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Abstract

For any N ≥ 2 and α(N) := (α1, · · · , αN+1) ∈ (0,∞)N+1, let µ
(N)
α be the corre-

sponding Dirichlet distribution on ∆ :=
{

x = (xi)1≤i≤N ∈ [0, 1]N :
∑

1≤i≤N xi ≤ 1
}

.

We prove the Poincaré inequality

µ(N)
α (f2) ≤ 1

αN+1

∫

∆

{(

1−
∑

1≤i≤N

xi

)

N
∑

n=1

xn(∂nf)
2
}

µ(N)
α (dx) + µ(N)

α (f)2, f ∈ C1(∆)

and show that the constant 1
αN+1

is sharp. Consequently, the associated diffusion

process on ∆ converges to µ
(N)
α in L2(µ

(N)
α ) at the exponentially rate αN+1. The

whole spectrum of the generator is also characterized. Moreover, the sharp Poincaré
inequality is extended to the infinite-dimensional setting, and the spectral gap of the
corresponding discrete model is derived.
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1 Introduction

Let N ∈ N. For any α = (α1, · · · , αN+1) ∈ (0,∞)N+1, the Dirichlet distribution µ
(N)
α with

parameter α is a probability measure on the set

∆(N) :=
{

x = (xi)1≤i≤N ∈ [0, 1]N :
∑

1≤i≤N

xi ≤ 1
}

with the density function

ρ(x1, · · · , xN ) :=
Γ(|α|1)

∏

1≤i≤N+1 Γ(αi)
(1− |x|1)αN+1−1

∏

1≤i≤N

xαi−1
i , x ∈ ∆(N),

where |x|1 :=
∑

1≤i≤N |xi| for x ∈ RN . Obviously, µ
(N)
α identifies to the distribution

µ̃(N+1)
α (dx, dy) := µ(N)

α (dx)δ1−|x|1(dy)

on the space

∇(N+1) :=
{

(x, y) ∈ [0, 1]N+1 : y + |x|1 = 1
}

.

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for
categorical distribution and infinite non-parametric discrete distributions respectively. They
also arise in population genetics describing the distribution of allelic frequencies (see for
instance [4, 17, 20]). In particular, for a population with N+1 allelic types, xi(1 ≤ i ≤ N+1)
stands for the relative frequency of the i-th allele among N + 1 ones.

The Dirichlet distribution possesses many nice properties. We will use the following
partition (or aggregation) property of µ̃

(N+1)
α for α ∈ (0,∞)N+1. Let (X1, . . . , XN+1) have

law µ̃
(N+1)
α , let A1, A2, . . . , Ak+1 be a partition of the set {1, 2, . . . , N + 1}, and set

Yj =
∑

r∈Aj

Xr, βj =
∑

r∈Aj

αr, j = 1, . . . , k + 1.

Then (Y1, . . . , Yk+1) has law µ̃
(k+1)
β with parameters β := (β1, . . . , βk+1) ∈ (0,∞)k+1. We

would also like to recall the neutral property of the Dirichlet distribution ([4]). For (X1, · · · , XN)

having law µ
(N)
α , we define

U1 = X1, Ui =
Xi

1−X1 − . . .−Xi−1
, 2 ≤ i ≤ N.

Then Ui is a beta random variable with parameters (αi, αi+1 + . . . + αN+1) and U1, . . . , UN

are independent. This leads to the following representation of the random variable with law
µ
(N)
α :

(X1, X2, . . . , XN) =
(

U1, U2(1− U1), . . . , UN

N−1
∏

i=1

(1− Ui)
)

.
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A well known construction of the Dirichlet distribution is through a Pólya’ urn scheme
([1]). More specifically, consider an urn containing N +1 balls of different colors labelled by
1, 2, . . . , N + 1. The initial mass of the i-colored ball is αi. Balls are drawn from the urn
sequentially. The chance of a particular colored ball being selected is proportional to the
total mass of that colored balls inside a urn. After each selection, the ball is returned with
an additional ball of same color and mass one. The relative weight of different colored balls
inside the urn will eventually converge to a Dirichlet vector (X1, X2, . . . , XN+1).

To simulate the Dirichlet distribution, several diffusion processes with this distribution
as the stationary distribution have been proposed and studied. The Wright-Fisher diffusion
(see [6, 18, 19, 22]) is a diffusion approximation to the Wright-Fisher Markov chain model in
population genetics. The evolution mechanism involves mutation and sampling replacement.
It is reversible with respect to the Dirichlet distribution. Exploring the property of right
neutrality, a GEM diffusion is introduced in [11] and studied further in [12]. This is also
a reversible diffusion with Dirichlet distribution as the reversible measure. A key problem
of the study is to estimate the speed for the diffusion process to converge to the Dirichlet
distribution.

The infinite-dimensional generalization of the Dirichlet distribution is Ferguson’s Dirich-
let process ([13]). It is a random atomic probability measure characterized by the property
that its restriction on any finite partition of the state space is a Dirichlet distribution. The
masses of the atoms follow the GEM distribution (see [10]). The infinite-dimensional gener-
alization of the Wright-Fisher diffusion is the well known Fleming-Viot process with parent
independent mutation ([14, 9]) which has an unlabelled version, the infinitely-many-neutral-
alleles model ([8]). The Dirichlet process is the reversible measure of the Fleming-Viot
process. Various functional inequalities have been studied to investigate the efficiency of
these processes in approximating the Dirichlet processes ([7], [22]). In particular, it was
shown in [22] that a logarithmic Sobolev inequality holds for the Fleming-Viot process if and
only if the state space has finite dimension. The Wasserstein diffusion studied in [21] and [5]
is closely related to the Dirichlet process with state space [0, 1]. However, the exact conver-
gence rate is not yet known for these processes to approximate the Dirichlet distribution.

In this paper, we will construct and study a new class of processes with Dirichlet distri-
bution and Dirichlet processes as reversible measures. In comparison with the Wright-Fisher
Markov chain model where sampling replacement occurs between any pair of individuals, our
finite dimensional Markov chain model only allows sampling replacement between individ-
uals in one group and individuals in another group. This reduced sampling scheme bridges
the gap between the independent systems and the pairwise sampling models. A complete
understanding of these models will provide a whole picture of the roles played by different
evolutionary forces.

The main contributions of this paper are the explicit identification of the whole spec-
trum of the finite-dimensional diffusions, the construction of an infinite-dimensional diffusion
process with Dirichlet process on a countable state space as the reversible measure, the estab-
lishment of sharp Poincaré inequalities for both the finite and infinite dimensional diffusions,
and the construction of Markov chain models. In particular, we found the exact exponential
rate of the underlying diffusion processes and Markov chains to converge to the Dirichlet
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distribution and its infinite-dimensional generalization.
An outline of development of the paper is as follows. In Section 2, we collect the main

results. The sharp Poincaré inequality for the finite-dimensional diffusion is proved in Section
3. The key step in the proof is to link the eigenvalues of the diffusion generator with a finite
matrix. The whole spectrum is obtained in Section 4. Section 5 contains the construction of
the infinite-dimensional diffusion and the establishment of the corresponding sharp Poincaré
inequality. Finally, in Section 6 we introduce the discrete Markov chain model involving
immigration, emigration and sampling, which approximates the diffusion process solving
(2.1). This not only provides the genetic link to the diffusion model but also opens the door
for the study of models with other sampling mechanisms.

2 Main Results

The diffusion process studied in this paper first appeared in [16, (2.44)] (see also [2]) and
solves the following SDE on ∆(N):

E1E1 (2.1) dXi(t) =
{

αi(1−|X(t)|)−αN+1Xi(t)
}

dt+
√

2(1− |X(t)|1)Xi(t) dBi(t), 1 ≤ i ≤ N,

where B(t) := (B1(t), · · · , BN(t)) is the d-dimensional Brownian motion.

We will show that the Markov semigroup P α
t associated to (2.1) is symmetric in L2(µ

(N)
α );

that is,

E2E2 (2.2)

∫

∆(N)

fL(N)
α gdµ(N)

α =

∫ (N)

∆

gL(N)
α fdµ(N)

α , f, g ∈ C2(RN)

holds for
L(N)
α (x) :=

∑

1≤n≤N

(

xn(1− |x|1)∂2n +
{

αn(1− |x|1)− αN+1xn
}

∂n

)

being the generator of P α
t , where and ∂n := ∂

∂xn
. So, (Lα, C

2(∆(N))) is closable in L2(µ
(N)
α )

and its closure (Lα,D(Lα)) is a negative definite self-adjoint operator.
Moreover, since

L(N)
α (fg)(x) = (fL(N)

α g + gL(N)
α f)(x) + 2(1− |x|1)

N
∑

n=1

xn{(∂nf)(∂ng)}(x),

(2.2) implies the integration by parts formula

−
∫

∆(N)

fL(N)
α gdµ(N)

α =

∫

∆(N)

{

(1− |x|1)
N
∑

n=1

xn{(∂nf)(∂ng)}(x)
}

µ(N)
α (dx)

=: E
(N)
α (f, g), f, g ∈ C2(∆(N)).

E2’E2’ (2.3)

Therefore, (E
(N)
α , C2(∆(N))) is closable in L2(µ

(N)
α ) whose closure (E

(N)
α ,D(E

(N)
α )) is a sym-

metric Dirichlet form on L2(µ
(N)
α ), and it is easy to see that this Dirichlet form is associated

to the Markov semigroup P α
t .
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Finally, the spectral gap of L
(N)
α is characterized as

gap(L(N)
α ) = inf

{

E
(N)
α (f, f) : f ∈ D(E (N)

α ), µ(N)
α (f) = 0, µ(N)

α (f 2) = 1
}

.

It is known that when N = 1 we have gap(L
(N)
α ) = α1+α2, see e.g. [22]. So, in the following

result we only consider N ≥ 2.

T1.1 Theorem 2.1. Let N ≥ 2. Then P α
t is symmetric in L2(µ

(N)
α ) and its generator has spectral

gap gap(L
(N)
α ) = αN+1. Consequently, P

α
t converges to µ

(N)
α exponentially fast in L2(µ

(N)
α ) :

‖P α
t − µ(N)

α ‖
L2(µ

(N)
α )

≤ e−αN+1t, t ≥ 0,

and the sharp Poincaré inequality for (E
(N)
α ,D(E

(N)
α )) is

µ(N)
α (f 2) ≤ 1

αN+1

E
(N)
α (f, f), f ∈ D(E (N)

α ), µ(N)
α (f) = 0.

Next, we extend this result to the infinite-dimensional setting. Consider the infinite-
dimensional simplex

∆(∞) :=
{

x ∈ [0, 1]N : |x|1 =
∞
∑

i=1

xi ≤ 1
}

,

which is equipped with the L1-metric |x − y|1. Let α ∈ (0,∞)N with |α|1 =
∑∞

i=1 αi < ∞,
and let α∞ > 0 which refers to αN+1 in the finite-dimensional case as N → ∞. Let

α(n) =
(

α1, · · · , αn−1,
∑

i≥n

αi, α∞

)

∈ (0,∞)n+1, n ≥ 1.

Then for any n ≥ 1,

µ(n)
α,α∞

(dx) := µ
(n)

α(n)(dx1, · · · , dxn)
∞
∏

i=n+1

δ0(dxi)

is a probability measure on ∆(∞).We will prove that when n→ ∞ these measures converges
weakly to a probability measure µ

(∞)
α,α∞ on ∆(∞), which is the infinite-dimensional generaliza-

tion of Dirichlet distribution with parameters (α, α∞). The following result extends Theorem
2.1 to the case for N = ∞.

T1.2 Theorem 2.2. Let α ∈ (0,∞)N with |α|1 <∞ and let α∞ > 0.

(1) The sequence {µ(n)
α,α∞}n≥1 converges weakly to a probability measure µ

(∞)
α,α∞ on ∆(∞).

(2) The form

E
(∞)
α,α∞

(f, g) :=

∫

∆(∞)

{

(1− |x|1)
∞
∑

n=1

xn(∂nf)∂ng
}

(x)µ(∞)
α,α∞

(dx), f, g ∈ FC1
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is closable in L2(µ
(∞)
α,α∞) whose closure is a symmetric Dirichlet form. The generator

(L
(∞)
α,α∞ ,D(L

(∞)
α,α∞)) of the Dirichlet form satisfies FC2 ⊂ D(L

(∞)
α,α∞) and

L(∞)
α,α∞

f(x) =
∞
∑

n=1

(

xn(1− |x|1)∂2nf(x) +
{

αn(1− |x|1)− α∞xn
}

∂nf(x)
)

, f ∈ FC2.

(3) The generator L
(∞)
α,α∞ has spectral gap gap(L

(∞)
α,α∞) = α∞. Consequently, the associated

Markov semigroup P α,α∞

t converges to µ
(∞)
α,α∞ exponentially fast in L2(µ

(∞)
α,α∞) :

‖P α,α∞

t − µ(∞)
α,α∞

‖
L2(µ

(∞)
α,α∞ )

≤ e−α∞t, t ≥ 0,

and the sharp Poincaré inequality is

µ(∞)
α,α∞

(f 2) ≤ 1

α∞

E
(∞)
α,α∞

(f, f), f ∈ FC1, µ(∞)
α,α∞

(f) = 0.

Finally, the next result shows that the diffusion process generated by L
(∞)
α,α∞ is the weak

limit of the L
(n)
α,α∞-diffusion process as n→ ∞, where

L(n)
α,α∞

:=

n
∑

i=1

{[

αi

(

1−
n

∑

i=1

xi

)

− α∞xi

]

∂i + 2
(

1−
n

∑

i=1

xi

)

xi∂
2
i

}

.

For any x ∈ ∆(∞) and T > 0, let P
(n)
x,T be the distribution of the diffusion process generated

by L
(n)
α,α∞ with initial point x(n) :=

(

x1, · · · , xn−1,
∑

j≥n xj
)

. Embedding ∆(n) into ∆(∞) by

setting zi = 0 for z ∈ ∆(n) and i ≥ n + 1, we regard P
(n)
x,T as a probability measure on

ΩT := C([0, T ]; ∆∞) equipped with the uniform norm ‖ξ‖1,∞ := supt∈[0,T ] |ξ(t)|1.

T1.3 Theorem 2.3. For any x ∈ ∆(∞) and T > 0, P
(n)
x,T converges weakly to a probability measure

P
(∞)
x,T on ΩT . Moreover, P

(∞)
x,T solves the martingale problem of L

(∞)
α,α∞ : for any f ∈ FC2, the

coordinate process X(t)(ω) := ω(t) and the natural filtration Ft := σ(ωs : s ∈ [0, t]),

f(X(t))−
∫ t

0

L(∞)
α,α∞

f(X(s))ds, t ∈ [0, T ]

is a martingale under P
(∞)
x,T .

3 Proof of Theorem 2.1

We first prove (2.2) which implies the symmetry of P α
t in L2(µ

(N)
α ). Since smooth functions on

∆(N) are uniformly approximated by polynomials up to second order derivatives, it suffices
to consider f, g ∈ P∞, the set of all polynomials on ∆(N). Let

A(n)
α = xn(1− |x|1)∂2n +

{

αn(1− |x|1)− αN+1xn
}

∂n, 1 ≤ n ≤ N.

6



Then (2.2) follows from
E3E3 (3.1)

∫ (N)

∆

(

∏

1≤i≤N

x
pi
i

)

A(n)
α

(

∏

1≤i≤N

x
qi
i

)

µ(N)
α (dx) =

∫ (N)

∆

(

∏

1≤i≤N

x
qi
i

)

A(n)
α

(

∏

1≤i≤N

x
pi
i

)

µ(N)
α (dx)

for pi, qi ∈ Z+, 1 ≤ i ≤ N. Letting pN+1 = qN+1 = 0 and C = Γ(|α|1)∏
1≤i≤N+1 Γ(αi)

, and simply

denote xN+1 = 1− |x|1, we have

∫

∆(N)

(

∏

1≤i≤N

x
pi
i

)

A(n)
α

(

∏

1≤i≤N

x
qi
i

)

µ(N)
α (dx)

= C

∫

∆(N)

(

∏

1≤i 6=n≤N+1

x
pi+qi+αi−1
i

)

xpn+αn−1
n A(n)

α xqnn dx

= Cqn

{

(qn + αn − 1)

∫

∆(N)

(

∏

1≤i 6=n≤N+1

x
pi+qi+αi−1
i

)

xN+1x
pn+qn+αn−2
n dx

− αN+1

∫

∆(N)

(

∏

1≤i≤N+1

x
pi+qi+αi−1
i

)

dx

}

=
Cqn

∏

1≤i 6=n≤N+1 Γ(αi + pi + qi)

Γ(
∑

1≤i≤N+1(αi + pi + qi))

×
(

(qn + αn − 1)Γ(αN+1 + 1)Γ(pn + qn + αn − 1)− αN+1Γ(αN+1)Γ(pn + qn + αn)
)

= −
CΓ(αN+1 + 1)

∏

1≤i 6=n≤N+1 Γ(αi + pi + qi)

Γ(
∑

1≤i≤N+1(αi + pi + qi))
pnqnΓ(pn + qn + αn − 1),

where the last step is due to the identity Γ(s+1) = sΓ(s), s > 0. Since the result is symmetric
in (pn, qn), it implies (3.1).

For any d ∈ N, let Pd be the space of all polynomials in P∞ whose total degrees are less
than or equal to d. Let P0,d = {f ∈ Pd : µ

(N)
α (f) = 0}. It is well known that P∞ := ∪d≥1Pd

is dense in C1
b (∆

(N)), so that P0,∞ := ∪d≥1P0,d is dense in

D0 := {f ∈ D(E (N)
α ) : µ(N)

α (f) = 0}

under the Sobolev norm ‖f‖1,2 :=
√

µ
(N)
α (f 2) + E

(N)
α (f, f) .

To characterize gap(L
(N)
α ), we make the spectral decomposition of L

(N)
α in terms of the

degree of polynomials. Obviously, every P0,d is an invariant space of L
(N)
α . Let Q1 = P0,1

and
Qd =

{

f ∈ P0,d : µ
(N)
α (fg) = 0 for all g ∈ Pd−1

}

, d ≥ 2.

Then, by the symmetry of L
(N)
α in L2(µ

(N)
α ), every Qd is an invariant space of L

(N)
α as well.

Thus, letting πd : P∞ → Pd be the orthogonal projection with respect to the inner product

7



in L2(µ
(N)
α ), we have

P1P1 (3.2) L(N)
α πdf = πdL

(N)
α f, d ≥ 1, f ∈ P∞.

Therefore, to characterize the spectrum of L
(N)
α it suffices to consider that of L

(N)
α |Qi

, the

restriction of L
(N)
α on Qi, for every i ≥ 1.

Let d ≥ 2. To characterize the spectrum of L
(N)
α |Qd

, let

Kd =
{

k = (k1, · · · , kN) ∈ ZN
+ :

∑

1≤i≤N

k(i) = d
}

.

For any k ∈ Kd, let x
k =

∏

1≤i≤N x
ki
i . Then

QQ (3.3) Qd =

{

∑

k∈Kd

ckx
k − πd−1

∑

k∈Kd

ckx
k : c := (ck)k∈Kd

∈ RKd

}

.

We define the Kd ×Kd-matrix Md by letting

Md(k, k
′) =











dαN+1 +
∑

1≤n≤N (kn + αn − 1)kn, if k = k′,

(kn + αn)(kn + 1), if k′ = k + en − em, 1 ≤ n 6= m ≤ N,

0, otherwise,

where {en}1≤n≤N is the canonical orthonormal basis on RN . We first identify eigenvalues of

L
(N)
α |Qd

with those of Md.

L1 Lemma 3.1. For any d ≥ 2, λ is an eigenvalue of −L(N)
α |Qd

if and only if it is an eigenvalue

of Md. Consequently, −L(N)
α |Qd

≥ (dαN+1)IQd
, where IQd

is the identity operator on Qd.

Proof. (1) Let λ be an eigenvalue of −L(N)
α on Qd. By (3.3) and (3.2), there exists 0 6= c ∈

RKd such that

W1W1 (3.4)
∑

k∈Kd

ck(L
(N)
α xk − πd−1L

(N)
α xk) = −λ

∑

k∈Kd

ck(x
k − πd−1x

k).

Obviously,

L(N)
α xk −

∑

1≤n≤N

(xn∂
2
n + αn∂n)x

k

= −
(

∑

1≤n,m≤N

xnxm∂
2
nx

k +
∑

1≤n,m≤N

xmαn∂nx
k + αN+1

∑

1≤n≤N

xn∂nx
k

)

= −
(

∑

n,m≤N

kn(kn − 1)xk−en+em +
∑

1≤n,m≤N

αnknx
k−en+em + αN+1

∑

1≤n≤N

knx
k

)

= −
(

∑

1≤n,m≤N

kn(kn − 1)xk−en+em +
∑

1≤n,m≤N

αnknx
k−en+em + dαN+1x

k

)

.
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By the change of variables k′ := k − en + em, we obtain
∑

k∈Kd

ck
∑

1≤n,m≤N

αnknx
k−en+em

=
∑

k∈Kd

ck
∑

1≤n 6=m≤N

αnknx
k−en+em +

∑

k∈Kd

ck
∑

1≤n≤N

αnknx
k

=
∑

k∈Kd

∑

1≤n 6=m≤N

ck′+en−emαn(k
′ + en − em)(n)x

k′ +
∑

k∈Kd

ck
∑

1≤n≤N

αnknx
k

=
∑

k∈Kd

∑

1≤n 6=m≤N

αn(kn + 1)ck+en−emx
k +

∑

k∈Kd

∑

1≤n≤N

αnknckx
k.

Similarly,
∑

k∈Kd

ck
∑

1≤n,m≤N

kn(kn − 1)xk−en+em

=
∑

k∈Kd

∑

1≤n 6=m≤N

kn(kn + 1)ck+en−emx
k +

∑

k∈Kd

ck
∑

1≤n≤N

kn(kn − 1)xk.

Combining these together leads to

W2W2 (3.5)
∑

k∈Kd

ckL
(N)
α xk =

∑

k∈Kd

ck
∑

1≤n≤N

(xn∂
2
n + δn∂n)x

k −
∑

k,k′∈Kd

Md(k, k
′)ck′x

k.

Substituting this into (3.4), we arrive at
∑

k∈Kd

(Mdc)kx
k = λ

∑

k∈Kd

ckx
k + pd−1(x)

for some pd−1 ∈ Pd−1. Therefore, Mdc = λc, i.e. λ is an eigenvalue of Md.
(2) On the other hand, if λ is an eigenvalue of Md, then there exists c ∈ RKd \ {0} such

that Mdc = λc. Let
f(x) =

∑

k∈Kd

ckx
k − πd−1

∑

k∈Kd

ckx
k.

It follows from Mdc = λc and (3.5) that

L(N)
α f = p̃d−1 − λf

holds for some p̃d−1 ∈ Pd−1. Since f ∈ Qd which is orthogonal to Pd−1, this and (3.2)
implies

L(N)
α f = (1− πd−1)L

(N)
α f = −λ(1− πd−1)f = −λf.

So, λ is an eigenvalue of L
(N)
α on Qd.

(3) Finally, since eigenvalues of −L(N)
α are nonnegative, (2) implies that eigenvalues of

M̃d := Md − dαN+1IKd×Kd
is larger than or equal to −dαN+1. On the other hand, from

the definition of Md we see that M̃d does not depend on αN+1. So, letting αN+1 ↓ 0 and
noting that Md ≥ 0, we conclude that eigenvalues of M̃d are non-negative. Therefore,
eigenvalues of Md are larger than or equal to dαN+1. Combining this with (1) we obtain

−L(N)
α |Qd

≥ (dαN+1)IQd
.
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Proof of Theorem 2.1. By Lemma 3.1, it suffices to prove that the smallest eigenvalue of
−L(N)

α |Q1 is αN+1. To this end, we take θi = (θij)1≤j≤N ∈ RN(1 ≤ i ≤ N − 1) such that

N
∑

k=1

θikαk = 0,

N
∑

k=1

θikθjkαk = δij , 1 ≤ i, j ≤ N − 1.

So, {θi}Ni=1 is a basis of RN−1. Let

ui(x) =

N
∑

j=1

θijxj , 1 ≤ i ≤ N − 1;

uN(x) =

N
∑

k=1

xk −
α̃

|α|1
, α̃ := |α|1 − αN+1 =

N
∑

k=1

αk.

We intend to prove that {ui}1≤i≤N is an orthogonal basis of Q1 with respect to the inner

product 〈f, g〉(N)
α := µ

(N)
α (fg) =

∫

∆(N) fgdµ
(N)
α , and L

(N)
α uN = −|α|1uN while L

(N)
α ui =

−αN+1ui for 1 ≤ i ≤ N − 1. Thus, the smallest eigenvalue of −L(N)
α |Q1 is αN+1.

It is easy to see that

µ(N)
α (xi) :=

∫

∆(N)

xiµ
(N)
α (dx) =

Γ(ᾱ)Γ(αi + 1)

Γ(|α|1 + 1)Γ(αi)
=

αi

|α|1
,

µ(N)
α (x2i ) =

Γ(ᾱ)Γ(αi + 2)

Γ(|α|1 + 2)Γ(αi)
=

αi(αi + 1)

|α|1(|α|1 + 1)
, 1 ≤ i ≤ N − 1;

µ(N)
α (xixj) =

Γ(ᾱ)Γ(αi + 1)Γ(αj + 1)

Γ(|α|1 + 2)Γ(αi)Γ(αj)
=

αiαj

|α|1(|α|1 + 1)
, 1 ≤ i 6= j ≤ N − 1.

Then

µ(N)
α (ui) =

1

|α|1

N
∑

k=1

θikαk = 0, 1 ≤ i ≤ N − 1;

µ
(N)
α,λ (uN) =

N
∑

i=1

αi

|α|1
− α̃

|α|1
= 0.

So, {ui}1≤i≤N ⊂ Q1. Moreover, for 1 ≤ i 6= j ≤ N − 1,

µ(N)
α (uiuj) =

1

|α|1(|α|1 + 1)

(

∑

1≤k≤N

θikθjkαk(αk + 1) +
∑

1≤k 6=l≤N

θikθjlαkαl

)

=
1

|α|1(|α|1 + 1)

{

(

∑

1≤k≤N

θikαk

)

∑

1≤l≤N

θjlαl +
∑

1≤k≤N

θikθjkαk

}

= 0,
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and for any 1 ≤ i ≤ N − 1,

µ(N)
α (uiuN) =

∑

1≤k,j≤N

θijµ(xjxk)

=
1

|α|1(|α|1 + 1)

∑

1≤j≤N

θijαj(αj + 1) +
1

|α|1(|α|1 + 1)

∑

1≤k 6=j≤N

θijαjαk

=
1

|α|1(|α|1 + 1)

∑

1≤k,j≤N

θijαjαk +
1

|α|1(|α|1 + 1)

∑

1≤j≤N

θijαj = 0.

Since {θi}N−1
i=1 is a basis of RN−1, we have

dim span{ui : 1 ≤ i ≤ n− 1} = N − 1 = dimQ1.

In conclusion, {ui}1≤i≤N is an orthogonal basis of Q1.

Finally, we have

L(N)
α ui(x) =

N
∑

j=1

(αjxN+1 − αN+1xj)θij = −αN+1ui, 1 ≤ i ≤ N − 1,

and

L(N)
α uN(x) =

N
∑

j=1

(αjxN+1 − αN+1xj) = −|α|1
N
∑

j=1

xj +

N
∑

j=1

αj = −|α|1uN(x).

Therefore, the proof is finished.

4 The whole spectrum of L
(N)
α

For d ∈ Z+, let Hd be the space of homogeneous polynomials of total degree d in the variables
x1, ..., xN . Denote by π̃d the natural projection from P∞ to Hd which only keeps the d-
homogeneous part of a polynomial. Let L

(N)
α,d = (π̃dL

(N)
α )|Hd

be the restriction of the operator

π̃dL
(N)
α to Hd and denote −Λd its spectrum, seen as a multi-set (namely with multiplicities).

From the above considerations, the spectrum Λ of −L(N)
α is equal to ∪d∈Z+Λd, as a multi-set.

We can write
L̄
(N)
α,d = −| · |1L̃(N)

α,d − αN+1L̂
(N)
α,d ,

where L̃
(N)
α,d : Hd → Hd−1 and L̂

(N)
α,d : Hd → Hd are respectively the restriction to Hd of the

operators

L̃(N)
α :=

∑

1≤n≤N

(

xn∂
2
n + αn∂n

)

, L̂(N)
α :=

∑

1≤n≤N

xn∂n.

The crucial point of the previous decomposition is that L̂
(N)
α,d = dIHd

. Denote by Λ̃d the

spectrum of | · |1L̃(N)
α,d , we thus have

Λd = Λ̃d + dαN+1.

Note that Λ0 = Λ̃0 = {0}. The next result enables to compute by iteration Λ̃d for all d ∈ Z+.
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pro2 Proposition 4.1. For any d ∈ Z+, we have

Λ̃d+1 = (2d+ α̃ + Λ̃d) ∪ {0[C(N, d+ 1)− C(N, d)]},

where {0[l]} is the multi-set with 0 repeated l times, for l ∈ Z+ (more generally [l] will stand
for the multiplicity l), and where C(N, d) is the dimension of Hd, namely

C(N, d) =

(

d+N − 1

d

)

.

Proof. Consider λ ∈ Λ̃d+1 and let ϕ ∈ Hd be an associated eigenvector (non-zero). We have

| · |1L̃(N)
α,d+1ϕ = λϕ.

Since L
(N)
α,d+1[ϕ] belongs to Hd, there are two possibilities: either λ = 0, or ϕ = | · |1ψ for

some ψ ∈ Hd such that

*W*W (4.1) L̃
(N)
α,d+1(| · |1ψ) = λψ.

We consider the latter situation, since the former case leads to the multi-set {0[C(N, d +
1)− C(N, d)]}.

We compute at point x that

L̃
(N)
α,d+1(| · |1ψ) = |x|1L̃(N)

α ψ + ψL̃(N)
α | · |1 + 2

∑

1≤n≤N

xn∂nψ

= |x|1L̃(N)
α,d ψ + ψ

∑

1≤n≤N

αn + 2
∑

1≤n≤N

xn∂nψ

= |x|1L̃(N)
α,d ψ + (α̃+ 2d)ψ.

*W2*W2 (4.2)

So, it follows from (4.1) that λ − α̃ − 2d is an eigenvalue of the operator | · |1L̃(N)
α,d , namely

belongs to Λ̃d. Thus,

Λ̃d+1 ⊂ (2d+ α̃ + Λ̃d) ∪ {0[C(N, d+ 1)− C(N, d)]}.

On the other hand, if λ′ ∈ Λ̃d then | · |1L̃(N)
α,d ψ = λ′ψ for some 0 6= ψ ∈ Hd. Then (4.2)

implies
L̃
(N)
α,d+1(| · |1ψ) = | · |1L̃(N)

α,d ψ + (α̃ + 2d)ψ = (λ′ + α̃+ 2d)ψ.

Therefore, λ′ + α̃+2d ∈ Λ̃d+1; that is, Λ̃d+1 ⊃ (2d+ α̃+ Λ̃d). Then the proof is finished.

The previous arguments amount to an iterative construction of the eigenvectors: for any
d ∈ Z+, let F̃d be the set of eigenvectors of L̃

(N)
α,d and Gd be the kernel of L̃

(N)
α,d . Then we have

∀d ∈ Z+, F̃d+1 = Gd+1 ∪ yNF̃d.
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Indeed, in the above proof, functions ϕ ∈ F̃d+1 of the form yNψ with ψ ∈ F̃d are associated
to eigenvalues of the form α̃+2d+ λ, where λ ∈ Λ̃d. From Lemma 3.1, we know that λ ≥ 0,
so that α̃ + 2d + λ > 0 and ϕ does not belong to the kernel of L̃

(N)
d+1. Conversely, we have

seen that all the other eigenvectors belong to the kernel of L̃
(N)
d+1. Thus we get the following

characterization of the kernel of L̃
(N)
α,d : it consists exactly into the eigenvectors of L̃

(N)
α,d which

don’t admit yN as a factor.
Note that F̃d is also the set of eigenvectors of L

(N)
α,d . To get the eigenvectors of our initial

operator L, we construct by iteration on d ∈ Z+ the following subsets Fd of Pd. First we
take F0 := F̃0 = P0. Next, if Fd has been constructed, then for any f ∈ F̃d+1, there exists
a unique gf ∈ Pd such that f + gf is orthogonal to Pd in Λ2(µ). Then we define

Fd+1 := {f + gf : f ∈ F̃d+1}.

The set of eigenvectors of L is ∪d∈Z+Fd.
From Proposition 4.1, it is possible to parametrize the spectrum Λ of −L in the following

way. Let K be the set of elements of the form (k1, k2, ..., kr, kr+1), where r ∈ Z+ and
0 ≤ k1 < k2 < · · · < kr < kr+1. Define a mapping K : K → Λ via

∀k := (k1, k2, ..., kr, kr+1) ∈ K , K(k) := 2(k1 + · · · kr) + rα̃ + kr+1αN+1.

Then K is surjective. It is truly one-to-one, if and only if 1, α̃ and αN+1 are independent
when R is seen as a vector space over Q. Let us call this situation generical over the choice
of the parameters α := (αn)1≤n≤N+1.

The multiplicities can also be recovered. Consider the mapping D : K → N defined by

D(k) :=
∑

1≤l≤r

C(N, kl) +
∑

1≤l≤kr+1−1,l /∈{k1,k2,...,kr}

{

C(N, l + 1)− C(N, l)
}

for k := (k1, k2, ..., kr, kr+1) ∈ K . Then the multiplicity of an eigenvalue λ ∈ Λ is given by
∑

k∈K−1(λ)

D(k).

In particularly, generically, we have Λ = {K(k)[D(k)] : k ∈ K }.

5 Proofs of Theorems 2.2 and 2.3

To prove the first assertion, let W be the L1-Wasserstein distance induced by ρ(x, y) := |x−
y|1 on P(∆(∞)), the set of all probability measures on ∆(∞). That is, for any µ, ν ∈ P(∆(∞)),

W (µ, ν) :=

∫

π∈(µ,ν)

∫

∆(∞)×∆(∞)

|x− y|π(dx, dy),

where C (µ, ν) is the set of all couplings for µ and ν; i.e. π ∈ (µ, ν) if and only if it is a
probability measure on ∆(∞) ×∆(∞) such that

π(dx×∆(∞)) = µ(dx), π(∆(∞) × dy) = ν(dy).
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It is well known that the metric W is complete and induces the weak topology on P(∆(∞)),
see e.g. [3, Theorems 5.4 and 5.6]. So, for the proof of Theorem 2.2 we only need to show

that {µ(n)
α,α∞}n≥1 is W -Cauchy sequence.

Proof of Theorem 2.2. (1) To prove that {µ(n)
α,α∞}n≥1 is aW -Cauchy sequence, we use the par-

tition property of the Dirichlet distribution mentioned in Section 1. For any n > m ≥ 1, let
(X1, · · · , Xn+1) have law µ̃

(n+1)

α(n) . By the partition property,
(

X1, · · · , Xm−1,
∑n

i=mXi, Xn+1

)

has law µ̃
(m+1)

α(m) . So, (X1, · · · , Xm−1,
∑n

i=mXi) has law µ
(m)

α(m) while (X1, · · · , Xn) has law

µ
(n)

α(n) . Thus, the laws of (X1, · · · , Xm−1,
∑n

i=mXi, 0, 0, · · · , 0) and (X1, · · · , Xn, 0, 0, · · · , 0)
are µ

(m)
α,α∞ and µ

(n)
α,α∞ respectively. Then, by the definition of W and noting that |α|1 < ∞,

we have

lim sup
m→∞

sup
n≥m+1

W (µ(m)
α,α∞

, µ(n)
α,α∞

) ≤ 2 lim sup
m→∞

sup
n≥m+1

n
∑

i=m+1

E|Xi|

= lim sup
m→∞

sup
n≥m+1

n
∑

i=m+1

2αi

α∞ +
∑∞

i=n+1 αi
= 0.

Therefore, {µ(n)
α,α∞}n≥1 is aW -Cauchy sequence and the proof of the first assertion is finished.

(2) It suffices to prove

CLCL (5.1) E
(∞)
α,α∞

(f, g) = −
∫

∆(∞)

(fL(∞)
α,α∞

g) dµ(∞)
α,α∞

, f, g ∈ FC2.

For any f, g ∈ FC2, there exist m ∈ N and fm, gm ∈ C2(Rm) such that

f(x) = fm(x1, · · · , xm), g(x) = gm(x1, · · · , xm), x ∈ ∆(∞).

So, by the definition of µ
(n)
α,α∞ and using (2.3), we have

GGGG (5.2) −
∫

∆(∞)

(fL
(n)

α(n)g)dµ
(n)
α,α∞

=

∫

∆(∞)

{

(

1−
∑

1≤i≤n

xi

)

m
∑

i=1

xi(∂if)(∂ig)

}

dµ(n)
α,α∞

.

Since µ
(n)
α,α∞ → µ

(∞)
α,α∞ weakly, and it is easy to see that

lim
n→∞

sup
x∈∆(∞)

|fL(n)

α(n)g − fL(∞)
α,α∞

g|(x) = 0,

lim
n→∞

sup
x∈∆(∞)

∣

∣

∣

∣

(

1−
∑

1≤i≤n

xi

)

m
∑

i=1

xi(∂if)(∂ig)−
(

1−
∞
∑

i=1

xi

)

m
∑

i=1

xi(∂if)(∂ig)

∣

∣

∣

∣

= 0,

by letting n→ ∞ in (5.2) we prove (5.1).
(3) Finally, as was shown in (2) that the desired Poincaré inequality follows by applying

Theorem 2.1 to µ
(n)

α(n) on ∆(n) then letting n→ ∞. So, gap(L
(∞)
α,α∞) ≥ α∞. On the other hand,

let
u(x) = α2x1 − α1x2, x ∈ ∆(∞).
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We have

L(∞)
α,α∞

u(x) =
{

α1(1− |x|1)− α∞x1
}

α2 −
{

α2(1− |x|1)− α∞x2
}

α1 = −α∞u(x), x ∈ ∆(∞).

This implies gap(L
(∞)
α,α∞) ≤ α∞. In conclusion, we have gap(L

(∞)
α,α∞) = α∞.

Proof of Theorem 2.3. (a) For the first assertion, we only need to prove that {P (n)
x,T}n≥1 is a

Cauchy sequence with respect to the L1-Wasserstein distance

WT (P, P
′) := inf

Π∈C (P,P ′)

∫

ΩT×ΩT

‖ξ − η‖1,∞Π(dξ, dη).

To this end, for any n > m ≥ 2, we construct a coupling of P
(n)
x,T and P

(m)
x,T as follows.

Firstly, let (X
(n)
i (t))1≤i≤n solve the following SDE with X

(n)
0 = x(n):

dX
(n)
i (t) =

[

αi

(

1− |X(n)(t)|1
)

− α∞X
(n)
i (t)

]

dt

+

√

2(1− |X(n)(t)|1)X(n)
i (t) dBi(t), 1 ≤ i ≤ n− 1;

dX(n)
n (t) =

[

∞
∑

j=n

αj

(

1− |X(n)(t)|1
)

− α∞X
(n)
n (t)

]

dt

+

√

2(1− |x(n)(t)|1)X(n)
n (t) dBn(t), t ∈ [0, T ],

FYFY (5.3)

where (Bi(t)1≤i≤n are independent one-dimensional Brownian motions. Then P
(n)
x,T is the

distribution of (X(n)(t))t∈[0,T ].

Next, let

FY2FY2 (5.4) X
(m)
i (t) = X

(n)
i (t) for 1 ≤ i ≤ m− 1, and X(m)

m (t) =
∑

j=mn

X
(n)
j (t), t ∈ [0, T ].

Then X(m)(0) = x(m) and by (5.3),

dX
(m)
i (t) =

[

αi

(

1− |X(m)(t)|1
)

− α∞X
(m)
i (t)

]

dt

+

√

2(1− |x(m)(t)|1)X(m)
i (t) dBi(t), 1 ≤ i ≤ m− 1;

dX(m)
m (t) =

[

∞
∑

j=m

αj

(

1− |X(m)(t)|1
)

− α∞X
(m)
m (t)

]

dt

+

√

2(1− |x(m)(t)|1)X(m)
m (t) dB̃m(t), t ∈ [0, T ],

where dB̃m(t) :=
1√

X
(m)
m (t)

∑n
i=m

√

X
(n)
i (t) dBi(t) is a one-dimensional Brownian motion in-

dependent of (Bi(t))1≤i≤m−1. Therefore, (X
(m)(t))t∈[0,T ] has law P

(m)
x,T .
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Now, by (5.4) and the definition of WT , we have

FY3FY3 (5.5) WT (P
(n)
x,T , P

(m)
x,T ) ≤ E sup

t∈[0,T ]

|X(m)(t)−X(n)(t)|1 = E sup
t∈[0,T ]

n
∑

j=m+1

X
(n)
j (t).

Let Z(t) =
∑n

j=m+1X
(n)
j (t). By (5.3) we have

dZ(t) ≤
(

∞
∑

j=m+1

αj

)

dt+
n

∑

j=m+1

√

s(1− |X(n)(t)|1)X(n)
i (t) dBi(t).

So,

Z(t) ≤
∞
∑

j=1+m

(xj + tαj) +

n
∑

j=m+1

∫ t

0

√

s(1− |X(n)(s)|1)X(n)
i (s) dBi(s) =: Z̄(t), t ∈ [0, T ].

Since Z(t) ≥ 0, Z̄(t) is a nonnegative submartingale. Then by Kolmogorov’s inequality,

P

(

sup
t∈[0,T ]

Z(t) ≥ λ
)

≤ P

(

sup
t∈[0,T ]

Z̄(t) ≥ λ
)

≤ 1

λ
EZ̄(T ) =

1

λ

∞
∑

j=m+1

(xj + αjT ), λ > 0.

Since Z(t) ≤ 1, this implies

E sup
t∈[0,T ]

Z(t) ≤ λ+ P

(

sup
t∈[0,T ]

Z(t) ≥ λ
)

≤ λ+
1

λ

∞
∑

j=m+1

(xj + αjT ), λ > 0.

Taking λ =
√

∑∞
j=m+1(xj + αjT ), and combining with (5.5), we obtain

lim
m→∞

sup
n≥m+1

WT (P
(n)
x,T , P

(m)
x,T ) ≤ 2 lim

m→∞

√

√

√

√

∞
∑

j=m+1

(xj + αjT ) = 0.

Therefore, the first assertion is proved.
(b) Let f ∈ FC2. We have f(x) = f(x1, · · · , xm) for some m ≥ 1 and f ∈ C2(∆(m)).

For the coordinate process X(t), define

M (n)(t) = f(X(t))−
∫ t

0

L(n)
α,α∞

f(X(s))ds, n ≥ m, t ∈ [0, T ].

Then (M
(n)
t )t∈[0,T ] is a P

(n)
x,T -martingale; that is, for any 0 < s < t ≤ T , and any bounded

Lipschitz continuous function g on ΩT measurable with respect to Fs,

WF4WF4 (5.6)

∫

ΩT

M (n)(t)(ω)g(ω)dP
(n)
x,T =

∫

ΩT

M (n)(s)(ω)g(ω)dP
(n)
x,T .
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We intend to prove the same equality for P
(∞)
x,T and

M (∞)(t) := f(X(t))−
∫ t

0

L(∞)
α,α∞

f(X(s))ds, t ∈ [0, T ].

By an approximation argument, we may and do assume that f ∈ C3
b (∆

(m)). In this case,
M (n)(t) is bounded and Lipschitz on ΩT uniformly in n ≥ m and t ∈ [0, T ]. Since g is
bounded and Lipschitz on ΩT as well, there exists a constant C > 0 such that

|(M (n)(t)g)(ξ)− (M (n)g)(t)(η)| ≤ C‖ξ − η‖1,∞, n ≥ m, ξ, η ∈ ΩT , t ∈ [0, T ].

Therefore,

∣

∣

∣

∣

∫

ΩT

M (n)(t)gdP
(n)
x,T −

∫

ΩT

M (n)(t)gdP
(∞)
x,T

∣

∣

∣

∣

≤ CWT (P
(n)
x,T , P

(∞)
x,T ), n ≥ m, t ∈ [0, T ].

Combining this with (5.6), limn→∞WT (P
(n)
x,T , P

(∞)
x,T ) = 0, limn→∞M (n) = M (∞) and noting

that {M (n)g}n≥m are uniformly bounded, we conclude that

∣

∣

∣

∣

∫

ΩT

[

M (∞)(t)−M (∞)(s)
]

g dP
(∞)
x,T

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∫

ΩT

[

M (n)(t)−M (n)(s)
]

g dP
(∞)
x,T

∣

∣

∣

∣

≤ 2C lim sup
n→∞

WT (P
(n)
x,T , P

(∞)
x,T ) = 0.

Then the proof is finished.

6 A Discrete Model

For any N ≥ 1, M ≥ N + 1, consider a population of M individuals of N + 1 different
types. Divide the population into two groups: group I of types 1, . . . , N and group II of type
N + 1. Focusing on group I and treat group II as outsiders or external sources. Initially
the number of type i individuals is mi, i = 1, . . . , N + 1. The group I evolves as follows: a
type i individual independent of all others will wait for an exponential time at rate αN+1

and at the end of the waiting emigrates to the outside becoming type N +1; an outsider will
independently wait an exponential time with rate αi and immigrate to group I becoming
type i; in addition to emigration and immigration, each couple between a type I and a type
II waits for an exponential time with rate 2 and when the clock rings, either the group I
individual moves out becoming an outsider or the group II individual moves in becoming
the type of the selected individual in group I.

Let X(t) = M−1(M1(t), . . . ,MN(t)) denote the relative frequencies of individuals of dif-
ferent types in group I among the whole population at time t. For α ∈ (0,∞)N+1, we
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construct X(t) as a multivariate Markov chain with generator

A
(N)
M,αf(x) = M

N
∑

i=1

{

αN+1xi

[

f
(

x− ei

M

)

− f(x)
]

+ αi(1− |x|1)
[

f
(

x+
ei

M

)

− f(x)
]}

+M2

N
∑

i=1

(1− |x|1)xi
{

f
(

x− ei

M

)

+ f
(

x+
ei

M

)

− 2f(x)
}

, f ∈ C2(∆(N))

for x ∈ ∆
(N)
M :=

{

x ∈ 1
M
ZN
+ : |x|1 =

∑N
i=1 xi ≤ 1

}

, where ei is the unit vector in the ith

direction. Letting M → ∞ and x→ y ∈ ∆(N), one gets A
(N)
M,αf(x) → L

(N)
α f(y).

We will see that the finite Markov chain generated by A
(N)
M,α on ∆

(N)
M is reversible with

respect to the probability measure µ
(N)
M,α:

µ
(N)
M,α(x) :=

[αN+1]M(1−|x|1)

Z{M(1− |x|1)}!

N
∏

i=1

[αi]Mxi

(Mxi)!
, x ∈ ∆

(N)
M ,

where [α]m :=
∏m−1

i=0 (α + i) for α ≥ 0 and m ≥ 1, [α]0 := 1, and

Z :=
∑

x∈∆
(N)
M

[αN+1]M(1−|x|1)

{M(1− |x|1)}!

N
∏

i=1

[αi]Mxi

(Mxi)!

is the normalization. Moreover, for N ≥ 2, A
(N)
M,α has the same spectral gap αN+1 as L

(N)
α .

Theorem 6.1. Let N ≥ 2. The Markov chain generated by A
(N)
M,α is irreducible and reversible

with respect to µ
(N)
M,α. Moreover, A

(N)
M,α has spectral gap αN+1 in L2(µ

(N)
M,α).

Proof. (a) Denote γi =
ei
M

for 1 ≤ i ≤ N . For any x, y ∈ ∆
(N)
M , let

qx,y =











MxiαN+1 +M2xi(1− |x|1), if y = x− γi, 1 ≤ i ≤ N ;

αiM(1 − |x|1) +M2xi(1− |x|1), if y = x+ γi, 1 ≤ i ≤ N ;

0, otherwise.

We have
A

(N)
M,αf(x) =

∑

y∈∆
(N)
M

qxy
{

f(y)− f(x)
}

, x ∈ ∆
(N)
M .

Since qx,y > 0 when x, y ∈ ∆
(N)
M with y = x ± γi for 1 ≤ i ≤ N , and ∆

(N)
M is connected by

the edges x→ x± γi, we see that the Markov chain is irreducible.
Next, it is well known that A

(N)
M,α is symmetric in L2(µ

(N)
M,α) if and only if

Z2Z2 (6.1) µ
(N)
M,α(x)qx,y = µ

(N)
M,α(y)qy,x, x, y ∈ ∆

(N)
M .
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To verify this condition, we only need to consider the following two situations.
(a1) y = x + γi for some 1 ≤ i ≤ N. In this case we have M |x|1 ≤ M − 1, and by the

definition of µ
(N)
M,α,

µ
(N)
M,α(y)

µ
(N)
M,α(x)

=
M(1 − |x|1)(αi +Mxi)

(αN+1 +M(1 − |x|1)− 1)(Mxi + 1)
=
qxy

qyx
.

(a2) y = x− γi for some 1 ≤ i ≤ N. In this case we have Mxi ≥ 1, and by the definition

of µ
(N)
M,α,

µ
(N)
M,α(y)

µ
(N)
M,α(x)

=
(αN+1 +M(1 − |x|1))Mxi

(M(1 − |x|1) + 1)(Mxi − 1 + αi)
=
qxy

qyx
.

In conclusion, (6.1) holds and thus, A
(N)
M,α is symmetric in L2(µ

(N)
M,α).

(b) For any d ∈ Z+, consider again Pd the space of all polynomials (in N variables)
whose total degree is less than or equal to d. For any f ∈ Pd and 1 ≤ i ≤ N , x 7→
f(x − γi) − f(x) and x 7→ f(x + γi) − f(x) are polynomials belonging to Pd−1, while
x 7→ f(x− γi) + f(x+ γi)− 2f(x) is a polynomial belonging to Pd−2. From the definition

of A
(N)
M,α , it follows that Pd is preserved by A

(N)
M,α . As in Section 2, we consider for d ∈ Z+,

Qd := {f ∈ Pd ∩ L2(µ
(N)
M,α) : µ

(N)
M,α[fg] = 0, ∀g ∈ Pd−1}

(with the convention Q0 = P0). Note that for d large enough, Qd = {0}, nevertheless, we
still have

L2(µ
(N)
M,α) =

⊕

d∈Z+

Qd

and the Qd are orthogonal. Furthermore by symmetry of A
(N)
M,α in L2(µ

(N)
M,α), each of the

Qd is preserved by A
(N)
M,α . Thus it is sufficient to study the spectral decompositions of the

restrictions of A
(N)
M,α to the Qd. But this is exactly the same analysis as in Section 2, because

there we only used the highest monomials. Indeed, note that for all f ∈ Qd and 1 ≤ i ≤ N ,

x 7→ f(x− γi)− f(x) +
∂if(x)

M
, x 7→ f(x+ γi)− f(x)− ∂if(x)

M

are polynomials belonging to Pd−2, and

x 7→ f(x− γi) + f(x+ γi)− 2f(x)− ∂2i f(x)

M2

belong to Pd−3, where we set Pk = {0} if k < 0. Thus, for any polynomial f ∈ Qd, the

polynomials A
(N)
M,αf and L

(N)
α f have the same highest order term (i.e. the term of degree d),

so that these two operators have the same spectral gap.
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