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Abstract
For any N > 2 and a™) := (ay,--- ,aN+1) € (0, )N+1, let ,u((xN) be the corre-
sponding Dirichlet distribution on A := {3: = (7;)1<i<n € [0, 1]V : di<ien Ti < 1}.

We prove the Poincaré inequality

0 [ (1= % ) Snau @ « w0, i)

[0
N+l 1<i<N n=1

and show that the constant —L
QN 41

process on A converges to ,ugN) in L2(,ugN)) at the exponentially rate anyii. The

whole spectrum of the generator is also characterized. Moreover, the sharp Poincaré
inequality is extended to the infinite-dimensional setting, and the spectral gap of the
corresponding discrete model is derived.

is sharp. Consequently, the associated diffusion
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1 Introduction

Let N € N. For any @ = (v, -+ ,an41) € (0,00)N L, the Dirichlet distribution u8Y) with
parameter « is a probability measure on the set

A(N) {l’ - (zz)l<z<N E O 1 Z i S ]-}

1<i<N
with the density function
I'|a _ o —
plxy, -+ xy) = ( |112 (1 — ||y )onv+rt H o re AW,
[Lcicns Tlai) 1Zi<N

where [z]; = Y7,y |2i] for z € RY. Obviously, 18 identifies to the distribution
A (dz, dy) = pd (d2)d1-pap, (dy)

on the space
VO = {(a,y) € 0,174 g+ Jah = 1.

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for
categorical distribution and infinite non-parametric discrete distributions respectively. They
also arise in population genetics describing the distribution of allelic frequencies (see for
instance [4,[17,20]). In particular, for a population with N+1 allelic types, z;(1 <i < N+1)
stands for the relative frequency of the i-th allele among N + 1 ones.

The Dirichlet distribution possesses many nice properties. We will use the following
partition (or aggregation) property of A for a € (0,00)¥+1. Let (X1, ..., Xy.1) have
law [i ,u (V+1) , let Ay, Ag, ..., Axy1 be a partition of the set {1,2,..., N + 1}, and set

V=Y Xo =) o, j=1.. k+1

T’EAJ' TEAj

Then (Y1,...,Ys+1) has law [L(Bk“) with parameters 8 := (8,...,8k11) € (0,00)*1. We

would also like to recall the neutral property of the Dirichlet distribution ([4]). For (X, -+, Xx)

having law ,u((lN), we define

Xi
Ul 17U 1—X1—...— i—1 !

Then U, is a beta random variable with parameters (o, ;i1 + ... + ans1) and Uy, ..., Uy
are )independent. This leads to the following representation of the random variable with law
N .

s
N-1

(X1, X%, Xx) = (U, (1= 0h),.., Uy [T (1= 1)),
=1



A well known construction of the Dirichlet distribution is through a Pdlya’ urn scheme
([1). More specifically, consider an urn containing NV + 1 balls of different colors labelled by
1,2,..., N + 1. The initial mass of the ¢-colored ball is «;. Balls are drawn from the urn
sequentially. The chance of a particular colored ball being selected is proportional to the
total mass of that colored balls inside a urn. After each selection, the ball is returned with
an additional ball of same color and mass one. The relative weight of different colored balls
inside the urn will eventually converge to a Dirichlet vector (X7, Xo,..., Xyi1).

To simulate the Dirichlet distribution, several diffusion processes with this distribution
as the stationary distribution have been proposed and studied. The Wright-Fisher diffusion
(see [6], 18, 19 22]) is a diffusion approximation to the Wright-Fisher Markov chain model in
population genetics. The evolution mechanism involves mutation and sampling replacement.
It is reversible with respect to the Dirichlet distribution. Exploring the property of right
neutrality, a GEM diffusion is introduced in [I1I] and studied further in [I2]. This is also
a reversible diffusion with Dirichlet distribution as the reversible measure. A key problem
of the study is to estimate the speed for the diffusion process to converge to the Dirichlet
distribution.

The infinite-dimensional generalization of the Dirichlet distribution is Ferguson’s Dirich-
let process ([I3]). It is a random atomic probability measure characterized by the property
that its restriction on any finite partition of the state space is a Dirichlet distribution. The
masses of the atoms follow the GEM distribution (see [10]). The infinite-dimensional gener-
alization of the Wright-Fisher diffusion is the well known Fleming-Viot process with parent
independent mutation ([I4] [9]) which has an unlabelled version, the infinitely-many-neutral-
alleles model ([8]). The Dirichlet process is the reversible measure of the Fleming-Viot
process. Various functional inequalities have been studied to investigate the efficiency of
these processes in approximating the Dirichlet processes ([7], [22]). In particular, it was
shown in [22] that a logarithmic Sobolev inequality holds for the Fleming-Viot process if and
only if the state space has finite dimension. The Wasserstein diffusion studied in [2I] and [5]
is closely related to the Dirichlet process with state space [0, 1]. However, the exact conver-
gence rate is not yet known for these processes to approximate the Dirichlet distribution.

In this paper, we will construct and study a new class of processes with Dirichlet distri-
bution and Dirichlet processes as reversible measures. In comparison with the Wright-Fisher
Markov chain model where sampling replacement occurs between any pair of individuals, our
finite dimensional Markov chain model only allows sampling replacement between individ-
uals in one group and individuals in another group. This reduced sampling scheme bridges
the gap between the independent systems and the pairwise sampling models. A complete
understanding of these models will provide a whole picture of the roles played by different
evolutionary forces.

The main contributions of this paper are the explicit identification of the whole spec-
trum of the finite-dimensional diffusions, the construction of an infinite-dimensional diffusion
process with Dirichlet process on a countable state space as the reversible measure, the estab-
lishment of sharp Poincaré inequalities for both the finite and infinite dimensional diffusions,
and the construction of Markov chain models. In particular, we found the exact exponential
rate of the underlying diffusion processes and Markov chains to converge to the Dirichlet



E2’

distribution and its infinite-dimensional generalization.

An outline of development of the paper is as follows. In Section 2, we collect the main
results. The sharp Poincaré inequality for the finite-dimensional diffusion is proved in Section
3. The key step in the proof is to link the eigenvalues of the diffusion generator with a finite
matrix. The whole spectrum is obtained in Section 4. Section 5 contains the construction of
the infinite-dimensional diffusion and the establishment of the corresponding sharp Poincaré
inequality. Finally, in Section 6 we introduce the discrete Markov chain model involving
immigration, emigration and sampling, which approximates the diffusion process solving
(21). This not only provides the genetic link to the diffusion model but also opens the door
for the study of models with other sampling mechanisms.

2 Main Results

The diffusion process studied in this paper first appeared in [16], (2.44)] (see also [2]) and
solves the following SDE on AM):

(2.1) dXi(t) = {ai(1 = [X(1)]) — an1 Xi(8) At +/2(1 — [X()[1) X(t) dBy(t), 1<i<N,

where B(t) := (By(t),---, By(t)) is the d-dimensional Brownian motion.
We will show that the Markov semigroup P associated to (2.I]) is symmetric in L2(,u,(1N));
that is,

)
(2.2) / . FL gdp™N) = / gL fdul™, f, g € C*RY)
A A

holds for
L) = 3 (w1 = Jol)32 + {an(l = [oh) = ansaza}00)

1<n<N

being the generator of P, where and 0, := %. S0, (Ly, C?(A™M)) is closable in L2(ugN))
and its closure (L, Z(L,)) is a negative definite self-adjoint operator.
Moreover, since

LY (f9)(x) = (FLE g+ gLE ) (@) +2(1 = 1) Y 2ud (9S)(0n9)}(2),

(22) implies the integration by parts formula

R WA W CREND SEY ORI

= &M(f,9), f.geC*AM).

Therefore, (éaa(N), C?*(AM)) is closable in L2(u((1N)) whose closure (éaa(N), Q(éZSN))) is a sym-
metric Dirichlet form on L2(,u,(1N)), and it is easy to see that this Dirichlet form is associated

to the Markov semigroup F;.



Finally, the spectral gap of LYY is characterized as
gap(LY) = inf {EM(F, 1)+ | € DEM), 1(F) = 0,6(f%) =1},

It is known that when N = 1 we have gap(L&N)) = 1 + g, see e.g. [22]. So, in the following

result we only consider N > 2.
T1.1| Theorem 2.1. Let N > 2. Then P/ is symmetric in Lz(,u,(lN)) and its generator has spectral

gap gap(L,(lN)) = ay41. Consequently, P converges to u((lN) exponentially fast in L2(,u,(1N)) :

||Pta - /”Lg{N)HLQ(ugN)) < e—aN+1t’ t >0,

and the sharp Poincaré inequality for (@@OgN), 9((525”)) is
1
u(1?) < —— M), | e 268, 1 (f) =0.

QON+1

Next, we extend this result to the infinite-dimensional setting. Consider the infinite-
dimensional simplex

A =L e 01 ol =Y m <1},
i=1

which is equipped with the L'-metric |z — y|;. Let o € (0,00)" with |a|; = Y07, oy < o0,
and let a,, > 0 which refers to a1 in the finite-dimensional case as N — oo. Let

a(n) — (ab - ’an_l’zai’am> c (O, OO)"+1, n>1.

>n
Then for any n > 1,
i=n+1

is a probability measure on A We will prove that when n — oo these measures converges

weakly to a probability measure u((f,z)oo on A which is the infinite-dimensional generaliza-

tion of Dirichlet distribution with parameters (a, ai,). The following result extends Theorem
2.1 to the case for N = occ.

Theorem 2.2. Let a € (0,00)N with |a]; < oo and let as, > 0.
(1) The sequence {ugﬁw}nzl converges weakly to a probability measure pcs). on A,

(2) The form

&) (f.9) = /

A0 Y n@nf o @ @), f9eFC

5



T1.

1s closable in L2(,ua %o) whose closure 1s a symmetric Dirichlet form. The generator
(LS., D(LER) ) of the Dirichlet form satisfies FC* C P(LS)..) and

L&OZOO Z <93n (1 —|z1)0? f(z) + {an(1—|z)) — aooxn}ﬁnf(x)), feZFC

n=1

(3) The generator L) o has spectral gap gap(L,(l a)oo) = Q. Consequently, the associated

Qoo

Markov semigroup P> converges to ua,a)oo exponentially fast in L2(,ua7a)oo) :

||PtOé,O!oo . /Jgiz)oo ||L2(H((103¥)00) S e_Oéoot’ t 2 O,

and the sharp Poincaré inequality s

1
e (F2) < — &R D), feFChull (f)=0.

oo

Finally, the next result shows that the diffusion process generated by L((ff;)oo is the weak
limit of the Lg?,)loo—diffusion process as n — 00, where

L0 =3 (1= ) - awa]or+ 2(1- Y )wd ).

For any z € A and T > 0, let Pﬁg be the distribution of the diffusion process generated
by L. with initial point 2™ = (21, e LY jon @ ;). Embedding A into A>) by

setting 2z, = 0 for z € A™ and i > n + 1, we regard p T as a probability measure on
Qp := C([0,T]; Ax) equipped with the unlform norm Hngm 1= supepo,r) 1€() 1

Theorem 2.3. For any x € A ) and T > 0, p T converges weakly to a probability measure

P;o;) on Qr. Moreover, p T ) solves the martingale problem of La o forany f € FC?, the
coordinate process X (t)(w ) = w(t) and the natural filtration F#, == o(ws : s € [0,1]),

FX() - / L&) f(X(s))ds, te[0,7]

- - (o)
is a martingale under P, 7

3 Proof of Theorem 2.1]

We first prove (Z2)) which implies the symmetry of P in L? (,ufo)). Since smooth functions on
AW) are uniformly approximated by polynomials up to second order derivatives, it suffices
to consider f,g € P, the set of all polynomials on A®Y). Let

A =2, (1 — |z]1)0* + {Ozn(l —|z|1) — QN+1In}8na 1<n<N.

6



Then 22) follows from

(N)

LI e Iy I )

1<i<N 1<i<N 1<i<N 1<i<N

I(ely)

)2
1<i<N41 NG

for p;,q; € Zy,1 < i < N. Letting pyy1 = qvy1 = 0 and C' = and simply

denote xy1 = 1 — |z|;, we have

(L )a0( TT e)aioia)

1<i<N 1<i<N
_ pitgitai—1) pptan—1 A(n) .qn
_C/ y ( H x >xnl n AN i de
AN M i< N1
P 1 _
:an{(qn+an_1)/ N ( [[ e )xNHIﬁ"Jrq"M" “da
AN M i< N1

— QN1 / ( H xlijl""qﬁ-om )d[lf
AN)

1<i<N+1
_ Can [ Ticiznenia Dlos +pi + @)
F(Z1gi§N+1(0‘i +pi + )
% ((an + an = DT (anst + D0 + go + @ = 1) = axia D (@) (po + 0 + )
CT(ant1 + ) [ iciznensa I'lew +pi + i)

= - - — annF(pn +qn +ap — 1)7
F(Z1gi§N+1(O‘i +pi+q))

where the last step is due to the identity I'(s+1) = sI'(s), s > 0. Since the result is symmetric
n (Pn; qn), it implies (B.1)).

For any d € N, let &2, be the space of all polynomials in &, whose total degrees are less
than or equal tod. Let Py, = {f € P4 ugN)(f) = 0}. It is well known that P, := Ug>1 P
is dense in C}(A™), so that P00 = Ug>1P.q 1s dense in

Do :={f € 2(EM) - uV(f) = 0}

under the Sobolev norm || f||12 := \/,u (f?)+ &M (f. f)-

To characterize gap(LgN)), we make the spectral decomposition of L&N) in terms of the

degree of polynomials. Obviously, every #, is an invariant space of LY. Let 21 = Poa
and
Qd—{fEQ()d ua (fg)_OfOI‘aHgEle} d> 2.

Then, by the symmetry of LYY in Lz(,u,(l )) every 2, is an invariant space of LYY as well.

Thus, letting 74 : P — 4 be the orthogonal projection with respect to the inner product



in L2(ui), we have
(3.2) LM f =7 LM f d>1,f € P

Therefore, to characterize the spectrum of L) it suffices to consider that of L&N)\ 2,, the
restriction of L((XN) on 2;, for every i > 1.
Let d > 2. To characterize the spectrum of LEYN) |2,, let

Kd:{/f:(/ﬁ,-'-, yezl: Y k(i) }

1<i<N

For any k € Ky, let 2 = H1<Z<N x;*. Then
@ (3.3) Qd:{ch:z — T 1chx cci= (cp)rer, €R d}
keK keKq
We define the K; x K4-matrix My by letting
dOéN_H + ZlgnSN(k" + o, — 1)]{3n, if k= k‘/,
My(k, k") = < (ky + an) (k, + 1), ifk'=k+e,—en1<n#m<N,

0, otherwise,

where {e, }1<n<n is the canonical orthonormal basis on RY. We first identify eigenvalues of
L((JN)|gd with those of M.

Lemma 3.1. For anyd > 2 A is an eigenvalue of — o L@d if and only if it is an eigenvalue
of My. Consequently, — LY |gd > (dany1)lg,, where 19, is the identity operator on 2.

Proof. (1) Let A be an eigenvalue of — L on 2,. By B3) and B2), there exists 0 # ¢ €
R%¢ such that

(3.4) Z cr(LM2? — 1y | LMk = —) Z cr(@h — g 2®).

keKy kEKq

Obviously,

L((XN):B’g — Z (2,02 + 0Oy )"

1<n<N
2k k k

( Ty Of " + E T QO™ + iy E :E,ﬁ,ﬁ;)

1<n,m<N 1<n,m<N 1<n<N
(Ejk (kp — 1)ah—entem 4 Ej nkpztentem Loy Ejknx)

n,m<N 1<n,m<N 1<n<N
( § k., k‘ _ 1) k—entem + § a,k, :lfk entem —l—dOzN_,_l:L’ )

1<n,m<N 1<n,m<N

8



By the change of variables k' := k — e,, + €,,, we obtain

§ Cr, E anknxk_en"l‘em

keKy 1<n,m<N

— Z Ck Z ay k,pFentem 4 Z Ch Z ankna®

keKy 1<n#m<N keKy 1<n<N

= Z Z Citen—er On(k + en — en)(n)z* + Z Ch Z ak,z®

keKg g 1<n#m<N keKy 1<n<N

Z Z n(kn + 1)Crae, - emx + Z Z ankncrat.

k€K 4 1<n#m<N keK41<n<N
Similarly,

Z Ch Z ky (ky — 1)ak—entem

keKy 1<n,m<N
=3 Y kb Dewren—en™+ > cr Y En(ky —1)2"
keKg g 1<n#m<N keKy 1<n<N
Combining these together leads to

(3.5) S alMat =" Y (202 4 6,00)7F — D My(k K )epat.

keKy keKy 1<n<N k,k'eKq4

Substituting this into ([B.4]), we arrive at

Z (Myc)pa® = Z cre® + pa_i(z)
keK kEKq
for some py_1 € Py_1. Therefore, Myc = Ac, i.e. X is an eigenvalue of M.
(2) On the other hand, if X is an eigenvalue of My, then there exists ¢ € R¥¢\ {0} such

that Mgzc = Ae. Let
= Z Ckl’k — Td—1 Z Ckl'k.

keKy k€K

It follows from Myc = Ac and ([B.3]) that
LYV f = PBa-1 = Af

holds for some py; 1 € 4. Since f € 2, which is orthogonal to &, 1, this and (B.2)
implies

LM = 0 =mg )LV f = =M1 = m1) f = =S
So, A is an eigenvalue of L™ on 2,.
_ (3) Finally, since eigenvalues of — L are nonnegative, (2) implies that eigenvalues of
My == My — dayi1lk,xk, is larger than or equal to —day,. On the other hand, from
the definition of M, we see that M, does not depend O (N41. So, letting ayy1 | 0 and
noting that My; > 0, we conclude that eigenvalues of M, are non-negative. Therefore,
eigenvalues of M, are larger than or equal to day.;. Combining this with (1) we obtain

~L |Qd > (danyt1)lg,. O



Pmof of Theorem[21l. By Lemma BT, it suffices to prove that the smallest eigenvalue of
L), is a1 To this end, we take 6; = (6;;)1<j<y € RV (1 <i < N — 1) such that

N N
Zﬁikak == 0, Zﬁikﬁjkak = 52']', 1 S ’L,j S N —1.

k=1 k=1

So, {0;}¥, is a basis of RV~1. Let

N

j=1
N & N

‘T):Zxk_ﬁ’ a = |a|1—aN+1:Zak.
k=1 1 k=1

We intend to prove that {u;}i1<;<n is an orthogonal basis of 2, with respect to the inner
product (f,g)&N) = M&N)(fg) = [am fgd,u((xN), and LM uy = —|ar|yun while LMy, =
—ayiu; for 1 <7 < N — 1. Thus, the smallest eigenvalue of —L&N)\ 2, 18 any1.

It is easy to see that

@l +1) o

N " I(lah + Dl(ay) ~ Jafy’
F(d)l“(ai + 2) ai(Oéi + 1) .
(V) (42) — _ . 1<i<N-1,
) = Flah +20(@) ~ lah(ah+ D)’ T =°S
Ma)I'(a; + DIN(a; + 1) ;0 .
(N) 2) = J — J 1< < N —1.
Mo (Ti1) = AL DT @)y Jah(ah +1) L S17IS

Then

N
1
(V) .:_EQ. =0, 1<i<N-—-1:
He (uz) |Oé‘1 ik O ) ST > )

) =3
M |a|1 |Oé|1

So, {u;t1<i<y C Z4. Moreover, for 1 <i#j < N —1,

1
i (ujug) = —< Z Oir0;ra(ou + 1) Z 9zk9ﬂakaz>

|Of| (|Oé|1 _I_ 1) 1<k<N 1<k;7él<N
= i (2 o) 3t 3 sutan <o
1 1<k<N 1<I<N 1<k<N

10



and for any 1 <i < N — 1,

/~L( (wiun) Z Oiju(xjy)

1<k,j<N
Z O (0 + 1) + Z ;500500

~ Jali(jal, + 1) |a|1+ e Ial |a|1+ i
Z O, + ————— Z 0500

~ lah(jah +1) |a|1+ 1<k,j<N o [k |a|1—|—1 1<j<N v

Since {6;}X7! is a basis of R¥~!, we have
dim span{u; : 1 <i<n—-1} =N —1=dim 2.

In conclusion, {u;}1<;<xn is an orthogonal basis of 2;.
Finally, we have

N
LM u(z) = Z(%‘INH —an1%j)0 = —anyu;, 1< <N —1,
j=1

and

N N N

= Z(%‘SCNH —an12j) = —laf; Z%‘ + Z@j = —|a|iun(z).

j=1 j=1 j=1

Therefore, the proof is finished. O

4 The whole spectrum of Lém

Ford € Z. , let 7% be the space of homogeneous polynomials of total degree d in the variables

x1, ..., ny. Denote by 7, the natural projection from P, to H; which only keeps the d-

homogeneous part of a polynomial. Let fo d) = (7rdL )| s, be the restriction of the operator

ﬁdL((xN) to #; and denote —A its spectrum, seen as a multi-set (namely with multiplicities).

From the above considerations, the spectrum A of — LM s equal to Ugez, Ag, as a multi-set.

We can write
7 (N 7 (N (N
[(’d)_ |.|1[(’d) an 1[(’)

where Egi) s ) — 1 and [A/gl) . A — ) are respectively the restriction to 7 of the
operators
E((XN) = Z (Inﬁi + anﬁn), ZAL(QN) = Z LpOh.
1<n<N 1<n<N

The crucial point of the previous decomposition is that L(N dly,. Denote by Ay the

spectrum of | - |3 Lg, d), we thus have

Ag = ]\d +dayig.
Note that Ag = Ag = {0}. The next result enables to compute by iteration Ay for all d € Z, .

11



Proposition 4.1. For any d € Z., we have

*W2

Agpr = 2d+a+Ay) U{O[C(N,d+1) — C(N,d)]},

where {0[l]} is the multi-set with 0 repeated [ times, forl € Z, (more generally [l| will stand
for the multiplicity 1), and where C(N,d) is the dimension of 7, namely

C(N,d) = (d”;f_l).

Proof. Consider A € Agyq and let ¢ € 7 be an associated eigenvector (non-zero). We have

F (N
| WL 0 = M.

Since La B +1[ | belongs to 77, there are two possibilities: either A = 0, or ¢ = | - |19 for
some 1 € F; such that
N)
(4.1) Lydea(l - ) = x.
We consider the latter situation, since the former case leads to the multi-set {0[C(N,d +
1) — C(N,d)]}.
We compute at point z that
L0 1) = Jeh LY + LM+ 2 Y w0t
1<n<N
(4.2) = e L +v > a2 > 3,000
1<n<N 1<n<N

= |z|, L ¢+( + 2d)y.

So, it follows from (£I]) that A — & — 2d is an eigenvalue of the operator | - |; La .4 » hamely
belongs to Ay. Thus,

Agy1 C (2d + &+ Ay) U{O[C(N,d+1) — C(N, d)]}.
On the other hand, if ' € Ay then |- |1l~)g7\9¢ = N1 for some 0 # ¢ € ;. Then (L2)

implies
N) _
L&) (- 1h) = |- hLS)w + (@ + 2d)w = (N + &+ 2d)9.
Therefore, N +a +2d € Ad+1; that is, Ad+1 D (2d+a+ ]\d). Then the proof is finished. [

The prev10us arguments amount to an 1terat1ve construction of the elgenvectors for any
d € Z,, let #4 be the set of eigenvectors of La 4 and ¢ be the kernel of fo - Then we have

Vd € Zy, jd—l—l =9 U yde-

12



Indeed, in the above proof, functions ¢ € Zyi 1 of the form yy1 with ¢ € Z, are associated
to eigenvalues of the form & +2d + A, where A € A4. From Lemma [3.1l we know that A > 0,
so that a + 2d + A > 0 and ¢ does not belong to the kernel of Lffﬁ. Conversely, we have

seen that all the other eigenvectors belong to the kernel of f)gi)l Thus we get the following

characterization of the kernel of ZNLS?;): it consists exactly into the eigenvectors of f)gﬁ which
don’t admit yy as a factor.

Note that .%, is also the set of eigenvectors of La d) To get the eigenvectors of our initial
operator L, we construct by iteration on d € Z, the following subsets .Z,; of Z2;. First we
take .Zy = Fy = P,. Next, if Z, has been constructed, then for any f € %y, there exists
a unique gy € &, such that f + g; is orthogonal to &, in A?(u). Then we define

Far1 i ={f+ygr: f€ Far1}-

The set of eigenvectors of L is Ugez, 4.

From Proposition [4.1] it is possible to parametrize the spectrum A of —L in the following
way. Let J# be the set of elements of the form (ki, ko, ..., k., ky11), where r € Z, and
0<ki <ky<---<k. <k, Defineamapping K : # — A via

Vk := (k‘l,k’g, ...,kr,/{?r+1) € %, K(k’) = 2(/{51 + - k’r) +ra+ k?r+10éN+1.

Then K is surjective. It is truly one-to-one, if and only if 1, & and ay,; are independent
when R is seen as a vector space over Q. Let us call this situation generical over the choice
of the parameters o := () 1<n<n+1-

The multiplicities can also be recovered. Consider the mapping D : # — N defined by

= > C(N.k)+ > {C(N,1+1) - C(N,1)}

1<i<r 1<I<kr 41— 1,0¢{k1,k2,....kr }

for k := (ky, ko, ..., kv, k1) € . Then the multiplicity of an eigenvalue A € A is given by

> D(k).

keK—1(X)

In particularly, generically, we have A = {K (k)[D(k)] : k € £ }.

5 Proofs of Theorems and

To prove the first assertion, let W be the L'-Wasserstein distance induced by p(z,y) := |z —
y|1 on P (A1) the set of all probability measures on A, That is, for any u, v € P (A),

-/ & — yln(dz, dy),
wE(p,v) J Al x Ale0)

where €' (u,v) is the set of all couplings for p and v; i.e. m € (u,v) if and only if it is a
probability measure on A x A(®) such that

m(dz x ALY = p(dz), 7(AC) x dy) = v(dy).
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It is well known that the metric W is complete and induces the weak topology on Z2(A(®)),
see e.g. [3, Theorems 5.4 and 5.6]. So, for the proof of Theorem we only need to show

that {40 }ns1 is W-Cauchy sequence.

Proof of Theorem[2.2. (1) To prove that { ugﬁw }n>11s a W-Cauchy sequence, we use the par-
tition property of the Dirichlet distribution mentioned in Section 1. For any n > m > 1, let
(X1, -+, Xpe1) have law ,&gé:)l). By the partition property, (X1, -+, Xm—1, i, Xi, Xpt1)
has law /E(Tnf)l). So, (Xy, -+, X1, 2 1 ,, X;) has law ug@) while (X1,---,X,,) has law

'U’( aln)” ThU.S the la‘WS of (Xl? Xm—hzzl:mXiv(LOv e 70) and (Xh e 7Xn70707 o 7O>

are ufx,aw and ua,aw respectively. Then, by the definition of W and noting that |a|; < oo,

we have

limsup sup W(uaaw,ug% ) < 2limsup sup Z E| X;|

m—oo n>m-41 m— o0 n>m-‘,—lZ ma1

n

. 2a;

= limsup sup E =0.
m—o00 n>m+41 . Pa— Qoo + Zz =n41 o7

Therefore, { ug’f&w tn>1 is a W-Cauchy sequence and the proof of the first assertion is finished.
(2) It suffices to prove

(5.1) L9 = [ (LE 9w, foeFC
A()
For any f,g € #C?, there exist m € N and f,,, g € C*(R™) such that

f(z) = f(z1, - s xm),  g(x) = gm(x1, + ,Tm), € A

So, by the definition of ugﬁw and using (Z3]), we have

62 = [ Uroug >m=/A(m){(1— > ) 2w m)}duaam.

1<i<n 1=1

Since u&",)loo — ,u,(l a)oo weakly, and it is easy to see that

hm sSup |fL( (n)g fLaaoog|( )

=00 e Ale)
(1— le)szﬁf 9:9) ( ixl)i ) (0; )‘:O,

1<i<n =1 i=1

by letting n — oo in (52) we prove (G.1]).

(3) Finally, as was shown in (2) that the desired Poincaré inequality follows by applying
Theorem 2T to ufﬁ?w on A®™ then letting n — oo. So, gap(Lg?,Z)oo) > (ioe. On the other hand,
let

lim sup
n—o0 IEGA(OO)

u(z) = oy — oqy, x € AL,
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We have

L) u(z) = {al(l — |zf1) — aooﬂfl}OQ - {042(1 — |zf1) — Oéoofz}al = —axu(z), T € AL,

Q0o

o)

This implies gap(L5S., >

) < @oo. In conclusion, we have gap(L&,%o) = Qloo- O

Proof of Theorem[2.3. (a) For the first assertion, we only need to prove that {Pﬁg}nzl is a
Cauchy sequence with respect to the L'-Wasserstein distance

Wr(P,P) = int / 1l =l TIE )

€% (P,P’)

To this end, for any n > m > 2, we construct a coupling of Pﬁg and PX}) as follows.
Firstly, let (X™ (t))1<i<n solve the following SDE with X" = z(™):

ax () =[ai(1 = X)) - ax X (0)] at

/20— (X0 ) X (1) dBi(t), 1< i <n— 1,

o Ax{ (1) :[i%@ — [XO0)) — 0w X(1)] i

/201 = s @)X (1) B, (1), te [0,T],

where (B;(t)1<i<n are independent one-dimensional Brownian motions. Then P T) is the
distribution of (X ™ (#))iepo.1)-

Next, let
(54) XMt =x" () for 1 <i<m—1, and X{M(t) = Y X" te0,7).
Jj=mn
Then X (0) = 2™ and by (E3),
dX () = [ai(l — XM (E)])) — apX ™ (t)}dt
/20— s ()X (1) dBi(t), 1< i <m—1;

dX&m><t>:[Zaj(1—|X () — X0t

+\/2 1 — 2t (8)[)) XS (8) dBon(t), £ € [0, 7],

h B — 1 n (n) ' . T . . . .
where dB,,(t) e Yo A/ X; () dB;(t) is a one-dimensional Brownian motion in
dependent of (B;(t))1<i<m—1. Therefore, (X ™ (t));cj0.r) has law Pé?}).
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Now, by (5.4]) and the definition of Wy, we have

(5.5) Wr(P, PYy) <E sup [X0(t) - XO() =E sup > X" (#).

te[0,T] S ) —

Let Z(t) =" X™(¢). By (53) we have

Jj=m+1-"y

o0

dZ(t)g( 3 aj)dt+ i \/s(l—|X(“>(t)|1)XZ.(”)(t)dBZ-(t).

So,

o

Zt)< Y (wit+ta)+ > /0\/3(1—|X(">(s)|1)Xi(”)(s)dBi(s) = Z(t), te][0,T].

j=14+m j=m+1

Since Z(t) > 0, Z(t) is a nonnegative submartingale. Then by Kolmogorov’s inequality,

_ 1 &
EZ(T) = > (xj+oyT), A>0.

j=m+1

- 1
P sup Z(t) > A) <P sup Z(t) > \) < —
<te[0,T] Q ) (te[O,T} Q ) A

Since Z(t) < 1, this implies

[e o]

1
E sup Z(t)g)\JrIP( sup Z(t)Z)\) SA+5 D (@ +asT), A>0.

t€[0,T] t€[0,T] j=m+1

Taking \ = \/ E;’im +1(x; +ayT), and combining with (5.5), we obtain

o0

lim sup WT(PX}),PX;)) <2 lim Z (z; + o;T) = 0.
m—00 n>m+1 ’ ’ m—00 il

Therefore, the first assertion is proved.
(b) Let f € ZFC% We have f(z) = f(x1, -+, %) for some m > 1 and f € C?(AM).
For the coordinate process X (t), define

M®™(t) = f(X(t) — /t L™ f(X(s))ds, n>m,tel0,T)

a0
0

Then (Mt("))te[oﬂ is a Péf})—martingale; that is, for any 0 < s < t < T, and any bounded
Lipschitz continuous function g on Q0 measurable with respect to .7,

(5.6) M () (w)g(w)dPD = [ M™(s)(w)g(w)dP).

Qr Qr
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We intend to prove the same equality for Pé’o;) and

M) = x| CLE) F(X(s))ds, € 0,7

By an approximation argument, we may and do assume that f € C3(A(™). In this case,
M™ (t) is bounded and Lipschitz on Qg uniformly in n > m and t € [0,7]. Since g is
bounded and Lipschitz on 27 as well, there exists a constant C' > 0 such that

(M®(1)g)(€) = (MM g) () ()] < ClE = nlhoer 1 =m, & € Qp,t € [0,T].

Therefore,

M®(t)gdP — [ M™(t)gdPy

‘ < CWy(PT.P)), n>m,tel0,T).
Qr Qr ' '

Combining this with (5.6]), lim, WT(PX}),PS;)) =0, lim,_oo M™ = M) and noting
that {M™g},~,, are uniformly bounded, we conclude that

‘ / [M©(1) — M©)(s5)] gd P
Qp

= lim

| a0 - 20 ]gary
n—00 Qr ’

< 2C limsup Wr(P5, P{%)) = 0.

:E,
n—00

Then the proof is finished. O

6 A Discrete Model

For any N > 1, M > N + 1, consider a population of M individuals of N + 1 different
types. Divide the population into two groups: group I of types 1,..., N and group II of type
N + 1. Focusing on group I and treat group II as outsiders or external sources. Initially
the number of type ¢ individuals is m;,2 = 1,..., N + 1. The group I evolves as follows: a
type ¢ individual independent of all others will wait for an exponential time at rate oy
and at the end of the waiting emigrates to the outside becoming type N + 1; an outsider will
independently wait an exponential time with rate «; and immigrate to group I becoming
type 7; in addition to emigration and immigration, each couple between a type I and a type
IT waits for an exponential time with rate 2 and when the clock rings, either the group I
individual moves out becoming an outsider or the group II individual moves in becoming
the type of the selected individual in group I.

Let X (t) = M~Y(M,(t),..., My(t)) denote the relative frequencies of individuals of dif-

ferent types in group I among the whole population at time t. For a € (0,00)¥ " we
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construct X (t) as a multivariate Markov chain with generator

%]\(/[N ﬁ: {aNsz[ (1’ — %) — f(:E)] + a;(1 — |z]p) [f(ff + %) - f(l")}}
M2Z 1— |z|h) L{ (I_ M) —|—f<x—|— M) —2f(a:)}, fe AN
for x € AE\Z/[V) ={z e LZY : |z, = vazl x; < 1}, where e; is the unit vector in the ith

direction. Letting M — oo and z — y € AW, one gets JZ%A(JNOEf(x) — L,(lN)f(y).
We will see that the finite Markov chain generated by ,Qf]\(jvoz on AE@,V’ is reversible with

respect to the probability measure ,ug\jzzxz

N
(N) [OéN+1 M(1—|z|1) az Mxl (N)
= K S A )
/J’M,a(x) Z{M 1 . |ZI§'| }' lell T M

where [al,, == [[1y (@ +4) for a > 0 and m > 1, [a]o := 1, and

N
OéN+1 M(1—|z|1 Oéz le
Z {M(1— |z]) }'H

(N)

is the normalization. Moreover, for N > 2, g% has the same spectral gap ayii as LY,

Theorem 6.1. Let N > 2. The Markov chain generated by WA(/[NOZ 18 1rreducible and reversible

with respect to uf{jg Moreover, %A(/[Na) has spectral gap ani1 in L2(/~L§\ij\?1)-

Proof. (a) Denote v; = ¢ for 1 <i < N. For any z,y € AS\]P, let

Mzianyy + M2z (1 —|z|y), ify=a—7,1<i<N;
oy = § M1 — |z]1) + M?z;(1 = |z]1), fy=2+7,1<i<N;
0, otherwise.

We have
'Q{Z\(j?[o)zf(x) = Z qmy{f(y) - f(x)}, T &€ Ag\]/}[)

yEAg\ff\r)

Since ¢z, > 0 when z,y € AE\JP with y =x £, for 1 <7 < N, and AE\JP is connected by
the edges * — = £ v;, we see that the Markov chain is irreducible.
Next, it is well known that %A%Noz is symmetric in L? (u(jj)a) if and only if

(6.1) WD () 00y = 15 () ayer 7y € ALY,
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To verify this condition, we only need to consider the following two situations.
(al) y = o +; for some 1 < i < N. In this case we have M|z|; < M — 1, and by the
definition of ,ug\]}g,

Pe) MO —fel)(ot Me) gy
W () (v + MU= Jal) =) (Mazi +1) ~ gy

(a2) y = x — ~; for some 1 < i < N. In this case we have Mz; > 1, and by the definition
of ,ug\]}g,
N
0 (awer + M= |2]))Mz; g,

uy (@) M= zh) + )Mz — T4+ o) gy

In conclusion, (6.1) holds and thus, JZ%A(/[NCS is symmetric in L2(u§\]4v31)

(b) For any d € Z,, consider again #,; the space of all polynomials (in N variables)
whose total degree is less than or equal to d. For any f € &Z;and 1 < i < N, x —
f(x — ) — f(x) and x — f(x + ;) — f(z) are polynomials belonging to £, 1, while
x> flx—v)+ flx+v) —2f(x) is a polynomial belonging to &2;_,. From the definition
of JZ%A(JOC, it follows that &7, is preserved by %M As in Section 2, we consider for d € Z,

2, = {fe€ %ﬂﬂ(u%) : :uMa[fg] =0,V € a1}

(with the convention 2y = Z). Note that for d large enough, 2, = {0}, nevertheless, we

still have
IU’M a @ "@d

deZy

and the 2, are orthogonal. Furthermore by symmetry of %A(/[ch in LQ(ME\fl\fl), each of the
2, is preserved by MA(JNOE Thus it is sufficient to study the spectral decompositions of the

restrictions of %A(/[ch to the 2,. But this is exactly the same analysis as in Section 2, because
there we only used the highest monomials. Indeed, note that for all f € 2, and 1 <7 < N,

i f(x) 0;f(x)
M

x> flx —)— flz) + i

are polynomials belonging to &2;_,, and
% f(x)
M2

belong to &, 3, Where we set Py, = {0} if £ < 0. Thus, for any polynomial f € 2, the

polynomials ,Q/M f and LYV f have the same highest order term (i.e. the term of degree d),
so that these two operators have the same spectral gap.

z = flz =) + fle+7) = 2f(x) -

O
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