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Abstract. In this paper, we study the following nonhomogeneous Schrödinger-
Poisson equations{

−∆u+ λV (x)u+K(x)φu = f(x, u) + g(x), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

where λ > 0 is a parameter. Under some suitable assumptions on V,K, f

and g, the existence of multiple solutions is proved by using the Ekeland’s
variational principle and the Mountain Pass Theorem in critical point theory.
In particular, the potential V is allowed to be sign-changing.

1. Introduction and main results

In this paper we consider the following Schrödinger-Poisson equations

(SP )λ

{
−∆u+ λV (x)u+K(x)φu = f(x, u) + g(x), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

where λ ≥ 1 is a parameter, V ∈ C(R3,R) and f ∈ C(R3 × R,R). Such a system,
also called Schrödinger-Maxwell equations, arises in an interesting physical context.
In fact, according to a classical model, the interaction of a charged particle with an
electromagnetic field can be described by coupling the nonlinear Schrödinger’s and
Poisson’s equations (we refer reader to [6, 23] and the references therein for more
details on the physical aspects). In particular, if we are looking for electrostatic-type
solutions, we just have to solve system (SP )λ.

Variational methods and critical point theory are powerful tools in studying
nonlinear differential equations [19, 25, 33], and in particular Hamiltonian system
[26, 27], and also impulsive Hamiltonian systems [21]. In recent years, (SP )λ has
been studied widely via modern variational methods under various hypotheses on
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the potential V and the nonlinear term f , see [3, 4, 6, 10, 13, 23, 31, 39] and the
references therein. We recall some of them as follows.

The case of g ≡ 0, that is the homogeneous case, has been studied widely in
[3, 8, 9, 12, 13, 18, 20, 23, 24] when V is a constant or radially symmetric, and in
[31, 40] when V is not radially symmetric. Very recently, Azzollni and Pomponio
in [4] proved the existence of a ground state solution for the following system{

−∆u+ V (x)u+ φ(x)u = f(x, u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.1)

with f(x, u) = |u|p−2u(2 < p < 6) and non-constant potential V which may be un-
bounded below; When V (x) and f(x, u) are 1-periodic in each xi, i = 1, 2, 3, Zhao
et al. [39] obtained the existence of infinitely many geometrically distinct solutions
by using the nonlinear superposition principle established in [1]. Zhao et al. [41]
considered the existence of nontrivial solution and concentration results of (SP )λ
provided that V satisfies:

(V0) There is b > 0 such that meas{x ∈ R3 : V (x) ≤ b} < +∞, where meas
denotes the Lebesgue measures;

(V1) V ∈ C(R3,R) and V is bounded below;
(V2) Ω = intV −1(0) is nonempty and has smooth boundary and Ω = V −1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [5] in the
study of a nonlinear Schrödinger equation and the potential V (x) with V satisfying
(V 0)–(V 2) is referred as the steep well potential.

Sun, Su and Zhao [29] got infinitely many solutions under suitable assumptions.
Wu [35] studied the combined effect of concave and convex nonlinearities on the
number of solutions for a semi-linear elliptic equation. For more results on the
effect of concave and convex terms of elliptic equations see [36, 37] and the reference
therein. In 2014, Ye and Tang [38] studied the existence and multiplicity of solutions
for homogeneous system of (SP )λ when the potential V may change sign and the
nonlinear term f is superlinear or sublinear in u as |u| → ∞. For the Schrödinger-
Poisson system with sign-changing potential see [30] and sublinear Schrödinger-
Poisson system see [28].

Next, we consider the nonhomogeneous case, that is g 6≡ 0. The existence of
radially symmetric solutions was obtained for above nonhomogeneous system with
λ ≡ 1 and K(x) ≡ 1 in [24]. Chen and Tang [11] obtained two solutions for the
nonhomogeneous system with f(x, u) satisfying Amborosetti-Rabinowitz type con-
dition and V being nonradially symmetric. In 2015, Wang and Ma [32] considered
the nonhomogeneous Schrödinger-Poisson equation containing concave and convex
terms. For more results on the nonhomogeneous case see [14, 16, 17, 42] and the
reference therein.

Motivated by the above works, in the present paper we consider system (SP )λ
with more general potential V (x),K(x) and f(x, u). Under (V0)–(V1) and some
more generic 4-superlinear conditions on f(x, u), we prove the existence of multiple
solutions of problem (SP )λ when λ > 0 large by using variation method. Precisely,
we make the following assumptions.

(f1) F (x, u) =
∫ u

0
f(x, s)ds ≥ 0 for all (x, u) and f(x, u) = o(u) uniformly in x

as u→ 0.
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(f2) F (x, u)/u4 → +∞ as |u| → +∞ uniformly in x.
(f3) F(x, u) := 1

4f(x, u)u− F (x, u) ≥ 0 for all (x, u) ∈ R3 × R.
(f4) There exist a1, L1 > 0 and τ ∈ (3/2, 2) such that

|f(x, u)|τ ≤ a1F(x, u)|u|τ , for all x ∈ R3 and |u| ≥ L1.

(K) K(x) ∈ L2(R3) ∪ L∞(R3) and K(x) ≥ 0 is not identically zero for a.e.
x ∈ R3.

(g) g(x) ∈ L2(R3) and g(x) ≥ 0 for a.e. x ∈ R3.

Remark 1 It follows (f2) and (f4) that |f(x, u)|τ ≤ a1
4 |f(x, u)||u|τ+1 for large u.

Thus, by (f1), for any ε > 0, there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|p−1, ∀(x, u) ∈ R3 × R(1.2)

and

|F (x, u)| ≤ ε|u|2 + Cε|u|p, ∀(x, u) ∈ R3 × R,(1.3)

where p = 2τ/(τ − 1) ∈ (4, 2∗), 2∗ = 6 is the critical exponent for the Sobolev
embedding in dimension 3.

Before stating our main results, we give several notations.

Let H1(R3) be the usual Sobolev space endowed with the standard product and
norm

(u, v)H1 =

∫
R3

(∇u∇v + uv)dx; ‖u‖2H1 =

∫
R3

(|∇u|2 + |u|2)dx.

D1,2(R3) is the completion of C∞0 (R3) with respect to the norm

‖u‖2D := ‖u‖2D1,2(R3) =

∫
R3

|∇u|2dx.

For any 1 ≤ s ≤ +∞ and Ω ⊂ R3, Ls(Ω) denotes a Lebesgue space; the norm in
Ls(Ω) is denoted by |u|s,Ω, where Ω is a proper subset of R3, by | · |s when Ω = R3.
S̄ is the best Sobolev constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3),

that is,

S̄ = inf
u∈H1(R3)\{0}

‖u‖D
|u|6

.

For any r > 0 and z ∈ R3, Br(z) denotes the ball of radius r centered at z.
The letters c0, di, C0 will be used to denote various positive constants which may

vary from line to line and are not essential to the problem. We denote ” ⇀ ” weak
convergence and by ” → ” strong convergence. Also if we take a subsequence of a
sequence {un}, we shall denote it again {un}. We use o(1) to denote any quantity
which tends to zero when n→∞.

Now we state our main results:

Theorem 1 Assume that (V0)–(V1), (K), (g) and (f1)–(f4) are satisfied. If V (x) <
0 for some x ∈ R3, then for each k ∈ N, there exist λk > k, bk > 0 and ηk > 0 such
that problem (SP )λ has at least two nontrivial solutions for every λ = λk, |g|2 ≤ ηk
and |K|2 < bk( or |K|∞ < bk).

Theorem 2 Assume that (V0)–(V1), (K), (g) and (f1)–(f4) are satisfied. If V −1(0)
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has nonempty interior, then there exist Λ > 0, bλ > 0 and ηλ > 0 such that problem
(SP )λ has at least two nontrivial solutions for every λ > Λ, |g|2 ≤ ηλ and |K|2 < bλ
( or |K|∞ < bλ).

If V ≥ 0, the restriction on the norm of K can be removed and we have the
following theorem.

Theorem 3 Assume that V ≥ 0, (V0)–(V1), (K), (g) and (f1)–(f4) are satisfied.
If V −1(0) has nonempty interior Ω, then there exist Λ∗ > 0 and η > 0 such that
problem (SP )λ has at least two nontrivial solutions for every λ > Λ∗ and |g|2 ≤ η.

To obtain our main results, we have to overcome several difficulties in using
variational method. The main difficulty consists in the lack of compactness of the
Sobolev embeddingH1(R3) into Lp(R3), p ∈ (2, 6). Since we assume that the poten-
tial is no radially symmetric, we cannot use the usual way to recover compactness,
for example, restricting in the subspace H1

r (R3) of radially symmetric functions or
using concentration compactness methods. To recover the compactness, we borrow
some ideas used in [5, 15] and establish the parameter dependent compactness con-
ditions. Let us point out that the adaptation of the ideas to the procedure of our
problem is not trivial at all, because of the presence of the nonlocal term K(x)φu..

Remark 2 (a) It is not difficult to find out functions f satisfying (f1)–(f4), for
example,

f(x, t) = h(x)t3
(

2ln(1 + t2) +
t2

1 + t2

)
,∀(x, t) ∈ R3 × R,

where h is a is a continuous bounded function with infx∈R3 h(x) > 0.
(b) To the best of our knowledge, it seems that our theorems are the first re-

sults about the existence of multiple solutions for the nonhomogeneous Schrödinger-
Poisson equations on R3 with sign-changing potential and general nonlinear term.
Although the methods are used before, we need to study carefully some properties
of the term K(x)φu and the effect of the sign-changing potential V .

The paper is organized as follows. In Section 2, we will introduce the variational
setting for the problem and establish the compactness conditions. In Section 3, we
give the proofs of main results.

2. Variational setting and compactness condition

In this section, we give the variational setting of the problem (SP )λ and establish
the compactness conditions.

Let V (x) = V +(x)− V −(x), where V ± = max{±V (x), 0}. Let

E =

{
u ∈ H1(R3) :

∫
R3

V +(x)u2dx <∞
}

be equipped with the inner product and norm

(u, v) =

∫
R3

(∇u∇v + V +(x)uv)dx, ‖u‖ = (u, u)1/2.
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For λ > 0, we also need the following inner product and norm

(u, v)λ =

∫
R3

(∇u∇v + λV +(x)uv)dx, ‖u‖λ = (u, u)
1/2
λ .

It is clear ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Set Eλ = (E, ‖ · ‖λ). It follows from (V0)–(V1)
and the Poincaré inequality that the embedding Eλ ↪→ H1(R3) is continuous, and
hence, for s ∈ [2, 6], there exists ds > 0( independent of λ ≥ 1) such that

|u|s ≤ ds‖u‖λ, ∀u ∈ Eλ.(2.1)

Let

Fλ = {u ∈ Eλ : suppu ⊂ V −1([0,∞))},

and F⊥λ denote the orthogonal complement of Fλ in Eλ. Clearly, Fλ = Eλ if V ≥ 0,
otherwise F⊥λ 6= {0}. Define

Aλ := −∆ + λV,

then Aλ is formally self-adjoint in L2(R3) and the associated bilinear form

aλ(u, v) =

∫
R3

(∇u∇v + λV (x)uv)dx

is continuous in Eλ. As in [15], for fixed λ > 0, we consider the eigenvalue problem

−∆u+ λV +(x)u = µλV −(x)u, u ∈ F⊥λ .(2.2)

Since (V0)–(V1), we see that the quadratic form u 7→
∫
R3 λV

−(x)u2dx is weakly
continuous. Hence following Theorem 4.45 and Theorem 4.46 in [34] , we deduce
the following proposition, which is the spectral theorem for compact self-adjoint
operators jointly with the Courant-Fischer minimax characterization of eigenvalues.

Proposition 2.1 Assume that (V0)–(V1) hold, then for any fixed λ > 0, problem
(2.2) has a sequence of positive eigenvalues {µj(λ)}, which may be characterized by

µj(λ) = inf
dimM≥j,M⊂F⊥λ

sup

{
‖u‖2λ : u ∈M,

∫
R3

λV −(x)u2dx = 1

}
, j = 1, 2, 3, ....

Furthermore, µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µj(λ)→ +∞ as j → +∞, and the correspond-
ing eigenfunctions {ej(λ)}, which may be be chosen so that (ei(λ), ej(λ))λ = δij,
are a basis of F⊥λ .

Now we give the properties for the eigenvalues {µj(λ)} defined above.

Proposition 2.2 ([15]) Assume that (V0)–(V1) hold and V − 6≡ 0. Then, for each
fixed j ∈ N,

(i) µj(λ)→ 0 as λ→ +∞.
(ii) µj(λ) is a non-increasing continuous function of λ.

Remark 3 By Proposition 2.2 (i), there exists Λ0 > 0 such that µ1(λ) ≤ 1 for
all λ > Λ0.

Let

E−λ := span{ej(λ) : µj(λ) ≤ 1} and E+
λ := span{ej(λ) : µj(λ) > 1}.
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Then Eλ = E−λ
⊕
E+
λ

⊕
Fλ is an orthogonal decomposition. The quadratic form

aλ is negative semidefinite on E−λ , positive definite on E+
λ

⊕
Fλ and it is easy to

see that aλ(u, v) = 0 if u, v are in different subspaces of the above decomposition of
Eλ.

From Remark 3, we have that dimE−λ ≥ 1 when λ > Λ0. Moreover, since
µj(λ)→ +∞ as j → +∞, dimE−λ < +∞ for every fixed λ > 0.

It is well known that problem (SP )λ can be reduced to a single equation with
a nonlocal term (see [23]). In fact, for every u ∈ Eλ, the Lax-Milgram theorem
implies that there exists a unique φu ∈ D1,2(R3) such that

−∆φu = K(x)u2(2.3)

with

φu(x) =
1

4π

∫
R3

K(y)u2(y)

|x− y|
dy.

If K ∈ L∞(R3), by (2.3), the Höder inequality and the Sobolev inequality, we get

‖φu‖2D =

∫
R3

K(x)φuu
2dx ≤ S̄−2d4

12/5|K|
2
∞‖u‖4λ.

Similarly, if K ∈ L2(R3),

‖φu‖2D =

∫
R3

K(x)φuu
2dx ≤ S̄−2d4

6|K|22‖u‖4λ.

Thus, there exists C0 > 0, such that

‖φu‖2D =

∫
R3

K(x)φuu
2dx ≤ C0‖u‖4λ, ∀K ∈ L2(R3) ∪ L∞(R3).(2.4)

Therefore, problem (SP )λ can be reduced to the following equation:

−∆u+ λV (x)u+K(x)φu(x)u = f(x, u) + g(x), x ∈ R3.

(SP )λ is variational and its solutions are the critical points of the functional defined
in Eλ by

Iλ(u) =
1

2

∫
R3

(|∇u|2 + λV (x)u2)dx+
1

4

∫
R3

K(x)φuu
2dx−

∫
R3

F (x, u)dx

−
∫
R3

g(x)udx.

Furthermore, it is easy to prove that the functional Iλ is of class C1 in Eλ and that

〈I ′λ(u), v〉 =

∫
R3

(∇u∇v + λV (x)uv +K(x)φuuv − f(x, u)v − g(x)v)dx

for all u, v ∈ Eλ. Hence, if u ∈ Eλ is a critical point of Iλ, then (u, φu) ∈
Eλ × D1,2(R3) is a solution of problem (SP )λ. We refer the readers to [6] and
[13] for the details.

Set

N(u) =

∫
R3

K(x)φuu
2dx =

1

4π

∫ ∫
R3×R3

K(x)K(y)u2(x)u2(y)

|x− y|
dxdy.
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Now we give some properties about the functional N and its derivative N ′ pos-
sess BL-splitting property, which is similar to Brezis-Lieb Lemma [7].

Proposition 2.3 ([38], Lemma 2.1) Let K ∈ L∞(R3) ∪ L2(R3). If un ⇀ u in
H1(R3) and un(x)→ u(x) a.e. x ∈ R3, then

(i) φun ⇀ φu in D1,2(R3) and N(u) ≤ lim infn→∞N(un);
(ii) N(un − u) = N(un)−N(u) + o(1);
(iii) N ′(un − u) = N ′(un)−N ′(u) + o(1) in H−1(R3).

Next, we investigate the compactness conditions for the functional Iλ. Recall
that a C1 functional J satisfies Cerami condition at level c ((C)c condition for
short) if any sequence {un} ⊂ E such that J(un) → c and (1 + ‖un‖)J ′(un) → 0
has a convergent subsequence; and such sequence is called a (C)c sequence.

We only consider the case K ∈ L∞(R3), the other case K ∈ L2(R3) is similar.

Lemma 2.1 Suppose that (V0)–(V1), (K), (f1)–(f4) and (g) are satisfied. Then
every (C)c sequence of Iλ is bounded in Eλ for each c ∈ R.

Proof. Let {un} ⊂ Eλ be a (C)c sequence of Iλ. Arguing indirectly, we can
assume that

Iλ(un)→ c, (1 + ‖un‖λ)I ′λ(un)→ 0, ‖un‖λ →∞(2.5)

as n → ∞ after passing to a subsequence. Take wn := un/‖un‖λ. Then ‖wn‖λ =
1, wn ⇀ w in Eλ and wn(x)→ w(x) a.e. x ∈ R3.

We first consider the case w = 0. Combining this with (2.5), (f3) and the fact
wn → 0 in L2({x ∈ R3 : V (x) < 0}), we have

o(1) =
1

‖un‖2λ

(
Iλ(un)− 1

4
〈I ′λ(un), un〉

)
≥ 1

4
‖wn‖2λ −

λ

4

∫
R3

V −(x)w2
ndx+

1

‖un‖2λ

∫
R3

F(x, un)dx− 3

4‖un‖2λ

∫
R3

g(x)undx

≥ 1

4
− λ

4
|V −|∞

∫
suppV −

w2
ndx−

3

4
|g|2d2

1

‖un‖λ

=
1

4
+ o(1),

a contradiction.
If w 6= 0, then the set Ω1 = {x ∈ R3 : w(x) 6= 0} has positive Lebesgue measure.

For x ∈ Ω1, one has |un(x)| → ∞ as n→∞, and then, by (f2),

F (x, un(x))

u4
n(x)

w4
n(x)→ +∞ as n→∞,

which, jointly with Fatou’s lemma, shows that∫
Ω1

F (x, un)

u4
n

w4
ndx→ +∞ as n→∞.(2.6)

We see from (f1), (2.4), the first limit of (2.5), (2.6) and (g) that

C0

4
≥ lim sup

n→∞

∫
R3

F (x, un)

‖un‖4λ
dx ≥ lim sup

n→∞

∫
Ω1

F (x, un)

u4
n

w4
ndx = +∞.
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This is impossible.
Hence {un} is bounded in Eλ. �

Lemma 2.2 Suppose that (V0), (V1) , (K) , (g) and (1.2) hold. If un ⇀ u in
Eλ, un(x)→ u(x) a.e. in R3, and we denote wn := un − u, then

Iλ(un) = Iλ(wn) + Iλ(u) + o(1)(2.7)

and

〈I ′λ(un), ϕ〉 = 〈I ′λ(wn), ϕ〉+ 〈I ′λ(u), ϕ〉 −
∫
R3

gϕdx+ o(1), for all ϕ ∈ Eλ(2.8)

as n → ∞. In particular, if Iλ(un) → d and I ′λ(un) → 0 in E∗λ( the dual space of
Eλ), then I ′λ(u) = 0 and

Iλ(wn)→ d− Iλ(u),(2.9)

〈I ′λ(wn), ϕ〉 → −
∫
R3

gϕdx, for all ϕ ∈ Eλ

after passing to a subsequence.

Proof. Since un ⇀ u in Eλ, we have (un − u, u)λ → 0 as n → ∞, which im-
plies that

‖un‖2λ = (wn + u,wn + u)λ = ‖wn‖2λ + ‖u‖2λ + o(1).(2.10)

By (V0), wn ⇀ 0 and the Hölder inequality, we have∣∣∣∣∫
R3

V −(x)wnudx

∣∣∣∣ =

∣∣∣∣∫
suppV −

V −wnudx

∣∣∣∣ ≤ |V −|∞(∫
suppV −

w2
ndx

)1/2

|u|2 → 0

as n→∞. Thus∫
R3

V −(x)u2
ndx =

∫
R3

V −(x)w2
ndx+

∫
R3

V −(x)u2dx+ o(1).

Consequently, this together with Proposition 2.3 (ii) and (2.10), we obtain
1

2
aλ(un, un)+

1

4
N(un) =

(
1

2
aλ(wn, wn) +

1

4
N(wn)

)
+

(
1

2
aλ(u, u) +

1

4
N(u)

)
+o(1).

Similarly, by Proposition 2.3 (iii), we have

aλ(un, h) +

∫
R3

K(x)φununhdx =

(
aλ(wn, h) +

∫
R3

K(x)φwnwnhdx

)
+

(
aλ(u, h) +

∫
R3

K(x)φuuhdx

)
+ o(1), ∀h ∈ Eλ.

Since ∫
R3

g(x)undx =

∫
R3

g(x)wndx+

∫
R3

g(x)udx,

therefore, to obtain (2.7) and (2.8), it suffices to check that∫
R3

(F (x, un)− F (x,wn)− F (x, u))dx = o(1)(2.11)

and

sup
‖h‖λ=1

∫
R3

(f(x, un)− f(x,wn)− f(x, u))hdx = o(1).(2.12)
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Here, we only prove (2.11), the verification of (2.12) is similar. Inspired by [2], we
observe that

F (x, un)− F (x, un − u) = −
∫ 1

0

(
d

dt
F (x, un − tu)

)
dt =

∫ 1

0

f(x, un − tu)udt.

and hence, by (1.2), we have

|F (x, un)− F (x, un − u)| ≤ ε1|un||u|+ ε1|u|2 + Cε1 |un|p−1|u|+ Cε1 |u|p,

where ε1, Cε1 > 0 and p ∈ (4, 6). Hence, for each ε > 0, and the Young inequality,
we have

|F (x, un)− F (x,wn)− F (x, u)| ≤ C[ε|un|2 + Cε|u|2 + ε|un|p + Cε|u|p].

Next, we consider the function gn given by

gn(x) := max
{
|F (x, un)− F (x,wn)− F (x, u)| − Cε(|un|2 + |un|p), 0

}
.

Then 0 ≤ gn(x) ≤ CCε(|u|2+|u|p) ∈ L1(R3). Moreover, by the Lebesgue dominated
convergence theorem, ∫

R3

gn(x)dx→ 0 as n→∞,(2.13)

since un → u a.e. in R3. By the definition of gn, it follows that

|F (x, un)− F (x,wn)− F (x, u)| ≤ gn(x) + Cε(|un|2 + |un|p),

which, together with (2.13) and (2.1) shows that

|F (x, un)− F (x,wn)− F (x, u)| ≤ Cε

for n sufficiently large. Which implies that∫
R3

[F (x, un)− F (x,wn)− F (x, u)]dx = o(1).

Next, we check that I ′λ(u) = 0. Indeed, for each ψ ∈ C∞0 (R3), we have

(un − u, ψ)λ → 0 as n→∞.(2.14)

and

∣∣∣∣∫
R3

V −(x)(un − u)ψdx

∣∣∣∣ ≤ |V −|∞(∫
suppψ

(un − u)2dx

)1/2

|ψ|2 → 0 as n→∞,

(2.15)

since un → u in L2
loc(R3). By Proposition 2.3 (i), un ⇀ u in Eλ yields φun ⇀ φu in

D1,2(R3). So

φun ⇀ φu in L
6(R3).

For every ψ ∈ C∞0 (R3), by the Hölder inequality we obtain∫
R3

|K(x)uψ|6/5dx ≤ |K|6/5∞ |ψ|
6/5
12/5|u|

6/5
12/5,

that is K(x)uψ ∈ L6/5(R3), and hence∫
R3

K(x)(φun − φu)uψdx→ 0.
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By un → u in L3
loc(R3) and the Hölder inequality, we have

|
∫
R3

K(x)φun(un − u)ψdx|

≤ |ψ|2|K|∞|φun |6|un − u|3,Ωψ
≤ C|un − u|3,Ωψ → 0 as n→∞,

here Ωψ is the support set of ψ. Consequently,

|
∫
R3

[K(x)φununψ −K(x)φuuψ]dx|

≤
∫
R3

|K(x)φun(un − u)ψ|dx+

∫
R3

|K(x)(φun − φu)uψ|dx(2.16)

= o(1).

Furthermore, by (1.2) and the dominated convergence theorem, we obtain∫
R3

[f(x, un)− f(x, u)]ψdx =

∫
Ωψ

[f(x, un)− f(x, u)]ψdx = o(1).

Since un ⇀ u in L2(R3) and g ∈ L2(R3), we obtain
∫
R3 g(un − u)dx = o(1). This

jointly with (2.14), (2.15), (2.16) and the dominated convergence theorem, shows
that

〈I ′λ(u), ψ〉 = lim
n→∞

〈I ′λ(un), ψ〉 = 0, ∀ψ ∈ C∞0 (R3).

Hence I ′λ(u) = 0. (2.9) follows from (2.7)-(2.8) and Proposition 2.3(iii). The proof
is complete. �

Lemma 2.3 Suppose V ≥ 0, (V0), (V1), (K), (g) and (f1)–(f4) hold. Then, for any
M > 0, there is Λ = Λ(M) > 0 such that Iλ satisfies (C)c condition for all c < M
and λ > Λ.

Proof. Let {un} ⊂ Eλ be a (C)c sequence with c < M . According to Lemma
2.1, {un} is bounded in Eλ, and there exists Cλ such that ‖un‖λ ≤ Cλ. Therefore,
up to a subsequence, we can assume that

un ⇀ u in Eλ;

un → u in Lsloc(R3)(2 ≤ s < 2∗);(2.17)

un(x)→ u(x) a.e. x ∈ R3.

Now we can prove that un → u in Eλ for λ > 0 large. Denote wn := un − u, then
wn ⇀ 0 in Eλ. By Lemma 2.2, we have I ′λ(u) = 0, and

Iλ(wn)→ c− Iλ(u), I ′λ(wn)→ 0 as n→∞.(2.18)

Noting V ≥ 0 and using (f3), we have

Iλ(u) = Iλ(u)− 1

4
〈I ′λ(u), u〉

=
1

4
‖u‖2λ +

∫
R3

F(x, u)dx− 3

4

∫
R3

gudx = Φλ(u)− 3

4

∫
R3

gudx,

here Φλ(u) = 1
4‖u‖

2
λ +

∫
R3 F(x, u)dx ≥ 0.
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Again by (2.9) and (2.17), we obtain

1

4
‖wn‖2λ +

∫
R3

F(x,wn)dx+ o(1) = Iλ(wn)− 1

4
〈I ′λ(wn), wn〉

= c− Iλ(u) +
1

4

∫
R3

gwndx+ o(1)

= c−
[
Φλ(u)− 3

4

∫
R3

gudx

]
+

1

4

∫
R3

gwndx+ o(1)(2.19)

= c− Φλ(u) +
3

4

∫
R3

gudx+ o(1)

≤M + M̃ + o(1).

Here we use the fact c < M and
3

4
|g|2|u|2 ≤

3

4
|g|2d2‖u‖λ ≤

3

4
|g|2d2 lim inf

n→∞
‖un‖λ ≤ |g|2d2C ≤ M̃,

where M̃ is a positive constant independent of λ. Hence∫
R3

F(x,wn)dx ≤M + M̃ + o(1).(2.20)

Since V (x) < b on a set of finite measure and wn ⇀ 0,

|wn|22 ≤
1

λb

∫
V≥b

λV +(x)w2
ndx+

∫
V <b

w2
ndx ≤

1

λb
‖wn‖2λ + o(1).(2.21)

For 2 < s < 2∗, by (2.21) and the Hölder and Sobolev inequality, we obtain

|wn|ss =

∫
R3

|wn|sdx ≤
(∫

R3

|wn|2dx
) 6−s

4
(∫

R3

|wn|6dx
) s−2

4

≤
[

1

λb

∫
R3

(
|∇wn|2 + λV +w2

n

)
dx

] 6−s
4

(
S̄−6

[∫
R3

|∇wn|2dx
]3
) s−2

4

+ o(1)

≤
(

1

λb

) 6−s
4

S̄−
3(s−2)

2 ‖wn‖sλ + o(1).(2.22)

By (f1), for any ε > 0, there exists δ = δ(ε) > 0 such that |f(x, t)| ≤ ε|t| for all
x ∈ R3 and |t| ≤ δ, and (f4) is satisfied for |t| ≥ δ (with the same τ but possibly
larger a1). Hence we get∫

|wn|≤δ
f(x,wn)wndx ≤ ε

∫
|wn|≤δ

w2
ndx ≤

ε

λb
‖wn‖2λ + o(1),(2.23)

and ∫
|wn|≥δ

f(x,wn)wndx ≤

(∫
|wn|≥δ

|f(x,wn)

wn
|τdx

)1/τ

|wn|2s

≤

(∫
|wn|≥δ

a1F(x,wn)dx

)1/τ

|wn|2s

≤ [a1(M + M̃)]1/τ S̄−
3(2s−4)

2s

(
1

λb

)θ
‖wn‖2λ + o(1)(2.24)
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by (f4), (2.20), (2.22) with s = 2τ/(τ − 1) and the Hölder inequality, where θ =
6−s
2s > 0.
Since un ⇀ u in L2(R3) and g ∈ L2(R3), we have∫

R3

g(un − u)dx→ 0 as n→∞.(2.25)

Therefore, by (2.23), (2.24) and (2.25) we have

o(1) = 〈I ′λ(wn), wn〉

≥ ‖wn‖2λ −
∫
R3

f(x,wn)wndx−
∫
R3

gwndx

≥

[
1− ε

λb
− [a1(M + M̃)]1/τ S̄−

3(2s−4)
2s

(
1

λb

)θ]
‖wn‖2λ + o(1).(2.26)

So, there exists Λ = Λ(M) > 0 such that wn → 0 in Eλ when λ > Λ. Since
wn = un − u, it follows that un → u in Eλ. This completes the proof. �

Lemma 2.4 Let (V0), (V1), (K), (g) and (f1)–(f4) be satisfied. Let {un} be a (C)c
sequence of Iλ with level c > 0. Then for any M > 0, there is Λ = Λ(M) > 0 such
that, up to a subsequence, un ⇀ u in Eλ with u being a nontrivial critical point of
Iλ and satisfying Iλ(u) ≤ c for all c < M and λ > Λ.

Proof. We modify the proof of Lemma 2.3. By Lemma 2.2, we obtain

I ′λ(u) = 0, Iλ(wn)→ c− Iλ(u), I ′λ(wn)→ 0 as n→∞.(2.27)

However, since V is allowed to be sign-changing and the appearance of nonlinear
term g, from

Iλ(u) = Iλ(u)− 1

4
〈I ′λ(u), u〉

=
1

4
‖u‖2λ −

λ

4

∫
R3

V −(x)u2dx+

∫
R3

F(x, u)dx− 3

4

∫
R3

gudx,

we cannot deduce that Iλ(u) ≥ 0. We consider two possibilities:

(i) Iλ(u) < 0;
(ii) Iλ(u) ≥ 0.

If Iλ(u) < 0, then u 6= 0 and then u is nontrivial and the proof is done. If Iλ(u) ≥ 0,
following the argument in the proof of Lemma 2.3 step by step, we can get un → u
in Eλ. In fact, by (V0) and wn → 0 in L2({x ∈ R3 : V (x) < b}), we have∣∣∣∣∫

R3

V −(x)w2
n(x)dx

∣∣∣∣ ≤ |V −|∞ ∫
suppV −

w2
ndx = o(1).

Combining this with (2.27), we have∫
R3

F(x,wn)dx

= Iλ(wn)− 1

4
〈I ′λ(wn), wn〉 −

1

4
‖wn‖2λ +

1

4

∫
R3

λV −(x)w2
ndx+

3

4

∫
R3

gwndx

≤ c− Iλ(u) + o(1) ≤M + o(1).
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It follows that (2.24), (2.25) and (2.26) remain valid. Hence un → u in Eλ and
Iλ(u) = c(> 0). The proof is complete. �

3. Proofs of main results

If V is sign-changing, we first verify that the functional Iλ have the linking ge-
ometry to apply the following linking theorem [22].

Proposition 3.1 Let E = E1

⊕
E2 be a Banach space with dimE2 < ∞,Φ ∈

C1(E,R3). If there exist R > ρ > 0, α > 0 and e0 ∈ E1 such that

α := inf Φ(E1 ∩ Sρ) > sup Φ(∂Q)

where Sρ = {u ∈ E : ‖u‖ = ρ}, Q = {u = v + te0 : v ∈ E2, t ≥ 0, ‖u‖ ≤ R}. Then Φ
has a (C)c sequence with c ∈ [α, sup Φ(Q)].

In our context, we use Proposition 3.1 with E1 = E+
λ

⊕
Fλ and E2 = E−λ . By

Proposition 2.2, µj(λ) → 0 as λ → ∞ for every fixed j. By Remark 3, there is
Λ0 > 0 such that E−λ 6= ∅ and E

−
λ is finite dimensional for λ > Λ0. Now we inves-

tigate the linking structure of the functional Iλ.

Lemma 3.1 Suppose that (V0), (V1), (K), (g) and (1.2) with p ∈ (4, 2∗) are sat-
isfied. Then, for each λ > Λ0( is the constant given in Remark 2), there exist
αλ, ρλ and ηλ > 0 such that

Iλ(u) ≥ αλ for all u ∈ E+
λ

⊕
Fλ with ‖u‖λ = ρλ and |g|2 < ηλ.(3.1)

Furthermore, if V ≥ 0, we can choose α, ρ, η > 0 independent of λ.

Proof. For any u ∈ E+
λ

⊕
Fλ, writing u = u1 + u2 with u1 ∈ E+

λ and u2 ∈ Fλ.
Clearly, (u1, u2)λ = 0, and∫

R3

(|∇u|2 + λV (x)u2)dx =

∫
R3

(|∇u1|2 + λV (x)u2
1)dx+ ‖u2‖2λ.(3.2)

By Proposition 2.1 we have µj(λ) → +∞ as j → +∞ for each fixed λ > Λ0. So
there is a positive integer nλ such that µj(λ) ≤ 1 for j ≤ nλ and µj(λ) > 1 for
j > nλ + 1. For u1 ∈ E+

λ , we set u1 = Σ∞j=nλ+1µj(λ)ej(λ). Thus

∫
R3

(|∇u1|2 + λV (x)u2
1)dx = ‖u1‖2λ −

∫
R3

λV −(x)u2
1dx ≥

(
1− 1

µnλ+1(λ)

)
‖u1‖2λ.

(3.3)

Now, using (2.1), (3.2) and (3.3), we obtain

Iλ(u) ≥ 1

2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − ε|u|22 − Cε|u|pp − |g|2|u|2

≥ 1

2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − εd2

2‖u‖2λ − Cεdpp‖u‖
p
λ − d2|g|2‖u‖λ

≥ ‖u‖λ
{[

1

2

(
1− 1

µnλ+1(λ)

)
− εd2

2

]
‖u‖λ − Cεdpp‖u‖

p−1
λ − d2|g|2

}
.
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Let h(t) =
[

1
2 (1− 1

µnλ+1(λ) − εd
2
2

]
t − Cεdpptp−1, for t > 0, p ∈ (4, 6) there exists

ρ(λ) =

[ 1
2 (1− 1

µnλ+1(λ)
)−εd22

Cεd
p
p(p−1)

] 1
p−2

such that maxt≥0 h(t) = h(ρ(λ)) > 0. It follows

from above inequality, Iλ(u) |‖u‖λ=ρ(λ)> 0 for all |g|2 < ηλ := h(ρ(λ))
2d2

. Of course,
ρ(λ) can be chosen small enough, we can obtain the same result: there exists αλ > 0,
such that Iλ(u) ≥ αλ, here ‖u‖λ = ρλ.

If V ≥ 0, since Eλ = Fλ, and∫
R3

(|∇u|2 + λV (x)u2)dx = ‖u‖2λ,

we can choose α, ρ, η > 0 (independent of λ) such that (3.1) holds. �

Lemma 3.2 Suppose that (V0), (V1), (K), (g) and (f1)–(f2) are satisfied. Then,
for any finite dimensional subspace Ẽλ ⊂ Eλ, there holds

Iλ(u)→ −∞ as ‖u‖λ →∞, u ∈ Ẽλ.

Proof. Assuming the contrary, there is a sequence (un) ⊂ Ẽλ with ‖un‖λ → ∞
such that

−∞ < inf
n
Iλ(un).(3.4)

Take vn := un/‖un‖λ. Since dim Ẽλ < +∞, there exists v ∈ Ẽλ \ {0} such that

vn → v in Ẽλ, vn(x)→ v(x) a.e. x ∈ R3

after passing to a subsequence. If v(x) 6= 0, then |un(x)| → +∞ as n → ∞, and
hence by (f2),

F (x, un(x))

u4
n(x)

v4
n(x)→ +∞ as n→∞.

Combining this with (f1), (2.4) and Fatou’s lemma, we have
Iλ(un)

‖un‖4λ
≤ 1

2‖un‖2λ
+
C0

4
−
∫
R3

F (x, un)

‖un‖4λ
dx−

∫
R3

g(x)
un
‖un‖4λ

dx

≤ 1

2‖un‖2λ
+
C0

4
−
(∫

v=0

+

∫
v 6=0

)
F (x, un)

u4
n

v4
ndx+

|g|2d2

‖un‖3λ

≤ 1

2‖un‖2λ
+
C0

4
−
∫
v 6=0

F (x, un)

u4
n

v4
ndx+

|g|2d2

‖un‖3λ
→ −∞,

a contradiction with (3.4). �

Lemma 3.3 Suppose that (V0), (V1), (K), (g) and (f1)–(f2) are satisfied. If V (x) <
0 for some x, then , for each k ∈ N, there exist λk > k,wk ∈ E+

λk

⊕
Fλk , Rλk >

ρλk(ρλk is the constant given in Lemma 3.1) and ηk, bk > 0 such that, for |g|2 < ηk
and |K|∞ < bk ( or |K|2 < bk),
(a) sup Iλk(∂Qk) ≤ 0,
(b) sup Iλk(Qk) is bounded above by a constant independent of λk,
where Qk := {u = v + twk : v ∈ E−λk , t ≥ 0, ‖u‖λk ≤ Rλk}.
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Proof. We adapt an argument in Ding and Szulkin [15]. For each k ∈ N, since
µj(k) → +∞ as j → ∞, there exists jk ∈ N such that µjk(k) > 1. By Proposition
2.2, there is λk > k such that

1 < µjk(λk) < 1 +
1

λk
.

Taking wk := ejk(λk) be an eigenvalue of µjk(λk), then wk ∈ E+
λk

as µjk(λk) > 1.
Since dimE−λk

⊕
Rwk < +∞, it follows directly from Lemma 3.2 that (a) holds

with Rλk > 0 large enough.
By (f2), for each η̃ > |V −|∞, there is rη̃ > 0 such that F (x, t) ≥ 1

2 η̃t
2 if |t| ≥ rη̃.

For u = v + w ∈ E−λk
⊕

Rwk, we obtain

∫
R3

V −(x)u2dx =

∫
R3

V −(x)v2dx+

∫
R3

V −(x)w2dx

by the orthogonality of E−λk and Rwk. Hence we get

Iλk(u) ≤ 1

2

∫
R3

(
|∇w|2 + λkV (x)w2

)
dx+

1

4

∫
R3

K(x)φuu
2dx−

∫
suppV −

F (x, u)dx

−
∫
R3

gudx

≤ 1

2
[µjk(λk)− 1]λk

∫
R3

V −(x)w2dx− 1

2

∫
suppV −

η̃u2dx+

1

4
S̄−2d4

12/5|K|
2
∞‖u‖4λk + d2|g|2‖u‖λk −

∫
suppV −,|u|≤rη̃

(
F (x, u)− 1

2
η̃u2

)
dx

≤ 1

2

∫
R3

V −(x)w2dx− η̃

2|V −|∞

∫
R3

V −(x)w2dx+ Cη̃ +
1

4
S̄−2d4

12/5|K|
2
∞R

4
λk

+ d2|g|2Rλk
≤ Cη̃ + 1

for u = v + w ∈ E−λk
⊕

Rwk with ‖u‖λk ≤ Rλk , |K|∞ < bk := S̄(d12/5Rλk)−2 and
|g|2 < ηk := 1

2d2Rλk
, where Cη̃ depends on η̃ but not λ. �

Lemma 3.4 Suppose that (V0), (V1), (K), (g) and (f1)–(f2) are satisfied. If Ω :=
intV −1(0) is nonempty, then, for each λ > Λ0( is the constant given in Re-
mark 2), there exist w ∈ E+

λ

⊕
Fλ, Rλ > 0, ηλ > 0 and bλ > 0 such that for

|g|2 < ηλ, |K|∞ < bλ( or |K|2 < bλ),
(a) sup Iλ(∂Q) ≤ 0,
(b) sup Iλ(Q) is bounded above by a constant independent of λ,
where Q := {u = v + tw : v ∈ E−λ , t ≥ 0, ‖u‖λ ≤ Rλ}.

Proof. Choose e0 ∈ C∞0 (Ω) \ {0}, then e0 ∈ Fλ. By Lemma 3.2, there is Rλ > 0
large such that Iλ(u) ≤ 0 where u ∈ E−λ

⊕
Re0 and ‖u‖λ ≥ Rλ.
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For u = v + w ∈ E−λ
⊕

Re0, we have

Iλ(u) ≤ 1

2

∫
R3

|∇w|2dx+
1

4

∫
R3

K(x)φuu
2dx−

∫
Ω

F (x, u)dx−
∫
R3

gudx

≤ 1

2

∫
R3

|∇w|2dx− η̃

2

∫
Ω

u2dx−
∫

Ω,|u|≤rη̃

(
F (x, u)− η̃

2
u2

)
dx

+
1

4
S̄−2d4

12/5|K|
2
∞‖u‖4λ + |g|2d2‖u‖λ

≤ 1

2

∫
R3

|∇w|2dx− η̃

2

∫
Ω

u2dx+ Cη̃ +
1

4
S̄−2d4

12/5|K|
2
∞‖u‖4λ + |g|2d2‖u‖λ.(3.5)

Observing w ∈ C∞0 (Ω), we have

∫
R3

|∇w|2dx =

∫
Ω

(−∆w)udx ≤ |∆w|2|u|2,Ω ≤ c0|∇w|2|u|2,Ω ≤
c20
2η̃
|∇w|22 +

η̃

2
|u|22,Ω,

(3.6)

where c0 is a constant depending on e0. Choosing η̃ > c20, we have |∇w|22 ≤ η̃|u|22,Ω,
and it follows from (3.5) that

Iλ(u) ≤ Cη̃ +
1

4
S̄−2d4

12/5|K|
2
∞R

4
λ + |g|2d2Rλ ≤ Cη̃ + 1

for all u ∈ E−λ
⊕

Re0 with ‖u‖λ ≤ Rλ and |K|∞ < bλ := S̄(d12/5Rλ)−2 and
|g|2 < ηλ := 1

2d2Rλ
, where Cη̃ depends on η̃ but not λ. �

Now we are in a position to prove our main results.

Proof of Theorem 1. The proof of this theorem is divided in two steps.

Step 1 There exists a function uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) < 0.
Since g ∈ L2(R3) and g ≥ 0( 6≡ 0), we can choose a function ψ ∈ Eλ such that∫

R3

g(x)ψ(x)dx > 0.

Hence, we have

I(tψ) =
t2

2
‖ψ‖2λ −

λt2

2

∫
R3

V −(x)ψ2dx+
t4

4

∫
R3

K(x)φψψ
2dx

−
∫
R3

F (x, tψ)dx− t
∫
R3

g(x)ψdx

≤ t2

2
‖ψ‖2λ +

t4

4
C0‖ψ‖4λ − t

∫
R3

g(x)ψdx

< 0 for t > 0 small enough.

Thus, there exists uλ small enough such that Iλ(uλ) < 0. By Lemma 3.1, we have

c0,λ = inf{Iλ(u) : u ∈ Bρλ} < 0,

where ρλ > 0 is given by Lemma 3.1, Bρλ = {u ∈ Eλ : ‖u‖λ < ρλ}. By the Ekeland’s
variational principle, there exists a minimizing sequence {un,λ} ⊂ Bρλ such that

c0,λ ≤ Iλ(un,λ) < c0,λ +
1

nλ
,
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and

Iλ(wλ) ≥ Iλ(un,λ)− 1

nλ
‖wλ − un,λ‖λ

for all wλ ∈ Bρλ . Clearly, {un,λ} is a bounded Palais-Smale sequence of Iλ. Then,
by a standard procedure, Lemma 2.3 and Lemma 2.2 imply that there exists a
function uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) = c0,λ < 0.

If V ≥ 0, we can get ρλ, c0,λ, u0,λ are independent of λ.

Step 2 There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0.
It follows from Lemmas 3.1, 3.3 and Proposition 3.1 that, for each k ∈ N, λ =

λk, |g|2 < ηk and 0 < |K|∞ < bk (or 0 < |K|2 < bk), Iλk has a (C)c sequence with
c ∈ [αλk , sup Iλk(Qk)]. Setting M := sup Iλk(Qk), then Iλk has a nontrivial critical
point according to Lemmas 2.1, 2.4 and Proposition 3.1. That is, there exists a
function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) = c ≥ αλk > 0. The proof is
complete. �

Proof of Theorem 2. The first solution is similar to the first solution of Theorem
1. The second solution follows from Lemmas 2.1, 2.4, 3.1, 3.4 and Proposition 3.1.
The proof is complete. �

Proof of Theorem 3. The proof of this theorem is divided in two steps.

Step 1 There exists a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) < 0.
In the proof of Theorem 1, we can choose c0 = c0,λ, Bρ = Bρ,λ, then by the By

the Ekeland’s variational principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ Iλ(un) < c0 +
1

n
,

and

Iλ(w) ≥ Iλ(un)− 1

n
‖w − un‖λ

for all w ∈ Bρ. Then by a standard procedure, we can show that {un} is a bounded
Palais-Smale sequence of Iλ. Therefore Lemmas 2.3 and 2.2 imply that there exists
a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) = c0 < 0.

Step 2 There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0.
Since we suppose V ≥ 0, the functional Iλ has mountain pass geometry and the

existence of nontrivial solutions can be obtained by mountain pass theorem [22]. In
fact, by Lemma 3.1, there exist constants α, ρ, η > 0 ( independent of λ) such that,
for each λ > Λ0,

Iλ(u) ≥ α for u ∈ Eλ with ‖u‖λ = ρ and |g|2 < η.

Take e ∈ C∞0 (Ω) \ {0}, by (f1), (f2) and Fatou’s lemma, we get

Iλ(te)

t4
≤ 1

2t2

∫
Ω

|∇e|2dx+
1

4
N(e)−

∫
{x∈Ω:e(x)6=0}

F (x, te)

(te)4
e4dx− t

∫
Ω

gedx→ −∞
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as t → +∞, which yields that Iλ(te) < 0 for t > 0 large. Clearly, there is C1 > 0
(independent of λ) such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≤ sup
t≥0

Iλ(te0) ≤ C1

where Γ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, ‖γ(1)‖λ ≥ ρ, Iλ(γ(1)) < 0}. By Mountain
pass theorem and Lemma 2.3, we obtain a nontrivial critical point ũλ of Iλ with
Iλ(ũλ) ∈ [α,C1] for λ large. The proof is complete. �
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