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Abstract We show large deviation expansions for sums of independent and bounded from
above random variables. Our moderate deviation expansions are similar to those of Cramér
(1938), Bahadur and Ranga Rao (1960), and Sakhanenko (1991). In particular, our results
extend Talagrand’s inequality from bounded random variables to random variables having finite
(2+δ)th moments, where δ ∈ (0, 1]. As a consequence, we obtain an improvement of Hoeffding’s
inequality. Applications to linear regression, self-normalized large deviations and t-statistic are
also discussed.
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1 Introduction

Let (ξi)i≥1 be a sequence of independent non-degenerate random variables (r.v.s) satisfying
Eξi = 0. The study of sharp large deviations has a long history. Many interesting asymptotic
expansions have been established in Cramér [8], Bahadur and Ranga Rao [1], Petrov [17,18],
Saulis and Statulevičius [21], Sakhanenko [22], Nagaev [16], Bercu and Rouault [5], Borovkov
and Mogulskii [6], Petrov and Robinson [19] and [12]. See also Grama and Haeusler [13] and
[11] for martingales. For self-normalized sums, we refer to Shao [23] and Jing, Shao and Wang
[15], where the authors have established Cramér type large deviations for self-normalized r.v.s
under finite (2 + δ)th moments, where δ ∈ (0, 1].

In this paper, we consider the sharp large deviations for sums of bounded from above r.v.s
ξi ≤ A for all i, where A is a positive constant. Without loss of generality, we take A = 1,
otherwise we consider ξi/A instead of ξi. Thus ξi ≤ 1 for all i. Let Sn =

∑n
i=1 ξi. Denote

σ2
i = Eξ2i and σ2 =

n∑

i=1

σ2
i .
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The celebrated Bennett inequality [2] states that: If ξi ≥ −1 for all 1 ≤ i ≤ n, then for all
x > 0,

P(Sn ≥ xσ) ≤ B(x, σ) :=

(
x+ σ

σ

)−σx−σ2

exσ. (1)

However, Bennett’s inequality is not tight enough. One of the improvements on Bennett’s
inequality is Hoeffding’s inequality (cf. (2.8) of [14]), which states that for all x > 0,

P(Sn ≥ xσ) ≤ Hn(x, σ) (2)

:=

{(
σ

x+ σ

)xσ+σ2 (
n

n− xσ

)n−xσ
} n

n+σ2

1{x≤n
σ }

≤ B(x, σ), (3)

where (and hereafter) by convention ∞0 = 1 applied when x = n. Considering the following
distribution law

P(ηi = 1) =
σ2/n

1 + σ2/n
and P(ηi = −σ2/n) =

1

1 + σ2/n
, (4)

Hoeffding showed that (2) is the best that can be obtained from the following exponential
Markov inequality

P(Sn ≥ xσ) ≤ inf
λ≥0

Eeλ(Sn−xσ), x ≥ 0.

Indeed, it is easy to see that Eηi = 0, ηi ≤ 1, Eη2i = σ2/n and

inf
λ≥0

E exp
{
λ(

n∑

i=1

ηi − xσ)
}
= Hn(x, σ)

for all 0 ≤ x ≤ n
σ .

Notice that limσ→∞ P(Sn > xσ) = 1− Φ(x) and limσ→∞ Hn(x, σ) = e−x2/2, where

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

is the standard normal distribution function. The central limit theorem (CLT) suggests that
Hoeffding’s inequality (2) can be substantially refined by adding a missing factor Θ(x) as
σ → ∞, where

Θ(x) =
(
1− Φ(x)

)
exp

{
x2

2

}
= O

(
1

x

)
, x → ∞. (5)

The factor Θ(x) satisfies

1√
2π(1 + x)

≤ Θ(x) ≤ 1√
π(1 + x)

, x ≥ 0, (6)

and
√
2πΘ(x) is known as Mill’s ratio.

For sums of bounded r.v.s −B ≤ ξi ≤ 1 for some constant B ≥ 1 and all 1 ≤ i ≤ n,
Talagrand [24] proved the following inequalities: For all 0 ≤ x ≤ σ

C B ,

P(Sn ≥ xσ) ≤
(
Θ(x) + C

B

σ

)
inf
λ≥0

Eeλ(Sn−xσ) (7)

≤
(
Θ(x) + C

B

σ

)
Hn(x, σ), (8)
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where C > 0 is an absolute constant. See also Sakhanenko [22] for a result similar to (7) but Θ(x)
is replaced by Θ(α(x)), where α(x) = {2 supλ[xλ−logEeλSn ]}1/2. By (6), Talagrand’s inequality
(8) improves Hoeffding’s inequality (2) by adding a factor Θ(x)[1 + o(1)] of order 1

1+x in the

range 0 ≤ x = o( σ
B ) as B

σ → 0. In the i.i.d. case, this range reduces to 0 ≤ x = o(
√
n), n → ∞.

In this paper, we extend Talagrand’s inequality (7) from bounded r.v.s to r.v.s having finite
(2 + δ)th moments, δ ∈ (0, 1]. In particular, we improve Talagrand’s inequality to an equality,
which will imply simple large deviation expansions. Moreover, an improvement of Hoeffding’s
inequality (2) under finite (2 + δ)th moments is also given.

The paper is organized as follows. In Section 2, we present the extension of Talagrand’s
inequality. In Section 3, we apply our result to linear regression. In Section 4, we give two lower
bounds for self-normalized moderate deviations and t-statistic. In Section 5, we prepare some
auxiliary results. In Sections 6 and 7, we prove the main theorems.

2 An extension of Talagrand’s inequality

Throughout the paper, we make use of the following notations: a ∧ b = min{a, b}, a ∨ b =
max{a, b}, a+ = a ∨ 0, and θ stands for some values satisfying |θ| ≤ 1. Moreover, we denote C
and Cδ, probably supplied with some indices, a generic positive absolute constant and a generic
positive constant depending only on δ, respectively.

Our main result is the following theorem, which extends Talagrand’s inequality (7) from
bounded r.v.s to r.v.s having finite (2 + δ)th moments, δ ∈ (0, 1].

Theorem 1 Assume that

ξi ≤ 1,

and that there exist two constants B ≥ 1 and δ ∈ (0, 1] such that

E|ξi|2+δ ≤ BδEξ2i , i ≥ 1. (9)

Then for all 0 ≤ x ≤ σ
CδB

,

P(Sn ≥ xσ) =

(
Θ(x) + θC

(B
σ

)δ)
inf
λ≥0

Eeλ(Sn−xσ). (10)

In particular, in the i.i.d. case, it implies that for all 0 ≤ x = o(nδ/2),

P(Sn ≥ xσ)

Θ(x) infλ≥0 Eeλ(Sn−xσ)
= 1 + o(1) (11)

as n → ∞.

By inspecting the proof of Theorem 1, we can see that Theorem 1 holds true for Cδ = 3
26

1/δ

and C = 127.75.
To show the tightness of equality (10), let S′

n = ε1 + ... + εn be the sums of independent
Rademacher r.v.s, i.e. P(εi = ±1) = 1

2 for all i. We display the tail probabilities and the
simulation of

R(x, n) =
P(S′

n ≥ x
√
n)

Θ(x) infλ≥0 Eeλ(S
′

n−xσ)
=

P(S′
n ≥ x

√
n)

Θ(x)Hn(x,
√
n)

in Figure 1, which shows that R(x, n) is very close to 1 for large n’s.
In the following corollary, we give an improvement on Hoeffding’s inequality (2).
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Fig. 1 Tail probabilities and ratios R(x, n) are displayed as a function of x and various n.

Corollary 1 Assume condition of Theorem 1. Then for all 0 ≤ x ≤ σ
CδB

,

P(Sn ≥ xσ) ≤
((

Θ(x) + C
(B
σ

)δ)
∧ 1

)
Hn(x, σ). (12)

It is clear that inequality (12) improves Hoeffding’s bound Hn(x, σ) by adding a missing

factor
(
Θ(x)+C

(
B
σ

)δ)∧ 1. By (6), this factor is of order of Θ(x)[1+ o(1)] in the range 0 ≤ x =

o(
(
σ/B

)δ
) as B/σ → 0. In the i.i.d. case, this range reduces to 0 ≤ x = o(nδ/2) as n → ∞.

For r.v.s ξi without moments of order larger than 2, some improvements of Hoeffding’s
inequality (2) can be found in Bentkus [3] and Bentkus, Kalosha and van Zuijlen [4]. See also
Pinelis [20] for an improvements of Bennett-Hoeffding’s inequality (3) which is larger than
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Hoeffding’s inequality (2). In particular, when ξi ≤ 1 for all 1 ≤ i ≤ n, Bentkus [3] showed that

P (Sn ≥ x) ≤ e2

2
Po
( n∑

i=1

ηi ≥ x
)
, (13)

where ηi are i.i.d. with distribution (4) andPo (
∑n

i=1 ηi ≥ x) is the log-concave hull ofP(
∑n

i=1 ηi ≥
x), i.e.Po is the minimum log-concave function such thatPo ≥ P. Applying (10) toP (

∑n
i=1 ηi ≥ x)

with B = max{1, σ2

n } and δ = 1, we have for all 0 ≤ x ≤ 1
C min{n

σ , σ},

P
( n∑

i=1

ηi ≥ xσ
)
=

(
Θ(x) +O(1)max

{
1

σ
,
σ

n

})
Hn(x, σ). (14)

By the inequalities (13) and (14), we find that (12) refines Bentkus’ constant e2

2 (≈ 3.6945) to

1 + o(1) for all 0 ≤ x = o(
(
max

{
1
σ ,

σ
n

} )δ
) as σ → 0.

Inequality (12) implies the following Cramér type large deviations.

Corollary 2 Assume condition of Theorem 1. Then for all 0 ≤ x ≤ σ
CδB

,

P(Sn ≥ xσ) ≤
(
1− Φ (x̌)

)[
1 + C (1 + x̌)

(B
σ

)δ]
, (15)

where x̌ = x√
1+ x

3σ

and satisfies

x̌ = x
(
1− x

6σ
+ o(

x

σ
)
)

as
x

σ
→ 0.

In particular, in the i.i.d. case, it implies that for all 0 ≤ x = o(nδ/2),

P(Sn ≥ xσ) ≤
(
1− Φ(x̌)

) [
1 + o(1)

]
. (16)

The interesting feature of the bound (16) is that it closely recovers the shape of the standard
normal tail for all 0 ≤ x = o(nδ/2) as n → ∞.

3 Application to linear regression

The linear regression model is given by

Xk = θφk + εk, k ≥ 1, (17)

where Xk, φk and εk are, respectively, the response variable, the positive covariate and the
noise. Let (εk)k≥1 be a sequence of i.i.d. random variables, with finite variance Eε2k = σ2

1 > 0.
Our interest is to estimate the unknown parameter θ, based on the random variables (Xk)k≥1

and (φk)k≥1. The well-known least squares estimator θn is given by

θn =

∑n
k=1 φkXk∑n
k=1 φ

2
k

. (18)

Consider the self-normalized approximation (θn − θ)
√
Σn

k=1φ
2
k. In the real-world applications,

for instance considering the impact of the footprint size φk on the height Xk, it is plausible
that a ≤ φk ≤ b for two positive absolute constants a and b. If Xk ≥ 0, then we also have

εk = Xk − θϕk ≥ −θb ≥ −c

for a positive absolute constant c. By Theorem 1 and Corollary 1, we have the following result.
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Theorem 2 Assume that there exist three positive absolute constants a, b and c such that for
all k ≥ 1,

a ≤ φk ≤ b, εk ≥ −c.

We also assume that E|εk|2+δ < ∞ for an absolute constant δ ∈ (0, 1]. Then for all 0 ≤ x =
o(
√
n),

P
(
(θ − θn)

√
Σn

k=1φ
2
k ≥ xσ1

)
=

(
Θ(x) + θC

1

nδ/2

)
inf
λ≤0

E exp
{
λ
( n∑

i=1

φkεk√∑n
k=1 φ

2
k

+ xσ1

)}

≤
(
Θ(x) + C

1

nδ/2

)
Hn(x,

√
naσ1

bc
).

Proof. From (17) and (18), it is easy to see that

(θ − θn)
√
Σn

k=1φ
2
k =

n∑

k=1

−φkεk√∑n
k=1 φ

2
k

. (19)

Set

ξi = − φkεk
√
na

bc
√∑n

k=1 φ
2
k

.

Then it is easy to verify that

ξi ≤ 1,

n∑

i=1

Eξ2i =
na2σ2

1

b2c2
and (θ − θn)

√
Σn

k=1φ
2
k

√
na

bc
=

n∑

i=1

ξi.

By Theorem 1 and Corollary 1, it follows that for all 0 ≤ x = o(
√
n),

P
(
(θ − θn)

√
Σn

k=1φ
2
k ≥ xσ1

)
=

(
Θ(x) + θC

1

nδ/2

)
inf
λ≥0

E exp
{
λ
( n∑

i=1

ξi − x

√
naσ1

bc

)}

=

(
Θ(x) + θC

1

nδ/2

)
inf
λ≤0

E exp
{
λ
( n∑

i=1

φkεk√∑n
k=1 φ

2
k

+ xσ1

)}

≤
(
Θ(x) + C

1

nδ/2

)
Hn(x,

√
naσ1

bc
),

which completes the proof of theorem. ⊓⊔

4 Applications to self-normalized deviations and t-statistic

Limit theorems for self-normalized sums Sn/Vn, V
2
n =

∑n
i=1 ξ

2
i , put a totally new countenance

on classical limit theorems. It is well known that self-normalized limit theorems require much
fewer moment conditions than that of normalized limit theorems. For example, under finite
(2 + δ)th moments, δ ∈ (0, 1], Jing, Shao and Wang [15] showed that

P(Sn/Vn > x)

1− Φ (x)
= exp

{
O
(
1
)
(1 + x)2+δεδn

}
(20)

uniformly for all 0 ≤ x = o(min{ε−1
n , κ−1

n }), where

εδn =
n∑

i=1

E|ξi/σ|2+δ and κ2
n = max

1≤i≤n
E(ξi/σ)

2.
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The proof of lower bound for self-normalized Cramér type large deviations is based on the
following observation: For any x, λ > 0,

{
Sn/Vn ≥ x

}
⊇
{
Sn ≥ x2 + λ2V 2

n

2λ

}
=
{ n∑

i=1

ζi(λ) ≥
x2

2

}
,

where

ζi(λ) = λξi −
1

2
λ2ξ2i .

Thus P
(
Sn/Vn ≥ x

)
≥ P

(∑n
i=1 ζi(λ) ≥ x2

2

)
. Notice that (λξi − 1

2λ
2ξ2i )i≥1 is also a sequence of

independent random variables and satisfies λξi− 1
2λ

2ξ2i ≤ 1. By an argument similar to the proof
of Theorem 1, we have the following lower bound on the tail probabilities of self-normalized
sums.

Theorem 3 Assume that there exist two constants B > 0 and δ ∈ (0, 1] such that

E|ξi|2+δ ≤ BδEξ2i , i ≥ 1.

Then for all 0 ≤ x = o( σ
B ),

P
(
Sn/Vn ≥ x

)
≥ P

( n∑

i=1

ζi(λ) ≥
x2

2

)

= exp

{
− x2

2
+ Ψn(λ)

}(
Θ(x) + θC

(B
σ

)δ)
, (21)

where

Ψn(λ) =
n∑

i=1

logE eζi(λ) (22)

and λ ≥ 0 is defined by the following equation

n∑

i=1

E ζi(λ)e
ζi(λ)

E eζi(λ)
=

x2

2
.

Moreover, it holds for all 0 ≤ x = o( σ
B ),

Ψn(λ) = O(1)x2+δ
(B
σ

)δ
, (23)

where O(1) is bounded by an absolute constant.

The self-normalized sums are closely related to Student’s t-statistic. Student’s t-statistic Tn

is defined by the following formula
Tn =

√
n ξn/σ̂,

where

ξn =
Sn

n
and σ̂2 =

n∑

i=1

(ξi − ξn)
2

n− 1
.

It is known that for all x ≥ 0,

P
(
Tn ≥ x

)
= P

(
Sn/Vn ≥ x

( n

n+ x2 − 1

)1/2)
.

See Efron [9]. By the last equality, once we have an estimation for the tail probabilities of
self-normalized sums Sn/Vn, we have a similar estimation for the tail probabilities of Tn. So
Theorem 3 implies the following lower bound on tail probabilities of Tn.
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Theorem 4 Assume the condition of Theorem 3. Then for all 0 ≤ x = o( σ
B ),

P
(
Tn ≥ x

)
≥ exp

{
− x2

2

( n

n+ x2 − 1

)
+ Ψn(λ)

}(
Θ
(
x(

n

n+ x2 − 1
)1/2

)
+ θC

(B
σ

)δ)
,

where Ψn(λ) is defined by (22) and λ ≥ 0 is defined by the following equation

n∑

i=1

E ζi(λ)e
ζi(λ)

E eζi(λ)
=

x2

2

( n

n+ x2 − 1

)
.

5 Auxiliary Results

Consider the positive random variable

Zn(λ) =

n∏

i=1

eλξi

Eeλξi
, λ ≥ 0,

so that EZn(λ) = 1 (the Esscher transformation). Introduce the conjugate probability measure
Pλ defined by

dPλ = Zn(λ)dP. (24)

Denote by Eλ the expectation with respect to Pλ. Setting

bi(λ) = Eλξi =
Eξie

λξi

Eeλξi
, i = 1, ..., n,

and
ηi(λ) = ξi − bi(λ), i = 1, ..., n,

we obtain the following decomposition:

Sk = Bk(λ) + Yk(λ), k = 1, ..., n, (25)

where

Bk(λ) =

k∑

i=1

bi(λ) and Yk(λ) =

k∑

i=1

ηi(λ).

In the proof of our main result, we shall need a two-sided bound of Bn(λ). To this end, we need
some technical lemmas.

For a random variable bounded from above, the following inequality is well-known.

Lemma 1 Assume ξ ≤ 1. Denote by σ the standard variance of ξ. Then for all λ ≥ 0,

Eeλξ ≤ Be(λ, σ2),

where

Be(λ, t) =
t

1 + t
exp{λ}+ 1

1 + t
exp {−λt} .

A proof of the inequality can be found in Bennett [2]. This inequality is sharp, and it attains
to equality when ξ has the distribution law:

P(ξ = 1) =
σ2

1 + σ2
and P(ξ = −σ2) =

1

1 + σ2
.
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Lemma 2 Assume E|ξ|2+δ ≤ BδEξ2 for some constants B and δ ∈ (0, 1]. Then

Eξ2 ≤ B2. (26)

Proof. Using Jensen’s inequality, we deduce that

(Eξ2)(2+δ)/2 ≤ E|ξ|2+δ ≤ BδEξ2,

which implies (26). ⊓⊔

Lemma 3 Assume E|ξ|2+δ ≤ BδEξ2 for some constants B and δ ∈ (0, 1]. Then for all λ ≥ 0,

Eξ2eλξ ≥ (1−Bδλδ)Eξ2. (27)

Proof. Using the following inequality t2et ≥ t2(1− |t|δ), t ∈ R, we deduce that for all λ ≥ 0,

E(λξ)2eλξ ≥ E(λξ)2 −E|λξ|2+δ ≥ λ2(Eξ2 − (λB)δEξ2), (28)

which gives the desired inequality. ⊓⊔
In the following lemma, we give a two-sided bound for Bn(λ).

Lemma 4 Assume ξi ≤ 1 for all i. Then for all λ ≥ 0,

Bn(λ) ≤ (eλ − 1)σ2.

If ξi satisfies E|ξi|2+δ ≤ BδEξ2i for some constants B and δ ∈ (0, 1] for all i, then for all λ ≥ 0,

Bn(λ) ≥
(
1− Bδλδ

1 + δ

)
λσ2e−λ.

Proof. By Jensen’s inequality, we have for all λ ≥ 0, Eeλξi ≥ eλEξi = 1. Notice that Eξie
λξi =

Eξi(e
λξi − 1) ≥ 0 for λ ≥ 0. Then by the fact ξi ≤ 1, we obtain the upper bound of Bn(λ) : For

all λ ≥ 0,

Bn(λ) ≤
n∑

i=1

Eξie
λξi =

n∑

i=1

∫ λ

0

Eξ2i e
tξi dt

≤
n∑

i=1

∫ λ

0

σ2
i e

tdt

= (eλ − 1)σ2.

If ξi satisfies E|ξi|2+δ ≤ BδEξ2i , by Lemma 3, it follows that for all λ ≥ 0,

n∑

i=1

Eξie
λξi =

∫ λ

0

n∑

i=1

Eξ2i e
tξidt

≥
∫ λ

0

(1−Bδtδ)dt

n∑

i=1

Eξ2i

=

(
1− Bδλδ

1 + δ

)
λσ2.

Therefore, we get the lower bound of Bn(λ): For all λ ≥ 0,

Bn(λ) =
n∑

i=1

Eξie
λξi

Eeλξi
≥
(
1− Bδλδ

1 + δ

)
λσ2e−λ,
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which completes the proof of Lemma 4. ⊓⊔
Next, we give an upper bound for the cumulant function

Ψn(λ) =
n∑

i=1

logEeλξi , λ ≥ 0. (29)

Lemma 5 Assume ξi ≤ 1 for all i. Then for all λ ≥ 0,

Ψn(λ) ≤ n log

(
1

1 + σ2/n
exp

{
−λσ2/n

}
+

σ2/n

1 + σ2/n
exp{λ}

)
.

Proof. Since the function

f(λ, t) = log

(
1

1 + t
exp {−λt}+ t

1 + t
exp{λ}

)
, λ, t ≥ 0,

has a negative second derivative in t > 0, then for any fixed λ ≥ 0, −f(λ, t) is convex in t ≥ 0.
Therefore, by Lemma 1 and Jensen’s inequality, we get for all λ ≥ 0,

Ψn(λ) ≤
n∑

i=1

f(λ, σ2
i )

≤ nf(λ, σ2/n)

= n log

(
1

1 + σ2/n
exp

{
−λσ2/n

}
+

σ2/n

1 + σ2/n
exp{λ}

)
.

This completes the proof of Lemma 5. ⊓⊔
Denote the variance of Yn(λ) by σ2(λ) = EλY

2
n (λ), λ ≥ 0. By the relation between E and

Eλ, it is obvious that

σ2(λ) =

n∑

i=1

(
Eξ2i e

λξi

Eeλξi
− (Eξie

λξi)2

(Eeλξi)2

)
, λ ≥ 0.

The following lemma gives some estimations of σ2(λ).

Lemma 6 Assume ξi ≤ 1, and that E|ξi|2+δ ≤ BδEξ2i for some constants B, δ ∈ (0, 1] and all
i. Then for all λ ≥ 0,

e−2λ
(
1−Bδλδ −B2(eλ − 1)2

)
σ2 ≤ σ2

n(λ) ≤ eλσ2. (30)

Moreover, if B ≥ 1, it holds

σ2(λ) ≥ (1− 5Bδλδ)+σ
2. (31)

Proof. Since Eeλξi ≥ 1, λ ≥ 0, and ξi ≤ 1, we get for all λ ≥ 0,

σ2(λ) ≤
n∑

i=1

Eξ2i e
λξi ≤

n∑

i=1

Eξ2i e
λ = eλσ2.

This gives the upper bound of σ2(λ). Next, we consider the lower bound of σ2(λ). It is easy to
see that for all λ ≥ 0,

Eξie
λξi =

∫ λ

0

Eξ2i e
tξidt ≤

∫ λ

0

etEξ2i dt =
(
eλ − 1

)
Eξ2i , (32)
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Using Lemma 3 and (32), we obtain for all λ ≥ 0,

σ2(λ) ≥
n∑

i=1

Eξ2i e
λξi − (Eξie

λξi)2

e2λ

≥ (1−Bδλδ)σ2 − (eλ − 1)2
∑n

i=1(Eξ2i )
2

e2λ

≥ e−2λ
(
1−Bδλδ −B2(eλ − 1)2

)
σ2,

which gives the first lower bound of σ2(λ). Noting that σ2(λ) ≥ 0 and B ≥ 1, by a simple
calculation, we obtain (31). ⊓⊔

For the random variable Yn(λ), λ ≥ 0, we have the following result on the rate of convergence
to the standard normal law.

Lemma 7 Assume that ξi ≤ 1, and that E|ξi|2+δ ≤ BδEξ2i for some constants B, δ ∈ (0, 1]
and all i. Then for all λ ≥ 0,

sup
y∈R

∣∣∣∣Pλ

(
Yn(λ)

σ(λ)
≤ y

)
− Φ(y)

∣∣∣∣ ≤
22+δC̃δe

λ

σ2+δ
n (λ)

n∑

i=1

E|ξi|2+δ.

Proof. Notice that Yn(λ) =
∑n

i=1 ηi(λ) is the sum of independent r.v.s ηi(λ) and Eληi(λ) = 0.
Using the well-known rate of convergence in the central limit theorem (cf. e.g. [17], p. 115), we
get for all λ ≥ 0,

sup
y∈R

∣∣∣∣Pλ

(
Yn(λ)

σ(λ)
≤ y

)
− Φ(y)

∣∣∣∣ ≤
C̃δ

σ2+δ
n (λ)

n∑

i=1

Eλ|ηi|2+δ. (33)

Using the inequality (a+ b)1+q ≤ 2q(a1+q + b1+q) for a, b, q ≥ 0, we deduce that for all λ ≥ 0,

n∑

i=1

Eλ|ηi|2+δ ≤ 21+δ
n∑

i=1

Eλ(|ξi|2+δ + |Eλξi|2+δ)

≤ 22+δ
n∑

i=1

Eλ|ξi|2+δ ≤ 22+δ
n∑

i=1

E|ξi|2+δeλξi

≤ 22+δeλ
n∑

i=1

E|ξi|2+δ.

Therefore, we obtain for all λ ≥ 0,

sup
y∈R

∣∣∣∣Pλ

(
Yn(λ)

σ(λ)
≤ y

)
− Φ(y)

∣∣∣∣ ≤
22+δC̃δe

λ

σ2+δ(λ)

n∑

i=1

E|ξi|2+δ.

This completes the proof of Lemma 7. ⊓⊔
We are now ready to prove the main technical result of this section.

Theorem 5 Assume that ξi ≤ 1, and that E|ξi|2+δ ≤ BδEξ2i for some constants B and δ ∈
(0, 1] for all i. For an x ≥ 0, if there exists a positive λ such that Ψ ′

n(λ) = xσ, then

P(Sn ≥ xσ) =

(
Θ
(
λσ(λ)

)
+ θεx

)
inf
λ≥0

Eeλ(Sn−xσ), (34)

where

εx =
23+δC̃δe

λ

σ2+δ(λ)

n∑

i=1

E|ξi|2+δ.
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Proof. According to the definition of the conjugate probability measure (cf. (24)), we have the
following representation of P(Sn ≥ xσ): For given x, λ ≥ 0,

P(Sn ≥ xσ) = Eλ(Zn(λ)
−11{Sn≥xσ})

= Eλ(e
−λSn+Ψn(λ)1{Sn≥xσ})

= Eλ(e
−λxσ+Ψn(λ)−λYn(λ)−λBn(λ)+λxσ1{Yn(λ)+Bn(λ)−xσ≥0})

= e−λxσ+Ψn(λ)Eλ(e
−λ[Yn(λ)+Bn(λ)−xσ]1{Yn(λ)+Bn(λ)−xσ≥0}).

Setting Un(λ) = λ(Yn(λ) +Bn(λ) − xσ), we get

P(Sn ≥ xσ) = e−λxσ+Ψn(λ)

∫ ∞

0

e−tPλ(0 < Un(λ) ≤ t)dt. (35)

For an x ≥ 0, if there exists a λ = λ(x) such that Ψ ′
n(λ) = xσ, then the exponential function

e−λxσ+Ψn(λ) in (35) attains its minimum at λ = λ. Since Bn(λ) = Ψ ′
n(λ) = xσ, we have

Un(λ) = λYn(λ) and

e−λxσ+Ψn(λ) = inf
λ≥0

e−λxσ+Ψn(λ) = inf
λ≥0

Eeλ(Sn−xσ). (36)

Using Lemma 7, we deduce that
∫ ∞

0

e−tPλ(0 < Un(λ) ≤ t)dt =

∫ ∞

0

e−λyσ(λ)Pλ

(
0 < Un(λ) ≤ λyσ(λ)

)
λσ(λ)dy

=

∫ ∞

0

e−λyσ(λ)P(0 < N (0, 1) ≤ y)λσ(λ)dy + θεx

=

∫ ∞

0

e−λyσ(λ)dΦ (y) + θεx

= Θ
(
λσ(λ)

)
+ θεx, (37)

where N (0, 1) stands for the standard normal r.v. Therefore, from (35) and (36), it follows that

P(Sn ≥ xσ) =

(
Θ
(
λσ(λ)

)
+ θεx

)
inf
λ≥0

Eeλ(Sn−xσ).

This completes the proof of Theorem 5. ⊓⊔

6 Proof of Theorem 1

In the spirit of Talagrand [24], we would like to make use of Θ(x) to approximate Θ(λσ(λ)) in
Theorem 5. The proof of Theorem 1 is a continuation of the proof of Theorem 5.
Proof of Theorem 1. Since |Θ′(x)| ≤ 1√

π(x2∨1)
, we deduce that

∣∣∣Θ
(
λσ(λ)

)
−Θ(x)

∣∣∣ ≤ 1√
π

|x− λσ(λ)|
(λ

2
σ2(λ) ∧ x2) ∨ 1

. (38)

Using Lemma 4, we have for all 0 ≤ λ ≤ 1
B ,

(
1− Bδλ

δ

1 + δ

)
e−λλσ ≤ Bn(λ)

σ
= x ≤ (eλ − 1)σ. (39)
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By the estimation of σ(λ) in Lemma 6, it follows that for all 0 ≤ λB ≤ 6−1/δ,

∣∣x− λσ(λ)
∣∣ ≤ λσ

[(eλ − 1

λ
−
√
1− 5Bδλ

δ
)
∨
(
e

λ
2 −

(
1− Bδλ

δ

1 + δ

)
e−λ

)]

≤ λσ

[(
1 +

1

2
λBeλB − (1− 4Bδλ

δ
)
)
∨
(3
2
λB +

1

8
λ
2
B2e

λB
2 + λ

δ
Bδe−λB

)]

≤ λσ

[(
4Bδλ

δ
+

1

2
e

1
6 λB

)
∨
(3
2
λB +

1

48
e

1
12λB + λ

δ
Bδ
)]

≤ 4.6 (λB)δλσ (40)

and

λ
2
σ2(λ) ∧ x2 ≥

(
λ
2
σ2(1− 5Bδλ

δ
)
)
∧
(
λ
2
σ2
(
1− Bδλ

δ

1 + δ

)2)
e−2λ

≥ 1

6
λ
2
σ2 ∧ e−

1
3

(5
6

)2
λ
2
σ2

≥ 1

6
λ
2
σ2. (41)

Hence, inequality (38) implies that for all 0 ≤ λ ≤ 1
61/δB

,

∣∣∣Θ
(
λσ(λ)

)
−Θ(x)

∣∣∣ ≤ 27.6√
π(λσ)1−δ

(B
σ

)δ
1{λσ≥

√
6} +

4.6√
π
(λσ)1+δ

(B
σ

)δ
1{λσ<

√
6}

≤ 27.6√
π

(B
σ

)δ
. (42)

Therefore, by Lemma 6 and condition (9), it is easy to see that for all 0 ≤ λ ≤ 1
61/δB

,

eλ

σ2+δ(λ)

n∑

i=1

E|ξi|2+δ ≤ e1/6

(5/6)1+δ/2

∑n
i=1 E|ξi|2+δ

σ2+δ
≤ 1.71

(B
σ

)δ
. (43)

By (39) and the inequality e−x ≥ 1− x for all x ≥ 0, it follows that

(
1− 2Bδλ

δ
)
λ ≤ x

σ

and

0 ≤ λ ≤ 1

61/δB
for all 0 ≤ x

B

σ
≤ 2

3
6−1/δ. (44)

Combining (34), (42) and (43) together, we have for all 0 ≤ x ≤ 2
36

−1/δ σ
B ,

P(Sn ≥ xσ) =

(
Θ(x) + θ(

27.6√
π

+ 27.36C̃δ)
(B
σ

)δ)
inf
λ≥0

Eeλ(Sn−xσ),

where C̃δ is the smallest constant such that (33) holds. By Theorem 2.1 of Chen and Shao [7],

we have C̃δ ≤ 4.1. Thus 27.6√
π
+ 27.36C̃δ ≤ 127.75. This completes the proof of Theorem 1. ⊓⊔
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Proof of Corollary 1. Using (36) and Lemma 5, we get for all x ≥ 0,

inf
λ≥0

Eeλ(Sn−xσ)

= inf
λ≥0

Ee−xλσ+Ψn(λ)

≤ inf
λ≥0

exp

{
−λxσ + n log

(
1

1 + σ2/n
exp

{
−λσ2/n

}
+

σ2/n

1 + σ2/n
exp{λ}

)}

= Hn(x, σ). (45)

Notice that infλ≥0 Eeλ(Sn−xσ) ≤ Ee0·(Sn−xσ) = 1. Thus, the desired inequality follows from
Theorem 1 and (45). ⊓⊔

Proof of Corollary 2. Since Θ(x) is decreasing in x ≥ 0, we deduce that Θ(x) ≤ Θ (x̌) where
x̌ = x√

1+ x
3σ

. Notice that Hoeffding’s bound is less than Bernstein’s bound, i.e.

Hn(x, σ) ≤ exp

{
− x̌2

2

}

(cf. Remark 2.1 of [10]). Therefore, from (12), we have for all 0 ≤ x ≤ σ
CδB

,

P(Sn ≥ xσ) ≤
(
Θ (x̌) + C

(B
σ

)δ)
exp

{
− x̌2

2

}

= 1− Φ (x̌) + C
(B
σ

)δ
exp

{
− x̌2

2

}
.

Using (6), we obtain for all 0 ≤ x ≤ σ
CδB

,

P(Sn ≥ xσ) ≤
(
1− Φ (x̌)

) [
1 + C (1 + x̌)

(B
σ

)δ]
.

This completes the proof of Corollary 2. ⊓⊔

7 Proof of Theorem 3

Consider the positive random variable

Hn(λ) =

n∏

i=1

eζi(λ)

Eeζi(λ)
, λ ≥ 0,

so that EHn(λ) = 1. Introduce the following new conjugate probability measure Pλ defined by

dPλ = Hn(λ)dP. (46)

In this section, denote by Eλ the expectation with respect to Pλ defined by (46). According to
(46), we have the following representation: For all 0 ≤ x = o( σ

B ),

P
( n∑

i=1

ζi(λ) ≥
x2

2

)
= Eλ

[
Hn(λ)

−11{
∑

n

i=1
ζi(λ)≥ x2

2
}

]

= Eλ

[
exp

{
−

n∑

i=1

ηi(λ) −Bn(λ) + Ψn(λ)
}
1{
∑n

i=1
ζi(λ)≥ x2

2
}

]
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= Eλ

[
exp

{
−

n∑

i=1

ηi(λ) −Bn(λ) + Ψn(λ)
}
1{
∑

n

i=1
ζi(λ)≥ x2

2
}

]

= Eλ

[
exp

{
−

n∑

i=1

ηi(λ) −Bn(λ) + Ψn(λ)
}
1{
∑n

i=1
ηi(λ)≥ x2

2
−Bn(λ)}

]
,(47)

where
ηi(λ) = ζi(λ) −Eλζi(λ)

and

Bn(λ) =
n∑

i=1

Eλζi(λ) =
n∑

i=1

E ζi(λ)e
ζi(λ)

E eζi(λ)

Let λ = λ(x) be the smallest positive solution of the following equation

Bn(λ) =
x2

2
.

Recall

Yn(λ) =
n∑

i=1

ηi(λ).

From (47), we obtain

P
( n∑

i=1

ζi(λ) ≥
x2

2

)
= exp

{
− x2

2
+ Ψn(λ)

}
Eλ[e

−Yn(λ)1{Yn(λ)≥0}]

= exp

{
− x2

2
+ Ψn(λ)

}∫ ∞

0

e−yPλ(0 ≤ Yn(λ) ≤ y)dy. (48)

Set Fn(y) = Pλ(Yn(λ) ≤ y). Recall C̃δ ≤ 4.1 (see Theorem 2.1 of Chen and Shao [7]). By an
argument similar to the proof of Lemma 7, we have for all 0 ≤ x = o( σ

B ),

sup
y∈R

∣∣∣Fn(y)− Φ(y/λσ)
∣∣∣ ≤ C1

(B
σ

)δ
.

Hence, for all 0 ≤ x = o( σ
B ),

∣∣∣∣
∫ ∞

0

e−yPλ(0 ≤ Yn(λ) ≤ y)dy −
∫ ∞

0

e−yP(0 ≤ N (0, 1) ≤ y/λσ)dy

∣∣∣∣ ≤ 2C1

(B
σ

)δ
,

where N (0, 1) is the standard normal r.v. By a simple calculation, it follows that
∫ ∞

0

e−yP(0 ≤ N (0, 1) ≤ y/λσ)dy = Θ(λ σ).

From (48), we have for all 0 ≤ x = o( σ
B ),

P
( n∑

i=1

ζi(λ) ≥
x2

2

)
= exp

{
− x2

2
+ Ψn(λ)

}(
Θ(λ σ) + θC2

(B
σ

)δ)
. (49)

Next, we would like to substitute x for λσ in the item Θ(λσ). By an argument similar to the
proof of (42), we get for all 0 ≤ x = o( σ

B ),

∣∣∣Θ(λσ)−Θ(x)
∣∣∣ ≤ C3

(B
σ

)δ
. (50)
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So we have for all 0 ≤ x = o( σ
B ),

P
( n∑

i=1

ζi(λ) ≥
x2

2

)
= exp

{
− x2

2
+ Ψn(λ)

}(
Θ(x) + θC

(B
σ

)δ)
, (51)

which gives the desired expansion of tail probabilities.
In the sequel we shall give an estimation for Ψn(λ). To this end, we need the following useful

lemma (cf. Lemma 6.2 of Jing, Shao and Wang [15]).

Lemma 8 Let X be a random variable with EX = 0 and EX2 < ∞. For λ > 0, let ζ =
λX − 1

2 (λX)2. Then for λ > 0,

Eeζ = 1+O(1)ελ, (52)

Eζeζ =
1

2
λ2EX2 +O(1)ελ, (53)

where

ελ = λ2E[X21{|λX|>1}] + λ3E[|X |31{|λX|≤1}].

Notice that

ελ ≤ E|λX |2+δ = λ2+δE|X |2+δ.

Since E|ξi|2+δ ≤ BδEξ2i , by Lemmas 2 and 8, for any λ = o(B−1),

Ψn(λ) = O(1)

n∑

i=1

λ2+δE|ξi|2+δ = O(1)λ2+δBδσ2 (54)

and
n∑

i=1

E ζi(λ)e
ζi(λ)

E eζi(λ)
=

1

2
λ2σ2 +O(1)λ2+δBδσ2.

Recall that λ = λ(x) > 0 is the smallest positive solution of the following equation

n∑

i=1

E ζi(λ)e
ζi(λ)

E eζi(λ)
=

x2

2
,

we have for all 0 ≤ x = o( σ
B ),

λ = O(1)
x

σ
.

Thus, from (54), it holds

Ψn(λ) = O(1)x2+δ
(B
σ

)δ
,

which gives the estimation of Ψn(λ). This completes the proof of Theorem 3 ⊓⊔
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8. Cramér H. Sur un nouveau théorème-limite de la théorie des probabilités. Actualite’s Sci Indust, 1938, 736:

5-23
9. Efron B. Student’s t-test under symmetry conditions. J Amer Statist Assoc, 1969, 64(328): 1278-1302
10. Fan X, Grama I, Liu Q. Hoeffding’s inequality for supermartingales. Stochastic Process Appl, 2012, 122:

3545-3559
11. Fan X, Grama I, Liu Q. Cramér large deviation expansions for martingales under Bernstein’s condition.

Stochastic Process Appl, 2013, 123: 3919-3942
12. Fan X, Grama I, Liu, Q. Sharp large deviation results for sums of independent random variables. Sci China

Math, 2015, 58: 1939-1958
13. Grama I, Haeusler E. Large deviations for martingales via Cramer’s method. Stochastic Process Appl, 2000,

85: 279-293
14. Hoeffding W. Probability inequalities for sums of bounded random variables. J Amer Statist Assoc, 1963,

58: 13-30
15. Jing B Y, Shao Q M, Wang Q. Self-normalized Cramér-type large deviations for independent random

variables. Ann Probab, 2003, 31: 2167-2215
16. Nagaev S V. Lower bounds for the probabilities of large deviations of sums of independent random variables.

Theory Probab Appl, 2002, 46: 728-735
17. Petrov V V. Sums of Independent Random Variables. Berlin: Springer-Verlag, 1975
18. Petrov V V. Limit Theorems of Probability Theory. Oxford: Oxford University Press, 1995
19. Petrov V V, Robinson J. Large deviations for sums of independent non identically distributed random

variables. Comm Statist Theory Methods, 2008, 37: 2984-2990
20. Pinelis I. On the Bennett-Hoeffding inequality. Ann Inst H Poincaré Probab Statist, 2014, 50: 15-27
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