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Abstract

For an r-uniform hypergraph H, let f(H) be the minimum number of complete
r-partite r-uniform subhypergraphs of H whose edge sets partition the edge set of H.
For a graph G, f(G) is the bipartition number of G which was introduced by Graham
and Pollak in 1971. In 1988, Erdős conjectured that if G ∈ G(n, 1/2), then with high
probability f(G) = n − α(G), where α(G) is the independence number of G. This
conjecture and its related problems have received a lot of attention recently. In this
paper, we study the value of f(H) for a typical r-uniform hypergraphH. More precisely,
we prove that if (logn)2.001/n ≤ p ≤ 1/2 and H ∈ H(r)(n, p), then with high probability

f(H) = (1− π(K
(r−1)
r ) + o(1))

(
n

r−1

)
, where π(K

(r−1)
r ) is the Turán density of K

(r−1)
r .

1 Introduction

For a graph G, the bipartition number τ(G) is the minimum number of complete bipartite
subgraphs of G so that each edge of G belongs to exactly one of them. This parameter of a
graph was introduced by Graham and Pollak [12] in 1971. The famous Graham–Pollak [12]
Theorem asserts τ(Kn) = n − 1. Since its original proof using Sylvester’s Law of Inertia,
many other proofs have been discovered, see [16], [17], [18], [19], [20], [21].

Let α(G) be the independence number of G. It is easy to observe τ(G) ≤ |V (G)|−α(G).
Erdős (see [13]) conjectured that the equality holds for almost all graphs. Namely, if G ∈
G(n, 1/2), then τ(G) = n − α(G) with high probability. Alon [2] disproved this conjecture
by showing τ(G) ≤ n − α(G) − 1 with high probability for most values of n. Improving
Alon’s result, Alon, Bohman, and Huang [3] proved that if G ∈ G(n, 1/2), then with high
probability τ(G) ≤ n− (1 + c)α(G) for some positive constant c. Chung and the author [6]
proved that if G ∈ G(n, p), p is a constant, and p ≤ 1/2, then with high probability we have
τ(G) ≥ n − δ(log1/p n)

3+ϵ for any constants δ and ϵ. When p satisfies 2
n ≤ p ≤ c for some

absolute (small) constant c, Alon [2] showed that if G ∈ G(n, p), then τ(G) = n−Θ
(

log(np)
p

)
with high probability.

The hypergraph analogue of the bipartition number is well-defined. For r ≥ 3 and an
r-uniform hypergraph H, let f(H) be the minimum number of complete r-partite r-uniform
subhypergraphs ofH whose edge sets partition the edge set ofH. Aharoni and Linial (see [1])

first asked to determine the value of f(K
(r)
n ) for r ≥ 3, where K

(r)
n is the complete r-uniform

hypergraph with n vertices. The value of f(K
(r)
n ) is related to a perfect hashing problem from

computer science. Alon [1] proved f(K
(3)
n ) = n − 2 and c1(r)n

⌊ r2 ⌋ ≤ f(K
(r)
n ) ≤ c2(r)n

⌊ r2 ⌋

for r ≥ 4. For improvements and variations, readers are referred to [7], [8], [9], [10], [14],
and [15]. For each real 0 ≤ p ≤ 1, let H(r)(n, p) denote the random r-uniform hypergraph

in which each r-set F ∈
(
[n]
r

)
is selected as an edge with probability p independently. In this
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paper, we examine the value of f(H) for the random hypergraph H ∈ H(r)(n, p). To state
our main theorem, we need a few more definitions.

For an r-uniform hypergraph H, the Turán number ex(n,H) is the maximum number of
edges in an n-vertex r-uniform hypergraph which does not contain H as a subhypergraph.
We define the Turán density of H as

π(H) = lim
n→∞

ex(n,H)(
n
r

) .

For each r ≥ 3, we use K
(r−1)
r to denote the compete (r − 1)-uniform hypergraph with r

vertices.
By extending techniques from [2] and [6], we are able to prove the following theorem.

Theorem 1 For r ≥ 3, if (log n)2.001/n ≤ p ≤ 1/2 and H ∈ H(r)(n, p), then with high
probability we have

f(H) = (1− π(K(r−1)
r ) + o(1))

(
n

r − 1

)
.

From this theorem, we can see the typical value of f(H) has the order of magnitude nr−1

while f(K
(r)
n ) has the order of magnitude n⌊ r2 ⌋. We note π(K

(2)
3 ) = 1

2 while the value

of π(K
(r−1)
r ) is not known for r ≥ 4. We remark here that our techniques also work for

p ≤ 1 − c for any small positive constant c. However, we restrict out attention to the case
where p ≤ 1/2 in this paper.

We will use the following notation throughout this paper. For each r ≥ 3, we will use
[n] to denote the set {1, 2, . . . , n} and

(
[n]
r

)
to denote the collection of all r-subsets of [n]. If

A1, A2, . . . , Ar are pairwise disjoint subsets of [n], then we use
∏r

i=1 Ai to denote those r-
subsets F of [n] such that |F∩Ai| = 1 for each 1 ≤ i ≤ r. We may also write A1×A2×· · ·×Ar

for
∏r

i=1 Ai on some occasions. The complete r-partite r-uniform hypergraph whose vertex
parts are A1, A2, . . . , Ar is the r-uniform hypergraph with the edge set

∏r
i=1 Ai.

Let H be an r-uniform hypergraph with vertex set [n] and edge set E. For pairwise
disjoint subsets A1, A2, . . . , Ar ⊂ [n], we say A1, A2, . . . , Ar form a complete r-partite r-
uniform hypergraph if

∏r
i=1 Ai ⊆ E(H).

For an r-uniform hypergraph H, suppose E(H) = ⊔q
i=1

∏r
j=1 A

i
j is a partition of the

edge set of H. For each 1 ≤ i ≤ q, the i-th complete r-partite r-uniform hypergraph Hi

has vertex parts Ai
1, . . . , A

i
r. We always assume |Ai

1| ≤ · · · ≤ |Ai
r|. We say Hi is a trivial

complete r-partite r-uniform hypergraph if |Ai
1| = · · · = |Ai

r−1| = 1. Otherwise, we say Hi

is a nontrivial one. The prefix Pi of Hi is the set {Ai
1, . . . , A

i
r−1} and the prefix set P of the

partition is {P1, . . . , Pq}.
We say an event Xn occurs with high probability if the probability that Xn holds goes to

one as n approaches infinity. All logarithms are in base 2, unless otherwise specified.
The outline of the proof for Theorem 1 is the following. For the upper bound, we will

give an explicit construction such that each r-uniform hypergraph with n vertices can be

decomposed into at most (1 − π(K
(r−1)
r ) + o(1))

(
n

r−1

)
trivial complete r-partite r-uniform

hypergraphs. For the lower bound, we will prove f(H) ≥ (1− π(Kr−1
r )− ϵ)

(
n

r−1

)
with high

probability for any positive constant ϵ. Equivalently, we will show with tiny probability
f(H) ≤ (1 − π(Kr−1

r ) − ϵ)
(

n
r−1

)
holds. To do so, for a given prefix set P = {P1, . . . , Pq}

with q ≤ (1 − π(Kr−1
r ) − ϵ)

(
n

r−1

)
, let P1 = {Pi ∈ P : |P i

j | = 1 for each 1 ≤ j ≤ r − 1} and

P2 = P \ P1. We will show that there are at least c(ϵ)nr edges of H ∈ H(r)(n, p) which
must be contained by some nontrivial complete r-partite r-uniform hypergraph with prefix
from P2. Theorem 4 will tell us this probability is sufficiently small. We will prove an upper
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bound on the number of possible choices for P and apply the union bound to complete the
proof.

The idea here for proving the lower bound is quite similar to the one in [6]. The difference
is explained as follows. For random graphs, after we remove edges contained by stars (trivial
complete bipartite graphs), we still get a random graph with a smaller number of vertices.
This property indeed helped us to prove concentrations of related random variables. For
random r-uniform hypergraph with r ≥ 3, if we delete edges contained by trivial complete
r-partite r-uniform hypergraphs, then we will not end up with a random hypergraph. This
causes a lot trouble and we will find a new way to overcome this difficulty.

The rest of the paper is organized as follows. In Section 2, we will prove several necessary
lemmas. In Section 3, we will present the proof of an auxiliary theorem which is the key
ingredient in the proof of the main result. Theorem 1 will be proved in Section 4. Several
concluding remarks will be mentioned in Section 5.

2 Lemmas

In this section, we will collect some necessary lemmas which are needed to prove the main
theorem. We will use the following versions of Chernoff’s inequality and Azuma’s inequality.

Theorem 2 [5] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, Pr(Xi = 0) = 1− pi.

We consider the sum X =
∑n

i=1 Xi with expectation E(X) =
∑n

i=1 pi. Then we have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .

Theorem 3 [4] Let X be a random variable determined by m trials T1, . . . , Tm, such that
for each i, and any two possible sequences of outcomes t1, . . . , ti−1, ti and t1, . . . , ti−1, t

′
i:

|E (X|T1 = t1, . . . , Ti = ti)− E (X|T1 = t1, . . . , Ti−1 = ti−1, Ti = t′i) | ≤ ci,

then

Pr (|X − E(X)| ≥ λ) ≤ 2exp

(
−λ2/2

m∑
i=1

c2i

)
.

Recall that if A1, . . . , Ar form a complete r-partite r-uniform hypergraph, then we assume
|A1| ≤ |A2| ≤ · · · ≤ |Ar|. To prove an upper bound on the number of choices for the prefix
set, we will need the following lemma.

Lemma 1 For H ∈ H(r)(n, p) with p ≤ 1/2, with high probability the vertex parts A1, A2, · · · , Ar

of each complete r-partite r-uniform hypergraph in H satisfy
∏r−1

i=1 |Ai| < (r + 1) log n.

Proof: We need only to prove the lemma for p = 1/2. For a collection of pairwise disjoint
sets A1, A2, . . . , Ar ⊂ [n], we assume |Ai| = ki for each 1 ≤ i ≤ r and k1 ≤ k2 ≤ · · · ≤ kr.
Fix a selection of A1, . . . , Ar, the probability that they form a complete r-partite r-uniform
hypergraph in H(r)(n, 1/2) is 2−

∏r
i=1 ki . For fixed k1, . . . , kr, there are at most

∏r
i=1

(
n
ki

)
choices for A1, A2, . . . , Ar such that |Ai| = ki for each 1 ≤ i ≤ r. Therefore, for fixed

k1, . . . , kr satisfying
∏r−1

i=1 ki ≥ (r+1) log n and k1 ≤ · · · ≤ kr, the probability that there are
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pairwise disjoint sets A1, A2, . . . , Ar such that |Ai| = ki and they form a complete r-partite
r-uniform hypergraph is at most

r∏
i=1

(
n

ki

)
2−

∏r
i=1 ki < 2(

∑r
i=1 ki) logn−

∏r
i=1 ki

= 2kr((
∑r−1

i=1 ki/kr+1) logn−
∏r−1

i=1 ki)

≤ 2kr(r logn−
∏r−1

i=1 ki)

< 2−kr logn.

Put s =
∏r−1

i=1 ki. We next estimate how many choices of k1, . . . , kr such that
∏r−1

i=1 ki = s and

k1 ≤ · · · ≤ kr. Let t =
∑r−1

i=1 ki. If s ≥ log n, then t ≤ s+ r < 2s and kr ≥ kr−1 ≥ s1/(r−1).

Thus the number of choices for k1, . . . , kr−1 satisfying
∏r−1

i=1 ki = s and k1 ≤ · · · ≤ kr−1 is less

than the number of positive solutions to the equation
∑r−1

i=1 ki = t, which is less than 2s
(

2s
r−2

)
as t ≤ 2s. We have at most n choices for kr regardless the choices of k1, . . . , kr−1. Therefore,
the probability that there are A1, A2, . . . , Ar which satisfy s =

∏r−1
i=1 |Ai| ≥ (r+1) log n and

form a complete r-partite r-uniform hypergraph in H(r)(n, 1/2) is at most

n∑
s=(r+1) logn

2sn

(
2s

r − 2

)
2−kr logn ≤

n∑
s=(r+1) logn

2sn

(
2s

r − 2

)
2−s1/(r−1) logn = o(1),

here we used the assumption s ≥ (r + 1) log n. Then the lemma follows from Markov’s
inequality. �

To estimate the number of edges covered by a family of nontrivial complete r-partite
r-uniform hypergraphs, we need to introduce a new concept and prove the next lemma.

For an r-uniform hypergraph H = (V,E) and a prefix P = {A1, A2, . . . , Ar−1}, we define

V (H,P ) = {v : v ∈ V (H) \ (∪r−1
i=1Ai) and F ∈ E(H) for each F ∈ A1 × · · · ×Ar−1 × {v}}.

Figure 1 is an illustrative example for v ∈ V (H,P ). It follows that A1, A2, . . . , Ar form

x

u

v

A A
1 2w

Figure 1: An example with r = 3, P = {A1, A2}, and v ∈ V (H,P ).

a complete r-partite r-uniform hypergraph if Ar is contained in V (H,P ), namely, Ar ⊆
V (H,P ). We say an edge F ∈ E(H) is covered by a complete r-partite r-uniform hypergraph
with prefix P if F ∈ A1 × · · · ×Ar−1 × V (H,P ).

Let P = {P1, . . . , Pq} be a prefix set, where Pi = {Ai
1, . . . , A

i
r−1}. We define g(H,P)

as the number of edges of H which are covered by exactly one complete r-partite r-uniform
hypergraph whose prefix is from P. It is easy to see

g(H,P) ≤
q∑

i=1

g(H,Pi) ≤
q∑

i=1

|V (H,Pi)|
r−1∏
j=1

|Ai
j |.

We have the following lemma on g(H,P) for H ∈ H(r)(n, p).
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Lemma 2 Assume p ≤ 1/2 and H ∈ H(r)(n, p). Let c(n) be a fixed function. Given a prefix

set P = {P1, . . . , Pq}, where Pi = {Ai
1, A

i
2, . . . , A

i
r−1} and c(n) ≤

∏r−1
j=1 |Ai

j | < (r + 1) log n
for each 1 ≤ i ≤ q, then we have

Pr
(
g(H,P) ≥ qc(n)pc(n)n+ 2nr−0.3

)
≤ 2exp(−nr−0.8).

Proof: We shall use Theorem 3 to prove this lemma. Let m =
(
n
r

)
and we list all r-sets

of [n] as F1, F2, . . . , Fm. For each 1 ≤ i ≤ m, we consider Ti ∈ {H,T}, here Ti = H means
Fi is an edge and Ti = T means Fi is a non-edge. To simplify the notation, we use X to
denote the random variable g(H,P). We observe that X is determined by T1, . . . , Tm. Fix
the outcome tj of Tj for each 1 ≤ j ≤ i− 1, we wish to show an upper bound for

|E(X|T1 = t1, . . . , Ti−1 = ti−1, Ti = H)− E(X|T1 = t1, . . . , Ti−1 = ti−1, Ti = T)| . (1)

If Ti = H, then we assume Fi is contained by some hypergraph whose prefix is Pk for some
1 ≤ k ≤ q. Otherwise changing the outcome of Ti will not affect the value of X. Suppose
Fi = {v1, . . . , vr}, where Ak

l ∩ Fi = {vl} for each 1 ≤ l ≤ r − 1 and vr ̸∈ ∪r−1
l=1A

k
l . We

next examine other edges which get covered because we change Fi as an edge. These edges
are from the family Ak

1 × · · ·Ak
r−1 × {vr}. Therefore,

∏r−1
l=1 |Ak

l | is an upper bound for (1).

Recalling the assumption
∏r−1

l=1 |Ak
l | < (r+1) log n, then (1) can be bounded from above by

(r + 1) log n.

We note E(g(H,Pi)) ≤ c(n)pc(n)n as we assume
∏r−1

j=1 |Ai
j | ≥ c(n). We get

E(X) ≤
q∑

i=1

E(H,Pi) ≤ c(n)qpc(n)n.

Applying Theorem 3 with λ = 2nr−0.3 and ci = (r + 1) log n, we obtain

Pr
(
X ≥ c(n)qpc(n)n+ 2nr−0.3

)
≤ Pr

(
X ≥ E(X) + 2nr−0.3

)
≤ 2exp

(
−4n2r−0.6/(2m((r + 1) log n)2)

)
≤ 2exp(−nr−0.8),

here we used the fact m < nr. �
We need a lemma that provides a lower bound for the number of edges not covered by

a family of nontrivial complete r-partite r-uniform hypergraphs. Let k(n) and l(n) be given

functions. Suppose F ⊂
(
[n]
r

)
and Q is the power set of

(
[n]
r

)
\ F . Consider a function

C : F → Q such that for each F ∈ F and each R ∈ C(F ), we have |R ∩ F | = r − 1. Let
h(H,F , C) be the number of F ∈ F such that F is an edge in H ∈ H(r)(n, p) and R is not
an edge in H ∈ H(r)(n, p) for all R ∈ C(F ). We have the following lemma on h(H,F , C).

Lemma 3 Suppose p ≤ 1/2 and F ⊂
(
[n]
r

)
. Assume H ∈ H(r)(n, p), |C(F )| ≤ k(n) for each

F ∈ F , and for each R ∈ ∪F∈FC(F ), the number of F ∈ F satisfying R ∈ C(F ) is at most
l(n), here l(n) and k(n) are some given functions. Then we have

Pr
(
h(H,F , C) ≤ |F|p(1− p)k(n) − 2nr−0.01

)
≤ 2exp(−nr−0.02/l(n)2).

Proof: To simplify the notation, we use X to denote the random variable h(H,F , C) again.
We list all r-sets from F ∪F∈F C(F ) as F1, F2, . . . , Fm, here m ≤

(
n
r

)
. For each Fi, we

consider Ti ∈ {H,T}, here Ti = H means Fi is an edge and Ti = T means Fi is not an edge.
Given the outcome tj of Tj for each 1 ≤ j ≤ i− 1, we wish to establish an upper bound for

|E(X|T1 = t1, . . . , Ti−1 = ti−1, Ti = H)− E(X|T1 = t1, . . . , Ti−1 = ti−1, Ti = T)| . (2)
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If Fi ∈ F , then changing the outcome of Ti can only affect (2) by one. If Fi ∈ ∪F∈FC(F ),
then changing the outcome of Ti can affect (2) by at most l(n) since Fi ∈ C(F ) for at most
l(n) r-set F . Therefore, the expression (2) can be bounded from above by l(n). Applying
Theorem 3 with λ = 2nr−0.01 and ci = l(n), we get

Pr
(
|X − E(X)| ≥ 2nr−0.01

)
≤ 2exp

(
−4n2r−0.02/2

m∑
i=1

c2i

)
≤ 2exp(−nr−0.02/l(n)2),

here we used m ≤
(
n
r

)
. We note E(X) =

∑
F∈F p(1− p)|C(F )| ≥ |F|p(1− p)k(n) as |C(F )| ≤

k(n). Therefore,

Pr
(
h(H,F , C) ≤ |F|p(1− p)k(n) − 2nr−0.01

)
≤ Pr

(
|X − E(X)| ≥ 2nr−0.01

)
≤ 2exp(−nr−0.02/l(n)2).

We proved the lemma. �
When p ≤ 1/ log log log log n, we adapt the approach in [2]. The following two lemmas

are the hypergraph version of Lemma 3.1 and Lemma 3.2 in [2]. Before we state them, we
need one additional definition.

For positive integers m ≥ log n and r ≥ 3, let Tm be the set of tuples (a1, a2, . . . , ar)
satisfying the following properties:

1: ai is a positive integer for each 1 ≤ i ≤ r;

2: 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar;

3: a1 · · · ar = m;

4: ar−1 ≥ 2.

Lemma 4 For any constant c, if p satisfies (log n)2.001/n ≤ p ≤ 1/ log log log log n, then the
following holds for n large enough. For every integer m satisfying

pcn

16
≤ m ≤ pcn

4
,

we have ∑
(a1,...,ar)∈Tm

(
n

a1

)(
n− a1
a2

)
· · ·
(
n−

∑r−1
i=1 ai

ar

)
pm ≤ 2−0.3 log(1/p)m.

Recall that a complete r-partite r-uniform hypergraph whose vertex parts A1, . . . , Ar satis-
fying |A1| ≤ |A2| ≤ · · · ≤ |Ar| is nontrivial if

∏r−1
i=1 |Ai| ≥ 2.

Lemma 5 For any constant c, if p satisfies (log n)2.001/n ≤ p ≤ 1/ log log log log n, then the
probability that H ∈ Hr(n, p) contains a set of at most 2nr−1 nontrivial complete r-partite
r-uniform hypergraphs which cover at least pcnr/4 edges is at most 2−0.05pc log(1/p)nr

.

As proofs of the two lemmas above go the same lines as those for proving Lemma 3.1 and
Lemma 3.2 in [2], they are omitted here.
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3 An auxiliary theorem

Let F ⊂
(
[n]
r

)
with |F| ≥ cnr for some positive constant c. Suppose the probability p satisfies

1/ log log log log n ≤ p ≤ 1/2. We shall prove if H ∈ H(r)(n, p), then with small probability
that there are a few nontrivial complete r-partite r-uniform hypergraphs such that each edge
F ∈ E(H) ∩ F is in exactly one of them.

Theorem 4 Assume F ⊂
(
[n]
r

)
with |F| ≥ cnr for some positive constant c. Let P =

{P1, . . . , Pt} be a given prefix set, where t = |P| ≤ nr−1 and Pi = {Ai
1, . . . , A

i
r−1} satisfying

2 ≤
∏r−1

j=1 |Ai
j | < (r + 1) log n for each 1 ≤ i ≤ t. If 1/ log log log log n ≤ p ≤ 1/2 and

H ∈ H(r)(n, p), then with probability at most 3exp(−nr−0.92) there are t nontrivial complete
r-partite r-uniform hypergraphs such that its prefix set is P and each edge F ∈ E(H)∩F is
in exactly one of these hypergraphs.

Suppose H ∈ H(r)(n, p) and

E(H) ∩ F ⊆
t⊔

i=1

r∏
j=1

Ai
j ,

where ‘⊔’ denotes the disjoint union. For each 1 ≤ i ≤ t, we assume Ai
1, A

i
2, . . . , A

i
r form

a nontrivial complete r-partite r-uniform hypergraph. We fix a constant K = 4
c and a

function q(n) = log log log log n. For each 0 ≤ i ≤ q(n) − 1, we define fi = Ki2q(n). Let

P0 = {Pk ∈ P :
∏r−1

j=1 |Ak
j | < f1} and

Pi =

Pk ∈ P : fi ≤
r−1∏
j=1

|Ak
j | < fi+1


for each 1 ≤ i ≤ q(n)− 1.

Lemma 6 There is some 1 ≤ i ≤ q(n)− 1 such that |Pi| ≤ t
q(n) .

The proof of this lemma is simple and it is omitted here. Let 1 ≤ i0 ≤ q(n) − 1 be the
smallest integer satisfying the statement of Lemma 6. We consider

P ′ = P0 ∪ P1 ∪ · · · ∪ Pi0 .

The idea for proving Theorem 4 is the following. We will show that there are many edges
left if we delete edges covered by complete r-partite r-uniform hypergraphs with prefix from
P ′. Thus these leftover edges must be covered by complete r-partite r-uniform hypergraphs
with prefix from P \ P ′. Together with Lemma 2, we can show |P \ P ′| should be larger
than what we assumed, which leads to a contradiction. We note that the definition of the
function q(n) comes from the inequality (5) and the assumption on the probability p.

For an r-set F = {v1, v2, . . . , vr} ∈ F and each vj ∈ F , we define

NP′,F (vj) =
{
Pi ∈ P ′ : vj ̸∈ ∪r−1

s=1A
i
s and |F ∩Ai

s| = 1 for each 1 ≤ s ≤ r − 1
}
.

Figure 2 is an example for P ∈ NP′,F (vj).
Roughly speaking, each Pi ∈ NP′,F (vj) could be the prefix of a nontrivial complete

r-partite r-uniform hypergraph that may contain F .
We note that NP′,F (vj) and NP′,F (vk) are disjoint if j ̸= k. Let NP′(F ) = ∪r

j=1NP′,F (vj)

and dP′(F ) = |NP′(F )| =
∑r

j=1 |NP′,F (vj)|.
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1 2
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a b

d e

Figure 2: An example with r = 3, F = {a, b, c}, and P = {A1, A2} ∈ NP′,F (c).

Lemma 7 Assume |P ′ \ Pi0 | = xnr−1 with x ≥ 0.01c. Let F ′ = {F ∈ F : dP′(F ) ≤ 3
cxfi0}.

We have

|F ′| ≥ cnr

3
.

Proof: We observe that each Pi = {Ai
1, . . . , A

i
r−1} ∈ P ′ contributes one to dP′(F ) for at

most n
∏r−1

j=1 |Ai
j | r-sets F ∈ F . Recall the definition of Pi and Lemma 6. For n large

enough, we have

∑
F∈F

dP′(F ) ≤
∑

Pi∈P′

n
r−1∏
j=1

|Ai
j |

=
∑

Pi∈P′\Pi0

n
r−1∏
j=1

|Ai
j |+

∑
Pi∈Pi0

n
r−1∏
j=1

|Ai
j |

≤ nfi0 |P ′ \ Pi0 |+ nfi0+1|Pi0 |

≤ xfi0n
r +

tnfi0+1

q(n)

≤ 2xfi0n
r.

We note
tnfi0+1

q(n) ≤ xfi0n
r since t ≤ nr−1 and x ≥ 0.01c as well as the definition of i0. We

get the following inequality

3x

c
fi0 |F \ F ′| ≤

∑
F∈F\F ′

dP′(F ) ≤
∑
F∈F

dP′(F ) ≤ 2xfi0n
r.

Clearly, the inequality above implies |F \ F ′| ≤ 2cnr

3 . Equivalently, |F ′| ≥ cnr

3 . �
The number of uncovered edges from F ′ highly depends on the structure of F ′. To help

us to control the concentration of related random variables, we will work on a subfamily
W of F ′ that satisfies certain properties. Namely, for each F ∈ W, we will associate with
F a set of r-sets C(F ). The role of C(F ) is to forbid all possibilities that F is contained
in a complete r-partite r-uniform hypergraph with prefix from P ′. In other words, the set
C(F ) makes F uncovered. As illustrated by Figure 3, for an edge F and for each complete
r-partite r-uniform hypergraph that may contain F , we select an r-set C (see the dashed
one) and put it in C(F ). If C is not an edge for each C ∈ C(F ) , then the edge F is not
covered by any complete r-partite r-uniform hypergraph with prefix from P ′. We have the
following lemma on the set W.

Lemma 8 Let F ′ be the subfamily of F given by Lemma 7. There is a subset W ⊆ F ′ and a
collection of r-sets C(F ) ⊂

(
[n]
r

)
\W associated with each F ∈ W which satisfy the following:

8



1. |W| ≥ c2nr

10xfi0
,

2. |C(F )| ≤ 3
cxfi0 for each F ∈ W,

3. For each F = {v1, . . . , vr} ∈ W and each 1 ≤ i ≤ r, if P = {A1, . . . , Ar−1} ∈ P ′

and P ∈ NP′,F (vi), then there is w ∈ Ar−1 \ F such that (F \ u) ∪ w ∈ C(F ), where
u = F ∩Ar−1. The dashed edge in Figure 3 is an example for (F \ u) ∪ w.

Proof: To define W, we first give a linear ordering of r-sets in F ′ and consider the following
algorithm. We will define sets Fi recursively and build the set W step by step. Initially, let
F0 = F ′ and W0 = ∅.

For each i ≥ 1, if Fi−1 ̸= ∅, then let Fi = {v1, v2, . . . , vr} be the first r-set in Fi−1. We
will run the following process for each P ∈ NP′(Fi). We note NP′(Fi) = ∪r

j=1NP′,Fi(vj).
For each 1 ≤ j ≤ r and each P = {A1, . . . , Ar−1} ∈ NP′,Fi(vj), we notice |Fi ∩ As| = 1
for each 1 ≤ s ≤ r − 1 and vj ̸∈ ∪r−1

s=1As by the definition of P ∈ NP′,Fi(vj). Suppose
Fi ∩ Ar−1 = u. We have |Ar−1| ≥ 2 as P is the prefix of a nontrivial complete r-partite
r-uniform hypergraph. We have two cases.
Case 1: There is some w ∈ Ar−1 such that (Fi \ u)∪w ̸∈ Fi−1 ∪Wi−1, see the dashed edge
in Figure 3. We do not do anything in this case.
Case 2: (Fi \ u)∪v ∈ Fi−1∪Wi−1 for each v ∈ Ar−1. We claim actually (Fi \u)∪v ∈ Fi−1

for each v ∈ Ar−1. We proceed with the algorithm by assuming this claim. We choose an
arbitrary w ∈ Ar−1 \ u and delete (Fi \ u) ∪ w from Fi−1.

After we complete this process for all P ∈ NP′(F ), we let Wi = Wi−1 ∪ {Fi} by moving
Fi from Fi−1 to Wi and Fi be the resulting subset of Fi−1. We mention here that Fi ⊂ Fj ,
Wj ⊂ Wi, and Fi ∪Wi ⊆ Fj ∪Wj for j < i.

Now we prove the claim. Suppose (Fi \ u) ∪ v ∈ Wi−1 for some v ∈ Ar−1 \ u. We
pick such a vertex v so that the r-set F ′ = (Fi \ u) ∪ v is the smallest one in Wi−1 under
the linear ordering. Suppose F ′ was added to Wj at step j with j < i. We examine
the moment that F ′ was moved to Wj . If we are in the first case, i.e., there is some
s ∈ Ar−1 \ v such that (F ′ \ v) ∪ s ̸∈ Fj−1 ∪ Wj−1, then s ̸= u. Otherwise, s = u implies
(F ′ \ v) ∪ s = Fi ̸∈ Fi−1. Here we notice (Fi−1 ∪ Wi−1) ⊆ (Fj−1 ∪ Wj−1) as j < i.
Therefore, (F ′ \ v) ∪ s = (Fi \ u) ∪ s ̸∈ Fi−1 ∪Wi−1 and we are in the first case, which is a
contradiction. Thus we are in the second case when we are examining F ′. Since we chose F ′

as the first one from Wi−1 and of the form (Fi \u)∪ v, we get F ′ must satisfy the statement
of the claim. Therefore, by the algorithm, there was a vertex w ∈ Ar−1 \ {u, v} such that
(F ′ \ v) ∪ w = (Fi \ u) ∪ w was deleted from Fj−1 when we were moving F ′ from Fj−1 to
Wj . We note (Fi \ u) ∪ w ̸∈ Fi−1 ∪ Wi−1 and we are in the first case for Fi, which is a
contradiction. We proved the claim.

If Fi−1 = ∅, then we stop and output W = Wi−1. We point out here that when we were
examining Fi, the r-set (Fi \ u) ∪ w is not in W in either case.

Recall the definition of F ′, i.e., dP′(F ) ≤ 3
cxfi0 for each F ∈ F ′. We get that each

F ∈ F ′ can make at most 3
cxfi0 other r-sets in Fi−1 deleted from Fi−1 if F is added to Wi

at time i. Recall |F ′| ≥ cnr

3 . Thus

|W| ≥ |F ′|
3
cxfi0 + 1

≥ c2nr

10xfi0
.

For each F ∈ W, we next associate with F a set of r-sets C(F ) ⊂
(
[n]
r

)
\ W. Assume

F = {v1, . . . , vr}. For each 1 ≤ i ≤ r and each {A1, . . . , Ar−1} ∈ NP′,F (vi), let F ∩Ar−1 = u.
By the construction of W, there is some w ∈ Ar−1\u such that (F \ u)∪w ̸∈ W. The desired
vertex w exists by considering when F is moved to W. If (F \ u)∪w is not an edge, then it
excludes the possibility that F get covered by the complete r-partite r-uniform hypergraph
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with prefix {A1, . . . , Ar−1}. We put the r-set (F \ u) ∪ w in C(F ). For an example, see
Figure 3. We will call each R ∈ C(F ) a certificate for F . We note that if R ∈ C(F ), then
|F ∩R| = r − 1 and the symmetric difference F △R is in Ar−1. We have |C(F )| ≤ 3

cxfi0 as

z

uvA A
1 2

w

Figure 3: An example with r = 3, F = {u, v, z}, P = {A1, A2} ∈ NP′(F ), and {v, w, z} ∈
C(F ).

the assumption for |NP′(F )| for each F ∈ F ′. The lemma is proved. �
We next use Lemma 3 to show with high probability the number of r-sets F ∈ W such

that F is an edge in H ∈ H(r)(n, p) and F is not contained in any nontrivial complete
r-partite r-uniform hypergraph with prefix from P ′ is large. Since we will apply the union
bound, we require the error probability to be sufficiently tiny. We observe that an r-set
C could serve as the certificate for many r-sets from W. Therefore, change the outcome
of the trial of this kind of C will greatly change the value of the random variable. This is
troublesome when we apply Lemma 3. In the next lemma, we will find a way around this
difficulty.

Lemma 9 Assume 1/ log log log log n ≤ p ≤ 1/2, |P ′ \ Pi0 | = xnr−1 with x ≥ 0.01c, H ∈
H(r)(n, p), and Lemma 1 holds. With probability at least 1− 2exp(−nr−0.92), the number of
edges in E(H) ∩ F which is not contained in any complete r-partite r-uniform hypergraph
with prefix from P ′ is greater than

c2nrp(1− p)
3
c xfi0

12xfi0
.

Proof: We will work on the collection of r-sets W given by Lemma 8. Let Y be the number
of r-sets from W which is an edge in H ∈ H(r)(n, p) and is not covered by any complete
r-partite r-uniform hypergraph with prefix from P ′. For each F ∈ W and R ∈ C(F ), we
recall that R is a certificate for F . We remark that an r-set R could be a certificate for more
than one r-set F ∈ W.

Let C = ∪F∈WC(F ). For an r-set R ∈ C, if R ∈ C(F ) for more than n0.45 sets F ∈ W,
then we call R a bad certificate. Let C1 be the collection of bad certificates. For each F ∈ W,
we set C′(F ) = C(F ) \ C1. We fix the selection of W, C′(F ) for each F ∈ W, and the
collection of bad certificates C1. We sample all possible edges and let XF be the indicator
random variable for the event that F is an edge in H ∈ H(r)(n, p) and R is not a edge
in H ∈ H(r)(n, p) for each R ∈ C′(F ). We note XF = 1 indicates that F is not covered
by any nontrivial complete r-partite r-uniform hypergraphs with the prefix from P ′ and
containing no bad certificate. To see this, suppose F is covered by some G with vertex parts
A1, . . . , Ar−1, Ar and G dose not contain any bad certificate. By the definition of C′(F ), there
is some F ′ ∈ C′(F ) ∩

∏r
i=1 Ai. Since XF = 1, we get F ′ is not an edge. Thus A1, . . . , Ar do

not form a complete r-partite r-uniform hypergraph, which is a contradiction.

10



We define X =
∑

F∈W XF . Applying Lemma 3 with F = W, k(n) = 3
cxfi0 , and

l(n) = n0.45, we obtain with probability at least 1− 2exp(−nr−0.92),

X ≥ c2nrp(1− p)
3
c xfi0

11xfi0
.

We note nr−0.01 in Lemma 3 is a lower term as the definition of fi0 and the assumption for
p. We use F ′′ to denote those r-sets F ∈ W such that XF = 1. The argument above gives
that with probability at least 1− 2exp(−nr−0.92), we have

|F ′′| ≥ c2nrp(1− p)
3
c xfi0

11xfi0
.

Let us condition on this.
We note that an edge in F ′′ could be covered by some complete r-partite r-uniform

hypergraph which contains a bad certificate. We next prove an upper bound on the number
of such edges. This upper bound works for all samplings of edges.

Let A1, . . . , Ar be the vertex parts of such a complete r-partite r-uniform hypergraph G.
Suppose {A1, . . . , Ar−1} ∈ P ′. We define

A′
r = {vr ∈ Ar : there are v1 ∈ A1, . . . , vr−1 ∈ Ar−1 such that {v1, . . . , vr} ∈ F ′′}.

The number of edges from F ′′ covered by G is at most |A′
r|
∏r−1

i=1 |Ai|. We next relate the
number of bad certificates contained in G to the size of A′

r.
For each w ∈ A′

r, by the definition of A′
r, there is some F = {v1, . . . , vr−1, w} ∈

A1 × · · · × Ar−1 × {w} such that F ∈ F ′′. We observe {A1, . . . , Ar−1} ∈ NP′(F ). Let
{v1, . . . , vr−2, z, w} be the certificate of F associated with {A1, . . . , Ar−1}, where z ∈ Ar−1.
We notice {v1, . . . , vr−2, z, w} must be a bad certificate. Otherwise, as F ∈ F ′′, we get
{v1, . . . , vr−2, z, w} is a non-edge. Then A1, . . . , Ar do not form a complete r-partite r-
uniform hypergraph which is a contradiction. Therefore, each w ∈ A′

r gives at least one bad
certificate from A1 × · · · × Ar−1 × {w} and these bad certificates are distinct for different
w ∈ A′

r. We obtain that the number of bad certificates in G is at least |A′
r|.

We divide those hypergraphs which contain a bad certificate into two subsets H1 and
H2, where H1 = {G : |A′

r| ≤ n0.9} and H2 = {G : |A′
r| > n0.9}. We note that each G ∈ H2

contains at least n0.9 bad certificates as the analysis above. We next prove absolute upper
bounds for the number of edges from F ′′ which are covered by H1 and H2 respectively. We
observe that each H ∈ H1 can cover at most |A′

r|
∏r−1

j=1 |Aj | ≤ (r + 1)n0.9 log n edges from

F ′′ as we assume Lemma 1 holds. There are at most t < nr−1 of them as assumptions in
Theorem 4. Therefore, H1 covers at most (r + 1)nr−0.1 log n edges from F ′′.

We need an upper bound for the number of bad certificates in total. We consider pairs
(F,R) such that F ∈ W and R ∈ C(F ). As |C(F )| ≤ 3

cxfi0 for each F ∈ W, the number of
such pairs is less than

|W|3
c
xfi0 <

3

c
xfi0n

r < nr log n,

here we used the fact |W| < nr and the definition of fi0 . The definition of a bad certificate
together with a simple double counting method yield that the number of bad certificates is
at most nr−0.55 log n. Since each bad certificate (viewed as an edge) is contained in at most
one G ∈ H2 (we are considering the partition of edges) and each G ∈ H2 contains at least
n0.9 bad certificates, we have |H2| ≤ nr−1.45 log n. The number of edges contained in each
G ∈ H2 has an absolute upper bound (r + 1)n log n. Therefore, the number of edges from
F ′′ which are covered by H2 is at most (r + 1)nr−0.45 log2 n.
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Thus those complete r-partite r-uniform hypergraphs containing a bad certificate cover
at most (r + 1)nr−0.1 log n+ (r + 1)nr−0.45 log2 n edges from F ′′. Therefore, we have

Y ≥ c2nrp(1− p)
3
c xfi0

11xfi0
− (r + 1)nr−0.1 logn− (r + 1)nr−0.45 log2 n

>
c2nrp(1− p)

3
c xfi0

12xfi0
,

the proof of this lemma is complete. �
We are now ready to prove Theorem 4.

Proof of Theorem 4: To simplify the notation, we define the following prefix sets:

Q1 = P ′ \ Pi0 =

Pi ∈ P :
r−1∏
j=1

|Ai
j | < fi0

 ,

Q2 = (P \ P ′) ∪ Pi0 =

Pi ∈ P :
r−1∏
j=1

|Ai
j | ≥ fi0

 ,

Q3 = P \ P ′ =

Pi ∈ P :
r−1∏
j=1

|Ai
j | ≥ fi0+1

 .

Let c1(n) = 2, c2(n) = fi0 , and c3(n) = fi0+1. For H ∈ H(r)(n, p) and each i ∈ {1, 2, 3},
let Zi be the event that g(H,Qi) ≤ |Qi|ci(n)pci(n)n + 2nr−0.3. Lemma 2 implies that
with probability at least 1 − 6exp(−nr−0.8), all events Z1,Z2,Z3 hold simultaneously. We
condition on these three events. We note that for each i ∈ {1, 2, 3}, the number of edges
from F which are covered by complete r-partite r-uniform hypergraphs with prefix from Qi

is bounded above by the function g(H,Qi).
We proceed to prove |Q1| ≥ 0.01cnr−1. Suppose not. Because the event Z1 occurs,

the number of edges from F covered by those complete r-partite r-uniform hypergraphs
with prefix P ∈ Q1 is at most (2 + o(1))p2n|Q1| ≤

(
0.02cp2 + o(1)

)
nr, here 2nr−0.2 is a

lower term as we assume p ≥ 1/ log log log log n. A simple application of Theorem 2 yields
that with probability at least 1− exp(−cpnr/8) the number of r-sets in F being an edge in

H ∈ H(r)(n, p) is at least cpnr

2 . Therefore, the number of edges covered by those complete

r-partite r-uniform hypergraphs with prefix from Q2 is at least cpnr

4 . As the event Z2, we
get

|Q2| ≥
(pc4 + o(1))nr

fi0p
fi0n

> nr−1

when n is large enough. This is a contradiction to the assumption |P| ≤ nr−1. Therefore, as
long as events Z1 and Z2 as well as the lower bound for the number of edges from F hold,
we have |Q1| ≥ 0.01cnr−1 which is one of the assumptions in Lemma 9.

Recall Lemma 9. Those uncovered edges given by Lemma 9 must be covered by complete
r-partite r-uniform hypergraphs with prefix from Q3. As the event Z3, we get

|Q3| ≥
c2nr−1p(1− p)

3
c xfi0

13xfi0fi0+1p
fi0+1

,
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we note nr−0.3 is a lower order term. Recall 1/ log log log log n ≤ p ≤ 1/2 and fi = Ki2q(n).
We get

|P| = |P ′|+ |Q3| ≥ xnr−1 +
c2nr−1p(1− p)

3
c xfi0

13xfi0fi0+1p
fi0+1

≥ c2nr−1p(1− p)
3
c xfi0

13xfi0fi0+1p
fi0+1

≥ c2nr−1p2fi0+1−
3
c xfi0

13xfi0fi0+1
(3)

≥ c2nr−1p2fi0+1−
3
c fi0

13fi0fi0+1
(4)

=
c2nr−1p2K

i0+12q(n)− 3
cK

i02q(n)

13K2i0+122q(n)

=
c2nr−1p2

1
cK

i02q(n)

13K2i0+122q(n)
(5)

> nr−1,

when n is large enough. We used p ≤ 1/2 to get inequality (3), x ≤ 1 to get inequality (4),
and K = 4

c to get inequality (5).
Therefore, as long as events Z1,Z2,Z3 occur, the lower bound for the number of edges

in F ∩ E(H) holds, and Lemma 9 holds, we get a contradiction. With probability at most
2exp(−nr−0.92) + 6exp(−nr−0.8) + exp(−cpnr/8) ≤ 3exp(−nr−0.92), one of them does not
hold, this completes the proof of the theorem. �

4 Proof of Theorem 1

Before we prove the main theorem, we need to show an upper bound on the number of
choices for the prefix set P.

Lemma 10 Suppose P = {P1, . . . , Pq}, where Pi = {Ai
1, . . . , A

i
r−1} and 1 ≤

∏r−1
j=1 |Ai

j | <
(r + 1) log n for each 1 ≤ i ≤ q. The number of choices for P with |P| ≤ nr−1 is bounded

from above by n(r+3)nr−1 logn when n is large enough.

Proof: We shall show the desired upper bound step by step. We have at most nr−1 choices
for the size of P. First, we fix the size of P. We will establish an absolute upper bound
on the number of choices for each element Pi of P. For each Pi = {Ai

1, . . . , A
i
r−1} ∈ P,

we have ti = | ∪r−1
j=1 Ai

j | ≤ (r + 1) log n + r < (r + 2) log n as
∏r−1

j=1 |Ai
j | ≤ (r + 1) log n.

Therefore, ∪r−1
j=1A

i
j ∈

(
[n]

≤(r+2) logn

)
, which implies that the number of choices for ∪r−1

j=1A
i
j

is at most n(r+2) logn. We fix the selection of ∪r−1
j=1A

i
j and wish to partition it into r − 1

disjoint parts Ai
j . Let aj = |Ai

j | for 1 ≤ j ≤ r − 1. Then we have a1 + . . .+ ar−1 = ti. The
number of choices for the size of a1, . . . , aj−1 equals the number of solutions to the equation
a1 + . . . + aj−1 = ti. Since aj ≥ 1, we have at most

(
ti

r−1

)
choices for a1, . . . , aj−1 , which

can be bounded from above by ((r + 2) log n)r−1 as ti ≤ (r + 2) log n. If we fix the size of
each Ai

j , then the number of ways to partition ∪r−1
j=1A

i
j into Ai

1, . . . , A
i
r−1 equals

(
ti

a1,...,aj−1

)
,

which is at most ti! ≤ ((r + 2) log n)(r+2) logn. Therefore, the number of choices for Pi is at
most

n(r+2) logn ((r + 2) log n)
(r+2) logn+r−1

.
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Recall the assumption |P| ≤ nr−1. We get that the number of choices for P is at most

nr−1
(
n(r+2) logn ((r + 2) log n)

(r+2) logn+r−1
)|P|

< n(r+3)nr−1 logn,

when n is sufficiently large. �
We are ready to prove Theorem 1.

Proof of the upper bound: We shall exhibit an explicit decomposition of each r-uniform

hypergraph with n vertices using at most (1 − π(K
(r−1)
r ) + o(1))

(
n

r−1

)
trivial complete r-

partite r-uniform hypergraphs.

For each r ≥ 3, let G = ([n], E) be an (r−1)-uniform hypergraph which has ex(n,K
(r−1)
r )

edges and does not contain K
(r−1)
r as a subhypergraph. Obviously, G is well-defined. Let G′

be the complement of G. Therefore, E(G′) =
(
[n]
r−1

)
\E(G). We observe that an independent

set of size r in G′ will be a K
(r−1)
r in G. As G does not contain K

(r−1)
r , we get each F ∈

(
[n]
r

)
contains at least one edge of G′.

Suppose q = |E(G′)| and we list edges in G′ as e1, . . . , eq. For each r-uniform hypergraph
H with n vertices, we will show that H can be decomposed into at most q trivial complete
r-partite r-uniform hypergraphs as follows.

Let H0 = H and we will define a sequence of complete r-partite r-uniform hypergraphs
recursively. For each 1 ≤ i ≤ q, we assume the edge ei in G′ is {v1, v2, . . . , vr−1}. The
key observation is the following. For an edge F ∈ E(H), if F is contained in a trivial
complete r-partite r-uniform hypergraph with vertex parts {v1} × · · · × {vr−1} × Vr, then
the set {v1, . . . , vr−1} must be a subset of F . We define Fi = {F ∈ E(Hi−1) : ei ⊂ F} and
Ar = ∪F∈Fi

F \ ei. If Ar ̸= ∅, then the i-th complete r-partite r-uniform hypergraph H ′
i will

have vertex parts {v1}, . . . , {vr−1}, Ar. If the set Fi is empty, then we do not define H ′
i. We

set E(Hi) = E(Hi−1) \ E(H ′
i) for each 1 ≤ i ≤ q − 1.

The definition of Hi’s ensures that each edge in H is in exactly one of these trivial
complete r-partite r-uniform hypergraphs. Clearly, for sufficiently large n, we have q =

(1 − π(K
(r−1)
r ) + o(1))

(
n

r−1

)
. Since the decomposition above applies to all H, it also works

for the random hypergraph H ∈ H(r)(n, p).

Proof of the lower bound: We assume Lemma 1 holds. Thus each complete r-partite
r-uniform hypergraph with vertex parts A1, A2, . . . , Ar satisfies

∏r−1
i=1 |Ai| < (r + 1) log n

provided |A1| ≤ |A2| ≤ . . . ≤ |Ar|. For any fixed small positive constant ϵ, we shall show

that the probability f(H) ≤ (1− π(K
(r−1)
r )− ϵ)

(
n

r−1

)
is small, where H ∈ H(r)(n, p).

Fix a prefix set P = {P1, . . . , Pt}, where Pi = {Ai
1, . . . , A

i
r−1},

∏r−1
j=1 |Ai

j | < (r + 1) log n

for each 1 ≤ i ≤ t and t ≤ (1− π(K
(r−1)
r )− ϵ)

(
n

r−1

)
. Let X denote the event that there are

t sets A1
r, . . . , A

t
r such that

E(H) =

t⊔
i=1

r∏
j=1

Ai
j ,

provided H ∈ H(r)(n, p). Here Ai
1, . . . , A

i
r form a complete r-partite r-uniform hypergraph

for each 1 ≤ i ≤ t. We assume the first s of them are trivial complete r-partite r-uniform
hypergraphs, i.e., |Ai

1| = · · · = |Ai
r−1| = 1 for each 1 ≤ i ≤ s.

As we did for proving the upper bound, we define an (r− 1)-uniform hypergraph G such

that V (G) = [n] and E(G) =
(
[n]
r−1

)
\(∪s

i=1

∏r−1
j=1 A

i
j). We note |Ai

j | = 1 for each 1 ≤ i ≤ s and

1 ≤ j ≤ r−1. As s ≤ t ≤ (1−π(K
(r−1)
r )−ϵ)

(
n

r−1

)
, we get |E(G)| ≥ (π(K

(r−1)
r )+ϵ)

(
n

r−1

)
. By

the supersaturation result for hypergraphs (see Theorem 1 in [11]), we get that there are at

least c(ϵ)nr copies of K
(r−1)
r in G. Let G′ be the complement of G and F be the collection of

independent sets with size r in G′. We have |F| ≥ c(ϵ)nr. We observe that if H ∈ H(r)(n, p),
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then edges in F ∩ E(H) must be covered by those nontrivial complete r-partite r-uniform
hypergraphs in the partition. Let Y be the event that each F ∈ F ∩ E(H) is contained in
exactly one of the last t − s nontrivial complete r-partite r-uniform hypegraphs. We have
two cases depending on the range of the probability p.

Case 1: 1/ log log log log n ≤ p ≤ 1/2. Applying Theorem 4 with P ′ = {Ps+1, . . . , Pt},
we get that Y holds with probability at most 3exp(−nr−0.92). This implies that the
event X occurs with probability at most 3exp(−nr−0.92). By Lemma 10, there are

at most n(r+3)nr−1 logn choices for P satisfying the desired properties. Applying the

union bound, we get that the probability f(H) ≤ (1− π(K
(r−1)
r )− ϵ)

(
n

r−1

)
is at most

3exp(−nr−0.92)n(r+3)nr−1 logn < exp(−nr−0.94) for any positive constant ϵ.

Case 2: (log n)2.001/n ≤ p ≤ 1/ log log log log n. We observe that the set F is determined
by the prefix set P. Therefore, Lemma 10 also gives an upper bound on the number
of possible choices of F . A simple application of Theorem 2 yields that with high
probability |F ∩ E(H)| ≥ pcnr

4 for all F with |F| ≥ nr/ log log n. Edges in F ∩ E(H)
must be covered by the last t− s nontrivial complete r-partite r-uniform hypergraphs.
Since t− s ≤

(
n

r−1

)
, Lemma 5 tells us that the event Y occurs with probability at most

2−0.05pc log(1/p)nr

. This also implies that the event X occurs with probability at most
2−0.05pc log(1/p)nr

. By Lemma 5 and the union bound, we get the probability f(H) ≤
(1−π(K

(r−1)
r )− ϵ)

(
n

r−1

)
is at most 2−0.05pc log(1/p)nr

n(r+3)nr−1 logn ≤ 2−0.04pc log(1/p)nr

as np ≥ (log n)2.001 and c is a constant.

The proof of the theorem is finished. �

5 Concluding remarks

In this paper, we studied the problem of partitioning the edge set of a random r-uniform
hypergraph into edge sets of complete r-partite r-uniform hypergraphs. We were able to
show if (log n)2.001/n ≤ p ≤ 1/2 and H ∈ H(r)(n, p), then with high probability f(H) =

(1− π(K
(r−1)
r ) + o(1))

(
n

r−1

)
. For the case of r = 2, results from [2] and [6] assert that if p is

a constant, p ≤ 1/2, and G ∈ G(n, p), then with high probability n−o((log n)3+ϵ) ≤ f(G) ≤
(2 + o(1)) log1/(1−p) n for any positive constant ϵ. For G ∈ G(n, 1/2), authors of [3] proved
a better upper bound for f(G). For sparse random graphs, Alon [2] determined the order
of magnitude of the second term of f(G). However, we do not have any information on the
second order term of f(H) for r ≥ 3. This leads to the following question.

Problem 1: Determine the magnitude of the second order term of f(H) for H ∈ H(r)(n, p)
and r ≥ 3.

We note that we were only able to determine the leading coefficient of f(H) for p ≥
(log n)2.001/n and H ∈ H(r)(n, p). A natural question is to prove similar results for other
range of the probability p.

We recall that for a graph G, the strong bipartition number bp′(G) of G is the minimum
number of nontrivial complete bipartite subgraphs (which are not stars) of G such that each
edge of G is in exactly one of them. This parameter was introduced by Chung and the author
in [6] when they were studying the bipartition number of random graphs. In particular, they
proved that if p is a constant, p ≤ 1/2, and G ∈ G(n, p), then bp′(G) ≥ 1.0001n with high
probability. For sparse random graphs, Alon [2] proved a better lower bound. Namely, he
showed with high probability bp′(G) ≥ 2n if G ∈ G(n, p). We remark here that our methods
for proving Theorem 4 implicitly yield the following theorem.
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Theorem 5 If p is a constant, p ≤ 1/2, and G ∈ G(n, p), then with high probability

bp′(G)

n
→ ∞ as n → ∞.

Acknowledgement: The author would like to thank referees for their valuable comments
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