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1 Introduction

This is a sequel to our previous paper [12]. In this paper, we are interested in establishing

tight spectral sufficient conditions for Hamilton paths in balanced bipartite graphs and

nearly balanced bipartite graphs. Throughout this paper, a bipartite graph with the

bipartition {X,Y } is called balanced if |X| = |Y |; and is called nearly balanced if |X|−|Y | =
1 (by the symmetry). A graph G is called Hamiltonian if it contains a spanning cycle,

and is called traceable if it contains a spanning path.

The topic of Hamiltonicity of graphs has a long history. In 1961, Ore [24] proved that

every graph on n vertices has a Hamilton cycle if e(G) >
(n−1

2

)
+1. One year later, Erdős

[6] generalized Ore’s theorem by introducing the minimum degree of a graph as a new

parameter. More precisely, Erdős proved that

Theorem 1.1 (Erdős [6]). Let G be a graph on n vertices, with minimum degree δ(G). If

n/2 > δ(G) ≥ k ≥ 1, and

e(G) > max

{(
n− k

2

)
+ k2,

(
n− ⌊n−1

2 ⌋
2

)
+

⌊
n− 1

2

⌋2
}
,

then G is Hamiltonian.
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Motivated by Erdős’ work [6], Moon and Moser [16] presented some corresponding

results for balanced bipartite graphs. We state one of their theorems as follows, which is

the starting point of our present paper.

Theorem 1.2 (Moon and Moser [16]). Let G be a balanced bipartite graph on 2n vertices,

with minimum degree δ(G) ≥ k, where 1 ≤ k ≤ n/2. If

e(G) > max

{
n(n− k) + k2, n

(
n−

⌊n
2

⌋)
+

⌊n
2

⌋2}
,

then G is Hamiltonian.

Compared with the number of edges of graphs, eigenvalues of graphs are also very

powerful for describing the structure of graphs. There are several well known examples,

such as the spectral proof of Friendship Theorem [7]. For Hamiltonicity of graphs, early

pioneer work include those of van den Heuvel [10], Krivelevich and Sudakov [11], Butler

and Chung [5], etc.

Recently, spectral extremal graph theory has rapidly developed, where extremal prop-

erties of graphs are studied by means of eigenvalues of associated matrices of graphs. In

this area, many beautiful and deep results have been proved, such as a spectral Turán the-

orem [17], a spectral Erdős-Stone-Bollobás theorem [18], a spectral version of Zarankiewicz

problem [19], spectral sufficient conditions for paths and cycles [20, 25, 26], etc. For an ex-

cellent survey on recent development of spectral extremal graph theory, we refer the reader

to Nikiforov [21]. In particular, on the topic of Hamiltonicity, Fielder and Nikiforov [9]

gave spectral analogues of Ore’s theorem [24]. More work in this vein can be found in

Zhou [27], Lu, Liu and Tian [14], as well as Liu, Shiu and Xue [13]. Towards finding spec-

tral analogues of Erdős’ theorem, the first attempt was made by the second author and

Ge [22], and finally was completed by the present authors in [12]. In the meantime, the

authors obtained some spectral analogues of Moon-Moser’s theorem for Hamilton cycles

in balanced bipartite graphs [12].

One may look for spectral conditions for Hamilton paths in bipartite graphs. The

situation seems a little more complicated. The main reason is that every traceable bipartite

graph must be balanced, or nearly balanced. That is, there are two situations for us to

explore.

In fact, we need to consider the following two Brualdi-Solheid-Turán-type problems.

Here we use Ĝ to denote the quasi-complement of a bipartite graph G with the bipartition

{X,Y }, i.e., one with vertex set V (Ĝ) = V (G) and for any x ∈ X and y ∈ Y , xy ∈ E(Ĝ)

if and only if xy /∈ E(G); and we use ρ(G) and q(G) to denote the spectral radius and

signless Laplacian spectral radius of G, respectively.

Problem 1. Among all non-traceable balanced bipartite graphs G on 2n vertices, with

δ(G) ≥ k, determine max ρ(G),min ρ(Ĝ),max q(G) and min q(Ĝ), respectively.

Problem 2. Among all non-traceable nearly balanced bipartite graphs G on 2n− 1 ver-

tices, with δ(G) ≥ k, determine max ρ(G),min ρ(Ĝ),max q(G) and min q(Ĝ), respectively.

In this paper, we solve the above problems for graphs of sufficiently large order. The

main theorems and related notation are given in Section 2.

In order to solve these problems, we need to use several spectral inequalities and

convert the original problems into new ones involving the number of edges. We also use
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spectral inequalities to characterize the extremal graphs. In particular, we prove spectral

inequalities to compare the (signless Laplacian) spectral radii of certain types of graphs.

These are given in Section 3.

The proofs of our main theorems also need detailed structural analysis. We need

to use the closure theory of Hamilton cycles in balanced bipartite graph due to Bondy

and Chvatál [4]. With the help of this theory, we need to use an analogous theorem for

Hamilton paths in balanced bipartite graphs. We establish a theorem on the existence of a

complete bipartite subgraph with large order in a balanced bipartite graph with sufficiently

many edges. We also prove a theorem on the existence of Hamilton paths in a balanced

bipartite graph with given number of edges. All these structural lemmas and proofs are

given in Section 4.

In Section 5, we prove our main theorems. Finally, in Section 6, we conclude the paper

with some remarks and problems.

2 Main theorems

2.1 Notation

To describe all extremal graphs in our coming theorems, we introduce some terminology

and notation. We use Gm,n to denote the set of bipartite graphs with partition sets of sizes

m and n. As usual, Km,n denotes the complete bipartite graph, and we set Φm,n = K̂m,n.

In this paper, when we mention a bipartite graph, we always fix its partition sets, e.g.,

Φm,n and Φn,m are considered as different bipartite graphs, unless m = n (although they

are both the empty graphs of order m+ n).

Let G1, G2 be two bipartite graphs, with the bipartition {X1, Y1} and {X2, Y2}, re-
spectively. We use G1 ⊔ G2 to denote the graph obtained from G1 ∪ G2 by adding all

possible edges between X1 and Y2 and all possible edges between Y1 and X2. We set

Bk
n = Kk,n−k ⊔ Φn−k,k and Bk

n = {H ⊔ Φn−k,k : H ∈ Gk,n−k} (1 ≤ k ≤ n/2).

The graphs Bk
n play a crucial role in the proofs of results in [12]. Notice that Bk

n is the

graph in Bk
n with the largest number of edges. We remark that for any (spanning) subgraph

G of Bk
n, ρ(Ĝ) = ρ(B̂k

n) (q(Ĝ) = q(B̂k
n)) if and only if G ∈ Bk

n.

We define some classes of graphs as follows:

Qk
n = Kk,n−k−1 ⊔ Φn−k,k+1 (0 ≤ k ≤ (n− 1)/2),

Rk
n = Kk,k ∪Kn−k,n−k (1 ≤ k ≤ n/2),

Sk
n = Kk,n−k−1 ⊔ Φn−k,k (1 ≤ k ≤ (n− 1)/2),

Sk
n = {H ⊔ Φk,n−k : H ∈ Gn−k−1,k} (1 ≤ k ≤ (n− 1)/2),

T k
n = Kk,n−k−1 ⊔ Φn−k−1,k+1 (0 ≤ k ≤ n/2− 1),

T k
n = {H ⊔ Φk+1,n−k−1 : H ∈ Gn−k−1,k} (0 ≤ k ≤ n/2− 1).

Additionally, let Γ 0
n = Kn−2,n ∪K1,0 and let  L be the graph in Fig. 1.
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Fig. 1. The graph  L.
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Note that Sk
n is the graph in Sk

n with the largest number of edges, and T k
n is the graph

in T k
n with the largest number of edges. Similarly, we remark that for any (spanning)

subgraph G of Sk
n, ρ(Ĝ) = ρ(Ŝk

n) (q(Ĝ) = q(Ŝk
n)) if and only if G ∈ Sk

n; and for any

(spanning) subgraph G of T k
n , ρ(Ĝ) = ρ(T̂ k

n ) (q(Ĝ) = q(T̂ k
n )) if and only if G ∈ T k

n .

2.2 Main results

In this subsection, we state all our main theorems. Since we consider the classes of balanced

bipartite graphs and nearly balanced bipartite graphs, and for each class of graphs, we

consider sufficient conditions in terms of (signless Laplacian) spectral radii of graphs or

the complements, we obtain eight theorems as follows.

For balanced bipartite graphs, we have

Theorem 2.1. Let G be a balanced bipartite graph on 2n vertices, with minimum degree

δ(G) ≥ k, where k ≥ 0 and n ≥ (k + 2)2.

(1) If k 6= 1 and ρ(G) ≥ ρ(Qk
n), then G is traceable unless G = Qk

n.

(2) If k = 1 and ρ(G) ≥ ρ(R1
n), then G is traceable unless G = R1

n.

Theorem 2.2. Let G be a balanced bipartite graph on 2n vertices, with minimum degree

δ(G) ≥ k, where k ≥ 0 and n ≥ (k + 2)2. If q(G) ≥ q(Qk
n), then G is traceable unless

G = Qk
n.

Theorem 2.3. Let G be a balanced bipartite graph on 2n vertices, with minimum degree

δ(G) ≥ k, where k ≥ 0 and n ≥ 2k.

(1) If k ≥ 1 and ρ(Ĝ) ≤ ρ(R̂k
n), then G is traceable unless G = Rk

n.

(2) If k = 0 and ρ(Ĝ) ≥ ρ(Q̂0
n), then G is traceable unless G = Q0

n.

Theorem 2.4. Let G be a balanced bipartite graph on 2n vertices. If q(Ĝ) ≤ n, then G

is traceable unless G ∈ {Rk
n : 1 ≤ k ≤ ⌊n/2⌋}.

Remark 1. Our Theorem 2.1 generalizes Theorem 2.10 in [13] due to Liu et al.

For nearly balanced bipartite graphs, we have

Theorem 2.5. Let G be a nearly balanced bipartite graph on 2n−1 vertices, with minimum

degree δ(G) ≥ k, where k ≥ 0 and n ≥ (k + 1)2.

(1) If k ≥ 1 and ρ(G) ≥ ρ(Sk
n), then G is traceable unless G = Sk

n.

(2) If k = 0 and ρ(G) ≥ ρ(T 0
n), then G is traceable unless G = T 0

n .

Theorem 2.6. Let G be a nearly balanced bipartite graph on 2n−1 vertices, with minimum

degree δ(G) ≥ k, where k ≥ 0 and n ≥ (k + 1)2.

(1) If k ≥ 1 and q(G) ≥ q(Sk
n), then G is traceable unless G = Sk

n.

(2) If k = 0 and q(G) ≥ q(S1
n), then G is traceable unless G = S1

n.

Theorem 2.7. Let G be a nearly balanced bipartite graph on 2n−1 vertices, with minimum

degree δ(G) ≥ k, where k ≥ 0 and n ≥ 2k + 1.

(1) If k ≥ 1 and ρ(Ĝ) ≤ ρ(Ŝk
n), then G is traceable unless G ∈ Sk

n.

(2) If k = 0 and ρ(Ĝ) ≤ ρ(T̂ 0
n), then G is traceable unless G ∈ S1

n ∪ {T 0
n}.

Theorem 2.8. Let G be a nearly balanced bipartite graph on 2n−1 vertices. If q(Ĝ) ≤ n,

then G is traceable unless G ∈ (
⋃⌊(n−1)/2⌋

k=1 Sk
n) ∪ (

⋃⌊n/2⌋−1
k=0 T k

n ), or n = 4 and G =  L.
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3 Spectral inequalities

We will use the following spectral inequalities for graphs and bipartite graphs, respectively.

The first theorem is a direct corollary of a result of Nosal [23]. (See also [3].)

Theorem 3.1 (Nosal [23], Bhattacharya, Friedland and Peled [3]). Let G be a bipartite

graph. Then

ρ(G) ≤
√

e(G).

The next theorem has been proved in [12], with the help of a result due to Feng and

Yu [8, Lemma 2.4], which can be traced back to Merris [15].

Theorem 3.2 (Li and Ning [12]). Let G be a balanced bipartite graph on 2n vertices.

Then

q(G) ≤ e(G)

n
+ n.

The following two theorems can be proved similarly as Lemma 2.1 in [2] and Theorem

2 in [1], respectively. We omit the proofs.

Theorem 3.3. Let G be a graph with non-empty edge set. Then

ρ(G) ≥ min{
√

d(u)d(v) : uv ∈ E(G)}.

Moreover, if G is connected, then equality holds if and only if G is regular or semi-regular

bipartite.

Theorem 3.4. Let G be a graph with non-empty edge set. Then

q(G) ≥ min{d(u) + d(v) : uv ∈ E(G)}.

Moreover, if G is connected, then the equality holds if and only if G is regular or semi-

regular bipartite.

Lemma 1. For k ≥ 1, n ≥ 2k + 1, we have

ρ(Qk
n) > ρ(Kn,n−k−1) =

√
n(n− k − 1); ρ(Sk

n) > ρ(Kn,n−k−1) =
√

n(n− k − 1);

q(Qk
n) > q(Kn,n−k−1) = 2n− k − 1; q(Sk

n) > q(Kn,n−k−1) = 2n − k − 1;

ρ(R̂k
n) = ρ(Kk,n−k) =

√
k(n− k); ρ(Ŝk

n) = ρ(Kn−k,k) =
√

k(n − k);

q(R̂k
n) = q(Kk,n−k) = n; q(Ŝk

n) = q(Kn−k,k) = q(T̂ k
n ) = q(Kn−k−1,k+1) = n.

Proof. Since Kn,n−k−1 is a proper subgraph of Qk
n or Sk

n, the first four inequalities follow

from the Perron-Frobenius Theorem. The others can be checked easily.

Lemma 2. (1) For n ≥ 3, ρ(S1
n) < ρ(Q1

n) ≤ ρ(R1
n) = ρ(T 0

n) = n − 1, where the second

inequality becomes equality only if n = 3.

(2) For n ≥ 3, 2n− 1 = q(Q0
n) > q(Q1

n) > q(R1
n) = 2n− 2.

Proof. (1) First, note that S1
n is a proper subgraph of Q1

n. Thus, ρ(S
1
n) < ρ(Q1

n).

Next, we show that ρ(Q1
n) ≤ n − 1. Recall that Q1

n = K1,n−2 ⊔ Φn−1,2. Let {X1, Y1}
be the bipartition of K1,n−2, where |X1| = 1, |Y1| = n− 2. Let {X2, Y2} be the bipartition

of Φn−1,2, where |X2| = n − 1, |Y2| = 2. Set ρ = ρ(Q1
n). Let X = (x1, x2, . . . , xn) be a
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positive unit eigenvector of Q1
n corresponding to ρ. Since any pair of vertices in the same

partite set, say v1, v2, have the same neighborhood, we know xv1 = xv2 . Thus, we can

assume that

x := xv, v ∈ X1;

y := xv, v ∈ Y1;

z := xv, v ∈ X2;

t := xv, v ∈ Y2.

The eigenvalue equations can be reduced to the following four ones:

ρx = (n− 2)y + 2t, (1)

ρy = x+ (n− 1)z, (2)

ρz = (n− 2)y, (3)

ρt = x. (4)

Multiplying the two sides of (2) by ρ, and putting (3) into it, we have

ρ2y = ρx+ (n − 1)(n − 2)y,

that is,

[ρ2 − (n− 1)(n − 2)]y = ρx. (5)

Similarly, multiplying the two sides of (1) by ρ, and eliminating t, we obtain

(ρ2 − 2)x = (n − 2)ρy. (6)

Combining (5) and (6), and cancelling xy yields

ρ4 − (n2 − 2n+ 2)ρ2 + 2(n − 1)(n − 2) = 0. (7)

By solving Equation (7), we obtain

ρ2 =
(n2 − 2n + 2) +

√
(n2 − 2n+ 2)2 − 8(n − 1)(n − 2)

2
.

By simple algebra, we get ρ2 < (n− 1)2 when n ≥ 4 and ρ = n− 1 when n = 3.

(2) Since Q1
n contains Kn,n−2 as its proper subgraph, from the Perron-Frobenius The-

orem, we can see q(Q1
n) > q(Kn,n−2) = 2n− 2 = q(R1

n). On the other hand, by Theorem

3.2, we have

q(Q1
n) ≤

e(Q1
n)

n
+ n =

n(n− 2) + 2

n
+ n = 2n− 2 +

2

n
< 2n− 1

when n ≥ 3. This proves the statement (2).
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4 Structural lemmas

In this section, we state some known structural theorems and prove some new ones.

The first tool we need is the closure theory of Hamilton cycles in balanced bipartite

graphs introduced by Bondy and Chvátal [4]. Let G be a balanced bipartite graph on 2n

vertices. The bipartite closure (or briefly, B-closure) of G, denoted by clB(G), is the graph

obtained from G by recursively joining pairs of nonadjacent vertices in different partition

sets whose degree sum is at least n + 1 until no such pair remains. A balanced bipartite

graph G on 2n vertices is B-closed if G = clB(G), i.e., if every two nonadjacent vertices

in distinct partition sets of G have degree sum at most n.

Theorem 4.1 (Bondy and Chvátal [4]). A balanced bipartite graph G is Hamiltonian if

and only if clB(G) is Hamiltonian.

Lemma 3. 1 A balanced bipartite graph G is traceable if and only if clB(G) is traceable.

Proof. Clearly G being traceable implies that clB(G) being traceable. Now we assume

that clB(G) is traceable. If clB(G) is Hamiltonian, then G is Hamiltonian by Theorem

4.1. Now we assume that clB(G) has a Hamilton path P but no Hamilton cycle. Let x, y

be the two end-vertices of P . Then xy /∈ E(clB(G)).

Let G′ = G+ xy. Then clB(G) + xy ⊆ clB(G
′). Thus, clB(G

′) is Hamiltonian, and G′

is Hamiltonian by Theorem 4.1. So, G is traceable.

We need two theorems proved in [12].

Theorem 4.2 (Li and Ning [12]). Let G be a B-closed balanced bipartite graph on 2n

vertices. If n ≥ 2k + 1 for some k ≥ 1 and

e(G) > n(n− k − 1) + (k + 1)2,

then G contains a complete bipartite subgraph of order 2n− k. Furthermore, if δ(G) ≥ k,

then Kn,n−k ⊆ G.

Theorem 4.3 (Li and Ning [12]). Let G be a balanced bipartite graph on 2n vertices. If

δ(G) ≥ k ≥ 1, n ≥ 2k + 1 and

e(G) > n(n− k − 1) + (k + 1)2,

then G is Hamiltonian unless G ⊆ Bk
n.

Using the above two theorems, we prove the following corresponding lemmas for the

existence of Hamilton paths and complete bipartite subgraphs in balanced bipartite graphs,

respectively.

Lemma 4. Let G be a B-closed balanced bipartite graph on 2n vertices. If n ≥ 2k+3 for

some k ≥ 1 and

e(G) > n(n− k − 2) + (k + 2)2,

then G contains a complete bipartite subgraph on 2n − k − 1 vertices. Furthermore, if

δ(G) ≥ k, then Kn,n−k−1 ⊆ G, or k = 1 and Kn−1,n−1 ⊆ G.

1This result may have appeared in some early reference, but we could not find any. We include its short

proof here to keep our paper self-contained.
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Proof. The existence of a complete bipartite subgraph on 2n−k−1 vertices can be deduced

from Theorem 4.2. Let X,Y be the partition sets of G, and X ′ ⊆ X, Y ′ ⊂ Y such that

G[X ′ ∪ Y ′] = Ks,t, where s + t ≥ 2n − k − 1 and s ≥ t. We choose s, t such that s is as

large as possible.

Now suppose that δ(G) ≥ k. If Kn,n−k−1 6⊆ G, then n − k ≤ t ≤ s ≤ n − 1. Note

that every vertex in X\X ′ has degree at least k and every vertex in Y ′ has degree at least

s. If s + k ≥ n + 1, then every vertex in X\X ′ and every vertex in Y ′ are adjacent, and

Kn,n−k ⊆ G, a contradiction. This implies that s+ k ≤ n, i.e., s ≤ n− k. Hence we have

s = t = n − k. Recall that s + t ≥ 2n − k − 1. We have k = 1 and s = t = n − 1. Thus

Kn−1,n−1 ⊆ G.

Lemma 5. Let G be a balanced bipartite graph on 2n vertices. If δ(G) ≥ k ≥ 1, n ≥ 2k+3

and

e(G) > n(n− k − 2) + (k + 2)2,

then G is traceable unless G ⊆ Qk
n, or k = 1 and G ⊆ R1

n.

Proof. Let G′ = clB(G). If G′ is traceable, then so is G by Lemma 3. Now we assume

that G′ is not traceable. We first deal with the case k = 1. Note that δ(G′) ≥ δ(G)

and e(G′) ≥ e(G). By Lemma 4, either Kn,n−2 ⊆ G′ or Kn−1,n−1 ⊆ G′. Recall that

δ(G′) ≥ 1. It is easy to check the only non-traceable balanced bipartite graphs of order

2n without isolated vertices containing Kn,n−2 or Kn−1,n−1 are Q1
n and R1

n, respectively.

Thus G′ = Q1
n or R1

n, and this implies that G ⊆ Q1
n or G ⊆ R1

n.

Now assume that k ≥ 2. By Lemma 4, Kn,n−k−1 ⊆ G′. Let t be the largest integer

such that Kn,t ⊆ G. Clearly n− k − 1 ≤ t < n. Let X,Y be the partition sets of G, and

Y ′ ⊂ Y such that G[X ∪ Y ′] = Kn,t.

We first claim that t = n− k − 1. If t ≥ n− k + 1, then every vertex of X has degree

at least n−k+1 in G′ and every vertex in Y has degree at least k in G′, implying that G′

is complete bipartite. Thus G′ is traceable, a contradiction. Suppose now that t = n− k.

If some vertex in Y \Y ′ has degree at least k + 1 in G′, then it will be adjacent to every

vertex in X in G′, a contradiction. So we conclude that every vertex in Y \Y ′ has degree

exactly k. If a vertex x ∈ X is adjacent to some vertex in Y \Y ′, then dG′(x) ≥ n− k + 1

and x will be adjacent to every vertex in Y \Y ′. This implies that all the vertices in Y \Y ′

are adjacent to k common vertices in X, i.e., G′ = Bk
n. Note that Bk

n is traceable, a

contradiction. Thus t = n− k − 1, as we claimed.

Next we show that every vertex of Y \Y ′ has degree exactly k. Suppose that there is

a vertex y ∈ Y \Y ′ which has degree at least k + 1 in G′. If dG′(y) ≥ k + 2, then since

dG′(x) ≥ n−k−1 for every x ∈ X, y will be adjacent to every vertex of X, a contradiction.

So we have dG′(y) = k+1. Let X ′ be the set of n− k− 1 vertices in X nonadjacent to y.

Then for every x ∈ X ′, x is nonadjacent to any vertex of Y \Y ′; otherwise dG′(x) ≥ n− k,

implying that xy ∈ E(G). Now consider the subgraph H = G′[X\X ′, Y \Y ′]. Note that

for every y′ ∈ Y \Y ′, dH(y′) ≥ k and for every x′ ∈ X\X ′, dH(x′) ≥ 1. If every vertex in

X\X ′ has degree at least 2 in H, then clB(H) is complete and bipartite, implying that

H is traceable; if there is a vertex, say x in X\X ′, with degree 1 in H, i.e., x has only

one neighbor y in H, then H − {x, y} is complete and bipartite, also implying that H is

traceable. Note that G′[X,Y ′] is complete. So G′ is traceable, a contradiction. Thus we

conclude that every vertex of Y \Y ′ has degree exactly k.
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Let x be an arbitrary vertex in X. If x is adjacent to at least two vertices in Y \Y ′,

then d(x) ≥ n − k + 1, implying that x is adjacent to all vertices in Y \Y ′. Thus we

conclude that every vertex in X is adjacent to either no vertices, or only one vertex, or

all vertices in Y \Y ′. We call the vertex x a simple (frontier, saturated, resp.) vertex if x

is adjacent to no (one, every, resp.) vertex in Y \Y ′.

If every vertex in Y \Y ′ is adjacent to at least two frontier vertices, then we can

take k + 1 vertex-disjoint P3’s such that every vertex in Y \Y ′ is the center of a P3. Since

G′[X,Y ′] is complete and bipartite, it is easy to check that G′ is traceable, a contradiction.

If every vertex in Y \Y ′ is adjacent to exactly one frontier vertex, implying that there are

k− 1 saturated vertices. (Note that every vertex in Y \Y ′ is adjacent to the same number

of frontier vertices.) In this case, there are k − 1 vertex-disjoint P3’s with the centers in

Y \Y ′ and two additional independent edges incident to vertices in Y \Y ′. Since G′[X,Y ′]

is complete and bipartite, it is easy to check that G′ is traceable, a contradiction.

Now assume that there are no frontier vertices. Thus every vertex in Y \Y ′ is adjacent

to (the common) k saturated vertices. In this case G′ = Qk
n and G ⊆ Qk

n.

Finally, we recall two theorems proved in [12].

Theorem 4.4 (Li and Ning [12]). Let G be a balanced bipartite graph on 2n vertices, with

minimum degree δ(G) ≥ k ≥ 1.

(1) If n ≥ (k + 1)2 and ρ(G) ≥ ρ(Bk
n), then G is Hamiltonian unless G = Bk

n.

(2) If n ≥ (k + 1)2 and q(G) ≥ q(Bk
n), then G is Hamiltonian unless G = Bk

n.

(3) If n ≥ 2k and ρ(Ĝ) ≤ ρ(B̂k
n), then G is Hamiltonian unless G ∈ Bk

n, or k = 2, n = 4

and G = L1 or L2 (see Fig. 2).
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Fig. 2. The graphs L1 and L2.

Theorem 4.5 (Li and Ning [12]). Let G be a balanced bipartite graph on 2n vertices. If

q(Ĝ) ≤ n, then G is Hamiltonian unless G ∈ ⋃⌊n/2⌋
k=1 Bk

n, or n = 4 and G = L1 or L2 (see

Fig. 2).

5 Proofs

In this section, we prove our main theorems.

Proof of Theorem 2.1. Suppose that G is not traceable. If k ≥ 1, then by Lemmas 1,

2(1) and Theorem 3.1,

√
e(G) ≥ ρ(G) ≥ ρ(Qk

n) >
√

n(n− k − 1).

Thus, we have

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 2)2

9



when n ≥ (k + 2)2. Since n ≥ (k + 2)2 > 2k + 3, by Lemma 5, G ⊆ Qk
n or k = 1 and

G ⊆ R1
n. If k ≥ 2, then G ⊆ Qk

n. But if G  Qk
n, then ρ(G) < ρ(Qk

n), a contradiction.

Thus G = Qk
n. If k = 1, then G ⊆ Q1

n or G ⊆ R1
n. But if G ⊆ Q1

n or G  R1
n, then by

Lemma 2(1), we get ρ(G) < ρ(R1
n), a contradiction. Thus G = R1

n.

Now assume that k = 0. If G has no isolated vertex, i.e., δ(G) ≥ 1, then by the above

analysis,

ρ(G) ≤ ρ(R1
n) = n− 1 < ρ(Q0

n) =
√

n(n− 1),

a contradiction. Thus G has an isolated vertex and G ⊆ Q0
n. But if G  Q0

n, then

ρ(G) < ρ(Q0
n), a contradiction. Thus G = Q0

n. �

Proof of Theorem 2.2. Suppose that G is not traceable. If k ≥ 1, then by Lemma 1

and Theorem 3.2, we have

e(G)

n
+ n ≥ q(G) ≥ q(Qk

n) > 2n− k − 1.

Thus, we have

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 2)2

when n ≥ (k + 2)2. By Lemma 5, G ⊆ Qk
n or k = 1 and G ⊆ R1

n. If k ≥ 2, then G ⊆ Qk
n.

But if G  Qk
n, then q(G) < q(Qk

n), a contradiction. Thus G = Qk
n. If k = 1, then G ⊆ Q1

n

or G ⊆ R1
n. But if G  Q1

n or G ⊆ R1
n, then by Lemma 2(2), we obtain q(G) < q(Q1

n), a

contradiction. Thus G = Q1
n.

Now assume that k = 0. If G has no isolated vertex, i.e., δ(G) ≥ 1, then by the analysis

above and Lemma 2(2), we obtain

q(G) ≤ q(Q1
n) < q(Q0

n) = 2n − 1,

a contradiction. Thus G has an isolated vertex and G ⊆ Q0
n. But if G  Q0

n, then

q(G) < q(Q0
n), a contradiction. Thus G = Q0

n. �

Proof of Theorem 2.3. Suppose that G is not traceable. Then G is not hamiltonian.

If k ≥ 1, then

ρ(Ĝ) ≤ ρ(R̂k
n) = ρ(B̂k

n) =
√

k(n− k).

By Theorem 4.4, G ∈ Bk
n, or k = 2, n = 4 and G = L1 or L2. But if G ∈ Bk

n\{Rk
n}, or

G = L1 or L2, then G is traceable, a contradiction. Thus we conclude G = Rk
n.

Now assume that k = 0. If G has no isolated vertex, i.e., δ(G) ≥ 1, then by the above

analysis,

ρ(Ĝ) ≤ ρ(R̂1
n) =

√
n− 1 < ρ(Q̂0

n) =
√
n,

a contradiction. This implies that G has an isolated vertex and G ⊆ Q0
n. But if G  Q0

n,

then ρ(Ĝ) > ρ(Q̂0
n), a contradiction. Thus G = Q0

n. �

Proof of Theorem 2.4. Suppose that G is not traceable. Then G is not hamiltonian.

By Theorem 4.5, G ∈ ⋃⌊n/2⌋
k=1 Bk

n, or n = 4 and G = L1 or L2. But if G ∈ ⋃⌊n/2⌋
k=1 (Bk

n\{Rk
n}),

or G = L1 or L2, then G is traceable, a contradiction. Thus we conclude G ∈ {Rk
n : 1 ≤

k ≤ ⌊n/2⌋}. �

Proof of Theorem 2.5. Let {X,Y } be the partition of V (G) such that |X| = n − 1

and |Y | = n. Let G′ be the graph obtained from G by adding one new vertex x′ and
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connecting x′ to every vertex in Y by an edge. Clearly G is traceable if and only if G′ is

Hamiltonian.

If k ≥ 1, then by Lemma 1 and Theorem 3.1,

√
e(G) ≥ ρ(G) ≥ ρ(Sk

n) >
√

n(n− k − 1).

Thus, we have

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 1)2

when n ≥ (k + 1)2. This implies that e(G′) > n(n − k − 1) + (k + 1)2. Note that

δ(G′) ≥ δ(G) ≥ k. By Theorem 4.3, G′ is Hamiltonian or G′ ⊆ Bk
n. Thus, G is traceable

or G ⊆ Sk
n or G ⊆ T k−1

n . But if G  Sk
n, then ρ(G) < ρ(Sk

n); if G ⊆ T k−1
n , then

δ(G) ≤ k − 1. Thus G = Sk
n.

Now assume that k = 0. If G has no isolated vertex, then δ(G) ≥ 1. If n = 2, then

clearly G is traceable. So we may assume that n ≥ 3. By the above analysis, and by

Lemma 2(1),

ρ(G) ≤ ρ(S1
n) < ρ(T 0

n) = n− 1,

a contradiction. This implies that G has an isolated vertex, and G  T 0
n or G ⊆ Γ 0

n . But

if G  T 0
n or G ⊆ Γ 0

n , then ρ(G) < ρ(T 0
n), a contradiction. Thus G = T 0

n . �

Proof of Theorem 2.6. Let G′ be defined as in the proof of Theorem 2.5. If k ≥ 1, then

by Lemma 1 and Theorem 3.2, we have

e(G)

n
+ n ≥ q(G) > 2n− k − 1.

Note that here we consider G as a balanced bipartite graph having an isolated vertex.

Thus

e(G) > n(n− k − 1) ≥ n(n− k − 2) + (k + 1)2

when n ≥ (k + 1)2. This implies that e(G′) > n(n − k − 1) + (k + 1)2. Note that

δ(G′) ≥ δ(G) ≥ k. By Theorem 4.3, G′ is Hamiltonian or G′ ⊆ Bk
n. Thus G is traceable or

G ⊆ Sk
n or G ⊆ T k−1

n . But if G  Sk
n, then q(G) < q(Sk

n); if G ⊆ T k−1
n , then δ(G) ≤ k− 1.

Thus G = Sk
n.

Now assume that k = 0. If G has an isolated vertex, then G ⊆ T 0
n or G ⊆ Γ 0

n . But if

G  T 0
n or G ⊆ Γ 0

n , then q(G) < q(S1
n), a contradiction. Here notice that q(T 0

n) = q(Γ 0
n) =

2n− 2, and Kn,n−2  S1
n. So we assume that G has no isolated vertex, i.e., δ(G) ≥ 1. By

the above analysis, G is traceable unless G = S1
n. �

Proof of Theorem 2.7. We suppose first that k ≥ 1. Let G′ be defined as in the proof

of Theorem 2.5. Note that δ(G′) ≥ δ(G) ≥ k and ρ(Ĝ′) = ρ(Ĝ) ≤ ρ(Ŝk
n) = ρ(B̂k

n). By

Theorem 4.4, G′ is Hamiltonian unless G′ ∈ Bk
n, or k = 2, n = 4 and G′ = L1 or L2. Thus

G is traceable unless G ∈ Sk
n or G ∈ T k−1

n , or n = 4, k = 2 and G =  L. But if G ∈ T k−1
n ,

or n = 4, k = 2 and G =  L, then δ(G) ≤ k − 1, a contradiction. Thus G ∈ Sk
n.

Now assume that k = 0. Then ρ(Ĝ) ≤ ρ(T̂ 0
n) = ρ(Ŝ1

n). If G has no isolated vertex,

then δ(G) ≥ 1 and by the above analysis, G is traceable unless G ∈ S1
n. If G has an

isolated vertex, then G ⊆ Γ 0
n or G ⊆ T 0

n . But if G ⊆ Γ 0
n or G  T 0

n , then ρ(Ĝ) > ρ(T̂ 0
n), a

contradiction. Thus G ∈ S1
n ∪ {T 0

n}. �
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Proof of Theorem 2.8. Let G′ be defined as in the proof of Theorem 2.5. Note that

δ(G′) ≥ δ(G) ≥ k, q(Ĝ′) = q(Ĝ) ≤ n. By Theorem 4.5, G′ is Hamiltonian unless G′ ∈⋃⌊n/2⌋
k=1 Bk

n, or n = 4 and G′ = L1 or L2. Thus G is traceable unless G ∈ (
⋃⌊(n−1)/2⌋

k=1 Sk
n) ∪

(
⋃⌊n/2⌋−1

k=0 T k
n ), or n = 4 and G =  L. The proof is complete. �

6 Concluding remarks

In fact, during our proofs of main theorems, we have actually proved the following theo-

rems. All these results maybe stimulate our further study.

Theorem 6.1. Let G be a balanced bipartite graph on 2n vertices, with minimum degree

δ(G) ≥ k, where k ≥ 1 and n ≥ (k + 2)2. If ρ(G) ≥
√

n(n− k − 1), then G is traceable

unless G ⊆ Qk
n or k = 1 and G ⊆ R1

n.

Theorem 6.2. Let G be a balanced bipartite graph on 2n vertices, with minimum degree

δ(G) ≥ k, where k ≥ 1 and n ≥ (k + 2)2. If q(G) ≥ 2n− k − 1, then G is traceable unless

G ⊆ Qk
n or k = 1 and G ⊆ R1

n.

Theorem 6.3. Let G be a nearly balanced bipartite graph on 2n−1 vertices, with minimum

degree δ(G) ≥ k, where k ≥ 1 and n ≥ (k + 1)2. If ρ(G) ≥
√

n(n− k − 1), then G is

traceable unless G ⊆ Sk
n.

Theorem 6.4. Let G be a nearly balanced bipartite graph on 2n−1 vertices, with minimum

degree δ(G) ≥ k, where k ≥ 1 and n ≥ (k + 1)2. If q(G) ≥ 2n− k − 1, then G is traceable

unless G ⊆ Sk
n.

On the other hand, notice that in Theorem 1.2, the order of a graph is required to

be linear multiple of the minimum degree of a graph. But in our Theorems 2.1, 2.2, 2.5

and 2.6, the order of a graph is required to be at least square multiple of minimum degree

of a graph. It is natural to ask whether the required order could be improved to linear

multiple of minimum degree of the graph. Till now, we cannot solve this problem.
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[7] P. Erdős, A. Rényi, V. Sós, On a problem of graph theory, Studia Sci. Math. Hung.

1 (1966), 215–235.

[8] L.-H. Feng, G.-H. Yu, On three conjectures involving the signless Laplacian spectral

radius of graphs, Publ. Inst. Math. (Beograd) (N.S.) 85 (99) (2009), 35–38.

[9] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra

Appl. 432 (2010), no. 9, 2170–2173.

[10] J. van den Heuvel, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl.

226–228 (1995), 723–730.

[11] M. Krivelevich, B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph

Theory 42 (2003), no. 1, 17–33.

[12] B.-L Li, B. Ning, Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamil-
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