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ABSTRACT. In this paper, we study the following nonhomogeneous Schrédinger-
Poisson equations

—Aut MV (2)u+ K(z)du = f(z,u) +g(z), @€ RS,

—A¢ = K(x)u?, z € R3,
where A > 0 is a parameter. Under some suitable assumptions on V, K, f
and g, the existence of multiple solutions is proved by using the Ekeland’s
variational principle and the Mountain Pass Theorem in critical point theory.
In particular, the potential V is allowed to be sign-changing.

1. Introduction and main results
In this paper we consider the following Schrédinger-Poisson equations

—Au+ AV (x)u+ K(z)pu = f(z,u) + g(z), = €R3,
~A¢ = K(x)u?, z € R3,

where A > 1 is a parameter, V € C(R3,R) and f € C(R? x R,R). Such a system,
also called Schrodinger-Maxwell equations, arises in an interesting physical context.
In fact, according to a classical model, the interaction of a charged particle with an
electromagnetic field can be described by coupling the nonlinear Schrédinger’s and
Poisson’s equations (we refer reader to [6, 23] and the references therein for more
details on the physical aspects). In particular, if we are looking for electrostatic-type
solutions, we just have to solve system (SP),.

Variational methods and critical point theory are powerful tools in studying
nonlinear differential equations [19, 25, 33], and in particular Hamiltonian system
[26, 27], and also impulsive Hamiltonian systems [21]. In recent years, (SP), has
been studied widely via modern variational methods under various hypotheses on

(SP)x
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the potential V' and the nonlinear term f, see [3, 4, 6, 10, 13, 23, 31, 39] and the
references therein. We recall some of them as follows.

The case of g = 0, that is the homogeneous case, has been studied widely in
[3, 8,9, 12, 13, 18, 20, 23, 24] when V is a constant or radially symmetric, and in
[31, 40] when V is not radially symmetric. Very recently, Azzollni and Pomponio
in [4] proved the existence of a ground state solution for the following system

{—Au +V(z)u+ ¢(z)u = f(x,u), x€R3,

1.1
(1.1) —A¢p = u?, r € R3,

with f(z,u) = [u[P~2u(2 < p < 6) and non-constant potential V' which may be un-
bounded below; When V' (z) and f(x,u) are 1-periodic in each x;,7 = 1,2,3, Zhao
et al. [39] obtained the existence of infinitely many geometrically distinct solutions
by using the nonlinear superposition principle established in [1]. Zhao et al. [41]
considered the existence of nontrivial solution and concentration results of (SP)y
provided that V satisfies:

(Vo) There is b > 0 such that meas{z € R3 : V(z) < b} < 400, where meas
denotes the Lebesgue measures;

(V1) V € C(R3,R) and V is bounded below;

(Vo) Q = intV ~1(0) is nonempty and has smooth boundary and 2 = V ~1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [5] in the
study of a nonlinear Schrédinger equation and the potential V(z) with V satisfying
(V0)—(V2) is referred as the steep well potential.

Sun, Su and Zhao [29] got infinitely many solutions under suitable assumptions.
Wu [35] studied the combined effect of concave and convex nonlinearities on the
number of solutions for a semi-linear elliptic equation. For more results on the
effect of concave and convex terms of elliptic equations see |36, 37] and the reference
therein. In 2014, Ye and Tang [38] studied the existence and multiplicity of solutions
for homogeneous system of (SP), when the potential V' may change sign and the
nonlinear term f is superlinear or sublinear in u as |u| — co. For the Schrédinger-
Poisson system with sign-changing potential see [30] and sublinear Schrédinger-
Poisson system see [28].

Next, we consider the nonhomogeneous case, that is ¢ Z 0. The existence of
radially symmetric solutions was obtained for above nonhomogeneous system with
A=1and K(z) =1 in [24]. Chen and Tang [11] obtained two solutions for the
nonhomogeneous system with f(z,w) satisfying Amborosetti-Rabinowitz type con-
dition and V being nonradially symmetric. In 2015, Wang and Ma [32] considered
the nonhomogeneous Schrédinger-Poisson equation containing concave and convex
terms. For more results on the nonhomogeneous case see [14, 16, 17, 42] and the
reference therein.

Motivated by the above works, in the present paper we consider system (SP)y
with more general potential V(x), K(x) and f(x,u). Under (V5)—(V1) and some
more generic 4-superlinear conditions on f(z,u), we prove the existence of multiple
solutions of problem (SP), when A > 0 large by using variation method. Precisely,
we make the following assumptions.

(f1) F(z,u) = [y f(z,s)ds > 0 for all (z,u) and f(z,u) = o(u) uniformly in z
as u — 0.
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(f2) F(z,u)/u* — +o0 as |u| — +o0 uniformly in .
(f3) F(z,u) := 1 f(z,u)u — F(z,u) >0 for all (z,u) € R® xR,
(f4) There exist a1, L1 > 0 and 7 € (3/2,2) such that

|f(z,u)|” < ay F(z,u)|u|”, for all z € R® and |u| > L.

(K) K(x) € L3(R?) U L>®(R?) and K(z) > 0 is not identically zero for a.e.
r € R3.
(9) g(z) € L3(R?) and g(z) > 0 for a.e. x € R3.

Remark 1 Tt follows (f2) and (fy) that |f(z,u)|” < 2| f(x,u)||u|""" for large u.
Thus, by (f1), for any € > 0, there exists C. > 0 such that

(1.2) f(z,u)| < elu| + CclulP~!, V(z,u) e R® xR
and
(1.3) |F(x,u)| < €\u|2 + Cclul?, ¥Y(z,u) € R3 x R,

where p = 27/(17 — 1) € (4,2%),2* = 6 is the critical exponent for the Sobolev
embedding in dimension 3.

Before stating our main results, we give several notations.

Let H'(R?) be the usual Sobolev space endowed with the standard product and
norm

o = [ (VuVo+ s Jull = [ (VuP + P
RS RS
DY2(R3) is the completion of C§°(R?) with respect to the norm

Jally = e, = [ | (9P

For any 1 < s < 400 and  C R3 L*(Q) denotes a Lebesgue space; the norm in
L*(Q) is denoted by |uls 0, where € is a proper subset of R?, by |- |, when © = R?,

S is the best Sobolev constant for the Sobolev embedding D!?(R3) — LS(R3),
that is,

[[ullp

S = .
ueH (R3)\{0} |ulg

For any r > 0 and z € R3, B,.(z) denotes the ball of radius 7 centered at z.

The letters cg, d;, Cy will be used to denote various positive constants which may
vary from line to line and are not essential to the problem. We denote 7 — 7 weak
convergence and by 7 — 7 strong convergence. Also if we take a subsequence of a
sequence {u, }, we shall denote it again {u,}. We use o(1) to denote any quantity
which tends to zero when n — oco.

Now we state our main results:

Theorem 1 Assume that (Vo)—-(V1), (K), (9) and (f1)—(f1) are satisfied. If V(z) <
0 for some x € R3, then for each k € N, there exist A\, > k, by > 0 and 1, > 0 such
that problem (SP)y has at least two nontrivial solutions for every A = A, |gl2 < nk
and | K2 < bi( or | K| < bi).

Theorem 2 Assume that (Vo)-(V1), (K), (9) and (f1)—(f1) are satisfied. If V—1(0)
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has nonempty interior, then there exist A > 0,by > 0 and n) > 0 such that problem
(SP)x has at least two nontrivial solutions for every X > A, |gla < nx and |K|a < by
(or|Kl|eo < by).

If V> 0, the restriction on the norm of K can be removed and we have the
following theorem.

Theorem 3 Assume that V> 0, (Vo)-(V1), (K), (9) and (f1)—(fs1) are satisfied.
If V=1(0) has nonempty interior ), then there exist A, > 0 and n > 0 such that
problem (SP)x has at least two nontrivial solutions for every A > A, and |gla <.

To obtain our main results, we have to overcome several difficulties in using
variational method. The main difficulty consists in the lack of compactness of the
Sobolev embedding H'(R?) into LP(R3), p € (2,6). Since we assume that the poten-
tial is no radially symmetric, we cannot use the usual way to recover compactness,
for example, restricting in the subspace H}(R?) of radially symmetric functions or
using concentration compactness methods. To recover the compactness, we borrow
some ideas used in [5, 15] and establish the parameter dependent compactness con-
ditions. Let us point out that the adaptation of the ideas to the procedure of our
problem is not trivial at all, because of the presence of the nonlocal term K (x)pu..

Remark 2 (a) It is not difficult to find out functions f satisfying (f1)—(fs), for
example,

2

142

f(z,t) = h(z)t? <2ln(1 +1%) + ) V(z,t) € R® x R,
where h is a is a continuous bounded function with inf,cgs h(z) > 0.

(b) To the best of our knowledge, it seems that our theorems are the first re-
sults about the existence of multiple solutions for the nonhomogeneous Schrodinger-
Poisson equations on R? with sign-changing potential and general nonlinear term.
Although the methods are used before, we need to study carefully some properties
of the term K (z)¢u and the effect of the sign-changing potential V.

The paper is organized as follows. In Section 2, we will introduce the variational
setting for the problem and establish the compactness conditions. In Section 3, we
give the proofs of main results.

2. Variational setting and compactness condition

In this section, we give the variational setting of the problem (SP), and establish
the compactness conditions.

Let V(z) = VT (z) — V~(x), where V* = max{£V (z),0}. Let

E = {u c H'(R?) : [ VT(z)u’dr < oo}

R3

be equipped with the inner product and norm

(u,v) = As(Vqu+V+(x)uv)dx, lull = (u,u)/2.
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For A > 0, we also need the following inner product and norm
(u,v)\ = / (VuVo + AV (@)uv)dz,  |ullx = (u,u)}>.
R3

It is clear [Ju|| < ||u|lx for A > 1. Set E\ = (E,|| - ||»). It follows from (V)—(V1)
and the Poincaré inequality that the embedding Ey < H'(R?) is continuous, and
hence, for s € [2, 6], there exists ds > 0( independent of A > 1) such that

(2.1) luls < dsllullx, Yu € Ej.
Let
Fr = {ue By : suppu € V1[0, 00)}.

and F/\J- denote the orthogonal complement of F in Ey. Clearly, F\ = E) if V > 0,
otherwise Fi- # {0}. Define

Ay = —-A+ AV,

then A, is formally self-adjoint in L?(R?) and the associated bilinear form
a)(u,v) = / (VuVov + AV (z)uv)dx
R3

is continuous in F). As in [15], for fixed A > 0, we consider the eigenvalue problem
(2.2) —Au+ NV (2)u = pA\V = (2)u, u € Fi.

Since (Vo)—(V41), we see that the quadratic form u — [p3 AV~ (2)u?dz is weakly
continuous. Hence following Theorem 4.45 and Theorem 4.46 in [34] , we deduce
the following proposition, which is the spectral theorem for compact self-adjoint
operators jointly with the Courant-Fischer minimax characterization of eigenvalues.

Proposition 2.1 Assume that (Vo)—(V1) hold, then for any fized A > 0, problem
(2.2) has a sequence of positive eigenvalues {;(\)}, which may be characterized by

wi(X) = inf sup {||u||§\ tu € M,/ AV (z)ulde = 1} , =123, ..
dimM>j,MCF;- R3

Furthermore, p11(A) < pra(A) < -+ < pj(X) = 400 as j — +00, and the correspond-
ing eigenfunctions {e;(\)}, which may be be chosen so that (e;(A),e;(N))x = dij,
are a basis of Ff

Now we give the properties for the eigenvalues {y;(A\)} defined above.

Proposition 2.2 ([15]) Assume that (Vo)—(V1) hold and V— #£ 0. Then, for each
fized j € N,

(1) pj(A) = 0 as A — +oo.

(43) w;(X) is a non-increasing continuous function of \.

Remark 3 By Proposition 2.2 (i), there exists Ao > 0 such that py(A) < 1 for
all A > Ao.

Let
E = span{e;(\) : pj(N) <1} and EY := span{e;(\) : p;(A) > 1}
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Then E\ = E; @ Ey @ F) is an orthogonal decomposition. The quadratic form
ay is negative semidefinite on E, , positive definite on E;r @ F and it is easy to

see that ay(u,v) = 0 if u, v are in different subspaces of the above decomposition of
E,.

From Remark 3, we have that dim &y > 1 when A > Ay. Moreover, since
pi(A) = +o00 as j — 400, dim E, < 400 for every fixed A > 0.

It is well known that problem (SP), can be reduced to a single equation with
a nonlocal term (see [23]). In fact, for every u € Ej, the Lax-Milgram theorem
implies that there exists a unique ¢, € D'?(R3) such that

(2.3) ~Ad, = K(x)u?
with

1 K(y)u*(y)
Pul) = ar rs [T — Y

If K € L=(R?), by (2.3), the Héder inequality and the Sobolev inequality, we get
loullp = [ K(@)ouiitde < 572ty ol KL ul
Similarly, if K € L?(R?),
loullp = [ K(@)ouitde < 5-2aIK Tl

Thus, there exists Cy > 0, such that

dy.

(2.4) llpull? = /R K(2)pyuldr < Collulls, VK € L*(R®) U L>®(R3).

Therefore, problem (SP), can be reduced to the following equation:
—Au+ NV (2)u + K)o (2)u = f(z,u) + g(x), v € R3.

(SP), is variational and its solutions are the critical points of the functional defined
in E)\ by

1 1
I (u) =5 /RB(\VU|2 + AV (z)u?)dx + 1l K(z)pu’dx — . F(z,u)dz

- /R glx)ude.

Furthermore, it is easy to prove that the functional Iy is of class C' in Ey and that
(I (u),v) = / (VuVo + AV (z)uv + K () pyuv — f(x,u)v — g(x)v)d
R3
for all u,v € E\. Hence, if u € E) is a critical point of I, then (u,¢,) €

E) x DY2(R3) is a solution of problem (SP)y. We refer the readers to [6] and
[13] for the details.

Set

_ olde = L K (@)K (y)u*(@)u(y)
N = [ K@oids = - / / o D ey,
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Now we give some properties about the functional N and its derivative N’ pos-
sess BL-splitting property, which is similar to Brezis-Lieb Lemma [7].

Proposition 2.3 ([38], Lemma 2.1) Let K € L*°(R3) U L*(R3). If u, — u in
HY(R?) and u,(z) = u(z) a.e. z € R3, then

(1) du, — ¢u in DV2(R3) and N(u) < liminf, . N(uy);

(#) N(up —u) = N(up) — N(u) + o(1);

(iii) N'(un, —u) = N'(up) — N'(u) + o(1) in H=1(R3?).

Next, we investigate the compactness conditions for the functional Iy. Recall
that a C! functional J satisfies Cerami condition at level ¢ ((C). condition for
short) if any sequence {u,} C E such that J(u,) — ¢ and (1 + |lu,|))J (u,) — 0
has a convergent subsequence; and such sequence is called a (C'). sequence.

We only consider the case K € L°(R?), the other case K € L?(R?) is similar.

Lemma 2.1 Suppose that (Vo)—(V1), (K), (f1)—(f1) and (g) are satisfied. Then
every (C). sequence of Iy is bounded in Ey for each ¢ € R.

Proof. Let {u,} C E\ be a (C). sequence of I. Arguing indirectly, we can
assume that

(2.5) In(un) = ¢, (L4 [Jun )3 (un) = 0, [lunllx — 00

as n — oo after passing to a subsequence. Take w,, := u,/||un||x- Then |wy|x =
1,w, — w in Ey and w, (z) = w(z) a.e. z € R3.

We first consider the case w = 0. Combining this with (2.5), (f3) and the fact
wy, — 0in L?({z € R3 : V(z) < 0}), we have

o(1) = -t (I = B3 (). 0))

Tl

> qleli = [ V- @dde+ ||u1|| [ Flou)io- 4”5’| | starunds
1 A 3 1

> 1 Z|V_|oo /SuppV widx — Z|g|2d2m

= i +o(1),

a contradiction.
If w # 0, then the set Q; = {z € R®: w(x) # 0} has positive Lebesgue measure.
For x € 4, one has |u, ()| = co as n — oo, and then, by (f2),

Wwi(w) — 400 asn — oo,
which, jointly with Fatou’s lemma, shows that
F(x,up)
Q  Up
We see from (f1), (2.4), the first limit of (2.5), (2.6) and (g) that

F n F(z,u,
@ > limsup/ Mdm > limsup/ Mwidz = +400.
R Q1

(2.6) whdr — 400 asn — oco.

4 n—o0 3 HunHA)L\ n—o0 up
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This is impossible.
Hence {uy} is bounded in E). O

Lemma 2.2 Suppose that (Vp), (V1) , (K) , (9) and (1.2) hold. If up — u in
Ey, un(x) = u(z) a.e. in R3, and we denote w, = u, — u, then

(2.7) I\(upn) = In(wy) + In(u) + o(1)

and

(2'8) <I$\(un)’<p> = <I$\(wn)’(p> + <I$\(u)790> - /R3 g(pd$ + 0<1)’ for all pe E)\

as n — oco. In particular, if In(u,) — d and I} (u,) — 0 in EX( the dual space of
Ey), then I§(u) = 0 and

(2.9) In(wy) = d — Iy(u),

(I (wy), @) — —/ gedx, for all p € Ey
R3
after passing to a subsequence.
Proof. Since u,, — w in E), we have (u, — u,u)x — 0 as n — oo, which im-
plies that
(2.10) [unll = (wn + u, wn +w)x = [fwn |3 + [Jull} + o(1).
By (Vb),w, — 0 and the Holder inequality, we have

1/2
/ V> wpudz| < V7| </ widaz) lulg = 0
suppV — suppV —

V™ (2)uide = V™ (x)w2dx + V7~ (x)uldz + o(1).
R3 R3 R3

Consequently, this together with Proposition 2.3 (ii) and (2.10), we obtain

V™ (2)wpudz
R3

as n — oo. Thus

laA(un,un)—kiN(un) _ <1a>\(wn, wn) + iN(wn)>+(la>\(u,u) + iN(u))—ko(l).

2 2 2

Similarly, by Proposition 2.3 (iii), we have

o)+ [ K@), unds = (atwnit) + [ K)o, wahds )
R3 R3

+ (a,\(u,h) + K(m)¢uuhdx> +o(l), VheE\.

R3
Since

/R,J 9(@)undz = /RS g(x)wndz + /RS g(zx)udz,

therefore, to obtain (2.7) and (2.8), it suffices to check that

(2.11) /R (F(2,un) — Fla, wy) — F(z,u))dz = o(1)

and

(2.12) sup / (f(z,un) — f(zywy) — f(x,u))hdx = o(1).
[Alla=1/R3
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Here, we only prove (2.11), the verification of (2.12) is similar. Inspired by [2], we
observe that

F(z,u,) — F(z,u, —u) = — /01 (jtF(x,un - tu)) dt = /01 flx,up, — tu)udt.

and hence, by (1.2), we have
|F (2, un) = F(2,un — w)| < e1fun||ul + e1|ul® + Cc, [un [P~ ul + Cc, [ul?,

where £1,C, > 0 and p € (4,6). Hence, for each € > 0, and the Young inequality,
we have

|F (@, un) = F(2,wn) = F(z,u)| < Clefun|* + Celul® + e|un|” + Celul?].
Next, we consider the function g, given by
gn(x) = max{\F(x,un) — F(z,wy,) — F(z,u)| — Ce(|un]?® + |un|P), 0} )

Then 0 < g, (x) < CCO-(Ju]?*+|ulP) € L*(R3). Moreover, by the Lebesgue dominated
convergence theorem,

(2.13) / gn(x)dx — 0 asn — oo,
R3

since u,, — u a.e. in R3. By the definition of g¢,, it follows that
|F(2,un) = Fw,wp) = F(z,u)| < gn(z) + Ce(lunl® + [ual?),
which, together with (2.13) and (2.1) shows that
|F(z,uy) — F(z,w,) — F(z,u)| < Ce
for n sufficiently large. Which implies that

/RB (F(2,un) — Fla,w) — F(z, w)]dz = o(1).

Next, we check that I{(u) = 0. Indeed, for each ¢ € C§°(R?), we have
(2.14) (up —u,¥)x = 0 as n — oo.

and
(2.15)

1/2
/ V= () (un — uw)pdz| < |V |s (/ (Up — u)de) [t)]2 = 0 as n — oo,
R3 suppyp

since u, — w in L} (R3). By Proposition 2.3 (i), u,, = u in Ey yields ¢,, — ¢, in
DI2(R). So

Pu,, — ¢u in LO(R?).
For every ¢ € C§°(R3), by the Holder inequality we obtain

6/5 | (6/5
/R3 | K () uap|®Pda < |K|%5W‘1é/5|u|1é/5’

that is K (z)ut € LS/°(R3), and hence

K(x)(¢u, — ¢u)utpdz — 0.

R3
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(R3) and the Hélder inequality, we have

| K@) (= wyida

< [Yl2| Kool du,, l6]un — U|3,Q,¢
< Clup —ulz 0, -0 asn— oo,

By u, — u in L}

loc

here Q,; is the support set of 1. Consequently,
| [ @000~ K@)l
R

@16 < [ K@, - wulde + [ 1K@, - dudlds
R3 R3
= o(1).
Furthermore, by (1.2) and the dominated convergence theorem, we obtain
[ ) = fealvds = [ () = Flaulide = o)
R3 Qy

Since u, — u in L*(R?) and g € L*(R?), we obtain [ps g(un, — u)dz = o(1). This
jointly with (2.14), (2.15), (2.16) and the dominated convergence theorem, shows
that

(I(w), ) = lim (I{(un), %) =0, ¥ € C5°(R?).
Hence I} (u) = 0. (2.9) follows from (2.7)-(2.8) and Proposition 2.3(iii). The proof

is complete. O

Lemma 2.3 Suppose V > 0,(Vo), (V1),(K), (g9) and (f1)—(fs) hold. Then, for any
M >0, there is A = A(M) > 0 such that I satisfies (C). condition for all ¢ < M
and A > A.

Proof. Let {u,} C E\ be a (C). sequence with ¢ < M. According to Lemma
2.1, {un} is bounded in E), and there exists C such that ||u,|[x < Cy. Therefore,
up to a subsequence, we can assume that

Up — u tn Ey;
(2.17) U, — win Lj (R3)(2 < s < 2%);
un(z) = u(x) a.e. x € R3,

Now we can prove that u,, — u in E) for A > 0 large. Denote w,, := u,, — u, then
w, — 0in Ey. By Lemma 2.2, we have I (u) = 0, and

(2.18) Iv(wy) = c— Ix(u), Ii(w,) —0 asn— oo.

Noting V' > 0 and using (f3), we have
1
In(u) = In(u) = (I3 (u), u)
1, 3 3
= —||ull5 + Flx,u)dx — — gudr = Oy (u) — — gudz,
4 s 4 Jos 4

here @ (u) = ]Jull} + [ps F(x,u)dz > 0.
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Again by (2.9) and (2.17), we obtain

Flonl + [ Flawnda + o) = I wa) = U wn) )

:cfb\(u)+1/ gwpdz + o(1)

4 Jes
3 1

(2.19) =c— <I>>\(u)—f/ gudx —|—7/ gwpdx + o(1)
4 Js 4 Js

Here we use the fact ¢ < M and

3 3 3 . ~
Z|9|2|U\2 < Z|9\2d2Hu||,\ < Z|g|2d2 liminf [[un ||y < [gl2d2C < M,
n—oo
where M is a positive constant independent of A. Hence
(2.20) F(x,w,)dx < M + M + o(1).
R3
Since V(x) < b on a set of finite measure and w,, — 0,
1

AV (z)w2de + / widr < — w3 + o(1).

1
2.21 nl2 <
( ) |wn|2 — V<b )\b

Ab V>b
For 2 < s < 2*, by (2.21) and the Holder and Sobolev inequality, we obtain

s—2
s—2

6—s
4 1
[wn |3 :/ |wp|®de < (/ |wn|2dx> (/ wn|6dx>
R3 R3 R3
4

6—s 3
1 4 -
< —/ (|Vwn|* + AVTw?) da S—6 / |Vw,|*dz +0(1)
b R3 R3

6—s

1\ % - 36-2 s
(2.22) < ()\b> S 2 Jwn I3 + o(1).

By (f1), for any £ > 0, there exists 6 = §(¢) > 0 such that |f(z,t)| < £|¢| for all
x € R and [t| < §, and (fy) is satisfied for |t| > & (with the same 7 but possibly
larger a;). Hence we get

(2.23) / £, wn)wpda < s/ w2dz < < w2 + o(1),
|wn| <5 Jwn | <6 Ab

1/7
/ f(a:,wn)wndxg/ L@ wn) g ) 2
|wn|2‘s \wn|25 w’ﬂ

1/7
< / a1 F(z,wy)dz |wy, |2
|wn|>6

0
~ _ 3(2s—4) 1
(2.24) < lay (M + M))Y78~ "= () Jwn |3 + o(1)

and
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lgy (fa), (2.20), (2.22) with s = 27/(7 — 1) and the Holder inequality, where § =
S?Ecju(i — u in L?(R3) and g € L?(R3), we have
(2.25) /RS g(u, —u)dr -0 asn— oo.
Therefore, by (2.23), (2.24) and (2.25) we have
o(1) = (I3 (wn), wn)

> Jual} = [ fwyunde— [ guads
R3 R3
2.26 > 1= < a s s (LY 24001
—_— — 2s _—
(226) > |15~ [ar(M+ D) ) | Twall3 +o(1).
So, there exists A = A(M) > 0 such that w, — 0 in E) when A > A. Since
Wy, = Uy, — u, it follows that u,, — v in Ey. This completes the proof. O

Lemma 2.4 Let (Vp), (V1), (K), (9) and (f1)—(f4) be satisfied. Let {u,} be a (C),
sequence of Iy with level ¢ > 0. Then for any M > 0, there is A = A(M) > 0 such
that, up to a subsequence, u, — u in Ey with u being a nontrivial critical point of
I and satisfying I(u) < ¢ for allc < M and X\ > A.

Proof. We modify the proof of Lemma 2.3. By Lemma 2.2, we obtain
(2.27) L(u) =0, Iy(w,)—c—I\(u), Ij(w,)—0 asn— oco.

However, since V is allowed to be sign-changing and the appearance of nonlinear
term g, from

In(u) = In(u) — =

HEAORY
1 9 /\/ _ 9

= —|Jul|s — = V7 (2)u“dx +
-3 [ v@

we cannot deduce that Iy(u) > 0. We consider two possibilities:

F(x,u)dx — Z/ gudz,

R3 R3

(i) In(u) < 0;
(ii) Ix(u) > 0.

If I (u) < 0, then u # 0 and then w is nontrivial and the proof is done. If T (u) > 0,
following the argument in the proof of Lemma 2.3 step by step, we can get u,, — u
in Ey. In fact, by (V) and w,, — 0 in L?({x € R3 : V(x) < b}), we have

V™ (2)w? (z)dz| < |V*|Oo/ w2dr = o(1).
suppV —

R3
Combining this with (2.27), we have

F(z,wy)dx
R3

1 1 1 _ 3
= Iwn) = 3w wn) = glwnlf+ 5 [ AV @pudde+ ] [ guwnda

<ec—1Iy(u)+o(l) <M+o(1).
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It follows that (2.24), (2.25) and (2.26) remain valid. Hence w,, — u in E) and
In(u) = ¢(> 0). The proof is complete. O

3. Proofs of main results

If V is sign-changing, we first verify that the functional I have the linking ge-
ometry to apply the following linking theorem [22].

Proposition 3.1 Let E = E1 @ Ey be a Banach space with dim Ey < 00, ® €
CL(E,R®). If there exist R> p > 0,a > 0 and eg € Ey such that

a:=inf ®(E1 NS,) > sup &(0Q)

where S, ={u € E: ||lul]| = p},Q ={u=v+tey:v e Eyt>0,|ul| <R} Then @
has a (C). sequence with ¢ € [a, sup ®(Q)].

In our context, we use Proposition 3.1 with F; = E)T @ F\ and E; = E, . By
Proposition 2.2, u;(A) — 0 as A — oo for every fixed j. By Remark 3, there is
Ao > 0 such that Ey # 0 and Ey is finite dimensional for A > Ay. Now we inves-
tigate the linking structure of the functional 7.

Lemma 3.1 Suppose that (Vy), (V1), (K),(g) and (1.2) with p € (4,2*) are sat-
isfied. Then, for each A > Ag( is the constant given in Remark 2), there exist
ay, px and ny > 0 such that

(3.1) I(u) > ay for all u € EY @F,\ with |lul]x = px and |gl2 < nx.

Furthermore, if V> 0, we can choose «, p,n > 0 independent of .

Proof. For any u € E;\r P F, writing u = ug + ug with uy € E;\' and ug € F).
Clearly, (u1,u2)y =0, and

(3.2) /RB(WUP AV (2)u2)dz = /RS(\VulF AV (@)ud)da + [[us]2.

By Proposition 2.1 we have pj(A) — 400 as j — +oo for each fixed A > Ay. So
there is a positive integer ny such that p;(A\) < 1 for j < ny and p;(A) > 1 for
j >nx+ 1. For uy € B, we set ug = 22 1t (A)eji(A). Thus

(3.3)

1
/ (|Vur > + AV (z)ud)de = ||Jug |3 —/ AV (z)uide > <1 - ) l|ui]3.
R3 R3 Hm+1( )

Now, using (2.1), (3.2) and (3.3), we obtain

1 1
L) >=(1— — VIl —elul2 — C-lul? — |glo|u
)2 5 (1= ) Jul = el - Cululp ol
1 1
1 ————— ) |lul|2 = ed?||ul|? — C.dP||u|? - d u
—2( M,M(A))i 15— ed3llull} — Cedpllull} — dalglallulix

Y

1 1
(1 — ) —ed? —C.dP|u| "t - d .
s { |5 (1= 5 ) — e8| s~ Cealull ™ = gl
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Let h(t) = [%(1 - m - 5d§} t — CedbtP?, for t > 0,p € (4,6) there exists
A
1

31— —rwy)—eds | 72
p(N\) = T D) such that max;>o h(t) = h(p(A)) > 0. It follows

from above inequality, Ix(u) [|ju)\=pn)> 0 for all [glz < ny = h(QpT(:‘)). Of course,
p(A) can be chosen small enough, we can obtain the same result: there exists ay > 0,
such that Iy(u) > ay, here ||ul|x = pa.

If V>0, since E)\ = F), and
[ (09u? XV (@) )do = ful,
R3
we can choose «, p,n > 0 (independent of A) such that (3.1) holds. O

Lemma 3.2 Suppose that (Vo), (V1),(K),(g) and (f1)—(f2) are satisfied. Then,

for any finite dimensional subspace E\ C E, there holds
Iy(u) = —o0 as |ullx — co, u€ Ey.
Proof. Assuming the contrary, there is a sequence (u,) C Ey with |[u,|[x — oo
such that
(3.4) —00 < i%f In(up).

Take vy, = iy /|un||x. Since dim E) < 400, there exists v € Ey \ {0} such that

vy, — v in Ej, vp(2) = v(z) a.e. z € R?
after passing to a subsequence. If v(z) # 0, then |u,(z)] — +00 as n — oo, and
hence by (f),

F(z,un(z)) 4,

T g vy, () = 400 as n — oo.
u (z
Combining this with (f1), (2.4) and Fatou’s lemma, we have

I (un) 1 Co / F(z,up) / Up,
< +— - ———dzr — g(x) dx
! 2V e Tl 7 e

1 C F d
S2"'0—</ +/ )indm-&-wbg
2unly 4 v=0  Juzo u, (54

1 C F n d
< +70_/ (Qf,u )Uid‘f—‘r |g|2 2
v#£0

0unlX 4 up l[un 3
— —00,
a contradiction with (3.4). O

Lemma 3.3 Suppose that (Vy), (V1), (K), (9) and (f1)—(f2) are satisfied. If V(x) <
0 for some x, then , for each k € N, there exist \p, > k,wy € Ej\'k @B Fy,, Ry, >
Px. (pa,, is the constant given in Lemma 3.1) and ng, by, > 0 such that, for |gla < n
and | K| < b (or |K|a < b),

(a) sup I, (9Q4) < 0,

(b)sup I, (Qk) is bounded above by a constant independent of A\,

where Q. := {u=v +twy :v € By ,t >0, [lullx, <Ry}
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Proof. We adapt an argument in Ding and Szulkin [15]. For each k € N, since
wi(k) — +oo as j — oo, there exists ji € N such that p;, (k) > 1. By Proposition
2.2, there is Ay > k such that

1
1<, (M) <14+ —.
Ak

Taking wy, = e, (Ar) be an eigenvalue of pj, (Ar), then wy, € E;\Fk as pj, (Ag) > 1.
Since dim E; P Rwy < +oo, it follows directly from Lemma 3.2 that (a) holds
with Ry, > 0 large enough.

By (f2), for each 7 > |V~ |, there is r; > 0 such that F(z,t) >
For u = v +w € E, @ Rwy, we obtain

Lit? if [¢] > ry.

V™ (x)utde = V™ (x)v?dr + V™ (2)w?dx
R3 R3 R3

by the orthogonality of Ey and Rwy. Hence we get

1 1
Iy, (u) < f/ (IVwl® + MV (z)w?) dx + ~
2 R3 4

— / gudzx
R3

< 5l Ow) = U

K(z)p u’dx 7/ F(z,u)dx

R3 suppV —

1
V™ (z)w?dr — f/ fuldr+

R3 suppV —
1 1.
1572l sl + dlolaluls, — [ () - i) o
suppV ~,|u|<rj

1 _ 9 7 _ 2 laon 2 pd
<3 - V= (@)w dr — N Jreo Vo (z)w dr 4 Cj + 1° dyy /5| K|S Ry,
+ d2|g|2R)\k
< Cﬁ +1

for u=v+w e By, @Ruwg with [lullx, < Ry, , [K|oo < bg := S(d1a/5Ry,) "2 and
lgle < ni = ﬁ, where Cj depends on 7 but not A. O
k

Lemma 3.4 Suppose that (Vo), (V1), (K), (9) and (f1)—-(f2) are satisfied. If Q =
intV=1(0) is monempty, then, for each N > Ao( is the constant given in Re-
mark 2), there exist w € E;\r @D F\,Rx > 0,mx > 0 and by > 0 such that for
gl2 < s [ Koo < ba( o7 [Kl2 < by),

(a’) sup I)\(aQ) < Oa

(b) sup I (Q) is bounded above by a constant independent of X,

where Q :={u=v+tw:ve E ,t>0,|ulx <Ry}

Proof. Choose ey € C§°(2) \ {0}, then eg € Fy. By Lemma 3.2, there is Ry > 0
large such that I(u) < 0 where u € E\ @ Reg and |u|[x > Rx.
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For u=v+w € E; @ Rey, we have

1 1
In(u) < = \Vw|*dx + ~ K (2)p u’dx — / F(z,u)dz —/ gudz
2 R3 4 R3 0 R3

1 . -
< - |Vw|*dz — Q/ u?dx —/ (F(x,u) - nuz) dx
2 R3 2 Q Q,|u|<rj 2

1,_
4 152ty o Kl + Lol
1 7l 1-
35) <5 [ IVePde=T [ wido+ Gy 357l s KBl + ool

Observing w € C§°(12), we have

(3.6)
2 ~
C
[ [vuPds = [ (-Awpuds < [Bulsfulzn < ol Vulalulan < 52wl + 2luf o
R3 Q 27 2 ’

where ¢ is a constant depending on eg. Choosing 7 > ¢f, we have [Vw[3 < 7j]ul3 g,
and it follows from (3.5) that

1
I(u) <C; + 15‘2d‘1‘2/5\K|§oR§ +1gledaRy < Cj +1

for all w € Ey @Rey with [July < Ry and |K|e < by := S(di2/5R\)"? and
lgla < mx := ﬁ, where Cj depends on 7 but not A. O

Now we are in a position to prove our main results.
Proof of Theorem 1. The proof of this theorem is divided in two steps.

Step 1 There exists a function uy € Ey such that I{(uy) = 0 and Ix(uy) < 0.
Since g € L*(R3) and g > 0( 0), we can choose a function ¢ € E) such that

/R3 g(x)(z)dx > 0.
Hence, we have
2 A2 4
1) = IR -5 [ vo@wtae+ 5 [ K@i

_ /]R3 F(z, t)ds — t/IRs g9(z)pdz

t2 t
< Slvl3 + < Collwllx —t | g(x)yde
2 4 R3
<0 fort>0 small enough.
Thus, there exists uy small enough such that I (uy) < 0. By Lemma 3.1, we have
con = inf{I\(u) :u € B,,} <0,
where py > 01is given by Lemma 3.1, B,, = {u € Ej : ||u||x» < px}. By the Ekeland’s

variational principle, there exists a minimizing sequence {u, x} C B, such that

1
cox < Ii(upy) < cox + —,
nx
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and
1
Ii(wy) > In(un,n) — nj”w’\ — un,allx

for all wy € pr Clearly, {un,»} is a bounded Palais-Smale sequence of I. Then,
by a standard procedure, Lemma 2.3 and Lemma 2.2 imply that there exists a
function uy € Ey such that I} (uy) = 0 and Ix(uy) = cpx < 0.

If V>0, we can get py, cox, uo,x are independent of \.

Step 2 There exists a function @y € E such that I{(uy) = 0 and I (uy) > 0.

It follows from Lemmas 3.1, 3.3 and Proposition 3.1 that, for each k € N, A =
Moy g2 < M and 0 < | Koo < by (or 0 < |K|2 < bg), Iy, has a (C)c sequence with
¢ € [an,,sup Iy, (Qr)]- Setting M :=sup I, (Q), then I, has a nontrivial critical
point according to Lemmas 2.1, 2.4 and Proposition 3.1. That is, there exists a
function uy € Ej such that I{(uy) = 0 and In(ux) = ¢ > ay, > 0. The proof is
complete. O

Proof of Theorem 2. The first solution is similar to the first solution of Theorem
1. The second solution follows from Lemmas 2.1, 2.4, 3.1, 3.4 and Proposition 3.1.
The proof is complete. O

Proof of Theorem 3. The proof of this theorem is divided in two steps.

Step 1 There exists a function uy € Ey such that I} (up) = 0 and Iy (up) < 0.
In the proof of Theorem 1, we can choose ¢y = co.x, B, = B x, then by the By
the Ekeland’s variational principle, there exists a sequence {u,} C Ep such that

1
co < I(up) < co+ e
and

1
I(w) > Ix(u,) — EHW — Un||x

for all w € B,. Then by a standard procedure, we can show that {u,} is a bounded
Palais-Smale sequence of I. Therefore Lemmas 2.3 and 2.2 imply that there exists
a function ug € E such that I} (ug) = 0 and I(ug) = ¢ < 0.

Step 2 There exists a function uy € Ej such that I§(uy) = 0 and I (uy) > 0.

Since we suppose V' > 0, the functional I, has mountain pass geometry and the
existence of nontrivial solutions can be obtained by mountain pass theorem [22]. In
fact, by Lemma 3.1, there exist constants «, p,n > 0 ( independent of A) such that,
for each \ > Ay,

In(u) > « for u € Ey with ||u]lx = p and |g|2 <.
Take e € C§°(Q) \ {0}, by (f1), (f2) and Fatou’s lemma, we get

I)‘(fe) < %/ |Ve|?dx + 1N(e) - / we‘ld:ﬂ — t/ gedr — —o0
t 2t Q 4 {zxeQ:e(x)#0} (te) Q
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as t — +oo, which yields that Iy (te) < 0 for ¢t > 0 large. Clearly, there is C; > 0
(independent of A) such that

:= inf I(v(t)) < Ix(tep) < C
T hOO) St <@

where I' = {y € C([0,1], Ey) : v(0) = 0, [|[7(1)]|x > p, Irn((1)) < 0}. By Mountain
pass theorem and Lemma 2.3, we obtain a nontrivial critical point @) of I, with
I\(ay) € o, C1] for A large. The proof is complete. O
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