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Abstract

Convolutional Neural Network (CNN) has been an important breakthrough
in pattern recognition in recent years. Nevertheless, with the increase in
complexity, CNN becomes more difficult to train. To alleviate the problem
of training difficulties, we propose a novel nonlinear unit, called Nonlinear
Competitive Unit (NCU). By comparing the elements from different net-
work layers and selecting the larger signals element-wisely, it can not only
strengthen feature propagation but also accelerate the convergence of CNN.
This unit can be regarded as a feature fusion method as well as a kind of
activation function. We evaluate our NCU-based models for face verification
task and visual classification task on four benchmark datasets. The exper-
imental results demonstrate the superior performance of our models over
many state-of-the-art methods, which shows the advantage and potential of
the NCU in networks.
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1. Introduction

Since AlexNet [1] was introduced by Hinton in 2012, convolutional neural
network (CNN) has received extensive attention. A number of vision tasks,
such as image classification [2, 3|, face recognition [4, 5] and face verification
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6], have benefited from the robust and discriminative representation learnt
via CNN models [7, 8, 9, 5, 10, 11, 12]. Compared with traditional feature
extraction methods [13, 14], CNN models mainly take advantage of the large-
scale training data and the end to end learning framework. In recent years,
a large number of skills have been introduced to promote the performance of
CNN. They are mainly along two directions: a) presenting effective training
strategies, for example, the well-designed initialization strategies [2] and ef-
fective regularization techniques [15]; b) creating more effective models, such
as increasing the depth of the CNNs [6, 11, 12], expanding the width [16]
and the use of nonlinear activation functions [17, 18, 19].

Depth and width are two crucial components for the diversification of net-
work architecture. Nevertheless, training deep or wide networks would also
suffer several difficulties, such as time consuming and exploding/vanishing
gradient or degradation. Actually, it needs lots of effects to learn a deep
hierarchical structure effectively and efficiently.

In some works, instead of drawing the representational power from ex-
tremely deep or wide architecture, some researchers try their best to explore
different connectivity patterns. GoogLeNet [8] concatenates the outputs of
several subnetworks with different length, which can be seen as a feature
fusion method. Highway Networks [20] provide a means, the shortcut con-
nection along with gating functions [21], to effectively train CNN models
with more than 100 layers. Indeed, shortcut connection [22], a feature fusion
method, has been studied for a long time in many works [22, 23|. Residual
Networks (ResNets) further support the point that shortcut connection is a
key factor that eases the training of deep CNN models. Instead of except-
ing each stacked layers directly fit a desired underlying mapping, ResNets
explicitly generate the residual mapping.

In this paper, we propose a new nonlinear unit, named Nonlinear Com-
petitive Unit (NCU). It can be regarded as a feature fusion method or an
activation function. As a feature fusion method, the NCU aims at compet-
ing the intermediate representations of subnetworks, where the fused output
serves as the input of the remaining part of network. From the view of activa-
tion function, the most popular activation function is ReLU [17], which keeps
the identity of positive elements and zeros otherwise. Although it overcomes
the problem of vanishing gradient, it might loss some information, especially
in the first several layers. In the NCU, the activation threshold is learn-
t, which means one of the competitive representations can act as the base
threshold. Compared with ReLLU, the NCU’s final result holds the reasonable



activation signals but with a certain of sparsity lost. Another similar unit—
the maxout [24] can also hold a good fitting ability by adaptively adjusting
the activation threshold. The difference between the NCU and maxout are:

e maxout feature map is constructed by taking the maximum across k
affine feature map with a large number of parameters, while our NCU
is parameter-free.

e maxout is used in conjunction with dropout, and the NCU can be used
independently.

The main contributions of this paper are three fold:

1. A novel nonlinear unit is proposed, named Nonlinear Competitive U-
nit, which can be regarded as a feature fusion method as well as an
activation function.

2. Compared with the benchmark network models, the convergence speed
of our model is improved accompanied with higher stability.

3. The experiments validate that NCU-based models can effectively boost
the performance in both face verification task and visual classification
task.

The remainder of the paper is organized as follows. In section 2, we first
give a brief introduction of residual block, then present a clear definition
of the NCU and study a competitive structure, i.e. competitive block. We
provide the experimental setups and results in section 3. Finally, the paper
is concluded in section 4.

2. Nonlinear Competitive Unit

The intuitive inspiration for our nonlinear competitive unit comes from
the residual block of ResNets [12]. In this section, the residual block, the
proposed nonlinear competitive unit and the corresponding competitive block
will be illustrated.

2.1. Residual Block

ResNets improve the classification performance significantly by construct-
ing many stacked residual blocks. Here, set the input of a residual block as



x, the basic mapping as H(x), and the output F'(x) satisfies the following
equation:
P(x) = H(x) + x. 1)

the detailed operation about k-th residual block in ResNet can be written as

follows:
Xp+1 = h(f (%, Wii) + Wexg), 1> 1, (2)

where x; and x;,; are the input and output of the k-th residual block,
respectively; h is the activation function ReLU, which is of great essential to
the successes of CNN models; the function f represents the residual mapping;
W, is the weight parameter associated with the k-th residual block, where
parameter ¢ represents the number of weight layer that commonly designed
as 2 or 3; Wy is a linear projection by the shortcut connections to match the
dimension.

g

Figure 1: Residual Block. Longer thick arrow indicates a more direct way for propagating
information, which adds neither extra parameter nor computational complexity. Two
weight layers represent two convolution operations.

Especially, when x;, and x;1 share the same size, the shortcut connection
simply performs identity mapping, which adds neither extra parameter nor
computational complexity. In [25], it shows that not only the use of identity
mapping is sufficient to address the degradation problem but also achieve the
fastest error reduction and lowest training loss among all variants, and thus
we don’t use W, when the dimensions of x; and f are equal. Without loss of
generality, the activation functions Batch Normalization(BN) [19] and ReLU
are inserted immediately after the weight layer as post-activation. In contrast
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to this conventional wisdom, BN and ReLU are put in front of weight layer
in [25], called pre-activation.

The architecture of residual block about the number of weight layers and
the size of convolutional kernel size have been discussed in [26]. Fig.1 shows
the rough structure of basic block B(3,3) - residual block with two consecutive
3 x 3 convolutions.

2.2. Nonlinear Competitive Unit

In this part, we propose our Nonlinear Competitive Unit (NCU), which
is designed to reformulate the output as a competitive result of the inputs
specifically. For two inputs Iy, I, € RP*?"  the output O € RP*?*" satisfies
the equation:

O:]1®IQ, (3>

where (©) can be described as follows:
O (i j) := max(Iy (i, j), 150, 7)) (4)

where 1 <k <n,1<i<p, 1 <j<gq. According to Eq. (4), we can obtain
a representation with the same size of the inputs, while the elements are the
larger ones between two inputs. For a specified k, the structure of the NCU
can be showed in Fig.2(a).

As described above, the NCU can be considered as not only a feature
fusion method, but also an activation function. And the fusion result or
activate value is the competitive winner, i.e. the larger element in the same
location.

To verify its advantage in extracting discriminative representation, we
implement a specific framework of the NCU called competitive block in the
network, as shown in Fig.2(b). Similar to residual block, the competitive
block can be given in a general form:

Xer1 = h(f (xk, W) (D) Woxy,), i>1 (5)

where x; and X, are the input and the output of k-th competitive block.
It can be found that the structure of competitive block is similar to resid-

ual block except the operation on layer’s output. Actually, residual block

learns residual mapping while competitive block learns competitive mapping.
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Figure 2: The structure of the NCU and the competitive block. (a) NCU. I(i,5) and
I5(i, j) come from different feature layers, respectively. O(i, j) is the corresponding output.
(b) Competitive block. The competitive framework of the NCU.

3. Experiments

We evaluate the performance of the NCU in two typical vision application-
s: face verification and visual classification. In face verification, we evaluate
our NCU-based models on two widely used datasets, i.e. Labeled Faces in
the Wild (LFW) [27] and YouTube Faces (YTF) [28]. In visual classification,
we use the standard benchmark datasets: MNIST [29] and CIFAR-10 [30].

3.1. Datasets

e CASIA-WebFace contains about 500,000 images of 10,575 subjects
and all face images are proposed by face detection, face landmarking
and alignment.

e LFW provides a set of labeled face images spanning the range of con-
ditions typically encountered by people in daily life, and it contains
13,233 web-collected images from 5749 different identities. The dataset
has been organized into two “Views” [27], we select View 2 to evaluate
the performance of our models, and use the training part of View 1 to
learn covariance matrix for PCA.

e YTF is a video dataset. The quality of images is much worse than web
photos due to motion blur and high compression ratio. In experiments,



we follow the unrestricted labeled outside data protocol and report the
results on 5000 video pairs.

e MNIST has a training set of 60k examples and a test set of 10k exam-
ples. The digits have been size-normalized and centered as a 28 x 28
image.

e CIFAR-10 consists of 60k 32 x 32 color images from 10 classes, with
6k images per class. The dataset is divided into five training batches
and one test batch, each with 10k images. The test batch contains
exactly 1k randomly selected images from each class, and the training
batches contain the remaining images in random order.

3.2. Face Verification

For face verification task, the protocol we use to build the training dataset
(CASIA-WebFace) is:

e all face images are aligned by the proposed algorithm [31] and tailored
into 256 x 256;

e the false positive images (i.e. images not properly clipped) are discard-
ed conservatively;

e in order to data augmentation, each tailored image is flipped horizon-
tally, then the images are randomly cropped from the original image
and the flipped one, rather than heavy data augmentation as presented
in [32].

In the testing stage, all the images in LFW and YTF datasets are dealt
with the same protocol as the training dataset.

3.2.1. Implementation Details

The hyperparameters’ setup and the optimal configuration are described
in this part.

Unless explicitly stated, otherwise models are trained using the stochastic
gradient descent algorithm [33] with a mini-batch size of 100. The learning
rate is initialized with 0.05 and multiplied by 0.5 after every 20,000 itera-
tions. The momentum and weight decay are designed as 0.9 and 0.0001,
respectively. The weights in networks are initialized from zero-mean gaus-
sian distribution while the bias terms are initialized with zero. We implement
our system on widely used Caffe infrastructure [34].
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The structure of our baseline (BaseNet) is similar with the 18-layer ResNet
with pre-activation residual blocks. Specifically, we incorporate an additional
fully-connected layer to map a representation space of dimension 1024 before
the last softmax regression classifier. Comp-m is the network that replaces
the last m residual block of baseline into competitive block, and retains the
number of parameters and the layers. The architectures of networks are
shown in Table 1. The dimension of input is 224 x 224 x 3. There is an ini-
tial convolutional layer followed by a 3 x 3 max pooling and 4 blocks conv-k
(k=2,3,4,5). The size of filters in each block is 3 x 3. In face verification
stage, the deep representations are taken from the output of the first inner
product layer. And we choose cosine distance as the discriminant standard.

layer name output size BaseNet Comp-2 Comp-4 Comp-6 Comp-8
convl 109 x 109 7x 7,64 stride2

max pool 55 x 55 3 x 3, stride2
conv-2  55x55  B(3,3)x2,64 B(3,3)x2,64 B(3,3) x264 B(33) x264 C(3,3)x264
conv-3  28x28 B(3,3)x 2,128 B(3,3) x 2,128 B(3,3) x 2,128 C(3,3) x 2,128 C(3,3) x 2,128
conv-d  1dx 14 B(3,3) x 2,256 B(3,3) x 2,256 C(3,3) x 2,256 C(3,3) x 2,256 C(3,3) x 2,256
conv-5 Tx7  B(3,3)x2,512 C(3,3)x2,512 C(3,3)x2,512 C(3,3) x 2,512 C(3,3) x 2,512

1x1 avg — pooling ,1024 — fe, softmax

Table 1: The architecture of networks. B(3,3) x 2 denotes two cascaded residual block,
and C(3,3) x 2 denotes two cascaded competitive block.

3.2.2. Test on LFW and YTF
In this part, the experiments are conducted as following methods:

e A: DR + Cosine
e B: DR + PCA1+ Cosine
e C: DR + PCA2 + Cosine

DR is an abbreviation of deep representation extracted by deep models.
PCA1 means covariance matrix directly learned by extracted features. P-
CA2 means that covariance matrix is learned by the View1’s training part
of LFW in the first step, and then the performance is evaluated on View 2.
Here we set the ratio of PCA as 0.98.

Fig.3 shows convergence curves of BaseNet, Comp-2, Comp-4, Comp-6
and Comp-8 networks. We can find that the networks with competitive block
have lower training error and higher accuracy accompanied by a faster and
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more stable convergence. During the training process, the training speeds of
BaseNet, Comp-2, Comp-4, Comp-6 and Comp-8 are recorded, respectively,
which is 25.2s, 17.8s, 19.2s, 20.0s, 21.8s for one training iteration, indicating
that competitive block is easier to be optimized than residual block.

Loss
Accuracy (%)

o 5 10 15 [ 5 10 15
Iterations «10% Iterations % 10°

(a) Training loss (b) Training Accuracy

Figure 3: Training on CASIA-Webface. (a)The training error change along the iterations.
(b)The change of training accuracies.

We investigate the performance related to k, which represents the number
of competitive block in networks. Here we select the representative structures
Comp-k (k = 2,4,6,8). More intuitively, the verification accuracies of these
models on LFW are illustrated in the form of bar graphs in Fig.4. The
horizontal axis shows different feature extraction methods. The blue bars
represent the verification results of the BaseNet. From the verification accu-
racies on LEW| the following conclusions can be obtained: a) For each test
methods (A, B or C), the NCU-based models always achieve the highest ac-
curacy. For method A, Comp-6 achieves an accuracy rate of 97.22%, about
0.9% higher than BaseNet. The accuracy of each NCU-based models hold
higher test accuracies than BaseNet for method C; b) As noticed, k = 6
turns out to be the best performance. It is probably dues to the higher level
feature competition in network layer has a better capacity to represent the
variations of the complex face images.

In the following experiments, the network models are trained with the
joint supervision of softmax and center loss [35]. The experimental result-
s are shown in Table 2. CompNet-4 represents the network that replaces
the last 4 residual blocks of ResNet18 (18 layer ResNet with an additional
1024 fully-connected layer) as competitive blocks. CenterNet is the network
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Figure 4: Face verification accuracies on LFW dataset. The horizontal axis shows different
feature extraction methods. Particularly, “fc1” represents the output features of the first
inner product layer. “pool2” is the input feature of the layer “fc1”. “fcl+fcl” refers to
the sum of the feature “fc1” and its corresponding horizontal mirror element-wisely.

Datasets LFW YTF
Methods
Models A B C A B
ResNet18 96.97% 97.12%  97.3% 89.04% 91.44%
CompNet-4 97.1% 97.18% 97.32% 89.7%  91.5%
CenterNet 98.28%  98.33% 98.35% 91.22%  93.0%
Center-1 98.22%  98.47% 98.55% 91.40%  92.8%
Center-2 98.38%  98.45%  98.55% 91.38% 93.04%
Center-3 98.30% 98.75% 98.78% 91.56% 93.22%

Table 2: The performance on LEFW and YTF with joint supervision of softmax and center

loss.
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architecture mentioned in [35], keeping the same training details described
in that article. Center-k represents the network that replaces the residual
block after the last k-th pool layer of CenterNet as competitive block. By
training on CASIA-WebFace, the NCU-based models hold higher accuracy
in most test standards, especially, Center-3 shares a verification accuracy of
98.78% on LFW and 93.22% on YTF. We owe the superiority of our network
to competitive block which extracts the last competitive representations.

P051t1ve Pairs

ResNet18 0.9 03 024 019 028 0.05
:CompNet-A. 0.4 043 042 03 0.4 029

Negative Pairs

ResNet1B 030 028 049 0% 0.32
.CompNet~4 0.08 015 02 027 0. 09 0.15

Figure 5: Face verification on LFW. In positive pairs, the two images (Image I and IT) are
from the same person, but in negative paris, they are from different persons.

In theory, features with better generalization would lead to a less gap
between the verification scores in positive pairs and a larger gap between
negative pairs. Fig.5 shows the scores of ResNet18 and CompNet-4 in face
verification task. Compared with the ResNet18, CompNet-4 obtains higher
scores in positive pairs, and lower scores in negative pairs, which proves the
effective of our model in face verification. Indeed, for CompNet-4, 0.28 can be
selected as an appropriate threshold, which is greater than the threshold for
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positive pairs and less than the threshold for negative pairs. However there
is no reasonable threshold for ResNet18 that could separate the positive and
negative pairs very well.

3.83. Visual Classification
3.83.1. Implementation Details

For experiments, we set the batch size as 100. The weight decay is 0.0005
and 0.004, respectively for MNIST and CIFAT-10 datasets. For MNIST,
we start with a learning rate of 0.001, the change policy holds “inv”. The
gamma and power are designed as 0.0001 and 0.075, and eventually terminate
training at 20k iterations. For CIFAR-10, the learning rate is fixed at 0.001,
and eventually terminate training at 60k.

3.3.2. Test on MNIST and CIFAR-10

Layer conv pool conv pool conv pool NCU FC
LeNet (5,20)00  maz — 250  (5,50)10 maz — 2/30 - - No fe-500/fc1-10
LeNet(ave)  (5,20)10 maxz —20  (5,50)10 ave — 250 - - No fe-500/fc1-10
LeNet-NCU  (5,20)10 maz — 250  (5,50)10 maz, ave — 239 - - Yes fc-500/fc1-10
Cifar-Net (5,32))21 maz — 339  (5,32)21 ave — 320 (5,64) /2.1 ave — 39 No fe-10
Cifar-Net(max) (5,32)21 maz — 320  (5,32)21 ave — 329 (5,64)/21  maz — 329 No fe-10
Cifar-Net NCU (5,32)01 maz — 339  (5,32)9, ave — 320 (5,64)/21 ave,max — 359 Yes fc-10

Table 3: The architecture of networks. (5,20) /1,9 denotes the convolutional layer with 20
filters of size 5 x 5, where the stride and padding are 1 and 0, respectively. maz(ave) — 22,9
denotes the max(ave)-pooling layers with grid of 2 x 2, where the stride and padding are
2 and 0, respectively.

method accuracy
LeNet 98.92%
LeNet(ave) 98.79%
LeNet NCU 99.05%
LeNet(norm) 98.88%

LeNet(ave+norm) 99.13%
LeNet_NCU (norm) 99.24%

Table 4: Recognition rates on MNIST. LeNet(ave) denotes that the last max-pooling in
LeNet is replaced by average pooling. LeNet(norm) represents norm and relu are added
immediately after the convolutional layer.

The network architectures are shown in Table 3, LeNet(ave) denotes the
last max-pooling in LeNet is replaced by ave-pooling, and Cifar-Net(max) de-
notes the last ave-pooling in Cifar-Net is replaced by max-pooling. In NCU-
based networks, ave-pooling and max-pooling are compared to strengthen
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feature propagation. Table 4 shows the results of the original and our NCU-
based models on MNIST. From the results, NCU-based models outperform
the original network obviously, which validates the effectiveness of the com-
petition among signals. The results on CIFAR-10 shown in Table 5 further
illustrate the generalization of our NCU-based models.

method accuracy
Cifar-Net 78.70%
Cifar-Net(max) 75.00%
Cifar-Net_NCU 78.97%

Table 5: Recognition rates on CIFAR-10 datasets.

4. Conclusion

In this paper, we proposed a new nonlinear unit named NCU, which could
be regarded as a method of feature fusion as well as a crucial activation func-
tion. It strengthened the feature propagation by comparing the elements
from different network layers and selecting the larger signals element-wisely.
Experimental results demonstrated that by strengthening feature propaga-
tion in networks, NCU-based models effectively boosted the performance in
both face verification task and visual classification task.
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