤ x) is replaced by P(Tn ≤ x).

3.2. Application to autoregressive process

Consider the autoregressive process given by

Yn+1 = θYn + εn+1, n ≥ 0,

where Yn and εn represent the observation and the driven noise, respectively. The parameter
θ is unknown and needs to be estimated at stage n from the data Yi, i ≤ n. For sake of
simplicity, we assume that Y0 = 0. We also assume that (εn)n≥0 is a stationary martingale
difference sequence with E[ε2i |ε1, ..., εi−1] = σ2 a.s. for a positive constant σ. We can estimate
the unknown parameter θ by the least-squares estimator given by

θ̂n =

∑n
i=1 YiYi+1∑n
i=1 Y

2
i

.

It is well known that (θ̂n− θ)
√

Σn
i=1Y

2
i converges in distribution to a normal law, see Theorem

3 of Lai and Wei [10]. By Theorem 2.2, we have the following Berry-Esseen bound for the

least-squares estimator θ̂n.
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Theorem 3.1. Suppose that E|ε1|2p <∞ for some p > 1. If |θ| < 1, then

sup
x∈R

∣∣∣P((θ̂n − θ)
√

Σn
i=1Y

2
i ≤ xσ

)
− Φ (x)

∣∣∣
= O

(
n1−p + n−pE

∣∣∣ n∑
i=1

(Y 2
i − EY 2

i )
∣∣∣p)1/(2p+1)

, (8)

where Yn =
∑n

i=1 θ
n−iεi.

4. Proofs of theorems

4.1. Proof of Theorem 2.1

We assume that Nn ≤ 1. Otherwise, (4) is trivial.
Firstly, we give a lower bound for P(Sn ≤ x

√
[S]n) − Φ(x), x ≤ 0. Let εn ∈ (0, 1/2] be a

positive number, whose exact value will be chosen later. It is easy to see that for x ≤ 0,

P(Sn ≤ x
√

[S]n)− Φ(x) ≥ P(Sn ≤ x
√

[S]n, [S]n < 1 + εn)− Φ(x)

≥ P(Sn ≤ x
√

1 + εn, [S]n < 1 + εn)− Φ(x)

≥ P(Sn ≤ x
√

1 + εn)−P([S]n ≥ 1 + εn)− Φ(x)

= I1 + I2 − I3, (9)

where

I1 = P(Sn ≤ x
√

1 + εn)− Φ(x
√

1 + εn),

I2 = Φ(x
√

1 + εn)− Φ(x),

I3 = P([S]n ≥ 1 + εn).

Next, we estimate I1, I2 and I3. By Haeusler’s inequality [6] (see also (3) when p ∈ (1, 2]), we
get the following estimation for I1 :

I1 ≥ −Cp,1
( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

. (10)

By one-term Taylor’s expansion, we have the following estimation for I2 :

I2 ≥ −c1e−x
2/2|x|(

√
1 + εn − 1)

≥ −c2 εn. (11)
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For I3, by Markov’s inequality, it follows that

I3 = P([S]n − 〈S〉n + 〈S〉n − 1 ≥ εn)

≤ P
(

[S]n − 〈S〉n ≥
εn
2

)
+ P

(
〈S〉n − 1 ≥ εn

2

)
≤ c3ε

−p
n

(
E|[S]n − 〈S〉n|p + E|〈S〉n − 1|p

)
. (12)

We distinguish two cases to estimate I3. Notice that ([S]i−〈S〉i,Fi)i=0,...,n is also a martingale.
Case 1 : If p ∈ (1, 2], by the inequality of von Bahr-Esseen [15], it follows that

E|[S]n − 〈S〉n|p ≤ c4

n∑
i=1

E|X2
i − E[X2

i |Fi−1]|p

≤ 2c4

n∑
i=1

E[|Xi|2p + |E[X2
i |Fi−1]|p ]

≤ c5

n∑
i=1

E|Xi|2p. (13)

Returning to (12), we have

I3 ≤ c6 ε
−p
n

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)
. (14)

Case 2 : If p > 2, by Rosenthal’s inequality (cf. Theorem 2.12 of Hall and Heyde [7]), we
have

E|[S]n − 〈S〉n|p ≤ Cp,2

(
E
( n∑
i=1

E[X4
i |Fi−1]

)p/2
+

n∑
i=1

E|Xi|2p
)
. (15)

Noting that X4
i = (X2

i )(p−2)/(p−1)(|Xi|2p)1/(p−1) for p > 2, we have by Hölder’s inequality

E[X4
i |Fi−1] ≤

(
E[|Xi|2p|Fi−1]

)1/(p−1)(
E[X2

i |Fi−1]
)(p−2)/(p−1)

,

and hence

n∑
i=1

E[X4
i |Fi−1] ≤

n∑
i=1

(
E[|Xi|2p|Fi−1]

)1/(p−1)(
E[X2

i |Fi−1]
)(p−2)/(p−1)

≤
( n∑
i=1

E[|Xi|2p|Fi−1]
)1/(p−1)(

〈S〉n
)(p−2)/(p−1)

.
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By the inequality
(a+ b)q ≤ 2q(aq + bq), a, b ≥ 0 and q > 0,

and the fact that (p2 − 2p)/(2p− 2) ≤ p, it follows that for p > 2,( n∑
i=1

E[X4
i |Fi−1]

)p/2
≤

( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)(

〈S〉n
)(p2−2p)/(2p−2)

(16)

≤ 2p
( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)(

1 + |〈S〉n − 1|(p2−2p)/(2p−2)
)

≤ 2p
( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)

+ 2p
( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)

|〈S〉n − 1|p(p−2)/(2p−2).

As to the second term on the r.h.s. of the last inequality, we use the inequality

xay1−a ≤ x+ y, x, y ≥ 0 and a ∈ [0, 1],

and hence ( n∑
i=1

E[X4
i |Fi−1]

)p/2
≤ 2p

( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)

+ 2p
( n∑
i=1

E[|Xi|2p|Fi−1] + |〈S〉n − 1|p
)
.

Thus,

E
( n∑
i=1

E[X4
i |Fi−1]

)p/2
≤ 2p

[
E
( n∑
i=1

E[|Xi|2p|Fi−1]
)p/(2p−2)

+
n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
]

≤ 2p
[( n∑

i=1

E|Xi|2p
)p/(2p−2)

+
n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
]
. (17)

Returning to (15), we get for p > 2,

E|[S]n − 〈S〉n|p ≤ Cp,3

(( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)
.
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From (12) and the last inequality, we obtain for p > 2,

I3 ≤ Cp,4 ε
−p
n

(( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)
. (18)

By the inequalities (14) and (18), we always have for p > 1,

I3 ≤ Cp,5 ε
−p
n

( n∑
i=1

E|Xi|2p +
( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)
. (19)

Combining (9), (10), (11) and (19) together, we deduce that for p > 1,

P(Sn ≤ x
√

[S]n)− Φ(x)

≥ −Cp,1
( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

− c2 εn

−Cp,5 ε−pn
( n∑

i=1

E|Xi|2p +
( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)
.

Taking

εn =

( n∑
i=1

E|Xi|2p +
( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)1/(p+1)

, (20)

we obtain for x ≤ 0 and p > 1,

P(Sn ≤ x
√

[S]n)− Φ(x)

≥ −Cp,1
( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

−Cp,6
( n∑

i=1

E|Xi|2p +
( n∑
i=1

E|Xi|2p
)p/(2p−2)

+ E|〈S〉n − 1|p
)1/(p+1)

≥ −Cp,7
( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

, (21)

where the last line follows from the fact that p/((2p− 2)(p+ 1)) ≥ 1/(2p+ 1) and Nn ≤ 1.
Secondly, we give an upper bound for P(Sn ≤ x

√
[S]n)−Φ(x), x ≤ 0. It is obvious that for

x ≤ 0,

P(Sn ≤ x
√

[S]n)− Φ(x)
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≤ P(Sn ≤ x
√

[S]n, [S]n > 1− εn)− Φ(x)

+P(Sn ≤ x
√

[S]n, [S]n ≤ 1− εn)

≤ P(Sn ≤ x
√

1− εn, [S]n > 1− εn)− Φ(x) + P([S]n ≤ 1− εn)

≤ P(Sn ≤ x
√

1− εn)− Φ(x
√

1− εn) + Φ(x
√

1− εn)− Φ(x)

+P([S]n ≤ 1− εn)

= I4 + I5 + I6.

Following the same lines as in the proof of (21), we get for x ≤ 0 and p > 1,

P(Sn ≤ x
√

[S]n)− Φ(x) ≤ Cp,8

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

. (22)

Combining (21) and (22) together, we get for p > 1,

sup
x≤0

∣∣∣P(Sn ≤ x
√

[S]n)− Φ(x)
∣∣∣ ≤ Cp,8

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

. (23)

Notice that (−Sk,Fk)k=0,...,n is also a martingale. Applying the last inequality to (−Sk,Fk)k=0,...,n,
we get

sup
x>0

∣∣∣P(Sn ≤ x
√

[S]n)− Φ(x)
∣∣∣

= sup
x>0

∣∣∣P(Sn ≤ x
√

[S]n)− 1 + 1− Φ(x)
∣∣∣

= sup
x>0

∣∣∣Φ(−x)−P(−Sn < −x
√

[S]n)
∣∣∣

≤ Cp,9

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

. (24)

Combining the inequalities (23) and (24) together, we obtain

sup
x∈R

∣∣∣P(Sn ≤ x
√

[S]n)− Φ(x)
∣∣∣ ≤ Cp,10

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

, (25)

which gives the desired inequality (4).
Next we give a proof of (5). We follow the example of Haeusler [6]. Let (αn)n≥1 be a

sequence of positive numbers such that αn → 0 as n→∞. Define function fn : R→ [0, ∞) as
follows

fn(x) =

{
x−1, if 1

2

√
αn ≤ x <∞,

0, otherwise.
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Furthermore, let X1, ..., Xn−1 be independent and normally distributed random variables with
mean 0 and variance 1/(n − 1). Denote νx the one-point mass concentration at x. Define the
random variable Xn such that its conditional distribution, given X1, ..., Xn−1, is

P(Xn ∈ ·|Sn−1 = x) =
1

2
ν−αnfn(x)(·) +

1

2
ναnfn(x)(·),

where Sn−1 =
∑n−1

i=1 Xi. Denote Fi the natural filtration of X1, ..., Xn, that is F0 being the
trivial σ−field and Fi = σ{X1, ..., Xi}, i = 1, ..., n. Clearly, (Xi,Fi)i=0,...,n is a finite sequence of
martingale differences. Moreover, it holds

n−1∑
i=1

E|Xi|2p =
n− 1

(n− 1)p
E|N (0, 1)|2p ∼ Cp,11n

1−p

and

E|Xn|2p =

∫ ∞
−∞

∫ ∞
−∞
|y|2pP(Xn ∈ dy|N (0, 1) = x)P(N (0, 1) ∈ dx)

=
1√
2π

∫ ∞
1
2

√
αn

∣∣∣αn
x

∣∣∣2pe− 1
2
x2dx

∼ Cp,12 α
p+ 1

2
n (26)

for some constants 0 < Cp,11, Cp,12 <∞, whereN (0, 1) is a standard random variable. Similarly,
we have

n−1∑
i=1

E[X2
i |Fi−1] =

n−1∑
i=1

EX2
i = 1

and

E|〈S〉n − 1|p = E|E[X2
n|Fn−1]|

p

=

∫ ∞
−∞

∣∣∣ ∫ ∞
−∞

y2P(Xn ∈ dy|N (0, 1) = x)
∣∣∣pP(N (0, 1) ∈ dx)

=
1√
2π

∫ ∞
1
2

√
αn

∣∣∣αn
x

∣∣∣2pe− 1
2
x2dx

∼ Cp,12 α
p+ 1

2
n . (27)

Thus
Nn ∼ Cp α

p+ 1
2

n ,
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where Cp is a positive constant depending only on p. On the other hand, we have

P
( Sn√

[S]n
≤ 0
)

= P
(
Xn + Sn−1 ≤ 0

)
=

∫ ∞
−∞

P(Xn ≤ −x|N (0, 1) = x)P(N (0, 1) ∈ dx)

=

∫ 1
2

√
αn

−∞
P(Xn ≤ −x|N (0, 1) = x)P(N (0, 1) ∈ dx)

+

∫ ∞
1
2

√
αn

P(Xn ≤ −x|N (0, 1) = x)P(N (0, 1) ∈ dx)

=
1√
2π

∫ 0

−∞
e−

1
2
x2dx+

1√
2π

∫ √αn

1
2

√
αn

1

2
e−

1
2
x2dx

= Φ(0) +
1

4
√

2π

√
αn

(
1 + o(1)

)
.

Hence, we deduce that

sup
x∈R

∣∣∣P( Sn√
[S]n

≤ x
)
− Φ (x)

∣∣∣N−1/(2p+1)
n

≥
∣∣∣P( Sn√

[S]n
≤ 0
)
− Φ (0)

∣∣∣ (Cp αp+ 1
2

n )−1/(2p+1)
(

1 + o(1)
)

=
1

4
√

2π

√
αn (Cp α

p+ 1
2

n )−1/(2p+1)
(

1 + o(1)
)

∼ 1

4
√

2π
(Cp )−1/(2p+1).

This completes the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2

First, we give a lower bound for P(Sn ≤ x
√
〈S〉n) − Φ(x), x ≤ 0. Let εn ∈ (0, 1/2] be a

positive number, whose exact value will be chosen later. It is easy to see that for x ≤ 0,

P(Sn ≤ x
√
〈S〉n)− Φ(x) ≥ P(Sn ≤ x

√
〈S〉n, 〈S〉n < 1 + εn)− Φ(x)

≥ P(Sn ≤ x
√

1 + εn, 〈S〉n < 1 + εn)− Φ(x)

≥ P(Sn ≤ x
√

1 + εn)−P(〈S〉n ≥ 1 + εn)− Φ(x)

= I1 + I2 − I7,

where

I7 = P(〈S〉n ≥ 1 + εn).
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For I7, by Markov’s inequality, it follows that

I7 ≤ ε−pn E|〈S〉n − 1|p. (28)

Combining the estimations (10), (11) and (28) together, we have for p > 1,

P(Sn ≤ x
√

[S]n)− Φ(x)

≥ −Cp,1
( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

− c2 εn − ε−pn E|〈S〉n − 1|p.

Next we carry out an argument as the proof of Theorem 2.1 with

εn =
(
E|〈S〉n − 1|p

)1/(p+1)

, (29)

what we obtain is

sup
x∈R

∣∣∣P( Sn√
〈S〉n

≤ x
)
− Φ (x)

∣∣∣ ≤ Cp,2

( n∑
i=1

E|Xi|2p + E|〈S〉n − 1|p
)1/(2p+1)

, (30)

that is inequality (4) holds when Sn/
√

[S]n is replaced by Sn/
√
〈S〉n. The proof of optimality

is similar to the proof of (5). This completes the proof of Theorem 2.2.

4.3. Proof of Theorem 3.1

The proof of theorem is based on Theorem 2.2. It is easy to see that

1

σ
(θ̂n − θ)

√
Σn
i=1Y

2
i =

∑n
i=1 Yiεi+1

σ
√∑n

i=1 Y
2
i

.

Notice that Yn =
∑n

i=1 θ
n−iεi. Set

Xi =
Yiεi+1

σ
√∑n

i=1EY
2
i

and Fi = σ{εk, 1 ≤ k ≤ i+ 1}.

Then it is easy to see that (Xi,Fi)i=0,...,n is a sequence of martingale differences, and that

1

σ
(θ̂n − θ)

√
Σn
i=1Y

2
i =

Sn√
〈S〉n

.

Moreover, we have

EY 2
n =

n∑
i=1

θ2(n−i)σ2 =
1− θ2n

1− θ2
σ2

12



and
n∑
i=1

EY 2
i =

n∑
i=1

1− θ2 i

1− θ2
σ2.

By Rosenthal’s inequality, we also have

E|Yn|2p ≤ Cp

(
(EY 2

n )p +
n∑
i=1

E|θn−iεi|2p
)

≤ Cp

((1− θ2n

1− θ2
)p
σ2p +

1− |θ|2p n

1− |θ|2p
E|ε1|2p

)
and

n∑
i=1

E|Yi|2p ≤ Cp

n∑
i=1

((1− θ2 i

1− θ2
)p
σ2p +

1− |θ|2p i

1− |θ|2p
E|ε1|2p

)
.

Thus∑n
i=1E|Xi|2p

(
∑n

i=1EX
2
i )p
≤ Cp

n∑
i=1

((1− θ2 i

1− θ2
)p
σ2p +

1− |θ|2p i

1− |θ|2p
E|ε1|2p

)/( n∑
i=1

1− θ2 i

1− θ2
σ2
)p
. (31)

If |θ| < 1, inequality (31) implies that∑n
i=1E|Xi|2p

(
∑n

i=1 EX
2
i )p

≤ Cp

n∑
i=1

(
σ2p

(1− θ2)p
+

E|ε1|2p

1− |θ|2p

)/( n∑
i=1

σ2
)p

≤ Cp

(
1

(1− θ2)p
+

1

1− |θ|2p
E|ε1|2p

σ2p

)
n1−p.

It is obvious that

〈S〉n =

∑n
i=1 Y

2
i∑n

i=1 EY
2
i

. (32)

By Theorem 2.2, we obtain

sup
x∈R

∣∣∣P((θ̂n − θ)
√

Σn
i=1Y

2
i ≤ xσ

)
− Φ (x)

∣∣∣
≤ Cp,θ

(∑n
i=1E|Xi|2p

(
∑n

i=1 EX
2
i )p

+ E

∣∣∣∣ ∑n
i=1 Y

2
i∑n

i=1EY
2
i

− 1

∣∣∣∣p)1/(2p+1)

= O

(
n1−p + n−pE

∣∣∣ n∑
i=1

(Y 2
i − EY 2

i )
∣∣∣p)1/(2p+1)

.

This completes the proof of theorem.
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