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ABSTRACT. We study the bang-bang properties of minimal time and minimal
norm control problems (where the target set is the origin of the state space
and the controlled system is linear and time-invariant) from a new perspective.
More precisely, we study how the bang-bang property of each minimal time (or
minimal norm) problem depends on a pair of parameters (M, yo) (or (T, yo)),
where M > 0 is a bound of controls and yo is the initial state (or T" > 0 is
an ending time and yo is the initial state). The controlled system may have
neither the L°°-null controllability nor the backward uniqueness property.
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1. Introduction.

1.1. Motivation. Two kinds of important optimal control problems for linear con-
trolled systems are minimal time control problems and minimal norm control prob-
lems. A minimal time control problem is to ask for a control (taking values from a
control constraint set which is, in general, a closed and bounded subset in a control
space) which drives the corresponding solution of a controlled system from an initial
state to a target set in the shortest time, while a minimal norm control problem is
to ask for a control which has the minimal norm among all controls that drive the
corresponding solutions of a controlled systems from an initial state to a target set
at fixed ending time. Several important issues on minimal time (or minimal nor-
m) control problems are as follows: The Pontryagin maximum principle of minimal
time (or minimal norm) controls (see, for instance, [8, 19, 22, 24, 46]); The existence
of minimal time ( or minimal norm) controls (see, for instance, [3, 23, 34]); Their
connections with controllabilities (see, for instance [4, 13, 30]); Numerical analyses
on minimal time (or minimal norm) controls (see, for instance, [12, 14, 27, 37, 45]);
And the bang-bang property of minimal time (or minimal norm) controls (see, for
instance, [6, 18, 19, 22, 25, 26, 28, 31, 33, 36, 40, 42, 43, 44, 47, 49]).

In this paper, we concern the bang-bang properties for these two kinds of prob-
lems in the case that both state and control spaces are real Hilbert spaces, controlled
systems are linear and time-invariant, target sets are the origin of state spaces, con-
trol constraint sets are closed balls in control spaces (centered at the origin) and
controls are L*° functions. The bang-bang property for a minimal time control
problem means that any minimal time control, as a function of time, point-wisely
takes its value at the boundary of the control constraint set, while the bang-bang
property for a minimal norm control problem means that each minimal norm con-
trol, as a function of time, point-wisely takes the minimal norm. The significance of
the bang-bang property for minimal time control problems can be explained from
the following aspects: (i) Mathematically, the bang-bang property means that each
minimizer of a functional (from [0, 00) to a bounded and closed subset in a Hilbert
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space) point-wisely takes value on the boundary of this subset. (ii) From applica-
tion point of view, the bang-bang property means that each minimal time control
takes the most advantage of possible control actions. For instance, controls always
have bounds which are designed by peoples. The bigger bounds are designed, the
more costs peoples pay. If the bang-bang property holds for a minimal time prob-
lem, then the designed bound for controls will not be wasted at almost each time.
(iii) The bang-bang property is powerful in the studies of minimal time control
problems. For instance, in many cases, the uniqueness of minimal time controls
follows from this property; in some cases, this property can help people to do more
dedicate numerical analyses on minimal time controls (see, for instance, [14, 37]).
We can also explain the significance of the bang-bang property for minimal norm
control problems from both mathematical and application points of view. In most
literatures on the bang-bang property for the minimal time (or minimal norm) con-
trol problems, peoples mainly concern about: (i) For a given problem, whether the
bang-bang property holds; (ii) Applications of the bang-bang property (see, for in-
stance, [6, 18, 19, 22, 25, 26, 28, 31, 33, 36, 40, 42, 43, 44, 47, 49] and the references
therein).

In this paper, we study the bang-bang properties of the minimal time control
problems and the minimal norm control problems from a different perspective. The
motivation of this study is as follows: Two typical minimal time and minimal norm
control problems in the finitely dimensional setting are as follows: Let R™ and R™
(with n,m € NT) be the state space and the control space. Let (A4, B) be a pair of
matrices in R™*™ x (R™*™\ {0}). Given M > 0 and yo € R™ \ {0}, consider the
minimal time control problem:

(TP)Myo  T(M,yo) :=={t>0 : JuecUM st. y(t;yo,u) = 0}, (1.1)
where
UM :={u: RT :=[0,00) & R™ measurable : |jul|peg+rnm) <M},  (1.2)
and y(-; yo, u) is the solution to the equation:
y'(t) = Ay(t) + Bu(t), t > 0; y(0) = yo.

Given yp € R™\ {0} and T € (0, 00), consider the minimal norm control problem:

WP)YEwe N(T,yo) = inf{|[vll L= o,mmm) = 9(T350,v) = 0}, (1.3)
where v € L>(0,T;R™) and §(-; yo,v) is the solution to the equation:
Y(t) = Ay(t) + Bu(t), 0<t <T; y(0) = po. (1.4)

In the problem (7P)M¥o T (M,y) is called the minimal time; & € UM is called
an admissible control if y(f;yo,4) = 0 for some ¢ € (0,00); u* € UM is called
a minimal time control if y(7 (M, yo);y0,u*) = 0 and u* = 0 over (0,7 (M, yo)).
We say that the problem (7P)M:¥ has the bang-bang property if any minimal
time control u* verifies that ||u*(t)||gm = M for a.e. t € (0,7(M,yp)). When
(TP)M-¥o has no admissible control, we agree that it does not hold the bang-bang
property and 7 (M,yo) = oo. In the problem (NP)T-¥o, N(T,yo) is called the
minimal norm; ¢ € L>(0,T;R™) is called an admissible control if §(T;yo,?) = 0;
v* € L*®(0,T;R™) is called a minimal norm control if |[v*| 1o, rrm) = N(T,yo)
and §(T'; yo,v*) = 0. We say that the problem (NP)T*%0 has the bang-bang property
if any minimal norm control v* verifies that ||[v*(¢)||gm = N (T, yo) for a.e. t € (0,T).
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When (NP)T%0 has no admissible control, we agree that it does not hold the bang-
bang property and N (T, yo) = oco.

When (4, B) is fixed in R™*" x (R"*™ \ {0}), the problem (7P)M%o depends
only on the pair (M, yo) which belongs to the product space:

X = {(M,y) : 0<M < oo, yo € R"\ {0}}; (1.5)

and the problem (AP)T"% depends only on the pair (7, yo) which belongs to the
space:

Xy = {(T,y0) : 0<T < o0, yo € R"\ {0}}.

By applying the Kalman controllability decomposition to the pair (4, B) (see, for
instance, Lemma 3.3.3 and Lemma 3.3.4 in [38]), we can easily divide the space
X into two disjoint parts so that when (M, yg) is in one part, the corresponding
(TP)M¥o has the bang-bang property; when (M, yo) is in another part, the corre-
sponding (7P)M:¥0 has no admissible control (which implies that it does not hold
the bang-bang property). The same can be said about the space X5. We call such
decompositions as the BBP decompositions for (7P)M:¥0 and (NP)T-¥0, respec-
tively. The exact BBP decompositions for the above two problems are the following
(P1) and (P2):

e When (M, yo) € Dppp, (TP)¥ has the bang-bang property;

(P1) e When (M, yo) € X1\ Dpvp, (TP)M¥ has no admissible control. (1.6)
Here,
Diy = {(M.y0) € (0.50) x (R\{0) : M > lim N(Tow)},  (L7)
where
R:=B+AB+ -+ A"B, with B:={Bx e R" : z € R™}. (1.8)
(P2) e When (T,y0) € Xo1, (NP)T% has the bang-bang property; (1.9)

e When (T,y0) € Xo2, (NP)T¥% has no admissible control,

where X3 1 := (0,00) x (R\ {0}) and X35 := (0,00) x (R"\ R). (Notice that both
Dppp and R\ {0} are not empty. These are proved in Appendix A, see (8.13) and
(8.1).)

The proofs of (P1) and (P2), via the Kalman controllability decomposition, are
given in Appendix A. Though the proofs are quite simple, such BBP decomposi-
tions seem to be new. (At least we do not find them in any published literature.)
A natural question is how to extend the above-mentioned BBP decompositions to
the infinitely dimensional setting where state and control spaces are two real Hilbert
spaces, A is a generator of a Cy-semigroup on the state space and B is a linear oper-
ator from the control space to the state space. The purpose of this paper is to build
up such BBP decompositions in the infinitely dimensional setting. The main diffi-
culty to get such extension is the lack of the Kalman controllability decomposition
in the infinitely dimensional setting.

Our first key to overcome this difficulty is to find two properties held by any pair
of matrices (A, B) in R™*™ x (R™*™\ {0}) so that they have the following function-
alities: (i) With the aid of these properties, we can get the decompositions (P1) and
(P2), without using the Kalman controllability decomposition; (ii) These properties
can be easily stated in the infinitely dimensional setting. The first one is a kind
of unique continuation property from measurable sets for functions: B*e4 (T=)z,
with 7 > 0 and z € R™. This property follows immediately from the analyticity
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of the function ¢t — B{eAI(T*t), t € R, in the finitely dimensional setting. In our
infinitely dimensional setting, it is the assumption (H2) given in the next subsec-
tion. The second property is quite hidden: For allt and T, with 0 <t < T < oo,
and u € L(0,T;R™), with supp u C (0,t), there is v, € L>(0,T;R™), with supp

C (t,T), so that §(T;0,u) = §(T;0,v,), where §(-;0,u) and §(-;0,v,) denote the
solutions of (1.4) with the same initial datum O and controls u and v,, respective-
ly.  (Proposition 13 in Appendix B proves that each pair of matrices (A4, B) in
R™*™ x (R™*™ \ {0}) holds this property.) The assumption (H1) given in the next
subsection is exactly the same version of the second property in our finitely dimen-
sional setting. About (H1), two facts are given in order: First, for a pair (A, B)
in the finitely dimensional setting, it may happen that the above-mentioned second
property holds but (A4, B) is not controllable. Second, even in the infinitely dimen-
sional setting, the null controllability of (A, B) implies that the above-mentioned
second property (see Proposition 9).

1.2. Problems and assumptions. Let us first introduce the minimal time and
the minimal norm control problems studied in this paper. Let X be a real Hilbert
space (which is our state space), with its inner product (-,-)x and its norm || - || x.
Let A: D(A) C X — X be a state operator which generates a Cp-semigroup
{S(t)}iecr+ on X. Write U for another real Hilbert space (which is our control
space), with its inner product (-,-)y and its norm || - ||y. Let B € L(U,X_1) be a
nontrivial control operator (i.e., B # 0), where X_; := D(A*) is the dual of D(A*)
with respect to the pivot space X. Throughout this paper, we assume that B is
an admissible control operator for {S(t)}ier+ (see Section 4.2 in [39]), i.e., for each
€ (0,00), there is a positive constant C (), depending on #, so that

|}/ 1(t = 7)Bu(r)dr|| ¢ < Cr(D)|ullp2(0 40y for all we Li, (RT;U), (1.10)

where {S_1(t)};cr+ denotes the extension of {S(¢)};cr+ on X_1. In the finitely
dimensional setting where X = R", U = R™, A € R"*" and B € R"*™ \ {0},
(1.10) holds automatically.

Two controlled equations studied in this paper are as follows:

y'(t) = Ay(t) + Bu(t), t > 0; y(0) = yo; (1.11)

y'(t) = Ay(t) + Bo(t), 0 <t <T; y(0) = yo. (1.12)

Here, yo € X, T' > 0, controls u and v are taken from L>®(R*;U) and L>°(0,T;U),
respectively. For each T > 0, yo € X and v € L2(0,T;U), a solution of the
equation (1.12) is defined to be a function g(-;yo,v) € C([0,T]; X) satisfying that
when z € D(A*),

(G(t;y0,v), 2) x — (Yo, 5™ (t)2) x :/0 (v(s), B*S*(t — s)z)py ds, Vt € [0,T]. (1.13)

One can easily see from Lemma 2.1 that the definition of §(+;yo, v) is the same as
the definition of a solution to (1.12) in [5, Definition 2.36]. Thus, it follows from
[5, Theorem 2.37] and Lemma 2.1 that the equation (1.12) is well-posed. For each
yo € X and u € L>(R™;U), a solution of the equation (1.11) is defined to be a
function y(-; yo,u) € C(RT; X) so that for each T' > 0, y(-; yo, u)| [0, 7] (the restriction
of y(+; 4o, u) over [0,T]) is the solution to (1.12) with v = u|, ). Consequently, the
system (1.11) is well-posed. Besides, by Proposition 1, one can check the following
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two facts: First, for each yop € X and u € L®°(R*; U), the solution y(+; 4o, u) to the
system (1.11) satisfies that

y(t; yo, u) = S(t)yo +/O S_1(t = 7)Bu(r)dr, 0<t< o0. (1.14)

Second, if for some yo € X and u € L>®(R*;U), a function y(-) € C(RT; X) equals
to the right hand side of (1.14) point-wisely, then y(-) = y(-; yo,u) over RT.

For each pair (M,yo) € (0,00) x (X \ {0}), we define a minimal time control
problem:

(TP)Mvo  T(M,yo) :==inf {f € (0,00) : Ju e UM s.t. y(f;y0,u) =0}, (1.15)
where
UM :={u: R — U strongly measurable : [[u(t)|y < M ae. t € RT}.

In the problem (TP):%o_ the minimal time, an admissible control and a minimal
time control can be defined in the same manners as in (7P)¥% (see (1.1)). We
say that the problem (T'P)M-%o has the bang-bang property if any minimal time
control u* verifies that [|u*(t)|y = M for a.e. t € (0,T(M,yo)). When (TP)M¥o
has no admissible control, we agree that it does not hold the bang-bang property
and T'(M,yq) = oo

For each pair (T,y) € (0,00) x (X \ {0}), we define a minimal norm control
problem:

(NP)T¥ N(T, yo) = inf{[|v]| e 0,0+ v € L(0,T;U) s.t. §(T; yo, v) = 0Y1.16)

In the problem (NP)%*% the minimal norm, an admissible control and a minimal
norm control can be defined in the same ways as in (NP)T¥% (see (1.3)). We
say that the problem (N P)T"% has the bang-bang property if any minimal norm
control v* verifies that ||[v*(t)||y = N(T,yo) for a.e. t € (0,T). When (NP)?¥% has
no admissible control, we agree that it does not hold the bang-bang property and
N(T,yo) = <

We say that (A, B) has the L*-null controllability if for any T > 0 and yg €
X, there is v € L*°(0,T;U) so that §(T;yo,v) = 0. We say that the semigroup
{S(t)};cr+ has the backward uniqueness property if S(T)yo = 0 = yo = 0. In our
infinitely setting, we assume neither the L°°-null controllability nor the backward
uniqueness property. To make up the lack of these properties, we define the following
two functions T°(-) and T (-) (which play important roles in our study):

T%(yo) :==inf {t e R : Ju e L¥R";U) s.t. y(t;y0,u) =0}, yo € X; (1.17)

Tl(y() = inf {t S RT . S(f)yo = 0} , Yo € X. (118)

When the set on the right hand side of (1.17) is empty for some yq, we let T9(yo) :=
0o. The same can be said about T (yp).

Remark 1. (i) The pair (A4, B) has the L>°-null controllability if and only if for
each yo € X, T%(yo) = 0.

(ii) Though many controlled systems, such as internally or boundary controlled heat
equations, hold the L>°-null controllability, there are some controlled systems having
no the L>-null controllability. Among them, it may happen that T%(y) € (0, 00)
for some yo € X (see Remark 14).

(iii) The semigroup {S(¢)};cr+ has the backward uniqueness property if and only
if for each yo € X \ {0}, T (yo) =
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(iv) Though many semigroups governed by PDEs, such as heat equations and
wave equations, hold the backward uniqueness property, there are some semigroup-
s governed by PDEs having no this property. Among them, it may happen that
T'(yo) < oo for all yo € X. A transport equation over a finite interval is one of
such examples.

From (1.16), we see that for each yo € X \ {0}, T — N(T,yo) defines a function
over (0,00). Since the quantities N(T%(yo),y0) and N(T*(yo),yo) will appear fre-
quently, T°(+) may take values 0 and oo, and T (-) may take value oo, it is necessary
for us to give definitions for N (oo, yo) and N (0, yo). For this purpose, we notice that
for each yg € X\{0}, T"— N(T,yo) is a decreasing function from (0, 00) to [0, o0].
(This can be easily obtained from (1.16), see also (i) of Lemma 3.2 for the detailed
proof.) Thus, we can extend this function over [0, c0] in the following manner:

N(o0,yo0) := lim N(t,50) and N(0,y0) := lim N(t,0), yo € X\ {0}. (1.19)

As mentioned in Subsection 1.1, we impose two assumptions on (A, B) as follows:
(H1) There is py € [2,00) so that A, (T,t) C A (T,t) for all T, , with 0 < { <
T < oo, where

Ay (T, 1) = {Q(T;O,u) L ue L0, T;U), with gy = 0};

Aoo(T, 1) := {Q(T;O,v) t v € L®(0,T3U), with v|g; = 0}.

(H2) If there is T' € (0,00), a subset E C (0,T") of positive measure and a function
f €Ypsothat f =0 over E, then f =0 over (0,7). Here,

Yy = X H T itk the LY(0, T; U)-norm, (1.20)
where
X = {B*"S*(T — )z|(o,r) : 2 € D(A")}, with the LY0,T;U)-norm.  (1.21)

Remark 2. (i) The assumption (H1) says roughly that the functionality of a control
supported on (0,7) can be replaced by that of a control supported on (,7). The
assumption (H2) says, in plain language, that any function in Y7 has some unique
continuation property from measurable sets.

(ii) We do not know if every function in Y7 can be expressed as B*¢ with ¢ a solution
of the adjoint equation over (0,7, even in the case that B € L(U, X ). However, if
(A, B) has the L>-null controllability, then the above-mentioned expression holds
(see Remark 12).

(iii) Each pair (A, B) in R™*" x (R™*™\ {0}) (with n,m > 1) satisfies both (H1)
and (H2) (see Proposition 13 in Appendix B).

Our studies on the BBP decompositions are based on the assumptions (H1) and
(H2). However, our main results can be improved, if instead of (H1) and (H2), we
impose the following stronger assumptions (H3) and (H4):

(H3) The pair (A*, B*) is L*-observable over each interval (or simply L'-observable),
i.e., for each T € (0, 00), there exists a positive constant C(T") so that

T
I1S*(T)z]|x < Cl(T)/ |B*S*(T — t)z||y dt for all z € D(A*).
0

(H4) If z € X satisfies that W(T — )z =0 over E for some T € (0,00) and some
subset £ C (0,7T) of positive measure, then B*S*(T — -)z = 0 over (0,T). Here,
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E*\S/*(T — ) is the natural extension of B*S*(T — -) over X. (It will be explained
in the next remark.)

Remark 3. (i) The function E*\S/*(T—-) in (H4) is defined in the following manner:
Since B € L£(U, X_1) is an admissible control operator for {S(t) };cr+, it follows from
Lemma 2.1 that B* is an admissible observation operator for {S*(t)};cr+, i.e., for
each T € (0, 00), there exists a C(T") > 0 so that

T
/ |B*S*(T — 7)z||3 dr < C(T)|2||% for all = € D(AY).
0

(Indeed, [39, Theorem 4.4.3] proves that B € £(U, X_1) is an admissible control
operator for {S(t)};cr+ if and only if B* is an admissible observation operator for
{S*(t)}ter+ in the case where X and U are complex Hilbert spaces.) Thus, for
each T € (0, 00), the operator B*S*(T — -) : D(A*) — L?(0,T;U) can be uniquely
extended to a linear bounded operator B*S*(T — ) from X to L?(0,T;U). More
precisely, for each z € X,

B*S (T — )z = Jim B*S™(T — )z, in L*(0,T;U), (1.22)
where {z,} C D(A*), with lim,, o0 2, = z in X.
(ii) The condition (H3) is an L!-observability estimate for the pair (A*, B*), which
is equivalent to the L*°-null controllability for the pair (A, B). (See Proposition 8.)
(iii) The condition (H4) is a kind of unique continuation property of the dual equa-
tion over (0,T) for each T € (0, 00).
(iv) The condition (H1) can be implied by (H3) (see Proposition 9). However, (H1)
may hold when (H3) does not stand. For instance, when X = R™ and U = R™
(with n,m € NT), any pair (4, B) € R™*" x (R"*™ \ {0}) satisfies not only the
condition (H1) but also the condition (H2) (see Proposition 13 in Appendix B).
On the other hand, it is well known that (A, B) is L°°-null controllable if and only
if it is controllable, and the later holds if and only if (A, B) satisfies the Kalman
rank condition. Thus any (A4, B) € R®*™ x (R™*™ \ {0}) that does not satisfy the
Kalman rank condition has the property (H1) but does not hold the property (H3).
(v) The condition (H2) can be derived from (H3) and (H4) (see Proposition 10).

1.3. Main results. The main results of this paper concern with the BBP decom-
positions for (T P)M¥o and (NP)T-%0. To state them, we notice that the domain W
of the pairs (T, yo) for (NP)T%0 and the domain V of the pairs (M, yo) for (T P)M-vo
are the following spaces:

W={(T,y0) : 0<T < o0, yo € X \{0}} (1.23)
and
V={(M,y) : 0<M <oo, yo € X\ {0}}. (1.24)
In the domain W, we define the following subsets:
Win = {(Toy) eWr = T < T (w)},
Wia = {(T,y0) eWr : T >T o)}, (1.25)

where

Wi = {(T,y0) €W : N(T°(y0),v0) = 0}; (1.26)
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Wai {(T,y0) €W = T <Two)},
Wao = {(T,y0) € Wa : T=T"(yo)}, (1.27)
Was = {(T,y0) € Wa : T (yo) <T < T (o)},
Waa = {(T,y0) € Wa : T%(yo) <T, T >T"(yo)},
where
Wy :={(T,yo) € W : 0 < N(T°(y0),50) < o0}; (1.28)
W371 = {(T y()) cWs : To(yo) <oo, T < To(y())}
Waa = {(T,y0) €Ws : T(yo) <00, T%(y0) < T < T (y0)},  (1.29)
Wi = {(T,y0) € W5 : T%(yo) < o0, T%(yo) <T, T >T"(y0)},
Wsa = {(T,y0) € W5 : To(yo) oo},
where
Ws = {(T,y0) €W : N(T°(y0),0) = oc}. (1.30)
In the domain V, we define the following subsets:
Vi o= {(M,y) eV : N(T°),y) = 0}; (1.31)
Vou = {(M,yo) €Vs : M < N(T"(30),%0)},
Voo = {(M,y0) € V2 : N(T"(y0),90) < M < N(T°(y0),90)},
V2,3 = {(M7 yO) €Vs : N<T1(y0)’y0) < Ma M = N(To(y0>7y0)}’ (1'32)
Vau = {(M,yo) € V2 : N(T"(y0),90) < M, M > N(T°(y0),%0)},
where
Vo :={(M,yo) €V : 0< N(T°(yo),%0) < 00}; (1.33)
Va1 = {(M,yo) € Vs : T%(yo) < oo, M < N(T"(y0),0)},
Vso = {(M,yo) € Vs : T(yo) < 00, M > N(T*(y0),v0)},  (1.34)
Viz = {(M,yo) € Vs : T(yo) = oo},
where

VB = {(M7 yO) S N(To(y0)790) = OO} (135)
The main results of this paper are presented in the following two theorems:

Theorem 1.1. Let W be given by (1.23). Let Wy ; (j =1,2), Wa; (1 =1,2,3,4),
and Ws; (j = 1,2,3,4) be given by (1.25), (1.27) and (1 29), respectwely Then
the following concluswns are true:

(i) The set W is the disjoint union of the above mentioned subsets W; ;.

(ii) For each (T,yo) € W12 UWa 4 UWs3, (NP)T%0 has the bang-bang property
and the null control is its unique minimal norm control.

(i1i) Suppose that (H1) and (H2) hold. Then for each (T,yo) € Wasz U Ws,
(NP)T:9o has the bang-bang property and the null control is not a minimal nor-
m control to this problem.

(iv) For each (T,yo) € Wi1 U Wa1 UWs1 UWsy4, (NP)T¥0 has no admissible
control and does not hold the bang-bang property.

(v) For each (T,yo) € Wa 2, (NP)T"%° has at least one minimal norm control.
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Theorem 1.2. Let V be given by (1.24). Let Vi, Vao; (j = 1,2,3,4) and Vs ;
(7 =1,2,3) be given by (1.31), (1.32) and (1.54), respectively. Then the following
conclusions are true:

(1) The set'V is the disjoint union of Vi and the above mentioned subsets V; ;.

(i3) Suppose that (H1) and (H2) hold. Then for each (M,yo) € Va2UVs o, (T P)Mvo
has the bang-bang property.

(iii) Suppose that (H1) holds. Then for each (M,yo) € Va4, (T P)M:¥0 has infinitely
many different minimal time controls (not including the null control), and does not
hold the bang-bang property.

(iv) Suppose that (H1) holds. Then for each (M,yo) € Vi, (TP)M:¥0 has infinitely
many different minimal time controls (including the null control), and does not hold
the bang-bang property.

(v) For each (M,yo) € Vi3, (TP)™¥ has no admissible control and does not
hold the bang-bang property. If assume that (H1) holds, then for each (M,yo) €
Vo1 UV, (TP)M’yO has no admissible control and does mot hold the bang-bang
property.

(vi) For each (M,yo) € Va3, (TP)¥% has at least one minimal time control.

Remark 4. To make the BBP decomposition for (N P)T:%0 (i.e., the decomposition
of W given by Theorem 1.1) understood better, a draft is given in Figure 1. We
explain it as follows: The abscissa axis denotes the set X \ {0}, while the ordinates
axis denotes the set of time variables T > 0. Each p; (with ¢ = 1,2,3,4) on the
abscissa axis is a “point” of the set X \ {0}.

T A

n X\{0}

FIGURE 1. The BBP decomposition for (N P)T-vo

In Figure 1, some notations are explained as follows:

e (p1,p2] denotes the set: {yo € X \ {0} : N(T°(yo),y0) = 0}.

e (p2,p3) denotes the set: {yo € X \ {0} : 0 < N(T°(yo0),v0) < 00}.

e [p3,ps) denotes the set: {yo € X \ {0} : N(To(yo) Yo) = 00, TO(yo) < oc}.

e [ps,00) denotes the set: {yo € X \ {0} : N(T%(yo), yo) = o0, T°(30) = o0}.

e The two curves above the abscissa axis (from the left to the right) respectively

denote the graph of the functions: yo — T (o), %o € X \ {0} and yo —
T%yo), yo € X \ {0}. These two curves coincide over (pi, pa].
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Let Wi, (j =1,2), Wa; (j =1,2,3,4), and Wy, (j = 1,2,3,4) be given by (1.25),
(1.27) and (1.29), respectively. Then we conclude that

The set Wi 1 is the region {(T,v0) : vo € (p1,p2], 0 <T < T°(yo)};

The set W,  is the region {(T,v0) : vo € (p1,p2], T%(yo) < T < c};
The set Wa ;1 is the region {(T,v0) : vo € (p2,p3), 0 <T < T°(y0)};
The set Wa 5 is the region {(T,%0) : Yo € (p2,p3), T =T°(v0)};

The set W 3 is the region {(T,yo) : vo € (

]
(T, 90) ]
(T’ yo) ); 0
(T’ 90) ): T
(T, yo) p2,p3); T%(yo) <T < T"(yo)};
The set Wa 4 is the region {(T,y0) : vo € (p2,p3), T (yo) <T < x};
The set Wj 1 is the region {(T,yo) : vo € [p3,p4), 0 <T < T%yo)};

The set Ws 5 is the region {(T,40) : Yo € [p3,p4), T%(v0) <T < T (0)};
The set Ws 3 is the region {(T,v0) : vo € [p3,p4), T (yo) < T < oo};

The set Wi 4 is the region {(T,yo) : yo € [pa,0), 0 < T < o0};

When {S(¢) }+er+ has the backward uniqueness property, we have that T (yg) =
oo for all yo € X \ {0}. In this case, the curve: {(yo,T*(y0)) : yo € X \ {0}}
will not appear in Figure 1; Wy 1 UW; 2 UWs 4, UWs3 3 = 0 (see (iv) of Lemma
3.4).

To make the BBP decomposition for (T'P)M:¥% (i.e., the decomposition of V' given
by Theorem 1.2) understood better, a draft is given in Figure 2. We explain this
figure as follows: The abscissa axis denotes the set X \ {0}, while the ordinates axis
denotes the variables M > 0. Each p;, with ¢ = 1,2, 3,4, on the abscissa axis is a
“point” of the set X \ {0}.

In

MA N(T (), yo)

4l

FIGURE 2. The BBP decomposition for (7'P)M:¥o

Figure 2, some notations are given in order.

(p1,pa) denotes the set: {yo € X \ {0} : N(T%(yo),%0) = 0}.

(pa,p3) denotes the set: {yo € X \ {0} : 0 < N(T°(yo),%0) < 00}

[p3, pa) denotes the set: {yo € X \ {0} : N(T°(y0),%0) = o0, T°(yo) < o0}.
[pa, 00) denotes the set: {yo € X \ {0} : N(T%(yo), yo) = 00, T°(yp) = 00}
The two curves above the abscissa axis (denoted by Fy and Fj from the
left to the right) respectively denote the graphs of the functions: yo —
N(T°(%0),90), yo € X \ {0} and yo — N(T"(y0),%0), yo € X \ {0}. These
two curves are identically zero over (p1, pa].

<
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Let V1, Vo, (j = 1,2,3,4), and Vs ; (j = 1,2,3) be given by (1.31), (1.32) and
(1.34), respectively. Then we have the following conclusions:

e The set V; is the region {(M,yo) : yo € (p1,p2], 0 < M < o0};
The set Va1 is the region {(M,yo) : yo € (p2,p3), 0 < M < Fi(yo)};
The set Va2 is the region {(M,yo) : vo € (p2,p3), Fi(yo) < M < Fy(yo)};
The set Vs, 3 is the region {(M,yo) : yo € (p2,p3), M = Fo(y0), M # Fi(yo)};
The set Vs 4 is the region {(M,yo) : vyo € (p2,p3), Folyo) < M < oo}
The set V51 is the region {(M,yo) : vo € [p3,pa), 0 < M < Fi(yo)};
The set Vs 2 is the region {(M,yo) : vo € [ps,pa), Fi(yo) < M < oo}
The set Vs 3 is the region {(M,yo) : yo € [ps,0), 0 < M < oo}

Remark 5. (i) The decomposition given by Theorem 1.1 is comparable with the
decomposition (P2) in Subsection 1.1, except for the part W o, which is indeed the
following “curve” in the product space W:

Y= {(To(yo),yo) EW : 0< N(T(y0),90) < oo} (1.36)

It is a critical curve in the following sense: First, we do not know if it is empty.
Second, when (T,yo) € 71, we know the corresponding (N P)T% has at least one
minimal norm control, but we are not sure if it has the bang-bang property. It
deserves to mention that when (A, B) is L*°-null controllable, this curve is empty
(see Theorem 1.3).

(ii) The decomposition given by Theorem 1.2 is comparable with the decompo-
sition (P1) in Subsection 1.1, except for the part Vs 3, which is indeed the following
“curve” in the product space V:

0 o0
Ve 1= {(N(To(yo),yo),yo) eV ?V?T](Y(g)’%s))’ioj)val(;/o)’yo) } (1.37)

It is a critical curve in the BBP decomposition for (T'P)M:% in the following sense:
First, we do not know if it is empty. Second, when (M, yo) € 72, we know the
corresponding (T P)M:¥% has at least one minimal time control, but we are not sure
if it has the bang-bang property. It deserves to mention that when (A4, B) is L*°-null
controllable, this curve is empty (see Theorem 1.3).

Remark 6. In the finitely dimensional setting where (A4, B) is a pair in R™*" x
(R™*m \ {0}), (with n,m € NT), the BBP decompositions for (TP)M¥ and
(NP)T:%  obtained in Theorem 1.1 and Theorem 1.2, are exactly the same as (P1)
and (P2) in Subsection 1.1. This is proved in Appendix C (see Proposition 14).

Under the assumptions (H3) and (H4), the main results obtained in Theorem 1.1
and Theorem 1.2 can be improved as follows:

Theorem 1.3. Let W and Ws ; (j = 2,3) be given by (1.23) and (1.29), respec-
tively. Let V and Vs ; (5 = 1,2) be given by (1.24) and (1.34), respectively. Then
the following conclusions are true:
(i) Suppose that (H3) holds. Then

W =WsoUWs 3 and V = V3.1 UVs 0. (1.38)
In particular,
T = W272 =0 and Y2 = V273 =. (1.39)

where 1, Y2, Waga and Va3 are given respectively by (1.36), (1.37), (1.27) and
(1.52).
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(ii) Suppose that (H3) holds. Then for each (M,yo) € V31, (TP)M¥ has no
admissible control and does not hold the bang-bang property. If further assume that
(H4) holds, then for each (M,yo) € V32, (TP)M¥0 has the bang-bang property.
(i11) For each (T,yo) € Ws 3, the null control is the unique minimal norm control to
(NP)Two and this problem has the bang-bang property. If further assume that (H3)
and (H4) hold, then for each (T,yo) € Ws2, (NP)T:¥ has the bang-bang property
and the null control is not a minimal norm control to this problem.

1.4. The ideas to get the main results. The main difficulty to get the BBP
decompositions of (T'P)M¥0 and (N P)T"% is the lack of the Kalman controllability
decomposition. The first key to overcome this difficulty is to find assumptions (H1)
and (H2). Then with the aid of functions 7°(-), T(-) and N(-,y0), we get the
conclusions (i) in both Theorem 1.1 and Theorem 1.2. In the decomposition of W,
the part Wh o = 7 is a critical curve for us; the studies for the problem (NP)T%o,
with (T, y0) € Wa 3 U Ws o, are not easy for us; when (7, yo) is in the rest parts,
it is easy to prove the corresponding conclusions in Theorem 1.1 for (NP)T¥o,
through using properties of functions 7°(-), T1(-) and N(-,y9). The proof of the
corresponding conclusion in Theorem 1.1 for (NP)T%0 with (T,yo) € Wa3UWs 2,
is mainly based on a maximum principle for (N P)T% as well as (H2). To get the
maximum principle, we build up the following affiliated minimal norm problems:

(NP)'™  lyr|lry := inf {[[v]l 0,70y = 9(T50,0) = yr}, (1.40)
where T € (0,00) and yr is in the reachable subspace
Ry = {9(T;0,v) : ve L>(0,T;U)}. (1.41)

(In the problem (NP)¥T, we can define the minimal norm, an admissible control,
a minimal norm control and the bang-bang property in the similar manner as in
(NP)Two (see (1.16)). By the connection between (N P)¥T and (N P)T% built up in
Proposition 3, we realized that the maximum principle for (N P)T+%0 can be derived
from a maximum principle for (N P)¥?. Though we are not able to get a maximum
principle of (NP)¥T for all yr € Ry, we get a maximum principle for (N P)¥T | with
yr in the subspace:

RY = {9(T;0,v) : v e L>(0,T;U), lim |[v||pe sy =0}, T € (0,00). (1.42)
s—=T

More precisely, we obtain that if (H1) holds, then for each yr € R% \ {0}, there
exists a vector f* € Yr \ {0} so that each minimal norm control v* to (NP)YT
verifies that
w*@), fFt)v = max  {(w, f*(t))y a.e. t€(0,T). (1.43)
lwllo<llyrlizy
(This is exactly Theorem 5.1.) About (1.43), we would like to mention two facts:
First, it is not the standard Pontryagin maximum principle, since we are not sure if
the function f* in (1.43) can be expressed as B*y with ¢ a solution of the adjoint
equation, even in the case that B € L(U, X). Second, the proof of (1.43) is the most
difficult part in this paper. It is based on two representation theorems (Theorem 2.2
and Theorem 2.6). From (1.43) and the connection between (N P)¥? and (N P)T:¥o
built up in Proposition 3, we get the maximum principle for (N P)T%0 | with (T, yo) €
Wa 3UW; o, which along with (H2), yields that when (T, yo) € Wa 3UWs o, (N P)Tvo
has the bang-bang property.
Regarding the decomposition of V, the part V3 = 5 is a critical curve for us;
the studies for the problem (T P)M:%o with (M, y) € V2,2UV3 9, are not easy for us;
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when (M, yo) is in the rest parts, it is easy to prove the corresponding conclusions
in Theorem 1.2 for (TP):¥%  through using properties of functions 7°(-), T%()
and N(-,y0), as well as the assumption (H1). The proof of the corresponding
conclusion in Theorem 1.2 for (TP)M¥% with (M,yo) € Va2 U Vs, is mainly
based on a maximum principle for (TP)™%  as well as (H2). This maximum
principle follows from the above-mentioned maximum principle for (NP)T-¥0, with
(T,y0) € Wa3UWj, as well as the connection between (T'P)M:¥o and (NP)T%o
built up in Lemma 5.3.

Remark 7. The reason to cause curves y; and 2 to be critical is that in general,
we do not know if (NP)¥7, with yr € Ry \ R%, has the maximum principle (1.43),
under the assumption (H1).

1.5. More about the bang-bang properties. To the best of our knowledge,
there are two ways to derive the bang-bang property for minimal time control
problems governed by linear evolution systems, in general. The first one is the
use of the L*-null controllability from measurable sets. In [6, Section 2.1], H. O.
Fattorini studied the minimal time control problem for the abstract system:

y'(t) = Ay(t) +u(t), t >0, (1.44)

with A generating a Cyp-semigroup in a Banach space. This corresponds to (1.11)
with U = X and B = Idx (the identity operator on a Banach space X). By a
constructive method, he proved that the reachable sets of (1.44) have the following
property: For any subset £ C (0,00) of positive measure, Ry g = Rp for a.e.
T € E, where Ry g = {y(T;0,xgu) : u € L>®°(R*;U)}. From this property,
he proved the bang-bang property by a contradiction argument. In [28], V. Mizel
and T. Seidman pointed out that the bang-bang property of minimal time control
problems for linear time-invariant evolution systems can be derived by the L°°-
null controllability from measurable sets. Indeed, by this controllability and by
a translation invariance which holds only for time invariant systems, one can use
a contradiction argument to prove the bang-bang property. However, it seems
for us that this way does not work for the case where controlled systems are time-
varying. In [43], the authors proved the bang-bang property of minimal time control
problems for some very special time-varying heat equations. To our best knowledge,
how to study the bang-bang property of minimal time control problems for general
time-varying systems is still a quite open problem. For studies on the L*°-null
controllability from measurable sets, we would like to mention the literatures [1, 28,
31, 32, 33, 40, 44, 48] and the references therein.

The second way is the use of the Pontryagin maximum principle and the u-
nique continuation property from measurable sets in time. The key is to derive
the Pontryagin maximum principle. We would like to mention that the Pontryagin
maximum principle may not hold for some cases (see Example 1.4 on Page 132 in
[20]). In [6, Chapter 2], H. O. Fattorini studied the Pontryagin maximum principle
for both minimal time and minimal norm control problems, with an initial state
¢ and a target state g, for the system (1.44). He first proved the property that
for each T' > 0, D(A) is continuously embedded into Rp. Then, with the aid of
this property, he divided the dual space of Ry into “the regular part” and “the
singular part”. After that, he proved that if § — S(T*)¢ € D(A), then § — S(T*)¢
and Br,..(0,1) can be separated by a hyperplane (in Ry+), with a regular normal
vector. (Here, T is the minimal time, Bg,.(0,1) is the closed unit ball in Rp-
and the controls for the minimal time control problem are within L°°-norm not
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larger than 1.) Finally, with the help of the aforementioned separating property, he
obtained the Pontryagin maximum principle. By the second way, one might get the
bang-bang property of minimal time control problems for the linear time-varying
evolution systems which hold some unique continuation property.

For the minimal norm control problems governed by linear time-varying evolu-
tion systems, the L°°-null controllability from measurable sets implies the bang-
bang property. Though the paper [31] proves this only for heat equations with
time-varying lower terms, the method in [31] works for general linear time-varying
evolution systems.

About studies on minimal time and minimal norm control problems, we would
like to mention the literatures [2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 21, 22, 23,
24, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50] and
the references therein.

The rest part of this paper is organized as follows: Section 2 studies some prop-
erties on the subspaces Ry and RY. Section 3 shows some properties of functions
N(-,y0), TO(-) and T*(-). Section 4 studies the existence of minimal time and min-
imal norm controls. Section 5 studies maximum principles and bang-bang proper-
ties. Section 6 proves the main results. Section 7 gives some applications. Section
8 provides several appendixes.

2. Properties on attainable subspaces. In this section, we mainly study the
properties on the subspaces Ry and R given by (1.41) and (1.42), respectively.
These properties mainly help us to get a maximum principle for the affiliated min-
imal norm problem (NP)YT, with yr € R%. The later is the base in the proofs of
(iil) of Theorem 1.1 and (ii) of Theorem 1.2.

2.1. The first representation theorem. In this subsection, we will present a
representation theorem on the space Y} which is the dual space of Yy (defined by
(1.20)). This theorem was built up for heat equations in [43, (i) of Theorem 1.4].
To prove it, we need the following two results: Proposition 1 and Lemma 2.1. Very
similar versions of these two results are given in [5, Section 2.3.1]. For the sake of
the completeness of the paper, we give their proofs in Appendix D.

Proposition 1. The following equality is valid:

T T
</0 S_\(T — t)Bu(t) dt, ) :/O (w(t), B*S*(T — t)2)y dt (2.1)
for all T € (0,00), v € L>®(0,T;U) and z € D(A*).

Lemma 2.1. For each T € (0,00), there exists a positive constant C(T) so that

T
/ 1B*S*(T — 7)2||% dr < C(T)|||% for all = € D(A%). (2.2)
0

Theorem 2.2. For each T € (0,00), there is a linear isomorphism @ from Rr
to Y} so that for all yr € Ry and f € Yr,

T
Wt [)reyr = (@), flvs ve :/o (v(t), f(t))v dt, (2.3)

where v is any admissible control to (N P)YT.
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Proof. Arbitrarily fix a T € (0,00). It follows from (2.2) that

B*S*(T — )z € L*(0,T;U) for each z € D(A*). (2.4)
For each yr € Ry, define the following set of admissible controls to (N P)Y7:
U :={veLl>*0,T;U) : 9(T;0,v) =yr}. (2.5)

Observe from (1.41) and (2.5) that UY7 # @ for each yr € Ry, and that yr =
§(T;0,v) for each yr € Ry and each v € U’7. These, along with (1.13) and (2.4),
yields that for each yr € Ry, z € D(A*) and each v € UY7,

(yr 2)x = /O(v(t),B*S*(T—t)z)Udt

() Los 0,050 [|1B*S* (T = )zl L 0,750 (2.6)
Arbitrarily fix a yr € Rr and then fix a v; € UY]. Then we define a map
Fyr : X7 — R in the following manner:

IN

T
Fyo (B*S*(T = zlom) = /0 (v1(t), B*S*(T — t)2)y dt, ¥z € D(A*)(2.7)

where X is given by (1.21). Because of the first equality in (2.6), we see from
(2.7) that the definition of F,, is independent of the choice of v; € UYT. Thus
it is well-defined. From (2.7), the inequality in (2.6) and (1.20), we find that F,,.

can be uniquely extended to be an element F,,. € Y. Furthermore, we have that
| Fyrlly; < [lvllzes(o,v) for all v € UYT. Since yr € Ry was arbitrarily fixed, the
above estimate, along with (1.40), yields that

[

We now define a map &7 : Ry — Y7 in the following manner:

vy Sinf{lvllzeoro) v €Uy} = lyrlr, forall yr € Ry (2.8)

O (yr) = Fyp for each yr € Ry. (2.9)
It is clear that ®p is well defined and linear. We claim that ®, is surjective.
Arbitrarily take g € Y. Since Yr C L'(0,T;U) (see (1.20)), according to the
Hahn-Banach theorem, there exists a g € (L'(0, T} U))* so that g(v) = g(z) for all

Y € Yr; and so that [|g]lz(z1(0,7;v)) = [lgllv;;- Then by the Riesz representation
theorem, there is ¥ in L*°(0,7;U) so that

T

/ (3(t), B*S*(T — 1)2)u dt = g(B*S*(T — )zl0.1y) for all = € D(A®) (2.10)

0
and so that
101l o< 0,750) = llglly;- (2.11)

Write gr := ¢(T;0,0). Then ¢ € L{g; (see (2.5)). This, together with (2.10), (2.7)
and (1.20), indicates that g = Fy, in Y}, which, along with (2.9), shows that @
is surjective. _

We now show that ® is injective. Let yr € Rr satisfy that F,, = 0 in Y7 .
Then by (2.7) and (2.6), we find that (yr,z)x =0 for all z € D(A*). Since D(A*)
is dense in X, the above yields that y7 = 0, which implies that ®r is injective.

We next show that ®7 preserves norms. Let g € Y7. Then we have that g = Fy,.
in Y7, where gr = ¢(T;0,0), with o € L*°(0,T;U) satisfying (2.10) and (2.11).
This, along with (1.40) yields that ||§r ||z, < [|Fgs |
that ®7 preserves norms.

;- From this and (2.8), we see
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Finally, (2.3) follows from (2.9), (2.7) and (1.20). This ends the proof of this
theorem.

O

Remark 8. Since Y7 is complete, it follows from Theorem 2.2 that the normed
space (Rr,| - |lr,) is complete.

2.2. The second representation theorem. This subsection mainly presents a
representation theorem on (R%)*, the dual space of the space RS (defined by (1.42)).
This theorem gives an important property of Y7 (which is defined by (1.20)). For
this purpose, we need three lemmas.

Lemma 2.3. The following propositions are equivalent:
(i) The condition (H1) holds.
(#3) There is a py € [2,00) so that for each T € (0,00), each v € LP*(0,T;U) and
each t € (0,T), there exists a control v € L (0,T;U) satisfying that
9(T50,x,1yv) = 9(T;0,x0,0yu) and |[v]| L o,r;v) < Cillullper 0,750
for some Cy := C1(T,t) > 0 (independent of u).
(#i1) There is a pa € (1,2] so that when 0 <t < T < oo,
llgllez 0,60y < CallgllLr vy for all g € Yr

for some Cy := Co(T,t) > 0 (independent of g).

Furthermore, when one of the above three propositions is valid, the constants pg
(given in (H1)), p1 and ps (given in (ii) and (iii), respectively) can be chosen so
that po = p1 = p2/(p2 — 1).

Proof. Our proof is organized by several steps as follows:
Step 1. To show that (i) = (ii)

Suppose that (H1) holds for some pg € [2,00). Let T and ¢ satisfy that 0 < ¢ <
T < oo. Define two maps as follows:

Ly: Y :=L"0,T;U) = X, Li(u)=59(T;0,x0,Hu), weY;

Ly: Z:=L>*0,T;U) = X, La(v)=9(T;0,x¢1)v), vEZ
By (1.14), we have that

T
JT50, X(0.u) = / S_1(T - 7)Bxow (r)u(r) dr:
0

T
9(T50, x(t,7)v) = / S_ (T —7)Bxg,r(m)v(r)dr.
0

These, together with (1.10), indicate that both L; and Ly are bounded. Moreover,
by (H1), we find that

Range L; C Range L. (2.12)

Let 7 : Z — Z = Z/Ker Ly be the quotient map. Then 7 is surjective and it
stands that

[w(v)||z = inf {|Jw]lz : we€v+KerLy} for each v e Z. (2.13)
Define a map Ly: Z — X in the following manner:

Ly(n(v)) = La(v), =(v) € Z. (2.14)
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One can easily check that L, is well defined, linear and bounded. By (2.12) and
(2.14), we see that Range L1 C Range Ly. Thus, given u € Y, there is a unique
m(vy) € Z so that
Ly (u) = La(m(vy)). (2.15)
We now define another map 7 : Y — A by
T(u) = n(v,) for each u €Y. (2.16)

One can easily check that 7 is well defined and linear. We next use the closed graph
theorem to show that 7 is bounded. For this purpose, we let {u,,} C Y satisfy that

Up —>up in Y and T (u,) = ho in 2, as n — oo.
Because Ly and Ly are bounded, we find from (2.16) and (2.15) that

Loho = lim Ly(T(up)) = lim Ly(m(vy,)) = lim Ly (un) = Lyug.
n—oo

n— oo n— 00

This, together with (2.16), indicates that hg = T (ug). Then by the closed graph
theorem, we see that 7 is bounded. Thus, by (2.16), there exists a C' := C(T,t) > 0
so that

[m(va)llz = IT W)z < Cllully for each u €Y. (2.17)

Meanwhile, it follows from (2.13) that for each v € Z, there is a v/ € v + Ker Ly so
that [[v'||z < 2||w(v)||z. Thus, by (2.15), (2.14) and (2.17), we find that for each
u €Y, there is a v, € Z so that Li(u) = La(v],) and ||v,||z < 2C|lu|ly. Hence, by

u

the definitions of L; and Lo, we obtain (ii), with C; = 2C and p; = po.

Step 2. To show that (i) = (ii1)

Suppose that (ii) holds for some p; € [2,00). Arbitrarily fix T and ¢, with
0 <t <T < oo. Then for each u € LP*(0,T; U), there is a control v, € L*>(0,T;U)
so that

9(T50,x0,0uw) = 9(T;0, x(t,7)vu) and vyl zo 0,750y < Crllul|Ler o0,7:0),

where Cy := C1(T,t) is given by (ii). These, along with (1.13), yield that for each
z € D(A"),
T

/0 (B*S*(T — 1)z, u(n))y dn = / (B*S*(T — )z xou (mu(n)), d

= <Z,Q(T7O,X(0’t)u)>x = <Z,Q(T;O7X(t,T)’Uu)>X
T

/0 (B*S*(T — )z, Xy (1)va() )y i = / (B*S*(T - n)z,vu(n)), dn

1B*S™(T = )zl L2, rs0) 1vu ()l oo 2,750
CilB*S*(T =)zl erso 1wl )l 2o 0,60
Let p| be the conjugate index of py, i.e., 1/p; + 1/p} = 1. Then we find that

|B*S*(T - ) < Cy||B*S*(T = )2|| 1y for all z € D(A”).

IAIA

2|l et (0,6:0)
The above, as well as (1.20), leads to (iii), with p2 = p} and Cy = C}.
Step 3. (iii) = (i)
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Suppose that (iii) holds for some ps € (1,2]. Let pj be the conjugate index of
pa, i.e., 1/py + 1/ply = 1. Arbitrarily fix T and ¢, with 0 < ¢ < T' < co. Define the
following subspace of L(t,T;U):

O :={B*S*(T — )z|@,1) € L'(t,T;U) : z€ D(A")}.
Let u € LP> (0,T;U). We define a linear map Ls : O — R by

Ls(B*S*(T — )z

¢
1)) :/ (B*S*(T — s)z,u(s))yds, z€ D(A"). (2.18)
0
Since B*S*(T — -)z|(o,r) € Yr for all z € D(A*), it follows from (iii) that L3 is well
defined. Then by (2.18) and (iii), we find that for each z € D(A*),
|Ls(B*S™(T = )zlem)| < I1B"S(T = )zllzee 0aan 1)l os 10
< Co||B*S*(T — -)z||L1(t,T;U)||U(-)|\Lpf2(07t;U)7

where Cy := C3(T,t) is given by (iii). This implies that Lg is bounded from O to
R. Thus, by the Hahn-Banach theorem, L3 can be extended from L(t,T;U) to R
and there exists g € (L'(¢, T; U))* so that

Ly(¢) = g(¢) forall ¢ € O; and ||gll e mvym) < Collull o g 1y

Then by the Riesz representation theorem and (2.18), there is v,, € L*>(¢,T;U) so
that

T t
| s v ds =gto) = [ o) ulshuds forall veO  (219)
t 0
and so that
[vullos 0y = gl rwymy < Collull oy g 40

Write ¥, for the zero extension of v, over (0, T). Then we see from (1.13) and (2.19)
that for all z € D(A*),

T
(2, 9(T;0, x(0,yu)) x :/0 <B*S*(T_S)ZaX(o,t)(S)U(5)>Ud5

t T
/(B*S*(T—s)z,u(s)>Uds:/ (vu(5), B*S*(T — 5)2) ds
0 t

T
= /0@u(s),B*S*(T—s)z>Uds:<z,gj(T;0,’ﬁu)>X.

Since D(A*) is dense in X, the above leads to (H1), with pg = p5.
Step 4. About the constants pg, p1 and po

From the proofs in Step 1-Step 3, we find that pg, p; and ps can be chosen so
that po = p1 = p2/(p2 — 1), provided that one of the propositions (i)-(iii) holds.

In summary, we finish the proof of this lemma.

Lemma 2.4. Let T € (0,00). The following conclusions are true:

(i) If f € Y, then f|«,s) € Ys for each S € (0,T).

(i) Suppose that (H1) holds. If f € L*(0,T;U) and f|o,s) € Ys for each S € (0,T),
then f € Y.
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Proof. (i) Let f € Yp. Then by (1.20), there exists a subsequence {w,} C D(A*)
so that

B*S*(T — Yw, — f(-) in L*0,T;U). (2.20)

Arbitrarily fix an S € (0,T). Since S*(T — S)w,, € D(A*) for all n, by making use
of (1.20) again, we find that

B*S*(T — wyl 0,5y = B*S*(S — ) (S*(T — S)wn)|(0,5) € Vs.
Since Y is closed in L (0, S; U), the above, as well as (2.20), yields that flo,s) € Ys.
(ii) Suppose that (H1) holds. We organize the proof by the following steps:

Step 1. To show that for each s € (0,00) and g° € Y, there is a unique function g*
over (—1,s) so that

g°(1) =g°(7) forall 7€(0,s), and g°(-—1) € Ysq (2.21)

Let 0 < s < o0 and ¢° € Y;. We first show the existence of such g°. For this
purpose, we define the following subspace:

X, :={g.() € L'(0,5;U) : z € D(A")},

where g,(+) ;== B*S*(s — -)z over (0,s). Then define a map Fs : Xs; — Y,11 in the
following manner: For each z € D(A*),

(Fsgz) (1) :=B*S*(s+1—71)z, 7€ (0,s+1). (2.22)
From (2.22), we find that for each z € D(A*),
(Fsg2)(T+ 1) =g.(1), 7 € (0,9). (2.23)

Meanwhile, by (H1) and Lemma 2.3, we have the assertion (iii) of Lemma 2.3,
which, together with (2.22), yields that when z € D(A*),

H]:S(B*S*(S - ')z|(0»8))HL1(0,s+1;U)

s+1 1
= / ||B*S*(s+1—7)z||UdT+/ |IB*S*(s+1—7)z||ydr
1 0

IN

s+1
(14 Co) [ 1B s+ 1= D)zl dr = (L+ GBS (s = )zl
1

for some Cy > 0 independent of z. (Here we used the time-invariance of the con-
trolled system). Hence, F; is linear and bounded from X, to Yi4;. Since Xj is
dense in Y; (see (1.20)), Fs can be uniquely extended to be a linear and bounded
operator F, from Y, to Ys+1. This, along with (2.23), yields that

(Fsg®)(m+ 1) =¢°(7), 7 € (0,5). (2.24)
We now define
F(r) = (Feg®) (T + 1), 7€ (~1,s). (2.25)
It follows from (2.25) and (2.24) that g° satisfies (2.21).

We next show the uniqueness of such g°. Let g* be another extension of g° (over
(=1, s)) satisfying (2.21). Then we see from (2.21) that

(g°—9°)(1) =0 for all 7€ (0,s) (2.26)
and

(@° = 3°)( —1) € Yosa. (2.27)
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From (2.26), we see that
(9°—3°)(7—=1)=0 forall 7€ (1,s+1). (2.28)

By (H1) and Lemma 2.3, we have (iii) of Lemma 2.3. This, along with (2.27), yields
that

19° =) = Dllzr2 0,10y < C2ll(@° = 9°)( = Dllzrvs4150)

where ps and Cs are given by (iii) of Lemma 2.3. This, together with (2.28), implies
that (g° — g°)(- — 1) = 0 over (0,s + 1). Hence, we have that g°(-) = g*(-) over
(—1,s). This shows the uniqueness of such ¢°(-) that satisfies (2.21). We call the
above ¢°(-) the Y-extension of g°(-).
Step 2. To show that f € Yr, when f € LY(0,T;U) and flo,s) € Ys for each
S e (0,T)

Let f € L'(0,T;U) satisfy that flo,s) € Ys foreach S € (0,T). Given S € (0,7),
we write fg for the Y-extension of f| ) over (—1,S5) (see the conclusion of Step
1). We claim that

fsy, = fs, over (=1,0), when 0<S; < Sy <T.

Here is the argument: on one hand, we let

f(r) = fs,(r—1), 7€ (0,52 +1). (2.29)

By (2.29) and the definition of fs, (see (2.21)), we find that f € Ys, ;. This, as
well as (i) in this lemma, yields that

Flio,51+1) € Ys,41. (2.30)

By making use of (2.29) again, we see that f|.s,41)(T) = fs,|(—1,8,)(7 — 1) for
each 7 € (0,51 + 1). This, along with (2.30), indicates that

fS2|(71,Sl)(' - 1) € Y51+1' (231)
Meanwhile, since fs, = f over (0,S2), we have that fs,|—1,5,)(7) = fl,s,)(T)
for all 7 € (0,5;). This, along with (2.31), indicates that fs,|_1 s,)(:) is the Y-
extension of f g,)(-) over (—1,51).

On the other hand, fs, is also the Y-extension of f|,g,)(-) over (=1,51). By the
uniqueness of the Y-extension, we see that fg, = fs,|(—1,s,) over (—1,51), which
leads to that fs, = fg, over (—1,0). This ends the proof of the above claim.

Now we arbitrarily fix an Sy € (0,7). Define a function fe (-1,T) —» U by
setting

f()=f() over (0,T); f() = fs,(-) over (-1,0]. (2.32)
Because of the above-mentioned claim, we find that
f is independent of the choice of Sj. (2.33)

It is clear that f € L'(—1,T;U). Take a sequence {T}} C (0,T) so that T, * T.
Then we see from the first equality in (2.32) that

fe+T— T)lor) — Fe) l0,my=[f(-) in LY0,T;U), as k—oo. (2.34)
Meanwhile, for each k, since fr, (- — 1) € Y, 41 (see (2.21)), by (1.20), there exists
a sequence {wy .} C D(A*) so that

Te+1
/ IB*S*(Th + 1 — wpn — fro (= Dllo dt — 0, as n— oo
0



22 GENGSHENG WANG AND YUBIAO ZHANG

Since fr, = f over (—1,Ty) for each k (see (2.33) and (2.32)), the above yields that
for all k, with T, +1 > T,

Tr+1 .
/ |1B*S* (T, + 1 — thwgp — f(t—1)[[udt = 0, as n — oo,
T+1-T

which implies that for all k, with T, +1 > T,
T
/ IB*S*(T = ywpm — f(t + T = T)|lu dt = 0, as n — oo,
0

This, along with (1.20), indicates that

FC+ Ty 7T)|(07T) € Yr forall £k with T, +1>1T.

Since Yr is closed in L(0,7T;U), the above, together with (2.34), implies that
feyYr.

In summary, we complete the proof of this lemma.

Lemma 2.5. Let T € (0,00). If f € L'(0,T;U) satisfies that
T
/ (f(t),ut))ydt =0 for all ue {ve L>(0,T;U) : §(T;0,v) =0}, (2.35)
0

then f € Yr.

Proof. By contradiction, we suppose that for some T' € (0, 00), there were a function
f € LY0,T;U), with the property (2.35), so that f ¢ Yr. Then, by the Hahn-
Banach theorem, we could find a function u € L*(0,7;U) so that

T T
0:/ (g(t),a(t))y dt </ (f(£),@(t))v dt for each g € Y. (2.36)
0 0

(Here, we noticed that Yr is a closed subspace of L(0,T;U).) From Theorem 2.2

and the first assertion in (2.36), we find that §(7"; 0, w) = 0, which, along with (2.35)

and the second assertion in (2.36), leads to a contradiction. This ends the proof.
O

The following result is a representation theorem on (R%.)*, which plays an im-
portant role in our study.

Theorem 2.6. Suppose that (H1) holds. Then for each T € (0,00), there is a
linear isomorphism Y1 from Yr to (R%)* so that for all g € Ypr and yr € R%,

T
<gayT>YT,R°T = <‘I’T(9)ayT>(R°T)*,RUT :/0 (g(t),v(t))v dt, (2.37)
where v is any admissible control to (N P)YT.

Proof. Let 0 < T' < oo. Recall that RY., with the norm | - ||z, is a subspace of
Rr (see (1.41) and (1.42)). According to Theorem 2.2, each g € Y defines a linear

bounded functional F, over RY. (i.e., ]?g € (R%)"), via

‘Fg(yT) = <gayT>YT,RT7 yr € Rg“v (238)
where (-, )y, =, is given by (2.3). Then we define a map V7 from Y7 to (R%.)* by

Ur(g) = Fy, g€ V. (2.39)
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One can easily check that Uy is linear. The rest of the proof is organized by three
steps.

Step 1. To show that ||gllyy = Y1 (9)||ry for all g € RS
Let g € Yr be given. On one hand, from (2.38), we see that

[Follmoy- = sup (g, yr)ve,re < l9llvas (2.40)
yr€Bpg (0.1)

where Bro (0,1) is the closed unit ball in R%. On the other hand, we arbitrarily
fix S € (0,T). Then according to the Hahn-Banach theorem, there is a control

Gg € L>=(0,S;U) so that
gl 0,550y = (9, Us) L1 (0,5:0),2(0,5:0) and ||| Lo (0,5;0) = 1. (2.41)

Write @g for the zero extension of g over (0,7). Then it follows from (1.42) that
9(T;0,us) € RY. Now, by (2.41), (2.3), (2.38) and (1.40), one can directly check
that

lgllzro,.s5070 = (9,Us)pro.1:0),L0.1m50) = (9, 9(T50,Us)) vy R
Fo(9(T50,us)) < [Fgll(rg)-119(T;0,8s) ||y

1Fall(rg- 1usllzoo,5:0) = 1 Fgll (g~

IN

which yields that ||g]ly; = [lglz 0,0y < ||.7-A'g||(R(%)* (since S was arbitrarily taken
from (0,7)). This, along with (2.40), leads to that ||g|lyv, = [[¥7(9)|lr -

Step 2. To show that U is surjective
Let f € (R%)*. We aim to find a j € Y7 so that
f=0r(3) in (RY)" (2.42)

In what follows, for each uw € L*°(0,S;U), with S € (0,7"), we denote by u the zero
extension of u over (0,7). Then it follows from (1.42) that §(7;0,u) € R%. We
define, for each S € (0,T), a map Gf,s from L*°(0,S;U) to R by setting

G (u) = (F,9(T;0,0)) gy g for each u e L®(0,S;U). (2.43)
From (2.43), we see that for each S € (0,T),
1G5 (@] < Iflre)- [19(T;0,@)||ly for cach u € L>(0,S;U). (2.44)

Arbitrarily fix an S € (0,7). By (H1) and Lemma 2.3, we have (ii) of Lemma 2.3.
Thus, there exists a C1(T, S) > 0 so that for each u € L>°(0,5;U), there is a control
Oy € L°(0,T;U) verifying that

§(T50,u) = §(T; 0, x(5,7)0u) and [|0ul|Lee(o,r0) < CoL(T, S)|[al| v 0,50y (2:45)
for some p; € [2,00). From the first assertion in (2.45) and (1.40), we find that
19(T50, W)l R s < [0ullLoe 0,150,
which, together with the second assertion in (2.45), indicates that
19(T50,u) [y < Co(T, )|l Lo (0,550 for all u € L>(0, S;U).
This, as well as (2.44), yields that for each S € (0,7),
1G5 ()| < CUT, )| f l(rg- Il Lrs 0,550y for all we L=(0,8;U).  (2.46)
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By (2.46) and the Hahn-Banach theorem, we can uniquely extend G 7. to be an
element in (Lpl (0, S; U))*, denoted in the same manner, so that

1G7.5()| < CUT, )If lrs,)- lull Lo 0,50y for all we LP(0,S;U).  (247)
From (2.47), using the Riesz representation theorem, we find that for each S €

(0,T), there exists a gg € LP1(0,S;U), with 1/p; + 1/p} = 1, so that

s
G s(u) :/0 (g9s(t),u(t))y dt for all ue LP1(0,S;U). (2.48)

Next, arbitrarily fix an S € (0,7). Then take v € L*>°(0, S;U) so that §(7T";0,v) =
0. (Here, v is the zero extension of v over (0,7").) By (2.48) and (2.43), we see that

/ {50,000 dt = G, (1) = 0.
This, along with Lemma 2.5, yields that
gs € Yg foreach S e (0,7). (2.49)
Mea(nwhile,) from (2.48), (2.44) and (1.40), one can easily check that for each u €
L=(0,5;U),

s
/0 (9s(®), u@®)v dt < || fllrg)+19(T;0, )Ry < N1l (R0 lullLoe(0,5:0)-
This, together with (2.49), implies that
lgsllvs = llgsllzo.s:0) < I1fllry,)~ for all S (0,T). (2.50)

We now define a function g : (0,7) — U in the following manner: For each S €
0,7),

g(t) := gs(t) for all t € (0,S5). (2.51)
The map ¢ is well defined on (0,7"). In fact, when 0 < S; < Se < T, it follows from
(2.48) and (2.43) that for each u € L*>(0,51;U),
S1 R
/O (95, (), ut))vdt = Gjg (u) = (f,9(T;0,9))(r9)- ro =G}, (Ul0,s,)

S2 Sl
- / (95, (8),T(0))pr dt = / (95 (6), u(t)) v dt,
0 0

which implies that gg, (1) = gs,(-) over (0,S51). So one can check from (2.51) that
the function § is well defined. By (2.51) and (2.50), we see that

912 0,70y < ||f||(R0T)*- (2.52)

Since (H1) was assumed, from (2.52), (2.51), (2.49) and (ii) of Lemma 2.4, we find
that

g €Yr and [|gllye < I1flrg)--
By (2.43), (2.48) and (2.51), we deduce that for each S € (0,T),

T
G 3(T50,0)) oy o :/0 (@), 7)) vdt for all we L¥(0,S:T).  (2.53)
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Now, for each y7 € RY, it follows by (1.42) that there is an u,, € L*>(0,T;U)
so that

yr = 9(T;0,uyr) and  Im fluy, ||z (s,r0) = 0.

From these and (1.40), one can check that when S goes to T,
19(T50,x(0,5)tyz) = Y7, = 19730, X(5,1yUyr ) IR7 < Ityrl|oo(s,0) = 0,
which implies that

9(T;0, x(0,9)Uyr) — yr in Ry, as S —T. (2.54)
Notice that (10, X(0,5)ty;) € R} and § € Yp. Thus, from (2.54), (2.53) and
(2.3), using the dominated convergence theorem, we find that for each yr € R%,
<f7 g(T, 0, X(07S)uyT)>(R0T)*,R0T

T

= Sh—% ; <g(t>7X(O,S)(t)uyT(t>>Udt

(fryr)(mg)my = lm

T
= [ @0 O dt = o)y s
This, along with (2.38), yields that
<f7 yT>(R(%)*,ROT = ﬁg(yT) for all yr € R%a i'e'v f: ﬁ_[] in (Rg’)*a
which, together with (2.39), leads to (2.42). So Uy is surjective.

Step 8. To show the second equality in (2.57)
The second equality in (2.37) follows from (2.39), (2.38) and (2.3) (in Theorem
2.2).

In summary, we finish the proof of this theorem.
O

Remark 9. We do not know whether RY. is a closed subspace of Ry in general.

Corollary 1. Suppose that (H1) holds. Then for each T € (0,00), By, (the closed
unit ball in Yr) is compact in the topology o(Yr,RY.) (i.e., weak star compact).

Proof. By Theorem 2.6, we have that Y7 = (R%)*. Then by the Banach-Alaoglu
theorem, By, is compact in the topology o (Y7, R%). This ends the proof.
O

2.3. Further studies on attainable subspaces. The following Lemma presents
the non-triviality of the subspaces Y7 and R%, with 7' € (0,00). (Consequently,
R is also non trivial.) Here, we will use the assumption that the control operator
B is non-trivial.

Lemma 2.7. Let 0 < T < co. Then the sets Yr \ {0} and RS\ {0} are nonempty.

Proof. Arbitrarily fix a T € (0,00). We first show that Y7 \ {0} # (. Seeking for
a contradiction, we suppose that Y7 \ {0} = . Since X1 C Yr (see (1.20)), we
could derive from (1.21) that for each z € D(A*), B*S*(T — -)z = 0 over (0,7).
Since {S*(t)|p(a+)tter+ is a Co-semigroup on D(A*) and B* € L(D(A*),U), the
above yields that for each ¢ € [0,T] and each z € D(A*), B*S*(T —t)z = 0. Taking
t = T in above equality leads to that B*z = 0 for all z € D(A*), i.e., B* = 0, which
contradicts the assumption that B # 0. Thus we have proved that Y7 \ {0} # 0.
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We next verify that the set R% \ {0} is nonempty. By contradiction, suppose
that it was not true. Then we would have that

RIN\ {0} =0, ie., R} ={0}. (2.55)

Arbitrarily fix an ¢ € (0,7). We find from (1.42) that §(7;0,v) € RS for all
v € L*>(0,&;U), where v denotes the zero extension of v over (0,T"). This, together
with (2.55) and (1.13), yields that for all z € D(A*) and v € L*>°(0,¢;U),

T
/0 (B*S*(T — 1)2,5())v dt = (=, §(T;0,))x = 0.

From the above, we find that for each z € D(A*), B*S*(T — -)z = 0 over (0,¢).
Since € was arbitrarily taken from (0,7), the above indicates that B*S*(T —-)z =0
over (0,7, for each z € D(A*). From this and (1.21), we find that X = {0},
which, along with (1.20), indicates that Y7 = {0}. This leads to a contradiction,
since we have proved that Y7 \ {0} # 0. Therefore, RY \ {0} # 0. Thus, we end
the proof of this lemma.

O
The next result presents an expression on the norm || - ||z
Proposition 2. Let 0 < T < oco. Write
Zr:={2€D(A*) : B*S*(T — )z #0 in L'(0,T;U)}.
Then it stands that
lyrllr, = sup {yr, 2)x for all yr € Rr. (2.56)

sezp I1B*S*(T = )zllLo.m0

Proof. Arbitrarily fix T € (0,00). First of all, we notice that Zr # (). Indeed, if
it was not true, then by (1.21), we would have that X7 = {0}, which, along with
(1.20), yields that Y7 = {0}. This contradicts Lemma 2.7. So we have proved that
Zr #0.

Recall (2.9) for the linear isomorphism ®7 from Ry to Y. It is clear that

<‘7?yT7f>qu,YT

lyrllre = @7(yr)llvs = | Fyrllvz = sup , Yyr € Rr. (2.57)
revenioy L fllve
We claim that for each ypr € R,
(Fyrs [)ve ve (yr, z) x
SUp e = SUP . (2.58)
fevornioy I fllve vezp 1B*S*(T =)zl L1010

To this end, we arbitrarily take yr € Ry and then fix v € L{gg. (Since yr € Rr,
it follows by (2.5) that Y7 # 0.) On one hand, given f € Y7 \ {0}, it follows by
(1.20) that there is a sequence {z,} in D(A*) so that

B*S*(T — )z, — f(-) in LY0,T;U). (2.59)
Since f # 0, we see from (2.59) that when n is large enough,
B*S*(T — )z, #0 in LY(0,T;U), ie., z, € Zr. (2.60)

From (2.59), the definition of fyT (see (2.7)) and the first equality in (2.6), we find
that
T

(Fyrs Fvzye = lim (w(t), B*S™(T — t)z)y dt = Lim (yr, 2,) x.-

n—oo 0 n—roo
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This, together with (2.59) and (2.60), yields that

(Fyrs veye i (yr, 2n) x (yr, z) x
——— = lim —an < sup —an .
(Falbes n=oo [|B*S*(T = )znllporvy ~ Lezp 1B*S*(T = )zllzror0)
Since f was arbitrarily taken from Y7 \ {0}, the above leads to
(Fyrs )i ve (yr, 2)x
Sup  ———— < SUP e . (2.61)
revingoy I llver cezp 1B*S*(T = )zlzr0,10)

On the other hand, let z € Zr be arbitrarily fixed. It is clear that
B*S*(T — )z € Yr \ {0}. (2.62)
Moreover, it follows from the first equality in (2.6) and (2.7) that

T
o2 = [ (0BT~ )2 dt = By (BT = el o). (269
0
By (2.63) and (2.62). we find that
<yT>Z>X ‘fyT (B*S*(T_)Z|(O,T)) <‘j-:yT7f>Y;v7YT

= < sup
B*S*(T = )zl o,y 1B*S*(T = )2llzro,mvy ~ reve\{o} I/ Iy

Since z was arbitrarily taken from ZT, the above leads to that

<Z~/T7Z>X <]:yT7f>Y7f,YT
sup Sup

cezp 1B*S*(T = )zllrorv) ~ reve\{oy £ llver

Finally, (2.58) follows from (2.61) and (2.64). This, along with (2.57), proves
(2.56). We end the proof of this proposition.

(2.64)

O

The following proposition is about the relation between (NP)YT and (N P)T:¥o
with yr = =S(T)yo.

Proposition 3. Let ygp € X and T € (0,00) satisfy that —S(T)yo € Ry. Then the
following conclusions are valid:

(i) Any admissible control to (N P)YT (with yr := —S(T)yo) is an admissible control
to (NP)T¥o. And the reverse is also true.

(ii) | = S(Tyollry = N (T, o).

(#i3) Any minimal norm control to (NP)¥T (with yr = —S(T)yo) is a minimal norm
control to (NP)T%o. And the reverse is also true.

Proof. (i) Let © be an admissible control to (NP)¥T, with yp := —S(T)yo. Then
it follows from (1.40) that §(7;0,0) = —S(T")yo, which yields that §(T;yo,0) = 0.
This, along with (1.16), implies that 9 is an admissible control to (N P)T-o.

Conversely, if ¥ is an admissible control to (NP)T*¥0, then by (1.16), we see that
9(T; yo,v) = 0, which yields that §(7;0,v) = —S(T)yo. This, along with (1.40),
indicates that v is an admissible control to (NP)YT, with yr = —S(T)yo.

(ii) By (1.16) and (1.40), one can directly check that N (T, yo) = || — S(T)yol| =1 -

(iii) Let v* be a minimal norm control to (NP)¥", with yr = —S(T)yo. Then
by (i) of this proposition, v* is an admissible control to (N P)T% i.e.,

9(T;y0,v") = 0. (2.65)
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Meanwhile, by the optimality of v*, we have that ||U*||L<>O(O7T;U) = - STyollrys,
which, along with (ii) of this proposition, shows that
10" || o< 0,701y = N (T’ o) (2.66)

By (2.65) and (2.66), we see that v* is a minimal norm control to (N P)T:vo,

Similarly, we can show the reverse. Thus, we finish the proof of this proposition.

O
Corollary 2. Let yo € X \ {0} satisfy that T°(yo) < co. Write
Zr={z€D(A") : B*S*(T —)z#0 in L'(0,T;U)}, 0< T < oc.
Then for each T € (To(yo)7 oo),
S(T
N(T,yo) = sup (S(T)yo0: )x < 0. (2.67)

cezp 1B*S*(T =)zl L1010

Proof. Arbitrarily fix T € (To(yo), oo). At the start of the proof of Proposition 2, we
already proved that Z, # 0 for each s € (0,00). Since T' > T(y), by (1.17), there
exists a control u € L*°(0,T;U) so that §(T;yo,u) = 0. This, along with (1.41),
yields that —S(T)yo = y(T;0,u) € Ry, which, together with (ii) of Proposition 3
and Proposition 2, leads to (2.67). We end the proof.

O

The property on RY presented in the following Proposition 4 plays another im-
portant role in the studies of a maximum principle for (NP)¥7, with yr € RY. In
what follows, we denote by Bro and Bg, the closed unit balls in RY. and Rr,
respectively.

o(Rr,Yr)

Proposition 4. For each T € (0,00), it holds that Br, = BRo . Here, the
set B%.(ZQT ¥7) is the closure of BRo in the space R, under the topology o(Ry,Yr).

Proof. Let 0 < T < co. We first prove that

BRT c B;Z((;RT,YT).

(2.68)
Let yr € Br,.. From (1.40), there exists a sequence {v;,} so that for all k € N*,

yr = 9(T50,vr) and [lyrlr, < llvkllpe(o,rv) < lyrllre +1/k (2.69)
For each k € Nt we set

— _ lyrlre
Akt

= ———F—— and u; := _1/k) AUk 2.70
el + 17k 2 T XOTm A 210
It is clear that
lukllze 10y < lyrllre <1 forall ke N, (2.71)
From (1.42), (2.70), (1.40) and (2.71), we can easily check that
§(T;0,uy) € Bry, for all ke N*. (2.72)
Meanwhile, from (2.69), (2.3) and (2.70), we find that for each f € Yp,
<Q(T7 07 ukr) -y, f>RT,YT = <Q(T O U — ) f>RTaYT

) — vi(t), f(t)>Udt—>O7 as k — oo.
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fO'(RT,YT)

This, along with (2.72), yields that yr € BR% . Since yp was arbitrarily taken
from Bg.,., the above leads (2.68).
We next show that
Br, 2 Bry . (2.73)

For this purpose, we let yr € Ry and {yn} C Bgg so that

Yn — yr in the topology o(Rr,Yr), as n — oo.
Since Ry = Yy (see Theorem 2.2), we find that

Yyn — yr in the weak star topology, as n — oo.

Hence,
lyrlRy < liminf{ly, |z, <1,
which yields that yr € Bg,.. This proves (2.73).
fG‘(RT,YT)

Finally, it follows from (2.68) and (2.73) that Br, = By
proof.

. This ends the

0
T
O

The following lemma mainly shows that the reachable subspaces R and RY. are
independent of T € (0, 00), provided that the condition (H1) holds.

Proposition 5. Suppose that (H1) holds. Let 0 < Ty < To < oo. Then the
following conclusions are valid:

(i) The spaces R, and Rr, are same, and the norms || - ||r,, and || - ||ry, are
equivalent.

(i) The spaces R, and RY, are same.

Proof. Suppose that (H1) holds. Arbitrarily fix 0 < 77 < T» < oco. We will prove
the conclusions (i)-(ii) one by one.
(i) Arbitrarily fix yr, € R, and k € NT. Then by (1.41) and (1.40), there exists
a control uy, € L>(0,T1;U) so that
Yy, = @(Tl; O?U’yTl) and ||uyT1 ||L°°(0,T1;U) < ||yTl ||RT1 + 1/k (274)
Define another control 4, by setting
N 0, te (0,75 — T1],
iy, () = (2.75)
uyTl (t—T2+T1), te (TQ—T17T2).

Then from (1.14), the first equality in (2.74) and (2.75), one can easily check that

yr, = §(T2;0,dy;, ), which, along with (1.41), (1.40), (2.75) and the second inequal-

ity in (2.74), yields that yr, € R, and |lyr, IRy, < [lyr, IRy, + 1/k. Since k was
arbitrarily taken from Nt the above implies that for each y1, € Ry,

yr, € R, and |y, |7, < llyry IR, - (2.76)

Conversely, arbitrarily fix y7, € Ry, and k € NT. Then by (1.41) and (1.40),

there exists a control u,,, € L>(0,72;U) so that
yr, = §(12;0,uyy,) and [luyy, |00y < Y1 llRs, + 1/K- (2.77)

By (H1), we can apply Lemma 2.3 to get the conclusion (ii) of Lemma 2.3 with some
p1 € [2,00). Because x(0,1,—1,)Uys, € LP*(0,T2;U), it follows from (ii) of Lemma
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2.3 (where T =Ty and t = T, — T) that there exists a control ¢ € L>(0,T;U) so
that
9(T2; 0, X (0,15 —10) Uyr, ) = §(T2; 0, X (1, -1, 1) D) (2.78)
and
6]l 2o (0,55 < Chllty, llzor (0,107 < Cr(T2) P |ty Lo 0,100y, (2.79)
where C; := C1(T»,To — T1) is given by (ii) of Lemma 2.3. Define a control v(-) by
setting
’ﬁ(t) = Uy, (t + 15 — Tl) + ’O(t + 15 — Tl), te (O,Tl)
Then, by the first assertion in (2.77) and (2.78), one can directly check that yp, =

9(T1;0,v0), which, together with (1.41), (1.40), (2.79) and the inequality in (2.77),
indicates that

yr, € Rey and |lyr,llrr, < (14 Ci(T2)") (llyr, | =r, + 1/F).

Since k was arbitrarily taken from Nt the above implies that for each y7, € R,

yr, € Ry and |y llry, < (14 CL(T2)Y")lyn Ry, - (2.80)
Now, the conclusion (i) follows from (2.76) and (2.80).

(ii) By a very similar way as that used in the proof of the conclusion (i), we can
show that R%l = R%Z.

In summary, we end the proof of this proposition.
O

3. Properties of several functions. This section presents some properties on
functions N (-, yo) (with yo € X \{0}), 7°(-) and T (-), which are defined by (1.16),
(1.17) and (1.18), respectively. The decompositions of W and V (given in (i) of
Theorem 1.1 and (i) of Theorem 1.2, respectively) are based on these properties.
We begin with the following Lemma 3.1. Since the exactly same result as that in
this lemma was not found by us in literatures (but the proof for the similar result
to Lemma 3.1 can be found in, for instance, [7, Lemma 1.1]), we give its proof in
Appendix E, for the sake of the completeness of the paper.

Lemma 3.1. Let {T,,}52; C [0,00) and {u,}3*, C L*(RT;U) satisfy that
T, — T and u, — 0 weakly in L*(RT;U), as n — oo (3.1)
for some T € [0,00) and @ € L?(R*;U). Then for each yo € X,
y(Tn; Yo, un) — y(j;7 Yo, U) weakly in X, as n — oo. (3.2)
The next lemma concerns the monotonicity of the function N(-,yo).

Lemma 3.2. Let yo € X \ {0}. Then the following conclusions are true:

(i) The function N(-,yo) is decreasing from (0,00) to [0, o0].

(i) The function N(-,yo), when extended over [0,00] via (1.19), is decreasing from
[0, 00] to [0, 00].

Proof. (i) We first show that N(-,yo) is decreasing over (0,00). For this purpose,
let T7 and T3 satisfy that 0 < T} < Tb < oo. There are only two possibilities on
N(T1,yo): either N(T4,y0) = oo or N(T1,y0) < 0.

In the case that N(T1,y0) = oo, it is obvious that N(T1,y0) > N(T%,30). In
the case that N(T1,y0) < 0o, we arbitrarily fix a e > 0. It follows from (1.16) that
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there exists a control v. so that §(71;yo,v:) = 0 and [|[vc|| o 0,1;0) < N(T1,y0) +¢.
Write 0 for the zero extension of v. over (0,7T3). Then from the above, we find that

9(T2590,0) = 0 and |[vell Lo 0,mu50) = [0zl 0,m;0) < N(T1,90) +&. (3.3)
From the first equality in (3.3), it follows that ¥, is an admissible control to

(NP)T2%0, This, along with the optimality of N(7T5,%0) and the second assertion
in (3.3), yields that

N (T2, y0) < ||VellLos 0, 1050) < N(T1,90) + €.

Since € was arbitrarily taken, the above leads to the following inequality in this
case: N(T1,y0) > N(Tz,y0). Hence, the function N(-,yg) is decreasing over (0, 00).
Next, by (1.16), we see that 0 < N(T,yo) < oo for all T € (0,00). Thus, the
conclusion (i) of this lemma has been proved.
(ii) The conclusion (ii) follows from the conclusion (i) of this lemma and (1.19).
In summary, we end the proof of this lemma.
O

The following two lemmas concern with some relations among N (-, yo), 7°(-) and
TH().
Lemma 3.3. Let yo € X\{0}. Then the following conclusions are true:
(i) T(yo) < T*(yo). (ii) T*(yo) > 0. (iii) N(T,y0) > 0 for all T € (0,T*(yo)).
(i) N(0,y0) = oo. (v) If T*(yo) < oo, then N(T,yo) =0 for all T € [T*(yo),c0].
(vi) N(T (y0),90) = N(00, o).

Proof. (i) There are only two possibilities on T°(yg): either T%(yo) = 0 or T°(yo) >
0. In the case that T°(yo) = 0, it is clear that T%(yo) < T'(yo). In the case
when T%(yy) > 0, we assume, by contradiction, that T°(yo) > T'(yo). Fix a
T € (T"(y0), T°(yo)). Then by (1.17), we would have that for all u € L>(0,T;U),
9(T;y0,u) # 0; and by (1.18), we would have that §(T'; yo,0) = S(T)yo = 0. These
lead to a contradiction. Hence, T°(yo) < T (yo).

(ii) By contradiction, suppose that T'(yo) = 0. Then by (1.18), we could have
that for each £ > 0, S(f)yo = 0, which yields that yo = lim,_,o+ S(t)yo = 0. This
leads to a contradiction, since we assumed that yo € X \ {0}. Hence, T (yo) > 0.

(iii) By contradiction, suppose that N(Tp,yo) = 0 for some T € (O,T1 (yo)).
Then by (1.16), there would be a sequence {v,} in L>°(0,Tp;U) so that

§(To; yo,v) =0 for all n e N*; and |[vn||re(0,,0) = 0, as n — oo.

From these and Lemma 3.1, we find that S(Tp)yo = 9(To;%0,0) = 0. From the
above and (1.18), we see that T (yy) < Tp, which leads to a contradiction, since
To € (0,7 (yo)). Hence, N(T,yo) > 0 for all T € (0,7 (y0)).
(iv) By contradiction, suppose that N(0,y0) < oo. Then by (ii) of Lemma 3.2,
we could find a sequence {T},} C R* so that
T,\ 0, as n — 0 (3.4)
and
N(T,,y0) < N(0,90) < oo for all n € NT. (3.5)

By (3.5) and (1.16), we see that for each n € N, (NP)T»¥% has an admissible
control uy, so that ||un||re(,z,;0y) < N(0,y0) + 1. Write u, for the zero extension
of u, over R*, n € N*. Then we have that

y(T; Yo, Un) = 0 for all n € NT (3.6)
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and
Un| Lo +0) = llunllLo=(0,50) < N(0,50) + 1 for all n e N*. (3.7)
From (3.4) and (3.7), we see that
X(0,7,)Un — 0 strongly in L*(RT; U) as n — oc. (3.8)
From (3.4), (3.8) and Lemma 3.1, we find that
Y(Tn; Yo, X(0,1,,)Un) =+ Y¥(0;90,0) = yo weakly in X, as n — oo.

This, along with (3.6), yields that yo = 0, which leads to a contradiction, since it
was assumed that yo € X \ {0}. So we have proved that N(0,yy) = .
(v) Assume that T (yp) < co. We first claim that

N(T,yo) =0 for each T € [T"(yo),00). (3.9)

By contradiction, we suppose that N(T1,y0) # 0 for some T} € [T (yo),00). Then
we would have that §(T1;y0,0) # 0, i.e., S(T1)yo # 0. By the continuity of the
function t — S(t)yo at T, there is a 6 > 0 so that S(T} + §)yo # 0, which implies
that for each t € [0,T1 + 8], S(t)yo # 0. This, together with (1.18), implies that

Ty + 6 < T (yo). (3.10)

However, we had that T} > T*(yo) and § > 0. These contradict (3.10). So (3.9) is
proved.

Next, we see from the first equality in (1.19) and (3.9) that N(oco,yo) = 0. This,
together with (3.9), proves the conclusion (v).

(vi) There are only two possibilities on T (yo): either T (yo) = oo or T (yg) < oc.
In the case when T (yg) = oo, it is clear that N(T(yo),y0) = N(o0,¥0). In the
case that T (yg) < 0o, we see from (v) in this lemma that

N(Tl(yo), Yo) = 0= N (00, y0)-

This implies that N (T (yo), yo) = N (o0, o) in this case.
In summary, we end the proof of this lemma.

Lemma 3.4. Let yo € X \ {0}. Then the following conclusions are true:

(i) If N(T°(yo), yo) = o0, then either T%(yo) < T" (yo) or T°(yo) = T" (yo) = oo.
(i) If T°(yo) = oo, then N(T(yo), yo) = oo.

(iii) If 0 < N(T%(yo), yo) < 0o, then T%(yo) < T (yo).

(iv) N(T°(y0),y0) = 0 if and only if T°(yo) = T" (yo) < co.

(v) If T®(yo) < oo, then N(T*(yo),%0) < co.

Proof. (i) By contradiction, we suppose that the conclusion (i) was not true. Then,
by (i) of Lemma 3.3, we would have that

N(T°(y0),y0) = 00 and T°(yo) = T"(yo) < o0. (3.11)
The second conclusion in (3.11), along with (v) of Lemma 3.3, yields that
N(T°(y0),y0) = N(T"(y0), y0) = 0.

This contradicts the first equality in (3.11). So the conclusion (i) is true.
(i) Assume that T°(yo) = oo. Then we find from (1.17) that when T € (0, 00),
9(T;yo,u) # 0 for all uw € L°°(0,T;U). Thus, for each T € (0,00), (NP)T"% has
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no admissible control. So we have that N(T,y) = oo for all T € (0,00). Since
TO(yo) = oo, the above, as well as the first equality in (1.19), indicates that

N<T0(y0)a90) = N(OO,?JO) = Th_I};l)O N(Ta yO) = O0.

This ends the proof of the conclusion (ii).
(iii) Assume that 0 < N(T°(yo),y0) < oo. Suppose, by contradiction, that the
conclusion (iii) was not true. Then, by (i) of Lemma 3.3, we would have that

0 < N(T%4yo),y0) < oo and T%(yo) = T*(yo). (3.12)

These, along with (ii) of this lemma, yield that T (y) = T°(yo) < 0o. Then by (v)
of Lemma 3.3, we see that N(T°(y0),%0) = N(T (y0),y0) = 0, which contradicts
the first conclusion in (3.12). Hence, the conclusion (iii) is true.

(iv) We first show that

T(yo) = T (yo) < 00 = N(T%(yo), o) = 0. (3.13)

Suppose that the assertion on left side of (3.13) holds. Then by (v) of Lemma 3.3,
we see that N(T%(yo),y0) = N(T*(y0),y0) = 0, which leads to the equality on the
right side of (3.13).

We next show that

N(T°(y0),50) = 0= T%(yo) = T" (o). (3.14)

By contradiction, we suppose that (3.14) did not hold. Then by (i) of Lemma 3.3,
we would have that

N(T°(y0),50) =0 and  T°(yo) < T"(yo). (3.15)

In the case that T%(yo) = 0, we find from (iv) of Lemma 3.3 that N (T°(yo), yo) = oo,
which contradicts the first equality in (3.15). In the case that T%(yg) > 0, we see
from the second inequality of (3.15) and (iii) of Lemma 3.3 that N(T°(yo),%0) > 0,
which contradicts the first equality in (3.15). Hence, (3.14) is true.

Finally, the conclusion (iv) follows from (3.13) and (3.14).

(v) Assume that T%(yo) < co. There are only two possibilities on T (yg): either
T (yo) < oo or TY(yp) = co. In the first the case that T (yg) < oo, we can apply
the conclusion (v) of Lemma 3.3 to find that N(T"(yo),y0) = 0 < oco. Hence,
the conclusion (v) holds in the first case. We now consider the second case that
T*(yo) = oo. Because T°(yo) < oo, we can take t € (T°(yp),00). Then by (1.17),
we find that §(¢;y0,7) = 0 for some @ € L°°(0,#;U). This shows that @ is an
admissible control to (N P)&¥ | from which, we see that

N(t,yo) < oo. (3.16)
Because T (yo) = oo, it follows from (ii) of Lemma 3.2 and (3.16) that
N(T"(y0),y0) = N(00,90) < N(t,y0) < oc.

Hence, the conclusion (v) of this Lemma holds in the second case.
In summary, we finish the proof of this lemma.
O

Remark 10. (i) Let yo € X \ {0}. From the above lemma, we have the following
two observations: (a) T°(yo) < T (yo) if and only if either 0 < N(T°(yo), yo) < 00
or N(T°(yo),y0) = oo and T%(yg) < oo; (b) T%(yo) = T*(yo) if and only if either
N(T°(yo), o) = 0 or N(T(yo), yo) = o0 and T°(yo) = oc.
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(ii) From the above two observations and the definitions of Wa 3, Wi 9, V2 2 and
V32 (see (1.27), (1.29), (1.32) and (1.34), respectively), one can easily find that

WazUWso = {(T,y0) €W : T(yo) <T < T"(y0)}
and
Va2 UVso ={(M,y0) €V : N(T"(y0),50) < M < N(T°(y0),0)}-

The next Proposition 6 presents the strict monotonicity and the continuity for
the function N(-,yo) over (T°(yo), T"(yo)). These properties will help us to build
up a connection between minimal time control problems and minimal norm control
problems. This connection plays an important role in the studies of the maximum
principle for (T P)M:¥o. We would like to mention what follows: The properties in
Proposition 6 was proved in [46] for the internally controlled heat equation, with
the aid of the bang-bang property and the L*°-null controllability. Here, we have
neither the bang-bang property nor the L°°-null controllability. We prove it under
a weaker condition (H1).

Proposition 6. Suppose that (H1) holds. Let yo € X \ {0} satisfy that T°(yo) <
T (yo). Then the following conclusions are true:
(i) The function N(-,yo) is continuous and strictly decreasing from (T°(yo), T (yo))

onto (N(T1 (Y0),y0), N(T°(yo), yO))'
(ii) When T € (T°(yo), T" (%)),

N(tl,yo) > ]\/'(T7 yo) > N(tz,yo) fOT’ all t1,to with 0 <t; <T <ty < o0. (317)

Proof. (i) Arbitrarily fix a yo € X \ {0} so that T%(yo) < T'(yo). From (iii) of
Lemma 3.3 and Corollary 2, we see that

0 < N(T,yo) < oo for all T € (T°(yo), T" (y0)). (3.18)

We organize the rest of the proof by the following three steps:

Step 1. To show that the function N (-, yo) is strictly decreasing over (TO (yo), T? (yo))

Arbitrarily fix two numbers Ty and T so that T%(yo) < Ty < To < T (yo)-
Because (H1) holds, we can apply Lemma 2.3 to get the conclusion (ii) of Lemma
2.3. Let py € [2,00) and Cy := C1(T,T1) be given by (ii) of Lemma 2.3. Then by
(3.18), there is a d > 0 so that

20 1/ N(T1,y0) =9
A== c(0,1) and CuATYP < 1Y) =0
N(Tv,y0) + 9 (0.1) 1 N(T1,y0) + 9

Meanwhile, by (3.18), we have that N(71,yo) < co. This, along with (1.16), yields
that there exists an admissible control v to (NP)T%0 so that

Q(Tl; yo,’l}l) =0 and HU1||L°°(O,T1;U) < N(Tl,yo) + 4. (320)

Write 0 for the zero extension of vy over (0,73). According to (ii) of Lemma 2.3,
there is a control vy € L*°(0,T5;U) so that

9(T2;0, x0,7)AV1) = (1250, X (7, ,1)V2) (3.21)

(3.19)

and so that

lv2(| oo (0,750 < C1l|AV1|| Lo 0,150y < Ollel/m||U1||L°°(0,T1;U)~ (3.22)

‘We now define another control:

v3(t) = X(0,1) (£)(1 = N)01(t) + X (7,1 (D)v2(t), t € (0, T2). (3.23)
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From (3.23), (3.21) and the first equality in (3.20), one can check that §(T%; yo, v3) =
S(Te — T1)y(T1;y0,v1) = 0, which implies that vs is an admissible control to
(NP)T2%0, This, together with the definition of N(Ts,0) (see (1.16)) and (3.23),
implies that

N (T3, 10) < |Jvs]l Lo (0,1;0) < max {(1 — N)||v1]l oo 0,709, V2]l Lo 0,1050) }-

From this, (3.20), (3.22) and (3.19), after some simple computations, we deduce
that

N(Toyy0) < max{ (1= (N(T1,p0) +8), AT (N(T1, o) +6) }
= N(T1,y0) — 6 < N(T1,y0).

So N (-, yo) is strictly decreasing over (T°(yo), T (yo))-
Step 2. To show that

N(T,yo) < tleig,lgngN(ﬂ yo) for all T € A:= [T°(y),T" (yo)) (3.24)

Arbitrarily fix a Ty € [To(yo), Tt (yo)). Then arbitrarily take a sequence:
(T35, € (T%yo), T (o)), with lim T, = Ty. (3.25)
n—oo
To show (3.24), it suffices to prove that
N(Tb,yo) < liminf N(T,, yo). (3.26)
n—oo
By contradiction, we suppose that liminf, . N(Ty,y0) < N(Tp,y0). Then there
would be a subsequence {T,,, }72, of {T},}>2, so that
klim N(Ty,,yo) = liminf N(T),, yo) < N(Tv, yo)- (3.27)
— 00 n—oo
Thus there is a positive constant C' so that
N(T,,,y0) <C < oo forall k>1. (3.28)

It is clear that 0 < T,, < oo (see (3.25)) for each k € N*. This, along with (1.16)
and (3.28), yields that for each k € N, there is a control u,, € L>(0,T,,;U) so
that

0y < N(Toy,90) + 1/k. (3.29)

For each k € NT, we let u,, be the zero extension of u,, over RT. From (3.29)
and (3.28), it follows that {u,, }32, is bounded in L>(R*;U). Then there is a
subsequence {n, }72, of {tn, }32, and a control vg € L*(R*;U) so that

:&(Tnk;y07unk) =0 and ||unk HL‘X’(O,Tnk;

Un,, — vo weakly star in L>®(R";U), as | — oo, (3.30)
which implies that
— vp weakly in L2(RT;U), as [ — oc.

unkl

Because lim;_, o, Tnkl =Ty, the above convergence, together with Lemma 3.1, yields
that

Y(Toy, s Y0, Uny, ) — y(To; Yo, vo) weakly in X, as | — oo,
which, along with the first equality in (3.29), implies that
y(To; yo, vo) = 0. (3.31)

Since yo € X \ {0} and Ty < T (o), the equality (3.31) indicates that 0 < Ty < co.
Therefore, the problem (NP)*0:% makes sense. From (3.31), we know that vg | 1)
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is an admissible control to (N P)T0:% . This, along with (1.16), (3.30) and the second
inequality in (3.29), yields that

N(TOaQO) < ||U0||L°°(O,T0;U) < th_1>10Iolf ||ank, ||L°°(R+;U) < lilg(i)gf N(Tnkl ’ yO)?
which contradicts (3.27). Thus, (3.26) is true. This ends the proof of (3.24).
Step 3. To show that
N(T,yo) > limsup N(T,yo) for all T € B:= (To(yo),Tl(yo)] (3.32)

teB, t—T

Arbitrarily fix a Ty € (T%(yo),T"(yo)]. We aim to show that (3.32) holds for
T = Ty. There are only two possibilities on Ty: either Ty = oo or T < oco. In the
case that Ty = oo, (3.32), with T' = T, follows directly from the first equality in

(1.19).
The key of this step is to prove that
N(To,yo) > limsup N(t,y0), when Ty < oco. (3.33)
t—>T0

To this end, we arbitrarily take {T},}°2; in (T°(yo), T"(yo)) so that lim, . T), =
To < o0. According to Corollary 2, there is a sequence {z,}52,; C D(A*) so that
for each n > 1,

1B*S™ (T = ) znllLr(0,150) =1 (3.34)
and
N(Tn,y0) = 1/n < (S(Tn)yo, zn)x < N (T, yo)- (3.35)
Arbitrarily fix a sequence:
{ti}iz, € (T%wo). Tp) with t, 2 Tp. (3.36)

The rest of the proof of this step is divided into three parts as follows:
Part 3.1. To prove that there is a subsequence {n;}{°; in NT and a function g €
By, so that for each k € NT,

B*S*(Tyn, — )2n, — g weakly in L*(0,t;U), as | — oo (3.37)
For each n, we define a function ,, over (0,Tp) in the following manner:
on(t) = B*S*(T, — t)z,, t€ (0,min{T,,Tp}),
" - 0, te min{Tn, To}, To) .

For each k € N, since ¢, < Ty (see (3.36)) and lim,,_,o, T), = T, we see that there
is N(k) € N so that t;, < min{T,,, Ty}, when n > N(k). Since z, € D(A*) for all
n, we have that for each k € N, S*(T,, — t;)z, € D(A*), when n > N(k). Then
by (1.20), we find that when k € Nt and n > N(k),

Un |(07tk): B*S*(Tn - )Zn |(O,tk): B*S*(tk - ‘)(S*(Tn — tk)Zn) |(07tk~)€ Ytk.(3.38)
This, along with (3.34), yields that for each k € NT, ¢, |(04,)€ By, , when n >
N (k). From this, (H1) and Corollary 1 (with 7' = t;.), we see that for each k € N*,
there is a function gy € By, and a subsequence {1, }72; so that

Wk, boer CHYR—1), tner CH{Yntner, with {0, }nlq = {¥n}nty,
and so that

Yk,

0
tk

(0,tx)— 9k in the topology o(Y3,, Ry, ), as n — oco.
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From these and the diagonal law, the subsequence {1y, }°2, of {1, }22, satisfies
that for each k € N*,

U, |(0,t,)—> gr in the topology U(}/tk,ng), as n — oo. (3.39)
Arbitrarily fix a k € NT and then arbitrarily take u; € U, where

U = {u e L¥(0,60) = Jim Jul oo = 0} (3.40)

By (1.42), we have that §(t;0,u) € RY,. This, along with (3.39), yields that for
each k € NT,

<1/1nn,ﬁ(tk;0,uk)>nk,7zgk — <9k,ﬁ(tk;0,uk)>mk,ngkv as n — 00. (3.41)

Since uy, is an admissible control to (NP)¥Yx, with y;, := §(tx;0,ux), we can use
Theorem 2.6 and (3.41) to get that for each k and each uy € Uy,

/k<z/)nn(t),uk(t)>Udt—> / gk (), ()0 A, as n — . (3.42)
0 0

We next claim that
g; =gy over [0,t;] for all j, j/ € Nt with j < j'. (3.43)

For this purpose, we arbitrarily fix 7,7 € N* so that j < j'. Let u; € U;. Write ;
for the zero extension of u; over (0,t;). It follows from (3.40) that @; € Uj,. This,
along with (3.42), indicates that

tj

/0 oy g dt = Tim [ (o (6)uy(8) v dt

n—oo 0

tjl

— tim [, (8), 1, (8) dt = /

tj/

3]
i (o050 dt = [ gy (e us(e)u at.
0 0 0
Since u; was arbitrarily taken from U; (see (3.40)), the above leads to (3.43).
Now, define g(-) : (0,7p) — U by
g(t) == gr(t), t € (0,tx], for each ke NT, (3.44)

From (3.43), we see that g is well defined. By (3.42) and (3.44), we find that for
each k € N* and each ugy 1 € Upy1,

/ o (Yn,, (), w1 () v dt — / Hl(g(t),ukﬂ(t)}(] dt, as n — oo. (3.45)
0 0

Given a v, € L*(0,tx;U), let U be the zero extension of vy over (0,¢x41). Then
Uk € Uyy1. Replacing ugi1 by Uy in (3.45), we obtain that for each k¥ € NT and
each v, € L>®(0,tx;U),

/ k<¢nn(t)7vk(t)>U dt — /1k<g(t),vk(t)>U dt, as n — oo,
0 0

from which, it follows that for each k € N,
VY, — g weakly in L'(0,tx;U), as n — oc. (3.46)

We now prove that g € By, . Indeed, since g, € By, for each k € N, by (3.44)
and (i) of Lemma 2.4, we deduce that g[qs € Y for all s € (0,7p) and that
gl 0,100y < 1. From these, as well as (H1) and (ii) of Lemma 2.4, we see that
g € By, . This, together with (3.46), leads to the conclusion of Part 3.1.
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Part 3.2. To show that the subsequence {n;}°,, obtained in Part 3.1, satisfies that
<S(Tnl)y0a Zm>X - <S(T0)y0?g>RT07YTO’ as I — 00 (347)

Recall (3.36) for {t;}72,. Since t; > T%(yo), we see from (1.17) that there is an
u; € L®(R*;U) so that 0 = y(t1; 90, X(0,4,)u1), from which, it follows from (1.14)
that for each T > tq,

T
0 =9(T; 90, X(0,t)u1](0,1)) = S(T)yo + / S_1(T —7)Bx(0,t,)(T)u1(7) dr. (3.48)
0

Because lim;_,oo T, = To > t1, there exists an Ny > 0 so that T, > t; for all
! > Np. This, along with (3.48) (with T' = T,,,) and (1.13), yields that for each
l 2 N07

ty
(S (T )or 2a) x = — / (X0 () (), B*S* (T — 7)2n, ), 7,
0

which, together with (3.37) (where k = 2), implies that

lim (S(T, or 2n)x = — / (X (P (1), 9(7)) . (3.49)

l—o0

Meanwhile, since Ty > t1, it follows by (1.41) and (3.48) (where T' = Tp) that
S(To)yo € Ry - (3.50)

By (3.48), we know that —x(o,+,)u1/(0,73) is an admissible control to (N P)¥7o, with
y1y = S(To)yo. Thus, it follows from (3.50) and (2.3) that

(S(To)y0, 9V, e, = — / " (oun) (N (1), g(r)), dr.

This, along with (3.49), yields (3.47).

Part 3.8. To show (3.33)
It is clear that T%(yy) < To < oo. Then by (3.50) and (ii) of Proposition 3, we
see that

N(To,90) = | = S(To)voll R, - (3.51)
From (3.50) and (2.3), we find that
| = S(T0)yoll Rz, 19llvz, = (S(T0)Y0s 9) Ry, Y, -
This, along with (3.51), implies that
N(To, yo)llgllvz, = (S(T0)yo, )Ry vr, - (3.52)
Since g € By, (see Part 3.1), we have that [|g[ly;,, < 1. This, as well as (3.52) and
(3.47), yields that
N(To,90) > N(To,yo)l|gllyz, > ll_if&<S(Tnl)y07zm>X~ (3.53)

From (3.53) and (3.35), we obtain that N (T, yo) > limy_oo N(Th,,y0). Since the
function N(-,yo) is decreasing (see (ii) of Lemma 3.2), the above leads to (3.33) (in
the case that Ty < 00).

In summary, we conclude that (3.32) holds. This ends the proof of Step 3.

Now, from Lemma 3.2 and the conclusions in Step 2 and Step 3, we see that
N(-yo) is continuous from (T°(yo), T"(yo)) onto (N(T"(yo),¥o), N(T°(y0),0))-
This, along with the conclusion in Step 1, proves the conclusion (i) of Proposition 6.
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(ii) Fix a yo € X \ {0} so that T%(yo) < T"(yo). Let T € (T°(yo), T"(yo)) and

0 <s; <T < sy <oo. Choose two numbers s} and s so that
s, s5 € (T%(y0), T (o)) and s; < sy <T < sy < s2. (3.54)

Because N (-, yo) is strictly decreasing over (T°(yo),T"(yo)) (see the conclusion (i)
in this proposition), it follows from (3.54) that

N(s1,90) > N(T,yo) > N(s5,0)- (3.55)

Since N(-,yo) is decreasing over [0, o0] (see (ii) of Lemma 3.2), it follows by (3.54)
and (3.55) that

N(s1,90) = N(s1,90) > N(T,y0) > N(s5,90) = N(s2,%0),
which leads to (3.17). The conclusion (ii) is proved.

In summary, we finish the proof of Proposition 6.
O

Corollary 3. Suppose that (H1) holds. Let yo € X \ {0} satisfy that T(yo) <
T'(yo). Then the following conclusions are valid:
(Z) When M € (N(Tl (y0)7y0)7 N(TO(yO)vyO))7

T(yo) < T(M,y0) < T*(yo) and M = N(T(M,yo), o). (3.56)
(ii) When T € (T°(yo), T (%)),
N(Tl(yo)vyo) < N(T,yo) < N(To(yo)ayo) and T = T(N(T, o), yo)- (3.57)

Proof. (i) Let yo € X \ {0}, with T°(yo) < T"(yo). Then by (H1), we can apply (i)
of Proposition 6 to see that N (T (o), v0) < N(T%(y0),0). Let

M e (N(T"(y0), y0)s N(T°(0), %0))- (3.58)
According to (i) of Proposition 6, there is 7' so that
TO(yo) < T < T (yo) and M = N(T,yo). (3.59)

To prove (3.56), it suffices to show that
T =T(M,yp). (3.60)

By contradiction, suppose that (3.60) were not true. Then we would have that
either T < T(M,yo) or T > T(M,yo). In the case that T < T(M,yo), we first
observe from (3.59) and (3.58) that N(T,y0) = M < N(T°(y),y0) < oo. Thus, it
follows from (1.16) that for each n > 1, there is a control v,, so that

[vnl oo (0. 70y < N(T,y0) +1/n < oo (3.61)

and

9(T;y0,vn) = 0. (3.62)
Write ©,, for the zero extension of v, over RT, n € NT. From (3.61), we see that on
a subsequence of {7, }52 4, still denoted in the same manner,

Un — vg weakly star in L®°(R1;U), as n — oo. (3.63)

It is clear that v, converges to vg weakly in L?(R*;U). Then by Lemma 3.1 and
(3.62), we find that

y(T'; yo,v0) = 0. (3.64)
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Meanwhile, from (3.63), (3.61) and (3.59), we have that
[voll o @et:0y < Tminf [T, ]| Lo (mti0) < N(T,yo) = M. (3.65)

From (3.64) and (3.65), we see that v is an admissible control to (T'P)M-¥0. Then
by (1.15), we see that 7' > T(M, yo), which leads to a contradiction, since we are
in the case that 7' < T(M, y).

In the case when T' > T(M,yo), we have that T'(M,yo) < oco. This, along with
(1.15), yields that for each n > 1, there is a control u,, € U™ and a number T, so
that

T(M,yo) < T < T(M,yo) +1/n < oo (3.66)

ltn|| oo mt;0y) < M and y(Tn;yo, un) = 0. (3.67)

Since yo € X \ {0}, these imply that 0 < T}, < oo for all n > 1. From this and the
second equality in (3.67), it follows that for each n, u,|(o,z,) is an admissible control

o (NP)Tn% . This, along with the first inequality in (3.67) and the definition of
N(Tn,yo) (see (1.16)), yields that for each n, M > |un| g ®+vy = N(Tn,%0),
which, together with the second equality in (3.59), implies that

N(T,y0) = N(T,,y0) for each n. (3.68)

Since (H1) holds and T € (T°(yo),T" (y0)), we see from (3.17) and (3.68) that for
each n € Nt, T, > T which, together with (3.66), indicates that T'(M,yo) > T
This leads to a contradiction, because we are in the case that 7' > T(M,yo). Thus,
the conclusion (i) of this corollary is true.

(ii) Let yo € X \ {0}, with T%(yo) < T*(yo). Arbitrarily fix T € (T°(yo), T (y0)-
Since (H1) holds, we can use the conclusion (i) of Proposition 6 to see the T satisfies
the first inequality in (3.57). Then by this and (3.56) (where M = N(T\,y)), w
find that

T(yo) < T(N(T,90),50) < T"(yo) and N(T,yo) = N(T(N(T,y0),90),¥0).(3.69)

Since N(-,yo) is strictly decreasing over (T°(yo), T"(yo)) (see (i) of Proposition 6)
and because T' € (T°(yo), T*(y0)), it follows from (3.69) that T satisfies the second
equality in (3.57).
In summary, we finish the proof of this corollary.
O

We can have the following property on T'(M, yo), without assuming (H1). (Com-
pare it with the conclusion (i) of Corollary 3.)

Proposition 7. Let yo € X \ {0}. Then T(yo) < T(M,yo) < T (yo) for each
M € (0, 00).
Proof. Let yo € X \ {0} and M € (0,00). We first show that
T(M,yo) > T°(yo). (3.70)
By contradiction, suppose that T'(M, o) < T°(yo). Then by (1.15), there would be
IS [T(M7 yo),TO(yo)) and u; € UM so that y(f;yo,u1) = 0. This contradicts the
definition of T%(yo) (see (1.17)). So we have proved (3.70).
We next show that
T(M,yo) < T*(yo). (3.71)

By contradiction, suppose that T (yo) < T(M, o). Then by (ii) of Lemma 3.3, we
would have that 0 < T(yo) < oo. By this and (1.16), we find that the problem
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(NP)T' (0% makes sense. Since T (yo) < oo, it follows from (v) of Lemma 3.3
that N (7" (yo),yo) = 0. From this and (1.16), we see that there exists a control vy
to (NP)T (wo):wo g0 that

9T (y0); yo, v1) = 0 and [|vr]| Lo 0,7 (yo)t) < M- (3.72)
Let ©; be the zero extension of v; over RT. Then from (3.72), it follows that
Y(T" (Y0); 90, 01) = 0 and |0 || poe 30y < M. (3.73)

From (3.73), we see that ¥ is an admissible control to (T'P)*:¥%. Then, from the
first equation in (3.73) and (1.15), we see that T'(M,yo) < T (yo), which leads to a
contradiction. Hence, (3.71) is true.

Finally, by (3.70) and (3.71), we end the proof of Proposition 7.

4. Existence of minimal time and minimal norm controls. In this sec-
tion, we present the existence of minimal time and minimal norm controls for
(TP)Mo and (NP)T¥0 | and the non-existence of admissible controls for (7'P)M:¥e
and (N P)T+% for all possible cases. These properties play import roles in the proofs
of Theorem 1.1 and Theorem 1.2. We also study the existence of minimal norm
controls for affiliated minimal norm problems (NP)YT, with yr € Ry (given by
(1.40) and (1.41)). Such existence will be used in the studies of a maximum prin-
ciple for (NP)¥T, with yo € RS (given by (1.42)). The later is the base of the
studies of maximum principles, as well as the bang-bang properties for (7' P)-vo
and (NP)Two. The first theorem in this section concerns with the existence of
minimal norm controls to the problem (NP)¥T.

Theorem 4.1. Let T € (0,00). The following conclusions are true:

(i) For each yr € Ry, (NP)YT has at least one minimal norm control.

(i) The null control is the unique minimal norm control to (NP)¥T, with yr = 0
m RT.

Proof. Arbitrarily fix a T € (0,00). We are going to show the conclusions (i)-(ii)
one by one.

(i) Let yr € Rr be arbitrarily given. According to the definitions of the problem
(NP)YT and the subspace R (see (1.40) and (1.41)), (NP)¥T has at least one
admissible control. Thus there is a minimization sequence {v, }>2, C L*°(0,T;U)
for (NP)¥T so that

9(T;0,v,) = yr for all n € NT (4.1)
and
HU7L||L°°(O,T;U) < ||yT||RT + 1/" for all n € N*. (42)
From (4.2), we find that there is a subsequence of {v,,}22;, denoted in the same
manner, and a control vg € L°°(0,T;U) so that

vp, — vy weakly star in L*°(0,T;U), as n — oo. (4.3)
From (4.3), Lemma 3.1 and (4.1), we see that
9(T';0,v0) = yr- (4.4)

This, along with (1.40), (4.3) and (4.2), yields that

lyrlr, < ||U0||L°°(0,T;U) < liminf”vnHL‘”(O,T;U) < lyrlrs,
n— oo
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from which, it follows that

lyzrll=s = llvollL=0,r;v)- (4.5)
By (4.4) and (4.5), we find that vy is a minimal norm control to (N P)¥T. This ends
the proof of the conclusion (i).

(ii) By (1.14), we see that ¢(7;0,0) = 0. Meanwhile, since || - ||z, is a norm
(see (1.40)), we find that ||0||g, = 0. Therefore, we see that when yr = 0, the null
control is a minimal norm control to (N P)¥T and that the minimal norm of (N P)¥T
is 0. The latter shows that (NP)¥T, with yr = 0, has no non-zero minimal norm
control. Thus, the null control is the unique minimal norm control to (N P)¥7T | with
yr = 0.

In summary, we complete the proof of this theorem.

O

We now present the following lemma which will be used in the studies on the exis-
tence of minimal norm controls to (N P)T*¥0 and minimal time controls to (7'P)M:vo.

Lemma 4.2. Let yo € X \ {0}, T € (0,00) and M € (0,00). Then the following
conclusions are true:
(i) If (NP)T:% has an admissible control, then it has at least one minimal norm
control.
(ii) If (TP)M¥0 has an admissible control, then it has at least one minimal time
control.
(ii3) If N(T,yo) < oo, then (NP)T-% has at least one minimal norm control.
(i) If N(T,yo) = 0, then the null control is the unique minimal norm control to
(NP)Tvo.
(v) If N(T,yo) = oo, then (NP)T:% has no admissible control.
Proof. (i) Suppose that (NP)T-¥0 has an admissible control. Then it has a mini-
mization sequence {v, }22; C L*°(0,T;U) so that
9(T;yo,vn) =0 for all n € Nt (4.6)

and

vl Lo 0,0y < N(T,yo) +1/n for all n e NT. (4.7

By (4.7), we see that there is a subsequence of {v,,}$2 ;, denoted in the same manner,
and a control vy € L*>°(0,T;U) so that

vp, — vy weakly star in L*°(0,T;U), as n — oo. (4.8)
From (4.8), Lemma 3.1 and (4.6), we find that
g(T, y07’l}0) =0. (49)

This, together with (1.16), (4.8) and (4.7), yields that
N(T,y0) < lvollre=(o,r;v) < hnnigf”vnHLm(O,T;U) < N(T, yo)-
Hence, we have that
N(T,y0) = |Jvoll o= 0,750 (4.10)
By (4.9) and (4.10), we find that vg is a minimal norm control to (N P)T-vo.

(ii) Suppose that (T'P)¥% has an admissible control. Then there are two se-
quences {u, 152, C L®(R*;U) and {T},}5°, C R* so that

y(T; Yo, un) = 0 for all n € NT, (4.11)
T \yT(M,yp), as n — o0 (4.12)
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and
[ttn ]l oo (r+;0y < M for all n e N*. (4.13)

By (4.13), we see that there are a subsequence of {u,,}22 ;, still denoted in the same
manner, and an uy € L>(R™;U) so that

up — ug weakly star in L®°(RT;U), as n — oo. (4.14)
From (4.12), (4.14), Lemma 3.1 and (4.11), it follows that
y (T (M, o) yo, up) = 0. (4.15)
Meanwhile, it follows from (4.14) and (4.13) that

||’U/OHLOO(]R+;U) S hmmf ||un||Loo(R+;U) S M (416)
n—00

By (4.15) and (4.16), we see that ug is a minimal time control to (T P)Mo,

(iii) Suppose that N(T,yo) < co. Then it follows by (1.16) that (N P)T*% has an
admissible control. Thus, by (i) of this lemma, we find that (NP)T¥0 has at least
one minimal norm control.

(iv) Suppose that N(T,yo) = 0. On one hand, by the conclusion (iii) in this
lemma, we see that (N P)7"% has at least one minimal norm control. On the other
hand, if v* is a minimal norm control to (N P)T%  then we have that

v [| oo (0,750) = N (T, 90) = 0,

which yields that v* = 0. Hence, the null control is the unique minimal norm control
to (NP)Two.

(v) Assume that N(T,%,) = oo. By contradiction, suppose that (NP)T% had an
admissible control v* € L*°(0,T;U). Then, by (1.16), we would have that

0o = N(T,yo) < ||v*| Lo (0,150) < 00.

This leads to a contradiction. Hence, (N P)?*¥0 has no admissible control.
In summary, we finish the proof of this lemma.
O

The next theorem concerns with the existence of minimal norm controls to the
problem (N P)T%0_ in the case when T°(yg) < oo.

Theorem 4.3. Let yo € X \ {0} satisfy that T°(yo) < co. Then the following
conclusions are true:

(i) If T°(yo) < T < oo, then (NP)T:¥0 has at least one minimal norm control.

(ii) If T°(yo) > 0 and 0 < T < T%(yo), then (NP)T¥0 has no admissible control.
(iii) If 0 < N(T%(yo), yo) < 0o, then

T°(yo) > 0 (4.17)

and (NP)TO(?’O)>-’/0 has at least one minimal norm control.

(iv) If N(T%(yo),y0) = 0, then (4.17) holds and the null control is the unique
minimal norm control to the problem (NP)T’@o):vo

() If N(T(yo),y0) = 0o and T°(yo) > 0, then (NP)T° @)% has no admissible
control.

(vi) If T°(yo) = 0, then the problem (NP)T’ @)% does not make sense.
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Proof. Arbitrarily fix a yo € X \ {0} so that
T°(yo) < o0. (4.18)

(i) Suppose that
T(yo) < T < oc. (4.19)

Then by (1.17) and (4.19), there are a £ € (T°(y),T) and an @ € L*°(0,%;U) so
that

9(t; yo, @) = 0. (4.20)

Extend @ over (0,T) by setting it to be zero over [, T). Denote the extension in the
same manner. Then we see from (4.20) that §(7T; yo, @) = 0, from which, it follows
that 4 is an admissible control to (NP)T-¥0. This, along with (i) of Lemma 4.2,
yields that (N P)T"% has at least one minimal norm control.
(ii) Suppose that
T%(yo) >0 and 0 < T < T°(yo). (4.21)
Then it follows from (1.17) and (4.21) that (NP)7*¥ has no admissible control.
(iii) Assume that
0 < N(T°(yo),y0) < oo. (4.22)
We first show (4.17). By contradiction, suppose that (4.17) were not true. Then
we would have that T°(yg) = 0. This, along with (iv) in Lemma 3.3, yields that

N(T°(y0),50) = N(0,50) = oo,

which contradicts (4.22). Hence, we have proved (4.17). Next, it follows from (4.17)
and (4.18) that 0 < T°(yo) < co. This shows that the problem (NP)TO(yO)’yO makes
sense. (Notice that in the definition of (NP)T% it is required that 0 < T' < oo, see
(1.16).) Finally, by (4.22), we can apply (iii) of Lemma 4.2 to find that (N P)T" (¥0)-v0
has at least one minimal norm control.
(iv) Suppose that

N(T°(y0),y0) = 0. (4.23)
We first show that (4.17) stands in this case. By contradiction, suppose that (4.17)
were not true. Then we would have that T°(yg) = 0. This, together with (iv) in
Lemma 3.3, indicates that

N(T°(40),0) = N(0,30) = o0,
which contradicts (4.23). So (4.17) in this case. Next, by (4.17) and (4.18), we see
that 0 < T(yy) < co. Hence, the problem (NP)T°®o):%0 makes sense. Finally, by
(4.23), we can apply (iv) of Lemma 4.2 to find that the null control is the unique

minimal norm control to (NP)T" (v0):vo_
(v) Suppose that

N(T%(yo),y0) = 0o and T°(yo) > 0. (4.24)

Then it follows from the second inequality in (4.24) and (4.18) that 0 < T%(yg) < oc.
Hence, the problem (N P)To(y(’)’y0 makes sense. Finally, by the first equality in
(4.24), we can apply (v) of Lemma 4.2 to find that (NP)Z°®0)% has no admissible
control.
(vi) Suppose that T%(y) = 0. Then the problem (NP)T’®o):%0 does not make
sense, since in the definition of (N P)T"% it is required that T € (0, c0) (see (1.16)).
In summary, we finish the proof of Theorem 4.3.
O
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The following theorem concerns with the existence of minimal time controls to
(TP)M¥0 and minimal norm controls to (N P)T:%  in the case that T°(yy) = oo.

Theorem 4.4. Let yo € X \ {0} satisfy that T°(yo) = oo. Then the following
conclusions are true:

(i) For each M € (0,00), (TP)M:¥ does not have any admissible control.

(ii) For each T € (0,00), (NP)T%0 does not have any admissible control.

Proof. Arbitrarily fix a yo € X \ {0} so that T%(yp) = oo. First of all, since
T%(yo) = o0, it follows from (1.17) that for each T' € (0, 00),

9(T;y0,u) # 0 for all uwe L*(0,T;U). (4.25)
We next show the conclusions (i)-(ii) one by one.

(i) By contradiction, suppose that for some M € (0, 00), (TP)M’yO had an admis-
sible control @. Then we would have that y(f; yo, @) = 0 for some ¢ € (0, 00), which
contradicts (4.25). So for each M € (0,00), (T'P)M:¥0 has no admissible control.

(i) By contradiction, we suppose that for some 7" € (0,00), (NP)7% had an
admissible control ©. Then we would have that Q(T, Yo, ?) = 0, which contradicts
(4.25). So for each T € (0,00), (NP)T¥0 has no admissible control.

Thus we complete the proof of this theorem.

O

The following theorem concerns with the existence of minimal time controls to
(TP)M¥o in the case when T(yo) < oo.

Theorem 4.5. Let yo € X \ {0} satisfy that T°(yo) < co. Then it holds that
N(T (y0), o) < 0. (4.26)

Furthermore, the following conclusions are true:

(i) If N(T*(yo),y0) < M < oo, then (TP)M¥o has at least one minimal time
control.

(i) If N(T (y0),90) > 0 and 0 < M < N(T*(yo),y0), then (TP)M¥o has no
admissible control.

(iii) Suppose that (H1) holds. If My := N(T*(yo),v0) > 0, then (T P)Mo:% has no
admissible control.

Proof. Arbitrarily fix a yo € X \ {0} so that T%(yo) < co. Then (4.26) follows from
(v) of Lemma 3.4. Next, we are going to show conclusions (i)-(iii) one by one.
(i) Let M € (N(T*(y0),v0),00). Then by (vi) of Lemma 3.3, we see that

00 > M > N(T*(yo), yo) = N (00, yo)- (4.27)

Since T°(yp) < o0, it follows from (4.27) and the first equality in (1.19) that there
is a number T; so that

T(yo) < Ty < 00 and N(Ty,y0) < M < oco. (4.28)

By the first conclusion in (4.28), we can apply (i) of Theorem 4.3 to find that
(N P)T1:%0 has a minimal norm control v*. Hence we have that

9(T1;90,v™) =0 and [[v™| e (0,r;0) = N(T1, y0)- (4.29)

Write v* for the zero extension of v* over RT. Then it follows from (4.29) and
(4.28) that

y(TﬁyO,?j*) =0 and ||5*||LW(R+;U) = N(Tl,yo) <M < .
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These imply that ©* is an admissible control to (T'P)M:¥%. Then by (ii) of Lem-
ma 4.2, we find that (T P):% has at least one minimal time control.
(ii) Assume that

N(T*(y0),y0) >0 and 0 < M < N(T"(y0), yo)- (4.30)

‘We aim to show that (TP)M Y0 has no admissible control. By contradiction, suppose
that (TP)¥ had an admissible control. Then according to (ii) of Lemma 4.2,
(T P)M0 would have a minimal time control u}. Hence, it holds that

T(M,yo) <00, |[ujllpee@+;py <M and y(T(M,yo);yo0,ui) = 0. (4.31)
Since yo € X \ {0}, from the third and the first conclusions in (4.31), we see that
0<T(M,yp) < 0. (4.32)

Write @ for the restriction of uj over (0,7(M,yo)). Then it follows from (4.31)
that

103 | £oe (0,7 (M o )5ty < M (4.33)
and

By (4.32), the problem (NP)T(M:y0):%0 makes sense (see (1.16)). Then by (4.34),
we find that 4% is an admissible control to (NP)T(Mwo).wo  This, along with the
definition of N(T'(M,yo),yo) (see (1.16)) and (4.33), yields that

N(T(M,y0),v0) < |07 | o= (0,7(My0)0) < M,
which, together with the second inequality in (4.30), indicates that

N(T(M,y0):90) < N(T"(y0), yo)- (4.35)
From (4.35), (ii) of Lemma 3.2 and the first inequality in (4.31), it follows that
T'(yo) < T(M,yo) < 0. (4.36)

By (4.36), we can apply (v) of Lemma 3.3 to get that N(T"(yo),v0) = 0, which
contradicts the first inequality in (4.30). Hence, (TP)™:¥% has no admissible control
in this case.

(iii) Suppose that (H1) holds. And assume that

Mo == N(T"(y0),0) > 0. (4.37)
Then by (4.37) and (4.26), it follows that 0 < My < oco. Hence, the problem
(TP)Mo:wo makes sense. (It is required that 0 < My < oo in the definition of
(TP)Movo  see (1.15).)

We aim to show that (T'P)Mo:% has no admissible control. By contradiction,
suppose that it had an admissible control. Then we could apply (ii) of Lemma 4.2
to get a minimal time control u} for (T'P)Mo:%0. Hence, we have that

T(Mo,yo) < 00, |[uzlleemt;vy < Mo and y(T'(Mo, yo); Yo, us) = 0. (4.38)
Since yo € X \ {0}, from the third and the first assertions in (4.38), we see that
Write @3 for the restriction of uj over (0,7(Mo,yo)). Then it follows from (4.38)
that

1431 Lo (0,7(Mo o)) < Mo (4.40)
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and
9(T (Mo, yo); yo, 43) = 0. (4.41)

By (4.39), the problem (NP)T(Mowo)¥o makes sense. Then from (4.41), we find
that @3 is an admissible control to (N P)7(Movo):vo This, along with the definition
of N(T'(Mo,yo),y0) (see (1.16)), (4.40) and (4.37), yields that

N(T(Mo,y0),y0) < 105l 2o (0.7(Mo.0):0) < Mo = N(T"(yo),y0)- (4.42)
By (4.42) and (vi) of Lemma 3.3, we find that
N(T(Mo,0),90) < N(T"(y0),50) = N (o0, y0)- (4.43)

Next, we will use (4.43) to prove that T (yo) < co. When this is proved, we can
apply (v) of Lemma 3.3 to get that N(T"(yo),y0) = 0, which contradicts (4.37).
Hence, (T P)Mo-¥0 has no admissible control in this case.

The remainder is to show that T'(yg) < co. By contradiction, suppose that it
were not true. Then we would have that T (yg) = co. Since we are in the case that
T%(yo) < o0, it holds that

T°(yo) < oo =T (yo). (4.44)
By the first inequality in (4.38) and (4.44), we can find a number T so that
max{T°(yo), T(Mo,y0)} < T < oo. (4.45)

Meanwhile, by (H1) and (4.44), we can apply (i) of Proposition 6 to find that
N(-,yo) is strictly decreasing over (T°(yo),00). This, together with (4.45) and the
first equality in (1.19), yields that

N(T,yo) > N(00,30)- (4.46)

Since N(-,yo) is decreasing over [0,00] (see (ii) of Lemma 3.2), we find from the
first inequality in (4.45) and (4.46) that

N(T(Mo, yo).y0) = N(T',y0) > N(00,0)-
This contradicts (4.43). Hence, we have proved that T (yp) < oo. This ends the
proof of the conclusion (iii) of this theorem.

In summary, we complete the proof of this theorem.
O

Theorem 4.3, Theorem 4.4 and Theorem 4.5 contain results on the existence of
minimal time controls and minimal norm controls and the non-existence of admis-
sible controls of (T'P)M-¥0 and (N P)T-¥o for all possible cases. In order to use them
in the proofs of our BBP decomposition theorems better, we need several corollaries
as follows.

Corollary 4. Let yo € X \ {0} satisfy that T°(yo) < T (yo). Then the following
conclusions are true:

(i) If T%(yo) > 0 and 0 < T < T°(yo), then (NP)T¥% has no admissible control.
(ii) If T (yo) < oo and T (yo) < T < oo, then the null control is the unique minimal
norm control to (N P)T-vo,

Proof. Arbitrarily fix a yo € X \ {0} so that T°(yo) < T'(yo). Then, we have that
T°(yo) < 0o and T*(yo) > 0. (4.47)

We will prove the conclusions (i)-(ii) one by one.



48 GENGSHENG WANG AND YUBIAO ZHANG

(i) Suppose that
T(yo) >0 and 0 < T < T°(yo). (4.48)
Then we see that T' € (0,00). Thus, the problem (NP)T¥0 makes sense. Further-

more, since T°(yo) < oo (see (4.47)), by (4.48), we can apply (ii) of Theorem 4.3 to
find that (NP)T-¥0 has no admissible control.

(ii) Suppose that

T (yo) < 0o and T'(yp) < T < oo. (4.49)
By (4.49) and (v) of Lemma 3.3, we find that
N(T, yo) = 0. (4.50)

Meanwhile, from (4.49) and the second inequality in (4.47), it follows that T' €
(0,00). Hence, we find from (iv) of Lemma 4.2 and (4.50) that the null control is
the unique minimal norm control to (N P)%vo.

In summary, we finish the proof of this corollary.
O

Corollary 5. Let yo € X \ {0} satisfy that T°(yo) = T (yo). Then it holds that
T%(yo) > 0. Furthermore, the following conclusions are true:

(i) If 0 < T < T%(yo), then (NP)T% has no admissible control.

(ii) If T (yo) < oo and T°(yo) < T < oo, then the null control is the unique minimal
norm control to (N P)T-o,

Proof. Arbitrarily fix a yo € X \ {0} so that T°(yo) = T'(yo). Then by (ii) of
Lemma 3.3, we have that

T°(yo) > 0. (4.51)
Next, we will show the conclusions (i)-(ii) one by one.
(i) Suppose that

0<T < T%yo)- (4.52)

In the case that T%(yp) < oo, by (4.51) and (4.52), we can apply (ii) of Theorem

4.3 to find that (NP)T-¥ has no admissible control in this situation. In the case

that T°(yg) = oo, we can apply (ii) of Theorem 4.4 to find that (NP)T% has no

admissible control in this situation. Hence, (N P)T*% has no admissible control.
(ii) Suppose that

T°(yo) < oo and T°(yp) < T < oc. (4.53)

Since we are in the case that T%(yo) = T (yo), it follows from (4.53) that T (yo) <
T < co. Then by (v) of Lemma 3.3, we find that

N(T,y) = 0. (4.54)

Meanwhile, it follows from (4.51) and (4.53) that 0 < T' < co. By this and (4.54),
we can apply (iv) of Lemma 4.2 to see that the null control is the unique minimal
norm control to (N P)T¥o.

In summary, we end the proof of this corollary.

Corollary 6. Let yg € X \ {0} satisfy that
T%yo) < T (yo) and N(T°(yo),y0) < oc. (4.55)
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Then it holds that
0 < N(T°(y0); o)- (4.56)

Furthermore, the following conclusions are true:
(i) It holds that

T(M,yy) = TO(yO) € (0,00) for each M € [N(To(yo),yo),oo). (4.57)

(ii) For each M € [N(T°(yo),yo0),00), (T'P)™¥ has a minimal time control u* so
that u*|(0 1oy, (the restriction of u* over (0,7%yo))) is a minimal norm control
to (NP)T"(wo)-wo

(iti) For each M € [N(T%(yo),y0),00), the null control is not a minimal time
control to (T P)Mwo,

Proof. Arbitrarily fix a yo € X\ {0} satisfying (4.55). We first prove (4.56). By con-
tradiction, suppose that it were not true. Then we would have that N(T%(yo), yo) =
0. By this and (iv) of Lemma 3.4, we find that T%(yo) = T"(yo) < oo, which con-
tradicts the first inequality in (4.55). So (4.56) stands.

Next, we are going to show conclusions (i)-(iii) one by one.

(i) We first show that

0 < T°%yp) < 0. (4.58)

Indeed, by the first inequality in (4.55), we see that T%(y) < oo. Then by the second

inequality in (4.55) and by (iii) and (iv) of Theorem 4.3, we find that T°(yo) > 0.
Hence, (4.58) stands.

We next show (4.57). From (4.58), we see that the problem (]\TP)TO(Z’O)’y0 makes

sense. Since T°(yg) < oo (see (4.58)), by the second inequality in (4.55), we can

apply (iii) and (iv) of Theorem 4.3 to find that (NP)TO(?/O)’?JO has a minimal norm
control v*. From this, we have that

J(T°(yo);yo,v™) = 0 and  [[v"[| L= (0,70 (o)) = N(T°(%0), Yo)- (4.59)
Write ©* for the zero extension of v* over RT. Then by (4.59), it follows that
y(T°(y0); 90, 0*) = 0 (4.60)

and
0% L (= +:v) = N(T%(y0), %0) < M for each M € [N(T°(yo),0),00). (4.61)

Arbitrarily fix M € [N(T°(yo),y0),00). It follows from (4.56) that 0 < M < oo.
So the problem (T P)™:% makes sense. (In the definition of (T P)*¥o it is required
that M € (0,00), see (1.15).) Since 0 < T%(yg) < oo (see (4.58)), from (4.60) and
(4.61), it follows that ©* is an admissible control to (T P)M-¥o. This, along with
(1.15) and (4.60), indicates that

T(M,y0) < T°(yo)- (4.62)
Meanwhile, since M € [N(T%(yo), yo),0), it follows from Proposition 7 that
T(M,yo) > T°(yo)- (4.63)

By (4.62) and (4.63), we see that T(M,yo) = T°(yo). This, along with (4.58), leads
to (4.57).
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(ii) Arbitrarily fix an M € [N(T°(yo),0),00). Let v* and * be given in the
proof of the conclusion (i) of this corollary (see (4.59) and (4.60), respectively).
Write v* := 9*. It is clear that

u*|(0,To(yO)) =" (4.64)
Then by (4.57), (4.60) and (4.61), we see that
y(T(M,y0);yo,u”) =0 and |[u*| poomt;vy) < M.

These yield that u* is a minimal time control to (T'P)M:¥%. Meanwhile, it follows
by (4.59) and (4.64) that u*|(g z0(y,)) is a minimal norm control to (N P)T"wo)wo,
Hence, in this case, (TP)*¥% has a minimal time control whose restriction over
(0,7°yo)) is a minimal norm control to (NP)T*wo)wo

(iii) By contradiction, suppose that the null control were a minimal time control
to (TP)Mo-vo for some My € [N(T°(yo),y0),00). Then by (4.57), we would have
that

S(T°(y0))yo = y(T°(y0): ¥, 0) = y(T(Mo, yo); Yo, 0) = 0.
This, along with (1.18), implies that 7" (yo) < T%(yo), which contradicts the first
equality in (4.55). Hence, the conclusion (iii) is true.
In summary, we finish the proof of this corollary.

O
Corollary 7. Suppose that (H1) holds. Let yo € X \ {0} satisfy that
T°(yo) < T*(yo) and N(T"(yo), o) > 0. (4.65)
Then the following conclusions are true:
(i) It holds that
N(T"(y0), yo) < 0. (4.66)

(ii) For each M € (0, N(T'(yo),v0)], (TP)M-¥ has no admissible control.
Proof. Suppose that (H1) holds. Let yo € X \ {0} satisfy (4.65). We will show the
conclusions (i)-(ii) one by one.

(i) We observe from the first inequality in (4.65) that T°(yo) < oo. Then (4.66)
follows from (4.26).

(ii) Arbitrarily fix an M so that
0 <M < N(T"(y0), Yo)- (4.67)

By (4.66) and (4.67), we see that M € (0,00). Thus the problem (7'P)*:¥% makes
sense. Then, by (H1) and (4.67), we can apply (ii) and (iii) of Theorem 4.5 to find
that (TP)¥ has no admissible control.

Thus, we finish the proof of this corollary.

Corollary 8. Suppose that
T°(yo) = T"(yo) = oo (4.68)

Then for each M € (0,00), (TP)M¥0 does not have any admissible control.
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Proof. Suppose that (4.68) holds. Then we can apply (i) of Theorem 4.4 to find
that for each M € (0,00), (TP)M-¥ has no admissible control. This ends the proof
this corollary.

O
Corollary 9. Let yo € X \ {0} satisfy that
T°(yo) = T*(yo) < oo. (4.69)
Then the following conclusions are true:
(i) It holds that
T(M,yo) = T (yo) € (0,00) for all M € (0,00). (4.70)

(ii) For each M € (0,00), the null control is a minimal time control to (T P)M-vo.

Proof. Arbitrarily fix a yo € X \ {0} so that (4.69) holds. We now show the
conclusions (i)-(ii) one by one.

(i) By (ii) of Lemma 3.3 and the first inequality in (4.69), we have that T°(yo) =
T*(yo) > 0. This, together with the second inequality in (4.69), yields that

0 < T%yo) < . (4.71)
Meanwhile, by Proposition 7 , we find that
T°(yo) < T(M,y0) < T"(yo) for all M € (0,00).

From the above and the first equality in (4.69), we find that T (M, yo) = T(yo) for
all M € (0,00), which, along with (4.71), leads to (4.70).

(ii) Because of (4.69), we can apply (iv) of Lemma 3.4 to get that N (T°(yo), yo) =
0. Since T°(yo) < oo (see (4.69)), the above, along with (iv) of Theorem 4.3,
implies that the null control is the unique minimal norm control to (N P)To(yf’)’y“.
Thus, we have that y(T%(yo);y0,0) = 0, which, together with (4.70), shows that
y(T(M,y0);y0,0) = 0 for all M € (0,00). Form this, we see that the null control is
a minimal time control to each (TP)M:¥0 with M € (0, c0).

In summary, we finish the proof of this corollary.

5. Maximum principles and bang-bang properties. In this section, we derive
maximum principles for (NP)T%, with (T, yo) € Wa3 U W39, and (T P)M¥o with
(M,y0) € Va2 UVs3 9, under the assumption (H1). Here, W5 3, W52, Va2 and V3 o
are given by (1.27), (1.29), (1.32) and (1.34), respectively. Then we prove the bang-
bang properties for these problems under assumptions (H1) and (H2). The key to
obtain the above-mentioned results is a maximum principle for affiliated minimal
norm problem (NP)¥7 with yr € R%. Recall (1.40) for the definitions of (NP)¥T
and |Jyr||r,; (1.41) for the definition of Ry; (1.42) for the definition of RY; (1.17)
for the definition of T%(yo); (1.18) for the definition of T (y); and (1.19) for the
definitions of N(0,yq) and N (oo, yp).
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5.1. Maximum principle for affiliated problem. This subsection presents a
maximum principle of (NP)¥", with yr € RY \ {0}. Write Br,. (0, |lyr||r,) and
Bro. (0,]lyr|lr,) for the closed balls in Ry and RY., centered at the origin and
of radius ||yr||r,, respectively. The way to build up the maximum principle of
(NP)¥7, with yr € R% \ {0}, is as follows: First, with the aid of Theorem 2.6,
we use the Hahn-Banach separation theorem to separate yr from Bro (0, [|yr[|=)
in the space RS by a hyperplane with a normal vector f* € Y7. Then, with the
help of Theorem 2.2, Theorem 2.6, and Proposition 4, we prove that the above-
mentioned f* also separates yr from B, (0, ||lyr||r,) in the space Rr. Finally, we
apply Theorem 2.2 to the aforementioned separation in Rp to get the maximum
principle for (NP)¥T.

Theorem 5.1. Suppose that (H1) holds. Let T € (0,00). Then for each yr €
RY\ {0}, there is an f* € Yr \ {0} so that each minimal norm control v* to
(NP)¥T verifies that

(0™(1), f*()v =

llwllo<llyr =,

(w, f*(t))u for a.e. t € (0,T). (5.1)

Proof. First of all, we notice that R% \ {0} # 0 for all T € (0,00) (see Lemma 2.7).
Arbitrarily fix a T € (0,00) and then fix a yr € R} \ {0}. We organize the proof
by several steps.

Step 1. To find a vector f* € Y\ {0} separating yr from BX(0,||yr|r,) in RS in
the sense that

max *7 < = *7 5.2
ZTGBROT(07||yTHRT)<f T>YT7R0T (f yT>YT,’R°T (5.2)

Since yr # 0 in RY, Bro (0,]lyr[l=s) is a non-degenerating closed ball in RY.

Thus, we can apply the Hahn-Banach separation theorem in the space R to find
a vector 19 € (R%)* \ {0} so that

(M0s 27) (RQ)+ RY. < (10, YT) (R0.)* R0, for each 21 € Bro (0, [yr|rs)-

Since yr € Bro (0, [lyr|=,), the above yields that

max , 2 0yx RO = , 0y+ RO . 5.3
ZTeBng(o,uyTnRT)(nO T)R%) Ry = (0 UT) (RS 5 (5:3)

Meanwhile, because (H1) holds, we can apply Theorem 2.6 to find a vector f* € Yp
so that

(I*,20) v me. = (0, 27) (R9)+ Ry, for all zr € Ry and || f*|lvz = [Inoll =g+ -(5.4)

Now, (5.2) follows from (5.3) and (5.4). Besides, since 19 # 0 in (R$.)*, it follows
from the second equality in (5.4) that f* # 0 in Y7.

Step 2. To show that f* given in Step 1 also separates yr from Br, (0, |yr|rs) i
Rr in the sense that

sup 21y [)Reye = (yr, [ )Re Y20 (5.5)
27 €BRr (0, |lyrlR)

We first claim that

<f*a ZT>YT,’R‘% = <ZTa f*>RT,YT for all zr € R(Z)" (56)
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In fact, for each 27 € RY., it follows from (i) of Theorem 4.1 that (NP)*7 has a
minimal norm control v,,.. Then by Theorem 2.2 and Theorem 2.6 (more precisely,
by (2.3) and (2.37)), we have that

T

T
P . / (0ar (8), 17O At and (", 22y o = / (1), va (B) .

These lead to (5.6).
We next claim that

sup (21, [ )Rr Yr = sup (215 )R Y- (5.7)
27 €Bro (0llyrliry) 27€BR (0,|lyr =)

Indeed, on one hand, since

Bro (0,[lyr[lrs) € Bry (0, [[yr[IRs),

we have that

sup <ZT7 f*>RT,YT < sup <ZT> f*>RT,YT' (58)
ZTGBR%(Ov“yTHRT) 27 €BRr 1 (0,llyrlIR7)

On the other hand, it follows from Proposition 4 that for each zr € B (0, |lyr||=,),
there is a sequence {z7,,,}72; in Bro (0, [lyr||=,) so that

2rn — zr in o(Rp,Yr), as n — oo,
which yields that

(Zrms [)Re e = (20, [ )Rp Yo @S M — 00.

From this, one can easily check that

sSup <ZT7 f*>RT,YT > sSup <ZT7 f*>RTaYT' (59)
ZTGBR%(Q“ZITHRT) 27 €Bry (0,lyrll=y)

By (5.8) and (5.9), (5.7) follows at once.
Finally, (5.5) follows from (5.2), (5.6) and (5.7) at once.

Step 8. To derive from (5.5) that
T T
sup / (w(t), £*(0)v dt = / W @), O dt,  (5.10)
vl oo o, ;0 <llyT lRp YO 0

for any minimal norm control v* to (N P)YT

First, according to Theorem 2.2 (more precisely, see (2.3)), any minimal norm
control v* to (NP)¥T (the existence of v* is guaranteed by Theorem 4.1) satisfies
that

T
s Ve ve = / (0" (), £* (D) dt. (5.11)

We next claim that
T
sup [ r@ud=  sp Gy (512)
lvllLee (o, 7;0) SllyrllRp YO 20 €BRr1 (0,|lyrlIRs)

In fact, on one hand, arbitrarily fix a v € L*(0,T;U) so that [|v||pe(,ru) <
llyr|l=s- Then we find from (1.40) that

19(T50,0) Ry < [vllzoe0.7:0) < lly7llRr- (5.13)
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Meanwhile, since the above-mentioned v is an admissible control to the problem
(NP)*r, with zp := ¢(T;0,v), we see from Theorem 2.2 (more precisely, from
(2.3)) that

T
0.5 @0 dt = G30.0), P v 6.14)
From (5.14) and (5.13), it follows that

T
/0 ((t), f*(t))v dt = (G(T;0,v), [ )rryr < sup (21, [ )R Y

21 €BRL (0,|lyrllR )
which leads to that
T
sup / (w(t), F* (1) dt < sip e FYrpve. (5.15)
lvll oo 0,750y <llyT IR g 4O 27€BRr . (0,llyrllR)
On the other hand, arbitrarily fix a zr € Bg,(0,|lyr|r,). According to Theo-
rem 4.1, (NP)*" has a minimal norm control v} satisfying that
zr = §(T;0,v7,) and |[vZ [l=rv) = l2rllrs < llyrlrs-

Then, by (2.3), we find that

T T
(e, f )R ve = / (0ar (8), 1 (1)) dt < sup / (o(t), £ (1)) dt.

lv]l oo o, 50y SNy IR

From this, we see that

T
sup (21, YRy vy < sup / (), f*(¢))u dt. (5.16)
27 €BRr, (0,]lyT (IR1) vl oo o, ;) Sllyr IRp YO
By (5.15) and (5.16), we obtain (5.12).
Finally, (5.10) follows from (5.5), (5.11) and (5.12) at once.
Step 4. To get (5.1) by dropping the integral in (5.10)
Arbitrarily fix a minimal norm control v* to (NP)YT. Since f* € L1(0,T;U)
and yr # 0 in Ry, we have that

(f*,0) 10,150, L (0,130)

120,10y = sup

vllLoe 0, ms0)<llvr g g lyr|i=s ’

which, together with (5.10), yields that

T T
| ol @lloat = [0, 0o at (.17)
Meanwhile, since v* is a minimal norm control to (N P)¥", |[v*| e 0,70y = Y7 ||R -
This yields that ||[v*(t)||v < ||lyr|r, for a.e. t € (0,T). Hence, we have that
(), ) < llyrllz. 1f*(@)lu for ae. te€(0,T). (5.18)
From (5.18) and (5.17), we find that
(W @), *O)v = llyrllr [ f*®llo for ae. t € (0,T). (5.19)
Meanwhile, we have that
lyrllr /" Olv =~ max — (w, f*({#))v forae. te(0,T). (5.20)

lwllv<llyr iz,
From (5.19) and (5.20), we are led to (5.1).
In summary, we finish the proof of this theorem.
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O

Remark 11. (i) We would like to mention that (5.1) is not a standard Pontryagin
maximum principle, since we are not sure if f* can be expressed as B*p with ¢ a
solution of the adjoint equation over (0,T"), even in the case that B € L(U, X).

(ii) It is natural to ask if we can directly apply the Hahn-Banach separation theorem
to separate {yr} from Br.,.(0, ||yr||r,) in the state space X? By our understanding,
the answer seems to be negative in general. However, if we have that

Bry (0, lyrllr.)” # 0, (5.21)

where B, (0, HyT||RT)O is the interior of the set Br, (0, |yr|=,) in the space:

lI-llx

X :=spanRy ", with the norm ||-||x,

then the answer to the above question is positive. Indeed, we first notice that X is
a closed subspace of X. Next, since {yr} lies at the boundary of Br,. (0, [lyr|=.).
by the assumption (5.21), we can apply the Hahn-Banach separation theorem in the
space X to separate {yr} from Bg, (0, |yr|=,) via a normal vector n* € X \ {0},
i.e.,

(zr,n")x < (yr,n*)x forall zp € Br, (0, |yrlr,). (5.22)

Meanwhile, from the first assertion in (2.6), (2.3) and (1.22), one can easily check
that

—_~—

(zr,m)x = (20, B*S*(T — )n)ry, vy forall zp € Ry and n € X.
This, along with (5.22), yields that

sup (zTaf*>RT,YT = <yTaf*>RT,YT7
2r€Bry (0,llyrllrg)

where f*() := B*S*(T — -)n*. Then by the similar arguments as those used in
(5.5)-(5.20), we can obtain the standard Pontryagin maximum principle.

Unfortunately, the condition (5.21) does not hold in general. In fact, consider the
inclusion map ig, : (Rr, | - |lr,) = X(C X). If (5.21) holds, then one can easily
show that this map is surjective. By the open mapping theorem, we find that iz,
is isomorphic from (R, || - [|r,) to (X, |- | x). Hence, Ry (= X) is closed in X and
norms || - ||z, and || - |x are equivalent. However, these fail for general controlled
system (A, B), such as the internally controlled heat equations. (It is well known
that the reachable subspace at time T for the internally controlled heat equations
over Q x (0,7) is not closed in L?(Q), where Q C R" is an open bounded domain
of C2.)

5.2. Maximum principles for minimal norm and time controls. We first
present a maximum principle for (NP)T%0, with (T,y0) € Wa3 U W2 in next
Theorem 5.2. We would like to mention two facts as follows: First, it is not obvious,
at the first sight, that the region of pairs (T,yo) described in Theorem 5.2, is the
same as W 3 U Ws 5. However, from (ii) of Remark 10, we know that they are the
same. Second, the proof of Theorem 5.2 is based on Theorem 5.1 and the connection
between (NP)¥T and (N P)T+%0 built up in Proposition 3.
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Theorem 5.2. Suppose that (H1) holds. Let yo € X \ {0} satisfy that T°(yy) <
T (yo). Then for each T € (T°(yo), T (yo)), there is an f* € Yr\{0} so that every
minimal norm control v* to (NP)T%0 satisfies that
W (), f*(t)v = Hw\lyrglif}((T,yo%w’f (t)hu for a.e. t€(0,T). (5.23)

Proof. Arbitrarily fix a yo € X \ {0} so that T%(yo) < T*(yo), and then fix a
T € (T%(yo), T (yo)). Write

g = —S(To. (5.24)

First, we claim that

gr € R%\ {0}. (5.25)
In fact, since 7' > TO(yp), it follows from (1.17) that there is a £ € [T°(yo),T) so
that §(f;yo,9) = 0 for some © € L>(0,%;U). Write v for the zero extension of o
over (0,7"). It is clear that §(T;y0,v) = 0 and lim,_7 [|0]| o (s,r;vy) = 0. These,
together with (1.14), (1.42) and (1.41), yield that

—S(T)yo = /0 ' S_1(T — #)Bu(t) dt = §(T;0,7) € RS C R (5.26)

By (5.24) and (5.26), we can apply (ii) of Proposition 3 to get that
197lre = I = S(T)yollry = N(T' y0). (5.27)
Meanwhile, since T € (T%(y0), T (y0)) < (0,T*(yo)), we can apply (iii) of Lemma
3.3 to find that
N(T,y) > 0. (5.28)
From (5.27) and (5.28), we obtain that S(T")yo # 0 in Ry, which along with (5.26),
leads to (5.25).

Next, by (H1) and (5.25), we can apply Theorem 5.1 (where yr = ¢r is given
by (5.24)) to find an f* € Yr \ {0} so that for each minimal norm control o* to
(NP)I,

(0% (¢), f*(t))v = max  {(w, f*(t))y for a.e. t € (0,T). (5.29)
[lwllo <97 |=R 4

Finally, we arbitrarily fix a minimal norm control v* to (N P)T%. (The existence
of v* is guaranteed by (i) of Theorem 4.3, since T' € (T°(yo), T*(y0)).) Because of
(5.26), we can apply (iii) of Proposition 3 to see that v* is also a minimal norm
control to (N P)T. This, together with (5.29) and (5.27), indicates that v* satisfies

(5.23) with f* given by (5.29). This ends the proof of this theorem.
O

To get the maximum principle for (T'P)*:% we need the following lemma.
Lemma 5.3. Suppose that (H1) holds. Let yo € X \ {0}, with T%(yo) < T (vo)-
Then it holds that

N(T (%), 90) < N(T°(y0),0)- (5.30)
Furthermore, the following conclusions are true:
(i) If M € (N(T*(y0),%0), N(T°(y0),v0)) and u* is a minimal time control to
(TP)M¥o, then u*|(0,1(M,yy)) (the restriction of u* over (0,T(M,yo))) is a minimal
norm control to (N P)T(M:yo).vo,
(it) If T € (T%(yo), T (yo)) and v* is a minimal norm control to (NP)T¥° then
the zero extension of v* over RY is a minimal time control to (T P)N(Tvo)vo,
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Proof. Since (H1) holds, we can apply (i) of Proposition 6 to get (5.30). Next we
will prove the conclusions (i)-(ii) one by one.

(i) Arbitrarily fix an M so that
N(T*(y0),50) < M < N(T°(yo),y0)- (5.31)

Suppose that u* is a minimal time control to (T'P)¥%. (Since T%(yo) < T (o),
the existence of u* is guaranteed by (i) of Theorem 4.5, as well as (5.31).) Then we
have that

™ || Lo ety < M and y(T' (M, yo); yo, u™) = 0. (5.32)
Meanwhile, since T%(yo) < T*(yo), by using (H1), we can apply (i) of Corollary 3
to see that
T(M,yp) € (0,00) and M = N(T'(M,yo),yo)- (5.33)
By (5.32) and (5.33), we see that the problem (N P)T(M:%0):%0 makes sense, and find
that
™10, 7(M,y0)) | Lo 0, 7(M o)) < N(T(M,y0), 0) (5.34)
and
(T (M, y0); Yo, w*|(0,7(M,y0))) = O- (5.35)
From (5.34), (5.35) and (1.16), it follows that u*| r(as,y,)) is a minimal norm
control to the problem (N P)T(M:vo).vo,
(ii) Arbitrarily fix a T so that

Tyo) < T < T (yo). (5.36)

Suppose that v* is a minimal norm control to (NP)T:% . ( The existence of v* is
guaranteed by (i) of Theorem 4.3, because of (5.36).) Write v* for the zero extension
of v* over RT. Then we have that

Y(T;90,0") = 0 and [[07|| Lm0y < N(T,0)- (5.37)
Meanwhile, by (H1) and (5.36), we can apply (ii) of Corollary 3 to find that
N(T,yo) € (0,00) and T' =T (N(T’y0),yo)- (5.38)

From (5.37) and (5.38), it follows that the problem (7'P)N(T:%0):%0 makes sense and
that

y(T(N(T,y0),90); Y0, ") =0 and [|[0*]| oo r+;0) < N (T, 10).

These imply that 7* is a minimal time control to (TP)N(T:¥o0).vo,

In summary, we finish the proof of this lemma.
O

Now, we will present a maximum principle for (TP)M¥o, with (M,yo) € Va2 U
V32 in next Theorem 5.4. Two facts deserve to be mentioned: First, it is not
obvious, at the first sight, that the region of pairs (M, y¢) described in Theorem 5.4,
is the same as V52 U V3 5. However, from (ii) of Remark 10 and the definitions of
Vo2 and V3o (see (1.32) and (1.34)), we can easily verify that they are the same.
Second, the proof of Theorem 5.4 is based on Theorem 5.2 and the connections
between (NP)T-¥0 and (T P)M:¥ built up in Corollary 3 and Lemma 5.3.
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Theorem 5.4. Suppose that (H1) holds. Let yo € X \ {0} satisfy that T°(yy) <
T (yo). Then
N(T(y0):0) < N(T°(30), %0)-

Furthermore, for each M € (N(T*(yo),v0), N(T°(y0),%0)), the following conclu-
sions are true:

(i) It holds that
T°(yo) < T(M,y0) < T"(yo)- (5.39)

(ii) There is a vector f* € Yp(ar,yy) \ {0} so that each minimal time control u* to
(TP)Mvo satisfies that

(W*(t), f*(t))v = max (w, f*(t))u for a.e. t € (0,T(M,y)). (5.40)

lwllo<M
Proof. Arbitrarily fix a yo € X \ {0} so that
TO(yo) < T (yo). (5.41)
By (H1) and (5.41), we can see from (5.30) that

N(T"(y0); %0) < N(T°(y0): yo)-
Arbitrarily fix a number M so that

N(T (yo),y0) < M < N(T°(y0), yo)- (5.42)

We now are going to show the conclusions (i)-(ii) in this theorem one by one.
(i) By (H1) and (5.41), we can apply (i) of Corollary 3 (more precisely, apply
(3.56)) to get both (5.39) and the fact that

M = N(T(M; yo),yo)- (5.43)

(ii) By (H1), (5.41) and (5.39), we can apply Theorem 5.2 to get a vector f* €
Yr(ayo) \ {0} so that every minimal norm control v* to (NP)T(M:wo)wo satisfies
that

W (), f*(t))v ||w\|U§Nr{1fa(}1\(/I,yo),yo)<w7f (t))u forae. t e (0,T(M,yp)). (5.44)

Next, we suppose that u* is a minimal time control to (T'P)M:¥%. (The existence
of u* is guaranteed by (i) of Theorem 4.5, because of (5.41) and (5.42).) Then by
(H1), (5.41) and (5.42), we can use (i) of Lemma 5.3 to see that u*| r(ar,y,)) is 2
minimal norm control to (N P)T(M:wo):vo  This, along with (5.44) and (5.43), leads
to (5.40).

In summary, we finish the proof of this theorem.

O

5.3. Bang-bang properties of minimal time and norm controls. In this
section, we will present the bang-bang properties for (N P)T-¥0 with (T, yo) € Wa 3U
Ws o, and (TP)M¥% with (M,yo) € Va2 U V32, under the assumptions (H1) and
(H2). Their proof are based on Theorem 5.2 and Theorem 5.4.

Theorem 5.5. Suppose that (H1) and (H2) hold. Let yo € X\{0} satisfy that
T%yo) < T (yo). Then for each T € (To(yo),Tl(yo)), (NP)T%o has the bang-bang
property.
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Proof. Arbitrarily fix yo € X\{0} so that T%(yo) < T"(yo). Let T € (T%(y0), T (v0)).
Then according to (i) of Theorem 4.3, (N P)T*%0 has at least one minimal norm con-
trol. Arbitrarily fix a minimal norm control v* to this problem. By (H1), we can
apply Theorem 5.2 to find a vector f* € Yr \ {0} so that

(), () = max w, f*(t for a.e. t € (0,7). 5.45

GO SO = w0 01, (54
Meanwhile, since f* # 0 in Y7, we can derive from (H2) that f*(¢) # 0 for a.e. t €
(0,T). This, along with (5.45), yields that ||[v*(t)|ly = N(T,yo) for a.e. t € (0,T).
Hence, (N P)T% has the bang-bang property. We end the proof of this theorem.

O

Theorem 5.6. Suppose that (H1) holds. Let yo € X\{0} satisfy that T%(yo) <
T (yo). Then N(T (yo),v0) < N(T%(yo),y0). If further assume that (H2) holds,
then for each M € (N(T"(y0),¥0), N(T%(y0),¥0)), (TP)M:¥ has the bang-bang
property.

Proof. Arbitrarily fix a yo € X \ {0} so that T%(yo) < T*(yo). By (H1), we can
apply (i) of Proposition 6 to find that N (T (yo),v0) < N(T%(yo),y0). Arbitrarily
fix an M € (N(T"(y0),%0), N(T°(y0),0)). Then we can use (i) of Theorem 4.5
to find that (T'P)M:% has at least one minimal time control. Next, we arbitrarily
fix a minimal time control u* to (T'P)M-¥o. Then by (H1), we can apply (ii) of
Theorem 5.4 to find a vector f* in Yp(az,y,) \ {0} so that

(uw* (), f*()v = ”wrﬁan;<M<w,f*(t)>U for a.e. t € (0,T(M,y0)). (5.46)

Meanwhile, since f* # 0 in Yp(az,y,), it follows from (H2) that
fr(t) #0 for ae. t € (0,T(M,yo)).
This, along with (5.46), yields that
[u*(t)|lv =M for ae. t € (0,T(M,y)). (5.47)

Thus, (T'P)M:¥0 has at least one minimal time control and each minimal time control
u* to this problem satisfies (5.47). Hence, (T'P)M-¥0 has the bang-bang property.
this ends the proof of this theorem.

O

6. Proofs of main results. This section is devoted to prove the main theorems
of this paper. They are Theorem 1.1, Theorem 1.2 and Theorem 1.3.

6.1. Some preliminaries. Before proving the main theorems of this paper, we
introduce the two theorems (Theorem 6.2 and Theorem 6.3), which concern with
the conclusions (iii) and (iv) in Theorem 1.2. The proofs of these two theorems are
based on the next Lemma 6.1.

Lemma 6.1. Suppose that (H1) holds. Let
Or = {u € L>(0,T;U) : §(T;0,u) = O}, with T € (0, 00).

Then Or is a closed and infinitely dimensional subspace in L*°(0,T;U).
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Proof. Let 0 < T < oo. It is clear that Or is a closed subspace in L>(0,T;U). It
remains to show that Or is of infinite dimension. To this end, we define
Oty i={u € Op : supp(u) C (t1,t2)}, 0<t; <t <T. (6.1)
The rest of the proof is organized by two steps.
Step 1. To show that when 0 < t; <ty < T, O 4, 15 a closed subspace of Or
with dimOtlh Z 1
Define
Yri o ={f¢€ LI(O,T; U) : f|(t17t2) = g|(t1,t2) for some g € V3, }. (6.2)
We claim that
Y74, .4, is a closed proper subspace in L' (0, T;U). (6.3)

To this end, we first show that Y74, 4, is closed in L!(0,T;U). For this purpose, let
{fn}221 C Yp, 1, satisfy that

fo— fin L0, T;U), as n — oo. (6.4)

Since {fn}221 C Y14, 4,, from (6.2), there exists a sequence {g, }52; C Y}, so that
for all n > 1, f,, = gn over (t1,t2). This, as well as (6.4), yields that

gn — [ in L'(ty,t5;U) as n — oo. (6.5)

Meanwhile, by (H1), we can use Lemma 2.3 to get the conclusion (iii) in Lemma 2.3.
This, as well as (6.5), indicates that {g,}>2, is a Cauchy sequence in L'(0,t;U).
Since Y3, is closed in LY(0,t2; U) (see (1.20)), we have that g,, converges to a function
g inY;,. This, along with (6.5), shows that f: g over (t1,t2), which, combined with
(6.2), implies that fe Y4, +,. Hence, the subspace Yr, +, is closed in L*(0,T;U).
We next show that Y7, ¢, is a proper subspace of L'(0,T;U). In fact, for each

f € Y4, +,, we obtain from (6.2) and (iii) of Lemma 2.3 that there is po > 1 so
that

fletr,s) € LP2(t1,5;U) for all s € (t1,t2). (6.6)

However, it is clear that not every function in L(0,7T; U) holds the property (6.6).
Hence, Y74, 1, is strictly contained in L'(0,7;U). This finishes the proof of (6.3).

Now by (6.3), thereisan h € L'(0,T;U)\Yr,t, +,. Since Y74, ¢, is closed subspace
of L'(0,T;U), we can apply the Hahn-Banach separation theorem to find a function
up, in (L'(0,T;U))" (which is L(0,T;U)) so that

T T
0= / (un(t), f(£))y dt < / (un(t), h(t))y dt for all f € Yig, .  (6.7)
0 0

For each g € L*((0,%1) U (2, T); U), let g(-) be the zero extension of g over (0,7).
Clearly, it follows from (6.2) that g € Yp4, +,. Then by the first equality in (6.7),
we find that

T
0 :/ (un(t), 5t dt for all g € LY((0,1) U (t2, T); U).
0
This yields that
up, = 0 over (0,¢1) U (t2,T). (6.8)
Meanwhile, for each z € D(A*), we define ¢, : (0,T) — U by

_ | B*S*(ta—t)z, te (h,t2),
R A
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It follows from (6.2) and (1.20) that for all z € D(A*), ¥, € Yr4, +,. Then we see
from (1.13), (6.8) and the first equality in (6.7) that for each z € D(A*),

(G(t2; 0,up), 2)x = /02<uh(t),B*S*(t2—t)z>Udt

- / (un (1), 1 (£))r dt = 0.

Since D(A*) is dense in X, the above, as well as (6.8), yields that
Z}(Tv 07 uh) = y(t27 07 uh) = 07

which leads to that u;, € Op. This, along with (6.1) and (6.8), implies that uj, €
Oty ity

Finally, we see from the second equality in (6.7) that u, # 0 in L>=(0,T;U).
Hence, we have that dim Oy, 4, > 1.

Step 2. To show that dim Or = +oo

By the conclusion in Step 1, we find that
{0} # Ogjgus1 790 C Op for all ke N*.
From (6.1), we see that
Orjgi1 179i N O jgisr 7725 = {0} for all i,j € N, with i # j.

Take a sequence {uy} so that for each k € NT, up € Opjort1 1/ox. Arbitrarily
take a finite subsequence {uy, }2_; from {u;}%2,. Let {a,}Y ; C R be so that
Zivzl anug, = 0. Since for each k, the support of u;, belongs to (/281 T/2%),

we can easily derive from the above equality that o, = 0 for alln € {1,--- ,N}. So
Uky > Uy, - - - , Uk, ale linearly independent. Thus, we conclude that dim Or = oco.
In summary, we finish the proof of this lemma.
O
Theorem 6.2. Let yo € X \ {0} satisfy that
T(yo) < T (yo) and N(T°(yo),y0) < oo. (6.9)
Suppose that (H1) holds and that
N(T%(yo),y0) < M < oc. (6.10)

Then (TP)M¥o has infinitely many different minimal time controls so that among
them, any finite number of controls are linearly independent in L (R*;U).

Proof. Arbitrarily fix a yo € X \ {0} so that (6.9) holds. Then fix an M so that
(6.10) holds. By (6.9) and (6.10), we can use (i) and (ii) of Corollary 6 to see that

T°(yo) = T(M, yo) € (0,00), (6.11)

and to find a minimal time control u* so that v* := u*[(,70(y,)) is a minimal norm
control to (NP)T"(®0):0_ The latter, along with (6.11) and (6.10), yields that

y(T (M, y0); yo, u™) = y(TO(yo);yoa u*) = ﬂ(TO(yo);yoa v*) =0 (6.12)

and

l[w*]| Lo (0,7(M.yo)s0) = 10" 20 (0,70 (3o )str) = N(T°(0), o) < M. (6.13)
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Next, since 0 < T°%(yo) < oo (see (6.11)), by (H1), we can use Lemma 6.1 to find
a sequence {uy 72, C L°°(0,7%(yo); U) so that
9(T°(y0);0,uz) =0 for all k€ NT, (6.14)

and so that any finite number of elements in {ux}72, are linearly independent in
the space L>°(0,7%(yo);U). Write dg, k = 1,2,---, for the zero extension of uy
over RT. Then any finite number of elements in {1y }7°, are linearly independent
in L (RT;U). Arbitrarily fix a k € NT. It follows from (6.11) and (6.14) that

y(T'(M,y0); 0, ) = 0. (6.15)
Because of (6.10), we can take € > 0 so that
ekl oo rery < M — N(T(yo), y0)- (6.16)
Define a control uj as follows:
uy, i= el + X(0,7(M,yo))U~ OVer RT. (6.17)
This, along with (6.12) and (6.15), yields that
y(T(M,yo); yo, uy) = y(T(M,y0); yo, u") + exy(T(M, y0); 0, @) = 0. (6.18)
At same time, it follows from (6.17), (6.16) and (6.13) that
lugll oo 0y < M. (6.19)

Since k was arbitrarily taken from NT, by (6.18) and (6.19), {u}}>, is a sequence
of minimal time controls to (T'P)™%. (Each u} is not a bang-bang control, see
(6.19).)

Finally, we will show that any finite number of controls in {uj}};2, are linearly
independent in L (R*;U). Suppose that there are a finite subsequence {u,*;] }§V21

of {uj}32, and a sequence {;}}_, C R so that

N
> ajup, =0. (6.20)
j=1

We aim to show that
a; =0 for each je€{1,2,--- ,N}. (6.21)
By (6.20) and (6.17), it follows that

N
> ek ik, + (Z O‘J)Xm,T(M,yo))“* =0. (6.22)
j=1 j=1
Since 4y, , . . ., g, are linearly independent, we see from (6.22) that, to show (6.21),

it suffices to prove that

> a;=0. (6.23)

By contradiction, suppose that (6.23) were not true. Then we would have

N
> a; #0. (6.24)
j=1
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By (6.24) and (6.22), we know that x (o, 7(az,ye))u" is a linear combination of tig, , - -+, g -
This, along with (6.11) and (6.15), yields that

y(To(yO)a 07 U*) = y(T(M? yo)a 07 u*) = 07
which, together with (6.12), implies that

Y(T°(y0); 0, 0) = y(T°(yo); yo, u*) — y(T°(yo); 0,u*) = 0. (6.25)

Notice that T%(yo) € (0,00) (see (6.11)). So the problem (NP)T"®o)wo ig well
defined. Then by (1.16) and (6.25), we see that N(T°(yo),y0) = 0. By this, we
can use (iv) of Lemma 3.4 to find that T°(yo) = T(yo), which contradicts (6.9).
So (6.23) is true and then any finite number of controls in {uj}72, are linearly
independent in L>®(R*; U). We end the proof of this theorem.

O

Theorem 6.3. Suppose that (H1) holds. Let yo € X \ {0} satisfy that
T%(yo) = T" (yo) < oo. (6.26)

Then for each M € (0,00), (TP)M¥ has infinitely many different minimal time
controls so that among them, any finite number of controls are linearly independent
in L®(R*;U).

Proof. Arbitrarily fix a yo € X \ {0} so that (6.26) holds. Let M € (0,00). Then
by (6.26), we can use Corollary 9 to see that

0< T (yo) = T(M,yo) = T(yo) < 0 (6.27)
and to find that the null control is a minimal time control to (T P)M:vo_i.e.,
y(T'(M,y0); 40,0) = 0. (6.28)

Meanwhile, since 0 < T°(yg) < oo (see (6.27)), by (H1), we can use Lemma 6.1
to find a sequence {uy}72, C L>(0,T%(yo); U) so that

9(T°(yo); 0,ux) = 0 for all k€ NT, (6.29)

and so that any finite number of elements in {ux}7°; are linearly independent in
the space L>°(0,T°(yo);U). Write dg, k = 1,2,---, for the zero extension of wuy
over RT. Then any finite number of elements in {1y }7° ; are linearly independent
in L®(R*;U). Arbitrarily fix a k € N*. It follows from (6.27) and (6.29) that

y(T'(M, y0); 0, k) = 0. (6.30)
Since M > 0, we can take € > 0 so that
ekl om0y < M. (6.31)
Next, we define a control uj in the following manner:
uj := el over RT. (6.32)
Then by (6.32), (6.28) and (6.30), we find that
y(T(M, y0); yo, ur) = y(T(M; y0); Yo, 0) + exy(T (M, 40); 0, i) = 0. (6.33)
Meanwhile, by (6.32) and (6.31), we see that
lug |l Loo (mt;0y) < M. (6.34)

Since k was arbitrarily taken from NT, it follows by (6.33) and (6.34) that for
each k € NT, u} is a minimal time control to (TP)¥ and has no the bang-bang

property.
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Finally, we will show that any finite number of controls in {uj}}72, are linearly
independent in L>(R™;U). Here is the argument: Suppose that there are a finite
subsequence {uj_ }C, of {uj}p2, and a sequence {o;}}; C R so that

N
> ajuf, =0. (6.35)
j=1

Then we will have that
a; =0 foreach je{1,2,--- ,N}. (6.36)
Indeed, by (6.35) and (6.32), it follows that

N
E ozjekjukj =0.
j=1

Since dig, , . . ., G, are linearly independent, we find that for each j € {1,2,--- , N},
ajer, = 0. Because {ex,}., C (0,00), we see that (6.36) holds. So any finite
number of controls in {u}}?°, are linearly independent in L°°(R*;U). This ends
the proof.

O

6.2. Proofs of the main theorems. We begin with the proof of Theorem 1.1,
which gives the BBP decomposition for (N P)T:vo,

Proof of Theorem 1.1. (i) First of all, we observe from (1.23) and (1.25)-(1.30) that
W =W, UWy UWs, (6.37)
Wi =W 1 UW, o, (6.38)
Wy =Ws 1 UWs o UWs 3 UWs 4, (6.39)

and
Wy =Ws 1 UWs2UWs33UWs,. (6.40)

To prove the conclusion (i), it suffices to show that

W = (Ui_y W) U (Ujog Wayj) U (UjZy Wa;) (6.41)

and
Wi N Wiy =0, when (i,5) # (i',5'). (6.42)

The equality (6.41) follows from (6.37), (6.38), (6.39) and (6.40) at once. To show
(6.42), three observations are given in order: First, from (1.26), (1.28) and (1.30),
we see that Wy, Wy and W5 are pairwise disjoint; Second, from (1.25), it follows
that Wi 1 and W, o are disjoint; Third, by (1.27) and (1.29), we see respectively
that all Wh ;, j = 1,2,3,4 are pairwise disjoint, and that all W5 ;, 7 = 1,2, 3,4 are
pairwise disjoint. The above three observations, together with (6.38), (6.39) and
(6.40), leads to (6.42). Thus, we end the proof of the conclusion (i).

(ii) First, we let (T,yo) € Wi 2. Then by the definitions of W, o and W, (see
(1.25) and (1.26), respectively), we have that

T (yo) < T < o0 and N(T°(yo),v0) = 0. (6.43)

By the last equation in (6.43), we can use (iv) of Lemma 3.4 to obtain that T°(yo) =
T'(yo) < oo. From this and the first inequality in (6.43), we can apply (ii) of
Corollary 5 to see that the null control is the unique minimal norm control to
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(NP)T:o. This, along with (1.16), yields that N(T,yo) = 0. Hence, (NP)T"% has
the bang-bang property.

Next, we let (T, y9) € Wa 4. Then by the definitions of Ws 4 and Ws (see (1.27)
and (1.28), respectively), we have that

T (yo) <T < oo and 0 < N(T(yo),0) < oco. (6.44)

By the last equation in (6.44), we can apply the conclusion (iii) in Lemma 3.4 to
obtain that T°(yg) < T"(yo). From this and the first inequality in (6.44), we can
apply (ii) of Corollary 4 to see that the null control is the unique minimal norm
control to (NP)T:%. This, along with (1.16), yields that N(T,y) = 0. Hence,
(NP)T%0 has the bang-bang property.

Finally, we let (T, yo) € Ws 3. Then by the definitions of W5 3 and Ws (see (1.29)
and (1.30), respectively), we have that

T (yo) < T < oo and N(T%(yo),y0) = oo. (6.45)

By (6.45), we can use (i) of Lemma 3.4 to obtain that T°(yo) < T(yo). From this
and the first inequality in (6.45), we can apply (ii) of Corollary 4 to see that the null
control is the unique minimal norm control to (N P)T:%. This, along with (1.16),
yields that N(T,y0) = 0. Hence, (N P)T-¥0 has the bang-bang property. This ends
the proof of the conclusion (ii).

(iii) First, we let (T,y0) € Wa3. Then by the definition of Ws 3 (see (1.27)),
we have that T%(yo) < T < T'(yo). From this and and the assumptions (H1)-
(H2), we can apply Theorem 5.5 to find that (N P)7*¥0 has the bang-bang property.
The remainder is to show that the null control is not a minimal norm control to
(NP)Two, In fact, since TO(yo) < T < T (yo), it follows from (iii) of Lemma 3.3
that N(T,yo) > 0, from which, we see that the null control is not a minimal norm
control to (N P)T:¥o.

Next, we let (T,y0) € Ws2. By the definition of Ws 5 (see (1.29)), we find that
T € (T°(y0), T (yo)). Then by the same way as that used for the above case that
(T,y0) € Was, we see that (NP)T% has the bang-bang property and the null
control is not its minimal norm control. This ends the proof of the conclusion (iii).

(iv) First we let (T,y9) € Wi1. Then by the definitions of W, 1 and Wi (see
.29) an .26), respectively), we have that
1.25 d (1.26 ivel h h

0<T<Tyo) and N(T°(yo),%0) = 0. (6.46)

From the last equation in (6.46), we can apply (iv) of Lemma 3.4 to see that
T%yo) = T (yo) < oo. This, together with the first inequality in (6.46), yields that

T%(yo) =T (yo) and T € (0,7°(yo)). (6.47)

From (6.47), we can use (i) of Corollary 5 to find that (N P)T>¥0 has no admissible
control and so does not hold the bang-bang property.

Next we let (T,yo) € Wa21. Then by the definitions of Wa 1 and Wh (see (1.27)
and (1.28), respectively), we have that

0<T <T%yo) and 0 < N(T%(yo),y0) < . (6.48)

By the second inequality in (6.48), we can use (iii) of Lemma 3.4 to get that T°(yo) <
T (yo). This, along with the first inequality in (6.48), yields that

0<T%yo) < T (yo) and 0 < T < T°(yp). (6.49)
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From (6.49), we can use (i) of Corollary 4 to get that (NP)T% has no admissible
control and so does not hold bang-bang property.

We now let (T,y0) € W5 1. Then by the definitions of W51 and Ws (see (1.29)
and (1.30), respectively), we see that

T%(yo) < 00, 0<T <T°yo) and N(T°(yo),y0) = oc. (6.50)

By the first inequality and the last equality in (6.50), we can use (i) of Lemma 3.4
to find that T°(yo) < T"(yo). This, together with (6.50), indicates that

0<T%yo) < T (yo), 0<T <T%yo) and N(T°(yo),y0) = oc. (6.51)

In the case that T = T%(yp), from the first inequality in (6.51), we can use (i) of
Corollary 4 to see that (N P)T-¥0 has no admissible control and so does not have the
bang-bang property. In the case when T' < T%(yq), from the last equality in (6.51),
we can apply (v) of Theorem 4.3 to find that (NP)T% has no admissible control
and so does not have the bang-bang property.

Finally, we let (T, y0) € W5 4. Then by the definitions of W5 4 and W (see (1.29)
and (1.30), respectively), we have that

0<T <oo, T'yo) =00 and N(T%(yo), o) = 0. (6.52)

By the last two equalities in (6.52), we can use (i) of Lemma 3.4 to see that T°(yg) =
T (yo) = oo, which, along with the first inequality in (6.52), yields that T%(yo) =
T (yo) and 0 < T' < T(yp). From these, we can apply (i) of Corollary 5 to find that
(NP)T%0 has no admissible control and so does not hold the bang-bang property.
This ends the proof of the conclusion (iv).

(v) Let (T,y0) € Wa 2. Then by the definitions of W, 5 and Ws (see (1.27) and
(1.28), respectively), we see that 0 < T = T%(y) < oo and 0 < N(T°(yo), o) < oo
From these, we can use (iii) of Theorem 4.3 to see that (NP)7"% has at least one
minimal norm control. This ends the proof of the conclusion (v).

In summary, we finish the proof of Theorem 1.1.

O

Next, we prove Theorem 1.2, which gives the BBP decompositions for (T'P)Mvo.

)
Proof of Theorem 1.2. (i) First of all, we observe from (1.24) and (1.31)-(1.35) that

(

(

V=V UVoUVs, 6.53)
Vo=Vo1UVaoUVy3UVay, 6.54)

and
V3 =V31UV32UV33. (6.55)

To show the conclusion (i), it suffices to verify that

V=V U (Uj Vo ) U(US Vs j) (6.56)

and
VinVi;j=0, Vij NV =0 when (i',5") # (", 5"). (6.57)

First of all, the equality (6.56) follows from (6.53), (6.54) and (6.55) at once. To
prove (6.57), three observations are given in order: First, from (1.31), (1.33) and
(1.35), we see that Vy, Vs and V5 are pairwise disjoint. Second, from (1.32), we find
that all Vs 5, 7 = 1,2,3,4, are pairwise disjoint. Third, from (1.34), we find that
all Vs ;, j = 1,2,3, are pairwise disjoint. The above three observations, along with
(6.54) and (6.55), yield (6.57). Thus, we end the proof of the conclusion (i).
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(ii) First we let (M, yo) € V22. By the definitions of Vs 2 and Vs (see (1.32) and
(1.33)), we have that
N(T*(y0),yo) < M < N(T°(yo), y0) and 0 < N(T°(yo), o) < oc. (6.58)
By the second inequality in (6.58), we can use (iii) of Lemma 3.4 to see that T°(yg) <
T'(yo). By this, the first inequality in (6.58) and the assumptions (H1)-(H2), we
can apply Theorem 5.6 to see that (T'P)M:¥% has the bang-bang property.

Next, we let (M,y9) € V3.2. By the definitions of V3o and Vs (see (1.34) and
(1.35)), we find that

T%(yo) < 0o and N(T'(yo),y0) < M < 0o = N(T°(yo), o) (6.59)

From (6.59), we can use (i) of Lemma 3.4 to get that T°(yo) < T"(yo). By this,
the second conclusion in (6.59) and the assumptions (H1) and (H2), we can apply
Theorem 5.6 to see that (T'P)*¥° has the bang-bang property. This ends the proof
of the conclusion (ii).

(iii) Let (M, yo) € Va,4. By the definitions of V5 4 and Vs (see (1.32) and (1.33)),
we find that

N(T%(yo),90) < M < oo and 0 < N(T°(y0),90) < c0. (6.60)

From the second inequality in (6.60), we can use (iii) of Lemma 3.4 to see that
T°(yo) < T (yo)- (6.61)
By (6.61) and (6.60), we can use (i) and (ii) of Corollary 6 to find respectively that
T(M,y0) = T°(yo) € (0,00), (6.62)
and that (TP)™% has a minimal time control u* so that u*|(y ro(y,)) is a mini-
mal norm control to (NP)T°®0)¥o The later, together with (6.62) and the first

inequality in (6.60), indicates that
[[0*[| oo (0.7(090):0) = 0¥ | Lo (0,70 o)) = N (T (40), 90) < M.

This implies that (T'P)M:¥0 does not hold the bang-bang property.

Meanwhile, according to (iii) of Corollary 6, the null control is not a minimal
time control to (TP)M:vo.

The remainder is to show that (T'P)*:% has infinitely many different minimal
time controls. Fortunately, this follows from Theorem 6.2, since we already have
(6.61), (6.60) and (H1). This ends the proof of the conclusion (iii).

(iv) Let (M,yo) € V1. By the definition of V; (see (1.31)), we find that

N(T(yo),90) =0 < M < o0. (6.63)
Since N(T°(yo),y0) = 0, it follows from (iv) of Lemma 3.4 that
T°(y0) = T"(yo) < o (6.64)

By (6.64) and (6.63), we can use (ii) of Corollary 9 to see that the null control is a
minimal time control to (T'P)-¥0. From this, we see that (T'P)M:¥0 does not hold
the bang-bang property, since M > 0.

The remainder is to show that (TP)*¥% has infinitely many different minimal
time controls. Fortunately, this follows from Theorem 6.3, since we already have
(6.64) and (H1). This ends the proof of the conclusion (iv).

(v) First, we let (M, yo) € V5 3. Then by the definitions of V3 5 and Vs (see (1.34)
and (1.35)), we find that

T(yo) = 0o and N(T°(yo),y0) = oo. (6.65)
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From (6.65), we can use (i) of Lemma 3.4 to see that T°(yo) = T'(yo) = co. By
this, we can apply Corollary 8 to find that (T'P)*¥ has no admissible control and
so does not hold the bang-bang property.

Next, we let (M,yo) € Va21. By the definitions of Va1 and Vs, (see (1.32) and
(1.33)), we have that

0 <M < N(T"(y0),50) and 0 < N(T°(0),0) < 0. (6.66)

By the second inequality in (6.66), we can use (iii) of Lemma 3.4 to see that T°(yy) <
T'(yo). From this, the first inequality in (6.66) and the assumption (H1), we can
apply (ii) of Corollary 7 to find that (TP)™:¥% has no admissible control and so
does not hold the bang-bang property.

Finally, we let (M,yo) € V5,1. By the definitions of V3 ; and Vs (see (1.34) and
(1.35)), we have that

T%(yo) <00, 0<M < N(T"(yo),y0) and N(T°(yo),y0) = oc. (6.67)

By the last equality and the first inequality in (6.67), we can use (i) of Lemma
3.4 to get that T%(yo) < T'(yo). From this, the second inequality in (6.67) and
the assumption (H1), we can use (ii) of Corollary 7 to find that (T'P)*:¥ has no
admissible control and so does not hold the bang-bang property. This ends the
proof of the conclusion (v).

(vi) Let (T,yo) € Va,3. Then by the definitions of Vs 3 and Vs (see (1.32) and
(1.33)), we see that 0 < M = N(T°(yo),y0) < co. This, along with (iii) of Lemma
3.4, yields that T%(yo) < T'(yo) and N(T°(yo),y0) = M < oo. From these, we can
use (ii) of Corollary 6 to find that (T'P)M:¥0 has at least one minimal time control.
This ends the proof of the conclusion (vi).

In summary, we finish the proof of Theorem 1.2.

O

We end this section with proving Theorem 1.3. To do it, we need three propo-
sitions. The first one is the following Proposition 8. It presents some equivalent
conditions for the L**-null controllability of (A, B). Though there have been many
literatures on such issue, we do not find the exactly same version of Proposition 8 in
literatures. For the sake of the completeness of the paper, we provide the detailed
proof in Appendix F.

Proposition 8. The following conclusions are equivalent:
(i) The pair (A*, B*) is L'-observable, i.e., the condition (H3) holds, i.e., for each
T € (0,00), there exists a positive constant C1(T) so that

T
1S*(T)z]1x < Cl(T)/O IB*S*(T — t)|u dt for all = € D(A*).  (6.68)

(ii) The pair (A, B) has the L -null controllability with a cost, i.e., for each T €
(0,00), there is a positive constant Co(T) so that for each yo € X, there exists a
control v € L>(0,T;U) satisfying that

§(T:90.) = 0 and [ol]z=(o.10) < Ca(T) ol x- (6.69)

(ii1) The pair (A, B) is L -null controllable, i.e., for each T € (0,00) and each
Yo € X, there exists a control v € L>®(0,T;U) so that g(T;yo,v) = 0.

Furthermore, when one of the above three conclusions is valid, the constants
C1(T) in (6.68) and Co(T) in (6.69) can be taken as the same number.
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The next two propositions concern some connections among assumptions (H1)-
(H4).
Proposition 9. Suppose that (H3) holds. Then (H1) is true.

Proof. Suppose that (H3) holds. Arbitrarily fix 7" and ¢ so that 0 < t < T < 0.
Then by (H3), there exists a positive number C;(T — t) (depending on (T —t)) so
that

Tt
IS*(T = t)2]| < Cy(T — t)/ IB*S*(T =t — )z|lu s for all =€ D(A"),
0
which implies that
T
I1S*(T = t)z|| < CL(T — t)/ |B*S*(T — s)z||yds for all z € D(A™).
t

This, together with (2.2), yields that for each z € D(A*),
|B*S*(T — )z||lL20,60) = ||B*S* (t— ~)(S*(Tf

VOOISH(T — 1)zl x

VDT ~ 1) ||B ST~ )l s,
where C(t) is given by (2.2). Then by the definition of Y1 (see (1.20)), the above
yields that

l9llzz(0.6.07) < VC1(O)C(T = t)||gllLr e, 70y for all g € Yr. (6.70)

Notice that (6.70) is exactly the statement (iii) in Lemma 2.3, where p; = 2. Thus
we can apply Lemma 2.3 to get the conclusion (i) of Lemma 2.3 which is exactly
the condition (H1). Hence, (H1) follows from (H3). This ends the proof of this
proposition.

)z) HLQ(O,t;U)

[VARVAN

O
Proposition 10. Suppose that (H3) and (H4) are true. Then (H2) holds.

Proof. Let T € (0,00). Suppose that f € Yr satisfies that
f=0 over E, (6.71)
where the subset E C (0,7T) is of positive measure. We are going to use (H3) and
(H4) to show that
f=0 over (0,7). (6.72)
When this is done, we obtain (H2) from (H3) and (H4).

The rest is to show (6.72). By (1.20), there exists a sequence {z,} C D(A*) so
that

B*S*(T — )z, — f(:) in L*(0,T;U), as n — oo. (6.73)

In particular, { B*S*(T — )z, } is a Cauchy sequence in L'(0,T; U). Take a sequence
{T} C (0,T) sothat Ty, ,/ T. Then by (H3), we find that for each k, {S*(T—T})zn }
is a Cauchy sequence in X. Hence, for each k, there is a 2 € X so that

S*(T — Tk)zn — 2 strongly in X, as n — oo. (6.74)

By (6.74) and (2.2), we see that for each k, {B*S*(T — -)z,} is a Cauchy sequence
in L2(0,Ty; U). This, along with (6.74) and (1.22), indicates that for each k,

B*S*(T — )zn — B*S*(T), — )2x in L2(0,T;U), as n — oo. (6.75)
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By (6.73) and (6.75), we find that for each k,
F(-) = B*S*(Ti — )2 over (0,T}). (6.76)

Since T}, /T, we see that for each k large enough, Ey := EN(0,T}) has a positive
measure. Then from (6.76) and (6.71), we observe that for each k large enough,

E*\S/*(Tk — )72% =0 over Ek.
This, along with (H4), yields that for all k£ large enough,
B*S*(Ty — ), = 0 over (0,T}). (6.77)

Now, (6.72) follows from (6.76) and (6.77). This ends the proof.
O

Remark 12. Since Y7 is the completion of the space X7 in the norm || - || 11 (0,70
(see (1.20)), it is hard to characterize elements of Y7 in general. However, when the
assumption (H3) holds, we have that Y7 = Yr, where

V= {f € LY(0,T;U) : Vte (0,T), 3" € X sit. f()|o) = B S*(t — -)zt}.

Indeed, on one hand, by (H3), we get (6.76), from which, it follows that Y7 C YVr.
On the other hand, from (H1) and (ii) of Lemma 2.4, we find that Y C Yp. (Notice
that (H1) is ensured by (H3), see Proposition 9.) For time varying systems, we do
not know if these two spaces are the same in general. (In the proof of Lemma 2.4,
we used the time-invariance of the system.)

We now are on the position to show Theorem 1.3.
Proof of Theorem 1.5. (i) We first claim that
T yo) =0 and N(T°(yo),0) = oo for all yo € X \ {0}. (6.78)

Indeed, by (H3), we can use Proposition 8 to get the L*-null controllability for
(A, B), which, along with the definition of T°(-) (see (1.17)), yields the first equality
in (6.78). This, together with (iv) of Lemma 3.3, leads to the second equality in
(6.78).
We next claim that
W = Wg)g @] W3)3. (679)
In fact, by the second equality in (6.78) and the definition of Wy and W (see (1.26)
and (1.28)), we find that Wy U W, = (). Meanwhile, by the first equality in (6.78)
and the definitions of W51 and Ws 4 (see (1.29)), we find that W51 U Ws 4 = 0.
These, along with (i) of Theorem 1.1, lead to (6.79).
We then claim that
V=Vs, UV, (6.80)
Indeed, by the second equality in (6.78) and the definitions of V; and Vs (see (1.31)
and (1.33)), we see that V; U Vs = (). Meanwhile, the first equality in (6.78) and
the definition of V53 (see (1.34)), we find that V535 = (). These, along with (i) of
Theorem 1.2, lead to (6.80).
Now, (1.38) follows from (6.79) and (6.80) at once.
Finally, we verify (1.39). On one hand, by the definitions of v; and Ws 2 (see
(1.36) and (1.27)), we see that 3 = W 2. On the other hand, from (i) of Lemma
3.3 and (ii) of Lemma 3.2, it follows that

N(T°(y0),50) = N(T"(y0), o) for all yo € X \ {0}.
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Then by the definitions of v, and Va3 (see (1.37) and (1.32)), one can directly
check that vo = V5 3. Since we already knew that Wy = 0, Vo = 0, Wa 2 C Ws and
Va3 C Vo, (1.39) follows at once. Thus we end the proof of the conclusion (i) of
Theorem 1.3.

(i) Since (H3) and (H4) hold, we find from Proposition 9 and Proposition 10
that both (H1) and (H2) hold. Then by the conclusions (ii) and (v) of Theorem
1.2, as well as the second equality in (1.38), we get the conclusion (ii) of Theorem
1.3.

(iii) By (H3) and (H4), we can use Proposition 9 and Proposition 10 to get (H1)
and (H2). Then by (ii) and (iii) of Theorem 1.1, as well as the first equality in
(1.38), we are led to the conclusion (iii) of Theorem 1.3.

In summary, we finish the proof of Theorem 1.3.
O

7. Applications. Two applications of the main theorems of this paper will be
given in this section. The first one is an application of Theorem 1.3, while the
second one is an application of Theorem 1.1, Theorem 1.2.

7.1. Application to boundary controlled heat equations. In this subsection,
we will use Theorem 1.3 to study the BBP decompositions for minimal time and
minimal norm control problems for boundary controlled heat equations. We begin
with introducing the controlled equations. Let @ C R™, n > 1, be a bounded
domain with a smooth boundary 0€2. Let I' be a nonempty open subset of 0f.
Consider the following two controlled equations:

Oy—Ay=0 in Qx(0,00),

y=u on I x(0,00), (7.1)
y=0 on (9Q\T) x (0,00), ’
y(0) = wo in  Q

and
Oy—Ay=0 in Qx(0,7),

y=v on I'x(0,7),
y=0 on  (9\T) x (0,7), (7.2)
y(0) = yo in Q.

Here, yo € H71(Q), 0 < T < 00, u € L¥(RT; L%(")) and v € L>=(0,T; L*(T)).
Write y1(+; Yo, ©) and §1(+; yo, v) for the solutions of (7.1) and (7.2), respectively.

We will put the above systems in our framework where X = H~1(Q), U :=
L?(T'), A := Ay and B := B;. Here, A} = A, with D(A4;) = HZ(Q), and By is
defined in the following manner: Let D : L?(9Q) — L%(Q2) be defined by Dv := f,,
for all v € L2(99), where f, solves the equation

—Af=0 in Q
/ s (7.3)
f=v on 0f.
Then let By := —AD. We regard L?(T') as a subspace of L?(09Q). Let X_; =

(D(A7))" be the dual of D(AY) with respect to the pivot space X.

To prove that the above X, U and (A4;, B1) are in our framework, we will use
some results in [39] where both state and control spaces are assumed to be complex
Hilbert spaces. Thus, we will consider the complexifications of our spaces. Write
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H1(Q) and H(Q) for the complexifications of H~(Q) and HJ(£2), respectively.
Write X := H~1(Q) and U := L*(T;C). Let A; := A, with D(A;) = H}(Q2). Define
D : L*(09C) — L*(Q;C) given by Dw = g, for all w € L*(9%;C), where gy,
solves (7.3) with v = w. Then let By := —AD. The space L?(T; C) is regarded as a
subspace of L?(9€;C). Let X_; := (D(A}))’ be the dual of D(A}) with respect to
the pivot space X'. Then, from [39, Proposition 10.7.1], it follows that .A; generates
a Co-semigroup {S1(t)}ier+ over H™H(Q); By € L(U;X_1) \ {0} is an admissible
control operator for the semigroup {S1(¢)}¢cp+-

Several observations are given in order: First, Ai[pca,) = A1 and Bi|r2r) =
By; Second, {S1(t)|x }er+ is a Co-semigroup over H~1(Q), with its generator Ay;
Third, B; € L(U,X_41) \ {0} is an admissible control operator for the semigroup
{81(t)|x }¢er+. From these observations, we see that if Si(t) := Si(t)|x, t € RT,
then the systems (7.1) and (7.2) can be rewritten respectively as

y'(t) = Avy(t) + Bru(t), t > 0; y(0) = yo;

y'(t) = Awy(t) + Bio(t), 0 <t <T; y(0) = yo.
The corresponding two optimal control problems are as follows: The first one is the
minimal time control problem (TP)M¥ with o € H=1(Q)\ {0} and M € (0, c0):
Ty (M,yo) :={t >0 : JucuM st. yi(t;y0,u) = 0},
where
UM = {u € L=R", L*(I")) : lu(t)|| 2y < M ae. te R*}.

The second one is the minimal norm control problem (NP)T%  (with yo € H=(Q)\

{0} and T € (0,0)) as follows:
Ni(T,yo) = inf{|[vl|ze(0,7522(r)) * §1(T30,v) = 0}
Lemma 7.1. The conditions (H3) and (H4) hold for the pair (A1, By). Further-

more, N1(T (yo),y0) = 0 for each yo € H~1(Q) \ {0}, where T (yo) is given by
(1.18) where {S(t) }1er+ is replaced by {S1(t) }rer+-

Proof. First, the condition (H3) follows from Proposition 8 and the L*>*-null bound-
ary controllability of the heat equation (see, for instance, subsection 3.2.1 in [44]).

Next, we prove that (H4) holds for (A;, By). For this purpose, let 0 < T < oo
and E C (0,T) be a measurable subset of positive measure. Then fix a 2 € X so
that

BiS;(T —-)2=0 over E, (7.4)

where E}‘\S?(T— -)2 is given by (1.22). We will use the real analyticity of {57 (¢)}+cr
to show that

BiS{(T —-)z2=0 over (0,T). (7.5)

Indeed, from subsection 3.2.1 in [44], it follows that the semigroup {S;(t)};er+ can
be extended to an analytic semigroup. Thus, the semigroup {S7(t)};er+ is also
analytic. Then by [29, Theorem 5.2 in Chapter 2], we find that

S1(+) is real analytic over (0,00); and |[S7(¢)]lc(x,par)) < C/t, t>0, (7.6)

where the constant C' is independent of ¢ > 0. Since S1(1)|x = Si(-) over RT, we
have that S (+)|x = S;(-) over R, which, along with (7.6), implies that

S7(+) is real analytic over (0,00); and [[ST(t)|lz(x,pear)) < C/t, t>0. (1.7)
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Arbitrarily fix an € € (0,7") so that
[EN(0,T —¢)| > 0. (7.8)

Let {z,} C D(A%) so that lim,_,o 2, = 2 in X. Because By € L(D(A}),U), we
find from the second conclusion in (7.7) that when n goes to oo,

I1B1ST()zn = BiST (2l 2oy = IIBIST(-—€)S1(e)(2n — &)l L2, myu) = 0.
This, along with (1.22), yields that

e~

B;S}(T — )z = B;yST(T — )% over (0,T —¢),

which, together with the first conclusion in (7.7), shows that Ef\S/f(T — )2 is real
analytic over (0,7 — ). Then, by (7.8) and (7.4), we see that

E_i‘\S/i"(T —)2=0 over (0,T —e¢).

Sending € — 0 in the above leads to (7.5). Hence, (H4) holds for (A, By).
Finally, we will prove that

Ni(T"(yo),y0) = 0 for all yo € H~'(2)\ {0} (7.9)
According to (vi) of Lemma 3.3, (7.9) is equivalent to that
Ni(00,10) =0 for all yo € H1(Q)\ {0}. (7.10)

To prove (7.10), we arbitrarily fix a yo € H~(Q) \ {0} and then fix a £ € (0, 00).
Notice that the semigroup {S1(¢)}+>0 has the following property: there exist C' > 0
and ¢ > 0, independent of #, so that

151 Eyoll g1y < Ce™lyoll -1 q)- (7.11)

Meanwhile, according to the L°°-null controllability of the boundary controlled
heat equation, there exist a positive constant C’ (independent of ¢) and a control
u; € L>(0,1; L3(T")) so that

91(1;51(H)yo, ug) =0 and [Jugllr=0,1;r2(r)) < C'I1S1(E)yollar-1()- (7.12)
Define another control

() = 0, 7€ (0,1,
T Vi =), re it

From this and (7.12), we find that
91t + Ly, vz) = 91(1; 81 (F)yo, uz) = 0;

HU£||L<>°(0,£+1;L2(F)) = |lugllzee(0,1;22(r)) < Clel(tA)ZUOHH*I(Qy
These, along with the optimality of Ny(f + 1,y0) and (7.11), yield that
Ni(t+1,90) < gl e 0.051:22(0y) < C' IS (D)yoll -1y < C'Ce™ lyoll -1 (-

By this and the first equality in (1.19), we obtain (7.10). Hence, (7.9) has been
proved. This ends the proof of this lemma.
O

The BBP decompositions for (A;, By) are presented in the following Theorem 7.2:



74 GENGSHENG WANG AND YUBIAO ZHANG

Theorem 7.2. Let W, W59, V and Vs be respectively given by (1.23), (1.29),
(1.24) and (1.34), where (A,B) = (A1,B1). Then the following conclusions are
true:

(’L) W= W3,2 and Y = V3’2.

(ii) For each (M,yo) € (0,00) x (H™1(Q) \ {0}), the problem (TP)M"° has the
bang-bang property.

(iii) For each (T, 1) € (0,00) x (H=1(Q)\{0}), the problem (NP)** has the bang-
bang property and the null control is not a minimal norm control to this problem.

Proof. (i) By Lemma 7.1, we see that (H3) and (H4) holds for (A;, B1). Then we
can use Theorem 1.3 to find that

W= W3’2 U W3,3 and V= V371 U V372. (713)

On one hand, by the backward uniqueness property for {S(t)};cr+, we have that
T'(yo) = oo for all yo € X \ {0}. On the other hand, by Lemma 7.1, we also have
that N1 (T (yo),y0) = 0 for all yo € H=1(Q)\{0}. These, along with the definitions
of Wy 3 and V31 (see (1.29) (1.34)), yield that W5 3 = () and V31 = () in this case.
From this and (7.13), we get the conclusion (i) of this theorem.

(ii) Notice that V = (0,00) x (H~(Q) \ {0}) in this case. (For the definition of
V, see (1.24).) Then by the second equality in the conclusion (i) of this theorem
and the assumptions (H3) and (H4), we can apply (ii) of Theorem 1.3 to get the
conclusion (ii) of this theorem.

(iii) Notice that W = (0,00) x (H~1(2) \ {0}) in this case. (For the definition
of W, see (1.23)) Then by the first equality in the conclusion (i) of this theorem
and the assumptions (H3) and (H4), we can apply (iii) of Theorem 1.3 to get the
conclusion (iii) of this theorem.

In summary, we finish the proof of this theorem.
O

Remark 13. (i) From Theorem 7.2, we see that the BBP decomposition for
(NP)T% has only one part which is W = (0, 00) x (H~1(€2)\ {0}) and that for each
(T, yo) in W, the corresponding (N P)lT’yO has the bang-bang property. The reason
to cause such decomposition is that (A1, By) is L*-null controllable. The same can
be said about the BBP decomposition for (N P)T*%0 built up in Theorem 1.3.

(ii) From Theorem 7.2, we see that the BBP decomposition for (T'P)M¥ has
only one part which is V = (0,00) x (H~(Q) \ {0}) and that for each (M, ) in V,
the corresponding (TP)iV[’y” has the bang-bang property. The reasons to cause such
decomposition are that (A;, By) is L°-null controllable and Ny (T (o), y0) = 0 for
all yo € (0,00) x (H~1(Q2)\ {0}). (Compare this BBP decomposition with the BBP
decomposition (P1) given by (1.6).) The above-mentioned second property (i.e.,
N1(T*(yo),y0) = 0 for all yo € (0,00) x (H~1(22)\ {0})) holds, because solutions of
the controlled system (governed by (A1, By)), with the null control, tend to zero as
time goes to infinity.

7.2. Application to some special controlled evolution systems. In this sub-
section, we will use Theorem 1.1 and Theorem 1.2 to study the BBP decompositions
for minimal time and minimal norm control problems in a special setting. The con-
trolled system in this setting is taken from [15].
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Let X and U be two real separable Hilbert spaces. Let A := Ay and B := By,
where Ay and By are defined in the following manner: Arbitrarily fix a Riesz basis
{¢;};j>1 in X and a biorthogonal sequence {1;};>1 of the aforementioned Riesz
basis. Take a sequence A := {\;},;>1 C R so that

0<A <A<~ <Aj<--+5 and ¥j>11/); < 0. (7.14)

Write X7 :={y € X : ||y|]1 < oo} with the norm ||y|x, = \/ijl A3y, i)k
Define Ay : D(A3) := X; C X — X by setting

Ao := — Z Aj(x,¥;)x¢; for each = € D(As). (7.15)
Jjz1
Write X_1 := (D(A3))" (the dual of D(A%) with respect to the pivot space X).
Then let By € L(U, X_4) \ {0}.
One can directly check the following facts: First, the operator A, generates
a Cp-semigroup {S2(t)};cp+ over X; Second, the semigroup {S2(t)};cp+ has the
expression:

o0 e}
Sa(t)r = ije_Ajt(bj, t >0, foreach z = ijgbj € X. (7.16)
j=1 j=1
Third, the dual semigroup {55 (¢)}+>0 has the expression:
o0 oo
Sy(t)x = Zije_)‘-ftwj, t >0, foreach = Zi‘jwj € X. (7.17)
j=1 j=1
In this setting, the systems (1.11) and (1.12) read respectively as follows:
y'(t) = Ay (t) + Bau(t), t > 0; y(0) = yo; (7.18)
y'(t) = Azy(t) + Bou(t), 0 <t < T; y(0) = yo. (7.19)

Here, yg € X, 0 < T < oo, u € L®(RT;U) and v € L*>(0,T;U). Write y2(-; yo, )
and §2(-; yo,v) for the solutions of (7.18) and (7.19), respectively. There are many
controlled PDEs governed by (As, Bs), we refer the readers to [15], [16] and [17].

For each yo € X\ {0} and each M € (0, 00), we consider the minimal time control
problem:

(TP)YY  To(M,yo) :==inf{i >0 : JueU) st. y(;yo,u) =0},
where
UM = {uec LR U) : |lut)|v <M ae teRL

For each yo € X \ {0} and each T € (0, 00), we consider the minimal norm control
problem:

(NP)JY  No(T,ypo) := inf{[[v| o 0,r;v) = 92(T590,v) = 0}.

We will prove that (As, By) satisfies (H1) and (H2). To do this, we need three
lemmas. The first one is very similar to [17, Lemma 4.6]. We will give its proof in
Appendix G of this paper. To state it, we define

N
P = {z — che_)‘jz, ze€Ct : {¢; é\le cC,Ne€ N+}, (7.20)
j=1
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where C* := {z+iy € C : x> 0}. And then for each 6y € (0,%) and € > 0, define

1
Se.0, 1= {z =z+4+iyeC : z>¢, % < 500‘590}. (7.21)

Lemma 7.3. For each 6y € (0,5), € >0, and each T > 0, there exist two positive
constants Cy := C1(0p,e,T) and Cy := C2(0y) so that

Ip(2)] < C’le*CQRez||p|(0,T)||L1(07T;(C) forall pe P and z € Seg,. (7.22)

Here, plo,r) denotes the restriction of p on (0,T).

To state the second lemma, we write U for the complexification of U and then
define

N
Py 1= {z =3 ¢je M B3y, zeCh o {e}, CcC, Ne N+}. (7.23)

j=1
Notice that each element in Py is a vector-valued function, with its domain C and

its range U. With the aid of Lemma 7.3, we build up an estimate in the second
lemma as follows:

Lemma 7.4. For each 0y € (0,%), € > 0 and each T > 0, there erist two positive
constants Cy := C1(0o,e,T) and Cy := C2(0y) so that

If(2)z < 016_02Rez||f|(07T)HLl(O)T;[j) for all fe Py and z € Sep,, (7.24)

where, Sc g, and Py are defined by (7.21) and (7.23), respectively, and f|,r) de-
notes the restriction of f on (0,T).

Proof. Arbitrarily fix f € Pg. Then by (7.23), there is N € NT and {cj}jyzl ccC
so that

N
f(z) = che_Aszgz/)j for all z € C™.
j=1

Arbitrarily fix a v € U. Since
N
fv(z) = <f(Z),”U>(7 = ZC]«B;QZJ]HQ»(}S?)\J.Z? S (C+a
j=1
it follows from (7.20) that f, € P. Then according to Lemma 7.3, for each 6y €
(0, %), each € > 0 and each T > 0, there are two positive constants C1 (6, e, T") and
C3(6p) (independent of f and v) so that

T

[(f(2),v)5| < Cl(eo,e,T)e_CQ(QO)R“/ [(fl0,1)(t),v)5| dt for each z € S, g,.
0

Since for each z € S, g,, the above inequality holds for all v € U , we find that for

each z € S, g,

T
171Gl = sup (), v}l < C1(fo, &, T)e =(00)fe= /0 1f 1o,y (B)ll7 dt.
v o>
Since f was arbitrarily taken from Pg, the above inequality leads to (7.24). This
ends the proof of this lemma.
O
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With the aid of Lemma 7.4, we obtain the third lemma which will play a key
role in the proof of the conclusion that (H1) and (H2) hold for (As, Bs).

Lemma 7.5. Let 6y € (0,%). Then for each T € (0,00), each ¢ € (0,T) and each
f € Yr (which is defined by (1.20) with (A*, B*) being replaced by (A5, B3)), there
is a continuous and weakly analytic function ge 5 : Sco, = U so that

Ge,fl(e) (T —t) = f(t) for each t € (0,T —¢), (7.25)
and so that

5o, ) < OO0, e, (7.26)
where C1(0,€,¢€) is given by (7.24).
Proof. Let 0y € (0, %) be given. Arbitrarily fix ' € (0,00), € € (0,T) and f € Y.
First of all, since {¢;};>1 is a biorthogonal sequence of the Riesz basis {¢;};>1

in X, it follows by (7.15) that each element w € D(A}) can be expressed by w =
>y ajiby, with {a;}52, C R, and satisfies that

N
_ 2.2
H Zaﬂ/}j — wHD(A;) = Z Ajaj — 0, as N — o0, (7.27)
Jj=1 j=N

Since B; € L(D(A3),U), it follows from (7.27) that

N
B3S3(T =) ajib; — B3S5(T — Jw in L'(0,T;U), as N —oo.  (7.28)
j=1
Since f € Yr, according to (1.20) and (7.28), there is a sequence {wy }¥_; in D(A3%)
so that for each N € NT,

Kn
wWN = Zaj(wN)wj, with Ky € N+t and {a](wN)}f(:Nl C R, (729)
j=1
and so that
B3S3(T — HYwyn — f(-) in L*0,T;U), as N — oc. (7.30)

Next, for each N € N*, define gy : C* — U by
Kn
gn(z) == Zozj(1111\7)(3_MZB§‘1/JJ-7 zeCt. (7.31)
j=1

By (7.31), (7.29) and (7.17), we see that
gn (0,1 (t) = B3 S5 (t)wy for each t € (0,T). (7.32)

Meanwhile, from (7.31) and (7.23), we see that gy € Py for all N € NT. This,
along with Lemma 7.4, yields that for each N € NT,

19815 00 | Lo 5.y 77 < C1(B0,8: )l 9N (0.0) | L1 (0,57

where C1 (o, €,¢) is given by (7.24). Since for each t € RT, we have that gy (t) € U
(see (7.31) and (7.29)), the above inequality can be rewritten as:

952,00 | Lo (5. 0 i) < C1(00,8,6)llgn 0.0l L1 0.20) (7.33)
By (7.32) and (7.30), we see that
gnl0e) () = F(T =) in L'(0,U). (7.34)
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Hence, {gn|(0,e)}¥=1 is a Cauchy sequence in L*(0,&;U). From this and (7.33), we
can easily see that there exists a function g. r € L>(S; 0,; U) so that

INs.0, = Ge,p In L=(Se,;:U), as N — oo. (7.35)
We claim that
Ge.f : Se0, — U is continuous and weakly analytic over S g,. (7.36)

First, by (7.31), we see that for each N € NT, the function gn|s. 4, is continuous.
This, along with (7.35), yields that the function g. s is continuous over S g, and
that

IN|Se0y = Gerp 0 C(Se,50), as N — oo. (7.37)

Next, we prove the weak analyticity of the function g. ;. Arbitrarily fix a v € U.
By (7.37), we find that

(IN8..60, )7 = (Ge,ps )5 In C(Se0,;C), as N — oo. (7.38)

Meanwhile, by (7.31), we see that for each N € N, the function 2 — (gn|s. , (2),v) 5
is analytic over S g,. By this and (7.38), we can use [35, Theorem 10.28] to see
that the function z — (ge r(2),v)5 is analytic over Scg,. Since v was arbitrarily

taken from U, g. s is weakly analytic over S g,. Hence, conclusions in (7.36) are
true.

We now show that the above function g. s satisfies (7.25). Indeed, by (7.21), we
see that (,T) C S¢,. This, together with (7.37), yields that

9Nler) = Geflery in C((e,T);0), as N — . (7.39)
From (7.39) and (7.32), it follows that
B3S5(T — )wn = ge fle,ry(T —-) in C((0,T —¢); U), as N —oo. (7.40)
From (7.30) and (7.40), the desired equality (7.25) follows at once.

Finally, since
5 T
/Onf(Tft)nUdt:/T 1£(t) | dt,

by (7.35) and (7.34), we can pass to the limit for N — oo in (7.33) to see that the
above function g, satisfies (7.26). This ends the proof.
O

Proposition 11. The condition (H1), with py = 2, and the condition (H2) hold
fO’/‘ (AQ,BQ).

Proof. From Lemma 2.3, we see that in order to show the condition (H1) (with
po = 2) for (As, Be), it suffices to prove the property (iii) in Lemma 2.3 (w1th p2 =2)
for (Ay, By). To prove the later, we arbitrarily fix  and T so that 0 < < T < oc.
Let f € Yr, which is defined by (1.20) with (A*, B*) being replaced by (A3, B3).
Then by Lemma 7.5 (where ¢ = T — ), we see that f satisfies (7.25) and (7.26)
(with € = T' — £) for some continuous and weakly analytic function g. s : Sz g, — U
with some 6y € (0, 5). By (7.25), one can easily check that

19e. 5O e s oty 2 N9epleny Ol ey = 196,71y (T = )l Lo 0,57
= |IfC )HLoo(o Lu) = t_1/2||f( )||L2(0,£;U)~
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This, along with (7.26) (where e = T — ), yields that

||f||L2(o,£;U) < ’51/201(007575)||fHL1(£,T;U) = C(T, t, 00)||f||L1(£,T;U)7

which leads to the property (iii) in Lemma 2.3 (with p; = 2) for (As, B2). Hence,
(H1) with py = 2 holds for (As, Bs).

We next show that (H2) holds for (As, By). Arbitrarily fix T € (0,00). Assume
that there is f € Yr and a subset E C (0,T") with a positive measure so that

f=0 over E. (7.41)
We will show that
f=0 over (0,7). (7.42)
In fact, since |E| > 0, we can arbitrarily take € € (0,|F]). It is clear that
IEN(0,T —¢)| > |E|—¢>0. (7.43)

Since f € Yp, by Lemma 7.5, we see that f satisfies (7.25) and (7.26) for some
continuous and weakly analytic function g. ¢ : S: 9, — U with some 0o € (0,5).
Then by (7.25) and the weak analyticity of g. r, we find that for each v € U, the
function t — (f(t),v)y is real analytic on (0,7 — ). This, along with (7.41) and
(7.43), yields that for each v € U,

(f(t),v)y =0 for each t € (0,7 —¢).

Sending € — 0 in the above leads to (7.42). Hence, (H2) holds for (As, B2). This
ends the proof.
O

To get the BBP decompositions for (T'P)A* and (NP)2% we also need the
following lemma:

Lemma 7.6. Let functions T°(-) and T*(-) be given respectively by (1.17) and
(1.18) where (A, B) = (As, Ba). Then the following conclusions are true:

(i) For each yo € X \ {0}, T (yo) = oo.

(ii) If yo € X \ {0} satisfies that T°(yo) < oo, then Na(T (yo),yo) = 0.

Proof. (i) By contradiction, suppose that T?(y) < oo for some yo € X \ {0}. Then
from (1.18), we see that

So(T)yo =0 for each T € (T"(yo),00). (7.44)
Arbitrarily fix a wg € X. Then we see from (7.44) that
(S2(T)yo, wo)x =0 for each T € (Tl(yo),oo). (7.45)

Since {1;};>1 is a biorthogonal sequence of the Riesz basis {¢;};>1 in X, we can
write yo and wg in the following manner:

Yo = Zyo,szi and w = Zwo,j%//j. (7.46)

i=1 =1
It is clear that 377, y5,; < oo and Y72, wj ; < oo. These, along with the Cauchy-
Schwarz inequality, yield that

1/2

> lyorllworl < (3o vin) (D whs) <o (7.47)
k=1 k=1 k=1
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Meanwhile, from (7.46) and (7.16), it follows that

(So(t)yo, wo)x = Z e Mlyo gwo e for all t € RT, (7.48)
k=1

Since A\ > 0 for all £ > 1, and because the function z — Zgzl e*Akao7kw07k
(N € N*) is analytic over C*, it follows from (7.48) and (7.47) that the function
t — (S2(t)yo, w)x is real analytic over (0,00). This, along with (7.45), yields that
(S2(T)yo, wo)x = 0 for each T' € (0, 00). Because wy was arbitrarily taken from X,
we conclude from the above that S2(T")yo = 0 for each T' € (0, 00). This implies that
yo = limy_ o+ S2(T)yo = 0, which contradicts the assumption that yo € X \ {0}.
Hence, T (yo) = oc.

(ii) Suppose that yo € X \ {0} satisfy that T°(yy) < oo. Arbitrarily fix a
t € (T%(yo),0). Then it follows from Corollary 2 that

N <52(£)y07w>X

Na(t, yo) = sup — < o0. (7.49)
weD(A3),B; S5 (i— w0 |1B3S3 (¢ — Jwll 10 207
Write
Yo = Zyo,ﬂ% for some {yo,} C R. (7.50)
Jj=1
Arbitrarily fix such a w € D(A%) that
N
w = ij¢k for some {w;} CR and N € N*. (7.51)
j=1

The rest of the proof is organized by three steps.
Step 1. To show that there are positive constants C1 and Cy so that for each s €
(2t, 00),

2f
|<SQ (S)yo, w>X| < Cle—Czs / |<52 (t)yo, U}>X| dt (752)
£
Observe from (7.50), (7.51) and (7.16) that
N
(S2(t)yo, w)x = Zyoijje*%’t for each t € RT. (7.53)
j=1

Define a function g; over C; in the following manner: g;(z) := Z;\Ll Yo jwje Ni?
for each z € C4. Then by (7.20) and (7.53), we find that

g1 (- +f)|c+ € P; and g1(-) = (S2(")yo,w)x over RT. (7.54)

These, together with (7.22), yield that there exist two positive constants C; and
Cs, independent of w, so that for each s € (21, 00),

[(Sa(s)yo, w)x| = |g1((s — &) + )| < Cre= G20 /0 g1 (t + )| dt

. p2t 2t
_ (yeCasD / 1 ()| dt = CyeCa(s=D / 1(Sa(t)yo, w) x| dt,
t t

which implies (7.52).
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Step 2. To show that There are positive constants C| and Ch so that for each
s € (t,00),

[ IBsss 0wl de= (- cie %) [ 1S3 @uly ar (7.55)
0 0
From (7.51) and (7.17), we find that
N
B;S;(tw =Y w;e Y'B3y; for each t € RY. (7.56)
j=1

Write U for the complexification of U. Define a function g : C* — U in the
following manner:

N
9(2) =D _wje M B3y, z € Cy,
j=1

This, along with (7.23) and (7.56), yields that
92() € Py and ga(t) = B5S5(t)w € U for each ¢ € RY.

These, together with Lemma 7.4, yield that there exist two positive constants C
and C%, independent of w, so that for each t € (t, 00),

1BsSs (twllu = llg2)llo < Cre™ % ga( 10,0y = Cre™ B3 S5 (Ywll 11 0,0
< Cle By S; (Yw i g )-

Thus, we find that for each s € (£, 00),

A B33 (| dt .A HBiﬁﬁﬁﬂudﬂ—/ 18353 (tywly dt

IV

Hﬁgwwmwm—/(qfwwwxmmwmwt

(1= Cre™=*/C3)[1B585 (Ywl| a0,

Y

which implies (7.55).
Step 3. To show that No(T* (yo),%0) =

We first claim that for each t € (£, 2%),
[(S2(t)yo, w) x| < Na(t, yo)[| B33 (t — Jwllr(0,60)- (7.57)

To this end, fix a t € (£,2t). There are only two possibilities on B} S5 (t —-)w: either
B3S3(t — )w # 0in L1(0,;U) or B3S;(t — - )w =0 in LY(0,4 U).

In first case, since £ > T°(y), we see from Corollary 2 that (7.57) holds. In the
second case, it follows from (ii) of Lemma 3.2 and (7.49) that

Na(t,y0) < No(t, yo) < 0.

So (N P)tQ’y0 has at least one admissible control. Then there exists a control u €
L>(0,t;U) so that §(¢; yo,u) = 0. Thus, from (1.13), we obtain that

(S2(t)yo, w)x = —/0 (u(r), B3S3(t — T)w)y dr = 0,

which implies (7.57) in the case that B3S;(t — -)w = 0. So (7.57) is proved.
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Next, by (7.52), (7.57) and (7.55), we find that for each large enough s € (2f, 00),

2t
(S2(s)yo, w)x < Cle_czs/ |(S2(t)yo, w) x| dt
t

2t
Cre=%* | No(t,y0)| B3 S (t — Jwl 12000y At
t

IN

2t
Cre™ B3 S5 (e [ Naltyo) dt
t

IN

( 0167025 2t

m ; N2(t7y0)dt)”B;S;(S_')wHLl(O,s;U)-

Since w was arbitrarily taken as in (7.51), the above, along with Corollary 2 and
(ii) of Lemma 3.2, yields that for each large enough s € (2, c0),

Cle—CQS 2£ Cle—CQS
e No(t o) dt < —
1—Cle s J; 2(,90) 1—CleC2s
which, together with (7.49) and the first equality in (1.19), implies that Na(oo,yg) =
0. This, along with (vi) of Lemma 3.3, yields that the conclusion (ii) is true.

In summary, we end the proof of Lemma 7.6.

Na(s,y0) < (tN2(t, 90)),

O

The BBP decompositions for (A, Bs) are presented in the following Theorem 7.7.

Theorem 7.7. Let W, Wg’j (_] = 1,2,3), Wg’j (] = 172,4), V, Vg’j (_] = 2,3,4)
and Vs j (j = 2,3) be respectively given by (1.23), (1.27), (1.29), (1.24), (1.32) and
(1.34) where (A, B) = (As, B2). Then the following conclusions are valid:

(i) The set W is the disjoint union of the above mentioned subsets W j, and V is
the disjoint union of the above mentioned subsets V; ;.

(ii) For each (T,yo) € Wa1 UWs1 UWsy, (NP)2¥ has no admissible control and
does not hold the bang-bang property; For each (T, yo) € Wa 3 UWs 2, (NP)QT’y0 has
the bang-bang property and the null control is not a minimal norm control to this
problem; For each (T,yo) € Wa.a, (NP)3™° has at least one minimal norm control.
(iii) For each (M, yo) € V3.3, (T'P)3"Y° has no admissible control and does not hold
the bang-bang property; For each (M,yo) € Voo U Vs, (TP)éw’y0 has the bang-
bang property; For each (M,yo) € Vau, (TP)éVI’yO has infinitely many different
minimal time controls (not including the null control), and does not hold the bang-

bang property; For each (M,yo) € Va3, (TP)S/["UO has at least one minimal time
control.

Proof. By Proposition 11, we see that (H1) and (H2) hold for (As, Bz). Thus, all
conclusions in Theorem 1.1 and Theorem 1.2 are true. From these conclusions, we
see that to prove this theorem, it suffices to show that

Wi UWiaUWs g UWs 3 = 0; Vi u Vo1 UVsq = 0. (7.58)

Here, W1 j (j = 1,2), Wa 4, Ws 3, V1, Va1 and Vs 1 are respectively given by (1.25),
(1.27), (1.29), (1.31), (1.32) and (1.34), where (A, B) = (A2, B2).
To show (7.58), we use Lemma 7.6 to get that

T'(yo) = 0o and Na(T*(y0),90) =0 for all yo € X \ {0}. (7.59)
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By the first equality in (7.59) and (iv) of Lemma 3.4, we deduce that
Na(T%(yo),y0) > 0 for all yo € X \ {0}. (7.60)

We now show the first equality in (7.58). On one hand, by the definitions of W ;
(7 =1,2) (see (1.25)), we find from (7.60) that Wi 1 UW) 2 is empty. On the other
hand, by contradiction, suppose that W5 4UWj3 3 were not empty. Then there would
be a pair (T, Jo0) € W24 UWs 5. Hence, by the definitions of W5 4 UW3 3 (see (1.27)
and (1.29)), it follows that

Tl(gO) < T < o0,

which contradicts the first equality in (7.59). So Ws 4 U W5 3 is empty. Thus, we
have proved the first equality in (7.58).

Finally, we prove the second equality in (7.58). On one hand, by the definitions
of Vi (see (1.31)), we find from (7.60) that V; is empty. On the other hand, by
contradiction, suppose that V5 1 U V3 1 were not empty. Then there would be a pair
(M, J0) € V2.1 UVs 1. So by the definitions of Vo1 U V51 (see (1.32) and (1.34)), it
follows that

0< M S N2(T1(y0)7g0)7

which contradicts the second equality in (7.59). Therefore, Vo1 U V31 is empty.
Thus, we have proved the second equality in (7.58).

In summary, we end the proof of this theorem.
O

We end this subsection with presenting such phenomenon that for some pairs
(Ag, Bs), the corresponding function T°(-) (given by (1.17) with (A, B) being re-
placed by (As, B2)) has the following property: T°(yo) € (0,00) for some yo € X.
To see it, some preliminaries are needed. First we notice that the operator As de-
pends on the choices of {¢;};>1, {¢;};>1 and A; the operator B, can be arbitrarily
taken from £(U, X_1)\ {0}. For each pair (A3, Bs), we define

Ty(Ag, Bs) := inf{T € (0,00) : (Aa, By) has L?-null controllability at 7}. (7.61)
(By the L?-null controllability at T for (As, Bs), we mean that for each yg € X,
there is a control v € L2(0,T;U) so that §2(T;yo,v) = 0.) Sometimes, we will use
T5 to denote To(Az, Ba), if there is no risk causing any confusion. It is proved in

[15] and [17] that T5 € (0,00) for some pairs (Az, Bz). One such example (taken
from [17]) is as follows:

Example 7.8. Consider the following controlled system

Oy — Opgy = 0gov in (0,7) % (0, 00),
y(0,) =y(m,-) =0 in (0,00),
y(+,0) € L*(0, 7).

One can directly check that this example can be put into the framework (As, Bs).
According to Corollary 6.4 and Theorem 6.5 in [17], there are many o € (0,7) so
that the corresponding T» € (0, 00).

In the current paper, controls are taken from L*° spaces. Thus, we define for each
pair (As, Bs),

Too(Az, Ba) :=1inf{T € (0,00) : (Ag, B2) has L*-null controllability at T}(7.62)



84 GENGSHENG WANG AND YUBIAO ZHANG

Also, we simply use To, to denote Too(Aa, Bs), if there is no risk to cause any
confusion.

Lemma 7.9. For each pair (Aa, Bs), the corresponding Ty and To, (defined by
(7.61) and (7.62), respectively) are the same.

Proof. Tt suffices to show that
Too <Tp. (7.63)

By contradiction, suppose that it was not true. Then there would be two numbers
t and t’ so that

Ty <t<t <Ty. (7.64)

Arbitrarily fix a yg € X. According to the definition of T3, there exists a control
u € L?(0,tU) so that

9a(t;y0,u) = 0. (7.65)
Write @ for the zero extension of u over (0,#). According to Proposition 11, the
pair (As, Bs) satisfies the condition (H1) with py = 2. Thus, we apply (H1), where

po=2and T =1 and t = {, to find a control v, € L>=(0,#'; U) so that g(f';0,u) =
G2(t';0,v,), which implies that

Ga(t'5 90, @) = G2 (' 90, 0) + G250, @) = G2 (s o, va)-
This, along with (7.65), yields that
9o ('3 y0,v4) = Sa(# — 1)ga(t; yo, u) = 0.
Since yo was arbitrarily taken ferm X, the above implies that the pair (As, By) has
L-null controllability at time ¢’. By this and the definition of T.,, we deduce that

T < t', which contradicts (7.64). So (7.63) holds. We end the proof of this lemma.
O

Remark 14. There are systems (under the framework (As, B2)) so that 0 < T, <
oo (see Example 7.8 and Lemma 7.9). With the aid of this, we can prove that for
some pair (As, Bo), the corresponding function T9(-), defined by (1.17), satisfies
that T%(yo) € (0,00) for some yg € X.

Here is the argument: Suppose that for some (As, Bs),

0 < Too(Az, By) = Tho < 0. (7.66)

On one hand, by the first inequality in (7.66) and the definition of T,,, we can find
T € (0,T) so that the pair (Ag, Bz) is not L*-null controllable. Thus there is
9o € X so that for any v € L>(0,T;U), 92(T; o, v) # 0. Then by the definition of
T%(go) (see (1.17)), we see that T' < T(j), which leads to that T°(g) > 0.

On the other hand, by the last inequality in (7.66) and the definition of T, we
can find T € (Th, o0) so that the pair (Ag, By) is the L>°-null controllable at 7.
Thus, for each yy € X there is a control v € LOO(O,T; U) so that Q(T, Yo,v) = 0.
This, along with the definition of T°(yo) (see (1.17)), yields that Ty(yo) < T' < oo
for all yp € X.

In summary, we conclude that T°(g) € (0, 0).

8. Appendix.
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8.1. Appendix A. In Appendix A, we will use the Kalman controllability decom-
position to prove the following Proposition:

Proposition 12. For each pair of matrices (A, B) in R™*™ x (R™*™\ {0}) (with
n,m > 1), the corresponding decompositions (P1) and (P2) (given by (1.6) and
(1.9), respectively) hold.

Proof. Arbitrarily fix (A, B) € R™*™ x (R"*™\ {0}). Let R be given by (1.8). Since
B # 0, we have that

p:=dim R >0 and R\ {0} # 0. (8.1)
We now recall the Kalman controllability decomposition of (A, B) (see, for instance,
Lemma 3.3.3 and Lemma 3.3.4 in [38]): There exist K € GL(n), A; € RP*P,
Ay € RPX(n=p) - Ay € R(v=P)X(n=P) and By € RPX™ 50 that

K 'AK = ( “(1)1 ﬁz ) and K7'B = ( ]f)l ) (8.2)

where the pair (A1, By) is controllable, which is equivalent to
rank (By, A1By,--- , ATBy) = p. (8.3)

Notice that when p = n, the decomposition is trivial. In this case, Ay = A, By = B
and Ay and As are not there.

We organize the proof by two steps as follows:
Step 1. The proof of (P2)

For each zp € R™\ {0} and T' € (0,00), we define an affiliated minimal norm
control problem:

(NP)};’ZO Nk (T, zp) := inf{||v|| Lo 0, 7;rm) = 2(T; 20,v) = 0}, (8.4)
where Z(+; 20,v) is the solution to the equation:
A1 AQ B,
1) —
z(t)—( 0 A3>Z(t)+< 0 )v(t),0<t§T, (8.5)
2(0) = zo.

By the invertibility of K, one can easily show that when zg = K~ lyg, the problems
(NP)T% and (NP) ™ (given by (1.3) and (8.4), respectively) are equivalent, i.e.,
either they have the same minimal norm controls or both of them have no admissible
control. From (1.8), (8.2) and (8.3), it follows that

R = span (B, AB, -+ , A" B) = span K ( Bl’AlBl’d o ALB ) = K(R?), (8.6)
where the span of a matrix denotes the subspace generated by all columns of the
matrix, and RP is the following subspace:

RP := {(z1,22,++ ,zn) €ER™ : zpy =+ =2, =0}. (8.7)

By (8.1), we see that R?\ {0} # . From the equivalence of (N'P)T% and (N'P)==
(with zp = K 1yp), (8.6) and (1.9), we see that to prove (P2), it suffices to show
the following BBP decomposition for (NP) 2%

e When (T, 2) € (0,00) x (R?\ {0}), (NP)2* has the bang-bang

(Q2) property.
e When (T, z) € (0,00) x (R™\ RP), (./\/P)II;’ZO has no admissible control.
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To show the first conclusion in (Q2), we let

(T 20) € (0,00) x (RP\ {0}).
Write 2,1 for the first p components of zp. Since zy € @P, it follows that zg =
(20,1,0), if p < n; and zp = 29,1, if p = n. Thus, for each v € L>(0,T;R™), the
solution Z(+; zp, v) of the equation (8.5) satisfies that

5(t: 20,0) = (21(t; 20,1,v),0) for all ¢ €[0,7], when p <n,
40, %7 = 21(t; 201, v) for all ¢ € [0,T], when p = n,

where 21 (+; z0,1,v) solves the following equation:
Zi(t) = Alzl(t) + Blv(t), 0<t<T; 21(0) = 20,1

This, along with the controllability of (A;, By) (which follows from (8.3), see, for
instance, Theorem 3 on Page 89 in [38]), indicates that (VP)5* has an admissible
control. Then by a standard way (see for instance [7, Lemma 1.1]), we can deduce
that (N'P)%* has a minimal norm control.

Meanwhile, according to the Pontryagin maximum principle for (A P)ITgZO (see,
for instance, [6, Theorem 1.1.1]), there is 7y in RP \ {0} so that each minimal norm
control v* to (./\/P)z;’zo verifies that for a.e. t € (0,7),

(0" (1), B Ty, = (uw, Bjeti ("=,

max 88
R wllgm <N (T,20) (8.8)

Y

where Ny (T, zg) is given by (8.4). Besides, since n; # 0 and the function ¢ —
BieA1(T=1) ig real analytic over R, it follows from (8.3) that the following set

{te(0,7) : Bieti Ty, =0}

has measure zero. From this and (8.8), we see that (NP)ZI;’zO has the bang-bang
property. So the first conclusion in (Q2) is true.

To verify the second conclusion in (Q2), we first notice that when p = n, R" \]ﬁp
is empty. Thus, we can assume, without loss of generality, that p < n. Arbitrarily
fix (T,z9) € (0,00) x (R™\ RP). Then from the equation (8.5), we see that any
control v has no influence to the last (n — p) components of the solution 2(+; zg, v).
Thus, for each control v in L*(0,7;R™), the solution Z(-;zp,v) of the equation
(8.5) satisfies that 2(T'; z9,v) # 0. Hence, (N’P)fgzo has no admissible control.
This proves the second conclusion in (Q2). Hence, the decomposition (Q2) holds.
Consequently, (P2) is true.

Step 2. The proof of (P1)

For each zp € R" \ {0} and M € (0,00), we define an affiliated minimal time

control problem:

(TP)™  Te(M,z) :={t >0 : JueUM st. 2(f;29,u) =0}, (8.9)

where UM is given by (1.2), and z(; 29, u) is the solution to the equation:
Al A2 Bl
1) —
2'(t) = ( 0 A, ) z(t) + ( 0 u(t), t >0, (8.10)

Two observations are given in order: First, by the invertibility of K, one can easily
see that the problems (7P)M% and (TP)J\K/[’Z" (given by (1.1) and (8.9), respec-
tively) are equivalent, i.e., either they have the same minimal time controls or both
of them have no admissible control. Second, from (1.3), one can easily check that
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when yo € R\ {0}, the function N (-, yo) has the properties: it is decreasing over
(0,00); for each T € (0,00), N(T,yo) € (0,00). Hence, for each yo € R\ {0},
limp_, 0o N (T, yo) exists and is a finite and non-negative number. Meanwhile, by
the equivalence between (N'P)T%0 and (NP) R (with zg = K~ 'yq), it follows that
for each T > 0, N(T,yo) = Nk (T, zo). These imply that

Tlim N(T,y0) = Tlim N (T, z) < 0o when zp = K 'y and yo € R\ {0}(8.11)
bde el bade el

From the above-mentioned two observations, as well as (8.6) and (1.6), we find that
to prove (P1), it suffices to show the following BBP decomposition for (TP)AKLZO:

e For each (M, zy) € legp, (TP)AKLZO has the bang-bang property.
(Q1) e For each (M, z) € ((0,00) x (R"\ {0})) \ DE . (TP)}* has no
any admissible control .

Here,
Df, = {(M, 2) € (0,00) x (RP\ {0}) : M > Jim N (T, z0) (8.12)
—00
where RP and Nk (T, z) are given by (8.7) and (8.4), respectively. From (8.12),
(8.1), (1.7) and (8.11), one can easily check that
Dy, #0 and Dy # 0. (8.13)

Before proving the decomposition (Q1), we observe that by the first conclusion
in (Q2), we can use the same way used in the proof of [43, Proposition 4.4] to get

the following conclusion: When z, € R? \ {0},
(TP)3"* has a minimal time control <= oo > M > Aim Nk (T, 20). (8.14)
— o0
To show the first conclusion in (Q1), we let (M, zo) € legp. Then, it follows from

(8.14) and (8.12) that (TP)%’ZO has at least one minimal time control.

Write 2o, for the first p components of zy. Since zy € RP , it follows that zg =
(20,1,0) when p < n; while zp = 291 when p = n. Then by (8.10), we can easily
check that

2(t; 20,0) = {

where z1(+; 20,1, u) solves the following equation:

Zi(t) = Alzl(t) + Blu(t), 0<t< oo, 21(0) = 20,1-

(zl(t; 20,1, W), 0) for all £ >0, when p <mn,
z1(t; 201, u) for all ¢ >0, when p=n,

From this, we can use the Pontryagin maximum principle for (TP)%’ZO (see, for
instance, [6, Theorem 1.1.1]) to find 72 € RP \ {0} so that each minimal time
control u* to (TP)}*° verifies that for a.e. t € (0, Tk (M, 20)),
<u*(t)7BTeAI(TK(M,zo)*t)n2>Rm _ H ﬁnax <w’BikeA{(TK(M,zo)ft)n2>Rm. (815)
wl|lgm <M
Meanwhile, since n* # 0 and the function t — Bl*eAT(T_t) is real analytic over R,
the set {t € (0, Ti (M, z)) : Bied1(Tx(M:z0)=tp, — 0} has measure zero. This,
along with (8.15), yields that (’7'73)%’ZO has the bang-bang property. Hence, the
first conclusion in (Q1) is true.
To show the second conclusion in (Q1), we let

(M, 2) € ((0,00) x (R™\ {0})) \ Dy,



88 GENGSHENG WANG AND YUBIAO ZHANG

Then, there are only two possibilities on the pair (M, zg) as follows: First, (M, zp)
verifies that zg € RP \ {0} and 0 < M < limy—00 N (T, 20); Second, (M, z) €
(0,00) x (R™\ RP). In the first case, it follows from (8.14) that (TP)}"* has no
admissible control. In the second case, we have that p < n and the last (n — p)
components of zg are not all zero. Then by (8.10), we find that 2(T;z2p,u) # 0
for all u € L®°(R*;R™) and T € (0,00). This implies that (7P)* has no
admissible control. Hence, the second conclusion in (Q1) is also true. So the BBP
decomposition (Q1) holds. Consequently, (P1) stands.
In summary, we end the proof of (P1) and (P2), through using the Kalman
controllability decomposition.
O

8.2. Appendix B. In Appendix B, we will show that each pair of matrices (A, B)
in R™*™ x (R™*™ \ {0}) (with n,m > 1) holds the properties (H1) and (H2).

Proposition 13. Any pair of matrices (A, B) € R™*™ x (R™*™\ {0}) (with n,m >
1) satisfies (H1) (with po = 2) and (H2).

Proof. Arbitrarily fix (4, B) € R™*" x (R"*™\ {0}). We organize the proof by two
steps.

In Step 1, we show that (H1) (with py = 2) holds for the pair (A4, B). For this
purpose, we will show that (A, B) satisfies the conclusion (iii) of Lemma 2.3 (with
p2 = 2). When the later is done, it follows from Lemma 2.3 that (H1) (with pg = 2)
holds for the pair (A, B).

The remainder of this step is to show that (iii) of Lemma 2.3 (with py = 2) holds
for the pair (A, B). Arbitrarily fix 0 < t < T < co. Define the following two spaces:

0, = {B*eA*(T_')z|(0,t) € L*(0,t;R™) : z € R"}, with the norm | - ||z2(0,4rm),
and
Oy = {B*eA*(Tf')Z|(t,T) € L'(t,T;R™) : z € R"}, with the norm || - |l 21t 75mmy -
It is clear that they are finitely dimensional spaces. Then define a map F : Oy — Oy
by setting

]-'(B*eA*(T*')z|(t7T)) = B*eA*(T*')z|(07t) for each z € R"™. (8.16)
By the analyticity of the function ¢ — B*e?t, t € R, one can easily check that the
map F is well defined. It is clear that F is linear (from the finitely dimensional
space Oy to the finitely dimensional space O1). Thus, F is bounded. Then it follows
by (8.16) that there is a positive constant C(T',t) so that

1B*e T2 20,0mmy < C(T, 1)1 B* e T2 p1(s 7 mmy for each z € R™.
This, along with the definition of Y7 (see (1.20)), yields that
llgllz2(0,emm) < C(T, t)”g”Ll(t)T;Rvn) for each g € Yrp,

which leads to the conclusion (iii) of Lemma 2.3 (with py = 2).

In Step 2, we will prove that (H2) holds for the pair (A, B). To this end, we
first show that (H4) holds for the pair (A, B). In the finitely dimensional setting,
we have that for each z € R™ and each T > 0, the function E*\S/*(T — )z (defined
by (1.22)) is the same as B*eA (=) over [0,T]. From this and the analyticity of
the function ¢ — B*eA™ t € R, one can easily check that (H4) holds for the pair
(A, B). Next, we claim that for each T € (0, 00), the space Xt (defined by (1.21))
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is the same as Yp. In fact, it follows from (1.21) that for each T' > 0, Xr is a
finitely dimensional subspace in L'(0,7;R™). Thus, for each T > 0, X1 is closed
in L'(0,T;R™). Then we find from (1.20) that X7 = Yz for all T' € (0,00). From
this, it follows that the conditions (H4) and (H2) are the same. Therefore, (H2)
holds for the pair (A, B). This ends the proof of this proposition.

O

8.3. Appendix C. In Appendix C, we will explain that the BBP decompositions
(P1) and (P2) (given by (1.6) and (1.9), respectively) are consequences of Theorem
1.1 and Theorem 1.2. To see these, we need one lemma. In the proof of this lemma,
the following well known result (see, for instance, [38, Section 3.3, Chapetr 3]) is
used.

Lemma 8.1. Let (A, B) € R™*" x (R™*™\ {0}) (with n,m > 1). Let Ry and RY.
(with T > 0) be given respectively by (1.41) and (1.42). Let R be given by (1.8).
Define the following subspace

Cr:={yo € R" : Jve L*=0,T;R™) s.t. 11(T;y0,v) =0}, T>0, (8.17)
where §1(+; yo, v) denotes the solution of (1.4). Then it holds that
Cr=R=Ry=RY foral T>0.

The following lemma concern some special properties on the functions 7°(-) and
T*(-) (defined respectively by (1.17) and (1.18)).

Lemma 8.2. Let (4,B) € R™"™ x (R™*™\ {0}). Let R be given by (1.8). Then
the functions T°(-) and T*(-) (defined respectively by (1.17) and (1.18)) have the
following properties:

(i) For each yo € R, T°(yo) = 0, while for each yo € R\ R, T%(yo) = o00.

(ii) For each yo € R™\ {0}, N(T%(yo), yo) = oco.

(iii) For each yo € R™\ {0}, T (yo) = oco.

(iv) For each yo € R\ {0}, N(T(yo),v0) < 00.

Proof. (i) We first prove that T%(yo) = 0 for each yo € R. Arbitrarily fix yo €
R and t € (0,00). According to Lemma 8.1, there is v € L>°(0,%;R™) so that
1(f;90,v) = 0 From this and the definition of T°(yo) (see (1.17)), we deduce that
TO(yo) < t. Since { was arbitrarily taken from (0,00), it follows that T°(yo) = 0.

Next, we verify that T%(yg) = oo for each yo € R™ \ R. By contradiction,
suppose that T%(gy) < oo for some §y € R™ \ R. Then from the definition of
T°(gio) (see (1.17)), there would be ¢’ € (T°(fjo), 00) and & € L°°(0,#'; R™) so that
1 (5 90,) = 0. This, along with the definition of C; (given by (8.17) with T = #'),
implies that o € C;;. Then by Lemma 8.1, we find that gy € R, which contradicts
the assumption that g € R™\ R. This ends the proof of the conclusion (i).

(ii) Let yo € R™\ {0}. There are only two possibilities on yo: either yo € R\ {0}
or yo € R"\ R. In the case that yop € R\ {0}, we see from (i) of this lemma that
T%(yo) = 0. Then by (iv) of Lemma 3.3, we have that N(T%(yo),50) = N(0,y0) =
oo. In the case that yo € R™ \ R, we find from (i) of this lemma that T°(yo) = oo.
Then by (ii) of Lemma 3.4, it follows that N(T(yo),y0) = oc.

(iii) Let yo € R™\ {0}. Since {e**},cp+ has the backward uniqueness property,
we find from the definition of T (yo) (see (1.18)) that the conclusion (iii) holds.

(iv) Let yo € R\ {0}. Then it follows by the conclusion (i) of this lemma that
T%(yo) = 0. This, along with (v) of Lemma 3.4, yields that N (T (yo),90) < oc.
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In summary, we finish the proof of this lemma.
O

Proposition 14. For each pair (A, B) in R™*"™ x (R™*™\ {0}) (with n,m > 1),
the BBP decompositions (P1) and (P2) (given respectively by (1.6) and (1.9)), are
the consequences of Theorem 1.1 and Theorem 1.2 respectively.

Proof. Arbitrarily fix a pair (A, B) in R™*™ x (R™*™ \ {0}). By Proposition 13,
(A, B) satisfies (H1) and (H2). Then all conclusions in Theorem 1.1 and Theo-

rem 1.2 hold. By (i)-(iii) of Lemma 8.2, (vi) of Lemma 3.3, the first conclusion in
Theorem 1.1 and the first conclusion in Theorem 1.2, we can easily check that

W=W3oUWs4, V="V31UV32UV33;

Wso=TR\{0}, W4 =R"\R, V39 ="Dhpp, V31UV33 =21\ Dppp.
(Here, R, Dy and X; are respectively given by (1.8), (1.7) and (1.5)). These, along
with the conclusions (iii) and (iv) in Theorem 1.1 and the conclusions (ii) and (v)
in Theorem 1.2, yields that the BBP decompositions (P1) and (P2) holds for the
pair (4, B). This ends the proof.

O

8.4. Appendix D. In Appendix D, we provide the proofs of Proposition 1 and
Lemma 2.1, respectively.

Proof of Proposition 1. Arbitrarily fix T € (0,00), v € L>(0,T;U) and z € D(A*).
Since X_; is the dual of D(A*) with respect to the pivot space X, we have that

/ S_1(T — t)Bu(t) dt, z) </ S_1(T —t)Bo(t )d?f,z>X_1 D(A%)” (8.18)

Because S_1(T' — -)Bu(-) € Ll(O,T; X_1), we have that

T T
</0 S_1(T —t)Bo(t)dt z>X DA™ /0 (S_1(T — t)Bu(t),2)x_, pea~) dt.
(8.19)
We next claim that
(S_1)"(T —t)z=8"(T —t)z in D(A"), forall t€[0,T)]. (8.20)
Indeed, since {S_1(t) };cr+ is the extension of {S(t) };cr+ on X _1, and because X _1
is the dual of D(A*) with respect to the pivot space X , we find that for each s > 0
and w € X,
(S%1(s)z,w)pany,x, = (2 S-1(s)w)pas),x_, = (2, 5(s)w)p(as),x_,
(2, S(s)w)x = (S*(s)z,w)x = (5"(s)z, w)p(as),x_,

Since X is dense in X _1, the above implies that for all s > 0 and w € X_;,

<Si1(5)zaw>D(A*),X,1 = (S*(S)Zawb(m),x,l-
This leads to (8.20). From (8.20), we find that

T T
/O (S_1(T—)Bu(t), 2)x_, sy dt = /0 (o(t), B*S*(T—t)2)x_, peany db. (8.21)

Now, (2.1) follows from (8.18), (8.19) and (8.21) immediately. This ends the
proof of Proposition 1.
O
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Proof of Lemma 2.1. Arbitrarily fix 0 < T < oo and z € D(A*). Then it follows
from (2.1) that

1B°S°(T = Yellzzo ) = (o [ 5ar—Buyar)

HuHLZ(O T;U)<1

sup a1l /0 ST — ) Bu dt] .

HUHL2(0,T;U)§1

which, along with (1.10), leads to (2.2). This ends the proof of Lemma 2.1.

IN

8.5. Appendix E. In Appendix E, we give the proof of Lemma 3.1.

Proof of Lemma 3.1. Suppose that (3.1) holds for some {T},}22_,, T in [0, 00), some
{un}se, and @ in L2(RT;U). Arbitrarily fix a yo € X. We will prove (3.2) by two
steps as follows.

Step 1. To show that there is a positive constant C' so that

|y(Tns yo, un)||x < C forall n (8.22)

We first claim that there is a positive constant C; so that for each s € (0, T+ 1)
and each u, € L(0, s;U),

H/ (s — 7)Bus(T )dTHX < Chllus22(0,5:0)- (8.23)

To this end, we arbitrarily fix s € (0,7 + 1) and u, € L(0,s;U). Let

0, €(0,T+1— s,
us(t+s—-T-1), te(T+1-sT+1).

Then, we have that ||”u37s||L2(o,f+1;U) = |lusl|22(0,5;0) and

Uy, s(t) =

T+1 . s
/ S_1(T+1—7)Bu,, s(r)dr = / S_1(s = 7)Bus(7) dr.
0 0

These, along with (1.10), yield that

s f-{-l N
H/o S,l(s—T)Bus(T)dTHX = ||/O S,l(T—l—l—T)Bvus,s(T)dTHX

ClHUus,S||L2(0,f+1;U) = Cl||u8||L2(07s;U)7

IN

where Cy := Cy(T + 1) is given by (1.10). Hence, (8.23) is true.
Next, it follows from (1.14) that

Y(Tn; Yo, un) = n)Y0 +/ S_q —t)Buy,(t)dt for all n € NT. (8.24)

Because of the first convergence in (3.1), we can assume, without loss of generality,

that T, <T + 1 for all n. This, along with (8.23) and (8.24), yields that

ly(Tn;yo,un)llx < sup IS@)llzex,x) lollx + Crllunllz20,7,50) for all n(8.25)
0<t<T+1

Meanwhile, it follows from the second convergence in (3.1) that there is a C > 0so

that |u,||z2w+,0y < C for all n, which, along with (8.25), implies (8.22).

Step 2. To show (5.2)
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Arbitrarily fix a z € D(A*). Define two functions ¢7Z(-) and 122() over (—=1,T+1)
in the following manners:

W2 (t) =0 for all t € (T,,T+1) and ¢Z(t) := B*S*(T, —t)z for all t € (—1,T,];

P*(t) =0 forall t € (T,T +1) and ¢*(t) := B*S*(T — t)z for all ¢t € (—1,7].
We claim that for a.e. t € (fl,er 1),
lim 7 () = ¥*(t) in U. (8.26)

n—oo

In fact, by the first convergence in (3.1), we see that for each ¢t € (f, T+ 1), there
is N1(t) > 1 so that ¢t € (T,,,T + 1) for all n > Ny(t). Thus, we see that for each
te (T, T+1),

W2 (t) — *(t) = 0 for all n > Ny(t). (8.27)

Meanwhile, given ¢ € (—1,7), there is Ny(t) > 1 so that t € (—1,T},) for all
n > No(t). This yields that for each n > Ny(t),

50 = Ol < 1B lewano (IS* (T — 1)z = §°(F ~ 1)z]x
S (T, — ) A* 2 — S*(T — t)A*z||X>. (8.28)

(Here, we used that B* € L(D(A*),U).) Since {S*(¢)}ier+ is a Cp-semigroup in
X, it follows from (8.28) that for each t € (—1,7"), ¥Z(t) — ¢*(t) in U, as n — cc.
This, along with (8.27), leads to (8.26).

Next, since B* € L(D(A*),U) and 0 < T, < T+ 1, n € NT, one can easily check
that for alln € N* and t € (—1,7 + 1),

lvnllu < IB*lz(pax),vy max  [|S*(s)llzix,x) 12l pax)- (8.29)
0<s<T+2

By (8.26) and (8.29), we can use the Lebesgue dominated convergence theorem to
get that ¢2 — * in L?(—1,T + 1;U), as n — oo. This, along with (1.13), yields
that for each z € D(A*),

~

W(Tn; Y0, un), 2)x — (Y(T;90, 1), 2)x, as n — 0. (8.30)

Since D(A*) is dense in X, (3.2) follows from (8.30) at once. This ends the proof
of Lemma 3.1.
O

8.6. Appendix F. In Appendix F, we provide the proof of Proposition 8.

Proof of Proposition § . We divide the proof into the following several steps.

Step 1. To show that (i)=(ii)

Suppose that (i) holds. Let T' € (0,00) and let Cy(T") be given by (6.68). Arbi-
trarily fix yo € X. Define a map Fr,, : X7 — R (where X is given by (1.21)) in
the following manner:

Fryo (B*S*(T — )z|(0,1)) = (90, S*(T)z)x for each z € D(A"). (8.31)
We first claim that Fr,, is well defined. In fact, if
21,22 € D(AY) s.t. B*S*(T — )z = B*S*(T — -)z2 over (0,7),
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then by (6.68), it follows that S*(T")z1 = S*(T')z2 in X. Hence, Fr y, is well defined.
Besides, one can easily check that Fr ,, is linear. By (6.68), we can also find that
| P10 (B*S™(T = )2l(0,m))| < C1(D)lyoll x[|1B*S*(T = )zl 1o,mvy, V2 € D(A”).
From this, we see that

1F 790l cxrmy) < C1(T)llyollx- (8.32)
Since X7 is a subspace of L'(0,T;U) (see (1.20)), we can apply the Hahn-Banach

theorem to find a functional Fr,, € (L'(0,T;U))* so that

1Fzg0llexr ) = 1FTgoll i omoyy and Fryy(g) = Fry,(g) forall g € Xr.

From these, we can apply the Riesz representation theorem to find a function v €
L>(0,T;U) so that

1 F 7,90l 2 (x28) = V]l Lo 0,750 (8.33)
and so that

Fry,(9) = /o (g(t),v(t))rdt forall g€ Xp. (8.34)

From (8.31), (8.34), (1.21) and (2.1) in Proposition 1, we see that for each z €
D(A*),

T
(S(T)yo, 2)x Fryo (B*S(T = )zl0,1)) :/0 (v(t), B*S™(T = t)z),, dt

T
_ </0 S_4(T — )Bo(t)dt, z) .

This, along with (1.14), indicates that (§(T;yo, —v),z)x = 0 for all z € D(A*).
Since D(A*) is dense in X, the above leads to that §(T;yo, —v) = 0. Meanwhile, it
follows from (8.33) and (8.32) that [|v|| £ (0, 7;0) < C1(T)|lyollx. From these, (6.69)
(with Co(T') = C1(T)) follows at once.

Step 2. To prove that (ii)= (i)
Suppose that (ii) holds. Let T" € (0, 00) and let C3(T') be given by (ii). Arbitrarily
fix yo € X. By (ii), there is v € L>°(0,T; U) so that

9(T;y0,v) =0 and |[v][r=(0,r0) < C2(T)]|yollx- (8.35)
By the first equality in (8.35) and (1.13), we find that

(Yo, S*(T)z)x = —/0 (v(t), B*S*(T — t)z)y dt for all z € D(A™).

This, along with the second inequality in (8.35), yields that
(Y0, 8™ (T)z)x < Co(T)lyollx || B*S™(T — -)z||Lr(0,1;uy for all z € D(A").
Since yo was arbitrarily taken from X, the above implies that for all z € D(A*),

{yo, 5™(T)z)

IS*(T)z]|x = sup = < Cy(D)IB*SHT = )zl 1,110,

wex\{op  [%ollx
which leads to (6.68) with C1(T") = Ca(T).
Step 3. To show that (i) (iii)



94 GENGSHENG WANG AND YUBIAO ZHANG

It is clear that (ii)=-(iii). We now show the reverse. Suppose that (iii) holds.
Let T' € (0,00). Define a linear operator Gy : L*°(0,T;U) — X by setting

T
Gr(v) = / S_1(T —t)Bu(t)dt for each v € L*=(0,T;U). (8.36)
0

Then it follows from (1.10) that Gr is bounded. By (iii), we know that for each
Yo € X, there is v € L>(0,T;U) so that §(T;yo,v) = 0. This, along with (1.14),
yields that

T
0=S(T)yo + /O S_1(T — t)Bo(t) dt. (8.37)

From (8.36) and (8.37), we see that
Range S(T) C Range Gr. (8.38)
Write Qr for the quotient space of L°°(0,T;U) with respect to Ker Gr, i.e.,
Qr :=L>(0,T;U)/KerGr.

Let wp : L*(0,T;U) — Qr be the quotient map. Then 7p is surjective and it
holds that

|77 ()|l @r = inf {|lwl| vy : wEv+KerGr} for each ve L>(0,T;U).
(8.39)
Define a map Gr : Q7 — X in the following manner:
Gr(mr(v)) = Gr(v) for each 77 (v) € Qr. (8.40)
One can easily check that Gr is linear and bounded. By (8.40) and (8.38), we see
that Gr is injective and that
Range S(T) C Range Gr.
From these, we find that given yo € X, there is a unique 77 (vy,) € Qr so that

S(T)yo = Gr (77 (vy,))- (8.41)
We next define another map 77 : X — Qr by
Tr(yo) = mr(vy,) for each yo € X. (8.42)

One can easily check that 77 is well defined and linear. We will use the closed graph
theorem to show that 77 is bounded. For this purpose, we let {y,} C X satisfy
that

Yn — 9 in X and Tr(yn) = h in Qr, as n — oo. (8.43)
Because Gp and S(T') are linear and bounded, it follows from (8.43), (8.42) and
(8.41) that
Gr(h) = lim Gr(Tr(ya)) = lim Gr(mr(vy,)) = lim S(T)y, = S(T)j. (8.44)
Meanwhile, by (8.41) and (8.42), we find that S(T)j = Gr (m7(vy)) = Gr (Tr(9)).
This, together with (8.44), yields that Gr(h) = Gr (7r(9)), which, together with
the injectivity of Gz, indicates that h = T7(j). So the graph of Tr is closed. Now
we can apply the closed graph theorem to see that 71 is bounded. Hence, there is

a constant C'(T) > 0 so that ||T7(yo)|lor < C(T)|lyol|x for all yo € X. This, along
with (8.42), indicates that

177 (vye)ll@r < C(T)[lyollx for each yo € X. (8.45)
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Meanwhile, by (8.39), we see that for each yo € X, there is v; so that

o)y € vy +KerGp and [0 | s=o.1:0) < 2l7r(oy)llar- (8.46)
From (8.41), (8.40), (8.46) and (8.45) , we find that for each yo € X, there is a
control vy € L*°(0,T;U) so that
S(T)yo = Gr(vy,) and |[lvy, llL~0r:v) < 2C(T)llyol x- (8.47)
Then by (1.14), (8.36) and (8.47), we see that for each yo € X, there is a control
vy, € L>(0,T;U) so that
9(T5 90, —vy,) = 0 and vy, [l 0,0y < 2C(T)llyollx-
These lead to (6.69) with C2(T") = 2C(T).

Step 4. About the constants C1(T) and Co(T)

From the proofs in Step 1-Step 3, we find that the constants Cy(T) in (6.68)
and C3(T) in (6.69) can be taken as the same number, provided that one of the
conclusions (i)-(iii) holds.

In summary, we end the proof of this proposition.

8.7. Appendix G. In Appendix G, we provide the proof of Lemma 7.3.

Proof of Lemma 7.3. Recall P is given by (7.20), where A := {\;}52, C R* satisfies
(7.14). Arbitrarily fix 6y € (0,%). By [17, Proposition 4.5], there is a sequence
{rn}oz, C (0,00) so that

rn /0o and li_>m - log |[W (rne??)| = 0 uniformly in |6 < 6, (8.48)
n o
where W () is given by
{ W) =Tjsy 06228 N e Ct,

14+A/ Ay’ (8.49)

. A—1] X\ . .
with 0 = 35 Qg AL A\ £ 1 G =1 if A = 1.

(Notice that in [17], A; was a complex number, while in the current case, we take it
as a real number. So A\; = ); in the current case. To avoid the inconformity, we still
use the notation A;.) Since W () = 0 for each k > 1, and because of (7.14) and
(8.48), we can select a subsequence from {r,}>2; (denoted in the same manner,)
having two properties as follows: First, {\;}32; ({rn}n2; = 0. Second, for each
n € N*, the set

Gn = {2; = T@ie g < ‘Z| < Tn+1, |0| < 90}

contains at least an element of A := {\;}32,. The sequence {G,},>1 and the
function W(-), as well as their properties, will be used later.
Let J be a function defined by

_ W +
J(/\)—(1+)\)27 AeC™. (8.50)
For each j > 1, define a function J; by
J(A)

J;(\) = , AeC*. (8.51)

J' (AN =A))



96 GENGSHENG WANG AND YUBIAO ZHANG

According to [17, Theorem 4.1] (see also the proof of [17, Theorem 4.1]), there
exists a biorthogonal family {g;};>1 to {e~**} in L2(RT;C) so that the Laplace
transform of g; is J; for each j € NT.

To prove the desired inequality (7.22), we will build up two inequalities for p € P.
The first one reads: For each € > 0, there is C'(y,&) > 0 so that for each p € P,

p(2)] < C(By, e)esPaleosboRez| ) L by o) for all z € S g,, (8.52)

where S; g, is given by (7.21). The second one reads: For each T' € (0, c0), there
exists C := C(T) > 0 so that

Hp||L1(R+;C) < CllpHLl(O,T;C) for all p € P. (8.53)

We now show (8.52). Let p € P. By (7.20), we can express p in the following
manner:

N
p(z) = ch(f)‘jz, z € C*t, with N € Nt and {cj}évzl cC. (8.54)
j=1
Since each {G,},>1 contains at least an element of A := {;}32; and \; oo,

there is an m := m(N) € N* so that {);}}_; C U~ Gx. This, along with (8.54),
yields that

m m

p(z) = Z Z cje N = ng(z), zecCt. (8.55)

k=1X;€Gy k=1

Meanwhile, since {g;}32; is a biorthogonal family to {e= Nt} in L2(R*; C), it follows
from (8.54) that

; :/O p(t)7,(t) dt, with 1< < N.

From this and (8.55), we have that for each k € {1,--- ,m},

91(2) /Ooop(t)( > qj(t)e*W) dt, ze€ C*.

Aj €Gy

This yields that for each k € {1,--- ,m} and each z € CT,

l9x(2)| < P2 ®+:0) Gk (- 2) || oo (m ) - (8.56)
where
Gilt,z) = > q;(t)e™™*, teR". (8.57)
)\jEGk

Arbitrarily fix a k € {1,--- ,m}. Since for each j € N, the Laplace transform of
@; is J;, we see that for each z € C*, the Laplace transform of Gy (t, z) is given by

/ Gi(t,2)e M dt = Z Ji(Ne M7 AeCt, (8.58)
0 )\]‘GG)C

Since ¢;(t) = 0 for all t < 0 and j € NT, we see from (8.57) that for each z € C*,
Gr(t,z) = 0 for all t < 0. This, along with (8.58), yields that for each z € C*, the
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%% 1 € R, is the Fourier transform of Gy (-, z). Then
by the inverse Fourler transform, we see that for each z € CT,

function 7 — Zk ca, JiliT)e”

1 N e
. o . = . TEAPIN | ‘
1Gk (-5 2)l oo rt50) sup 27T/ (AEG J;(iT)e )e T
< /) E Jj(iT)e %% | dr. (8.59)

)\ €Gy
Meanwhile, by (8.50), (8.49) and (7.20), we find that each A; is a simple root of J.
Thus, by (8.51), we can use the residue theorem to see that
—¢2
e

(it e—Ajz _ J(ZT)
2, i i o, TEGT ) (500

where T’ denotes the boundary of Gj. From (8.60) and (8.59), it follows that for
each k € {1...,m} and each z € C™,

Gk (- 2)l| e ®ec) < 4”2/)/1“k i) dg‘dr
|J||L1(i]R'(C)/ e 52
: d 61
2, NG |dg], (8.61)

where p = r151>ir11d(iR, T'x) > 0. From (8.55), (8.56) and (8.61), we get that

(AP
Ip(2)] < 4L7TQR Il L1 (r+;0) Z/ ‘7’|d§| VzeCt. (8.62)

Starting from (8.62), using the same way as that used in the proof of estimating
(4.12) in [17, Lemma 4.6] (see [17, Pages 2113-2115]), we can get the inequality
(8.52).

Now we prove the second inequality (8.53). By contradiction, suppose that it
were not true. Then there would be a T > 0 and a sequence {p, }52; C P so that

Hpn||L1(R+;c) =1 and |pnllri0,rc) < 1/n for each n > 1. (8.63)
Arbitrarily fix eg € (0,7'/2). Then choose a sg € (T, 00) so that

/ (00, 20)e—EMIeostot gy < 172, (8.64)
where C(fy,¢e0) is given by (8.52). From (8.52), we find that for all m,n € N7,

/w|<pn—pm><t>|dt < /S°|<pn—pm><t>|dt+

0 0

| (e i [7 1, = p)o)ds)
0

50

This, along with (8.64), implies that for all m,n € N*,

/ Tl — (@) < 2 / o — D) (1) . (8.65)
0 0

Two observations are given in order: First, by (8.52) and the first equality in (8.63),
we find that {{|ps[lc(s., 4,.c)}ne1 s bounded. Second, each p, (with n € N¥) is

analytic over Se, g,. From these observations, we can use the Montel theorem to
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find a subsequence {p,, }?2, of {p,}>2, and an analytic function p over S,
that

0,60 SO

Dn, — D uniformly on each compact set of S¢,4,, as k — oo. (8.66)

Since 0 < 2¢g < T < s, it follows from (8.66) and the second inequality in (8.63)
that

Pn, — 0 in L'(0,T;C) and p,, —p in L'(T,s0;C), as k — oo.
These, along with (8.65), (8.66) and the first equality in (8.63), indicates that

19l 21 (7,0050) = 1 and [|p[| L1220, 7,0) = 0. (8.67)

Since p is analytic over Sg, g,, from the second assertion in (8.67), we get that p = 0
over Sg,0,- This contradicts the first assertion in (8.67). So (8.53) is true.

Finally, the desired inequality (7.22) follows from (8.52) and (8.53) at once. This
ends the proof of Lemma 7.3.
O
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