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Abstract

In this paper, we present several observability and unique continuation inequalities for the free Schrödinger
equation in the whole space. The observations in these inequalities are made either at two points in time or one
point in time. These inequalities correspond to different kinds of controllability for the free Schrödinger equation.
We also find that the observability inequality at two points in time is equivalent to the uncertainty principle built
up in [21].
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1 Introduction

An interesting unique continuation property for Schrödinger equations was contained in [20] (see also [22]). It

says that if u solves the following Schrödinger equation:

i∂tu+ ∆u+ V u = 0 in Rn × (0, 1), (1.1)

(with a time-dependent potential V in some suitable conditions and with n ∈ N+ , {1, 2, . . . }), then

u = 0 in BcR(0)× {0, 1} ⇒ u ≡ 0.

Here, R > 0, BR(0) is the closed ball in Rn, centered at the origin and of radius R, and BcR(0) denotes the

complement of BR(0). In [12] (see also [15, Theorems 3-4]), it was presented that if u solves (1.1) (with V in

some suitable conditions) and verifies that

‖e|x|
2/α2

u(x, 0)‖L2(Rn;C) + ‖e|x|
2/β2

u(x, 1)‖L2(Rn;C) <∞

for some positive constants α, β with αβ < 4, then u ≡ 0. It was further proved that when αβ = 4, such property

fails. The above mentioned two properties can be treated as the qualitative unique continuation at two points in

time. It is natural to ask if one can have an observability inequality at two points in time?
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In this paper, we will present several observability and unique continuation inequalities (at either two points in

time or one point in time) for the following free Schrödinger equation (or the Schrödinger equation, for simplicity):{
i∂tu(x, t) + ∆u(x, t) = 0, (x, t) ∈ Rn × (0,∞),
u(x, 0) ∈ L2(Rn;C).

(1.2)

(Here and throughout this paper, n ∈ N+ is arbitrarily fixed.) From perspective of applications, to these inequalities

correspond different controllability properties for the Schrödinger equation.

The free Schrödinger equation (1.2) describes the evolution of the wave function for a particle without external

field (see for instance [24]). Though the Schrödinger equation with a potential V 6= 0 is more attractive, the free

Schrödinger equation is also important and there are many studies on it. For instance, [6, 27, 40] studied the local

smoothing effect and Strichartz estimates of the free Schrödinger equation; [10] built up some unique continuation

and convexity properties for the free Schrödinger equation; [26] obtained some observability inequality over time

intervals for the free Schrödinger equation over a bounded domain (see also [25, 32, 41]).

Throughout this paper, we write either u(x, t;u0) (with (x, t) ∈ Rn × (0,∞)) or ei∆tu0 (with t ≥ 0) for

the solution of (1.2) with the initial condition that u(x, 0) = u0(x) over Rn; The Fourier transform of f ∈
L1(Rn;C) ∩ L2(Rn;C) is given by

f̂(ξ) =
1

(2π)n/2

∫
Rn
f(x)e−ix·ξ dx, ξ ∈ Rn

and extended to all of L2(Rn;C) in the usual way; Write respectively Ac and |A| for the complement and the

Lebesgue measure of a set A in Rn; For each subset A ⊂ Rn and each λ ∈ R, we let λA , {λx : x ∈ A}; For all

a, b ∈ R, we write a ∧ b , min{a, b}; For each x ∈ Rn, |x| denotes to the Rn-Euclidean norm of x; ωn denotes

the volume of the unit ball in Rn.

There are three main theorems in this paper. The first one presents an observability inequality at two points in

time for the equation (1.2).

Theorem 1.1. Given x′, x′′ ∈ Rn, r1, r2 > 0 and T > S ≥ 0, there is a positive constant C , C(n) so that∫
Rn
|u0(x)|2 dx ≤ CeCr1r2

1
T−S

(∫
Bcr1

(x′)

|u(x, S;u0)|2 dx+

∫
Bcr2

(x′′)

|u(x, T ;u0)|2 dx
)

(1.3)

for all u0 ∈ L2(Rn;C).

Several remarks on Theorem 1.1 are given in order:

(a1) Theorem 1.1 can be explained in the following manner: The integral on the left hand side of (1.3) can be

treated as a recover term, while the integrals on the right hand side of (1.3) are regarded as observation terms.

The inequality (1.3) is understood as follows: Through observing a solution at two different points in time,

each time outside of a ball, one can estimate the recover term (which says, in plain language, that one can

recover this solution). This inequality is equivalent to the exact controllability for the impulse controlled

Schrödinger equation with controls acting at two points in time, each time outside of a ball (see Subsection

5.2).

(a2) The observability inequality (1.3) seems to be new for us. Most observability inequalities for Schrödinger

equations, in published papers, have observations in time intervals. For instance, the paper [26] presents
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an observability inequality for the Schrödinger equation on a bounded domain Ω (in Rn), with an analytic

boundary ∂Ω. In that inequality, the observation is made over ω̂ × (0, T ), where T > 0 and ω̂ ⊂ ∂Ω is

a subdomain satisfying the Geometric Control Condition. This condition was introduced in [4] and then

was used in [8] to study the stabilization property and the exact controllability for the nonlinear Schrödinger

equation on a two dimensional compact Riemannian manifold without boundary. The paper [32] builds up an

observability estimate for the homogenous Schrödinger equation on a bounded domain Ω. In that inequality,

the observation is made over ω × (0, T ), where T > 0 and ω ⊂ Ω is a subdomain satisfying the Geometric

Control Condition. The book [41] gives an observability inequality for the free Schrödinger equation over

a rectangular domain in R2. There, the observation can be made over any ω × (0, T ), with ω an open

(nonempty) subset (see [41, Theorem 8.5.1]). More recently, the paper [1] (see [1, Theorem 1.2]) presents an

observability inequality for Schrödinger equations (with some potentials) on the disk of R2. The observation

is made over ω×(0, T ), where ω is an open (nonempty) subset which may not satisfy the Geometric Control

Condition.

(a3) The inequality (1.3) is “optimal” in the following sense: First, ∀A ⊂ Rn, with m(Ac) > 0, ∀T > 0, the

following conclusion is not true (see (b) of Remark 4.2): ∃C > 0 so that∫
Rn
|u0(x)|2 dx ≤ C

∫
A

|u(x, T ;u0)|2 dx, ∀u0 ∈ L2(Rn;C).

This means that we cannot recover a solution by observing it at one point in time and over a subset A ⊂ Rn,

with |Ac| > 0; Second, ∀x′, x′′ ∈ Rn, r1, r2 > 0 and T > S ≥ 0, the following conclusion is not true (see

(a) of Remark 4.2): ∃C > 0 so that∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr1

(x′)

|u(x, S;u0)|2 dx+

∫
Br2 (x′′)

|u(x, T ;u0)|2 dx
)
, ∀u0 ∈ L2(Rn;C).

This means that we cannot recover a solution by observing it at two different points in time, one time in a

ball, while another time outside of a ball; And last, ∀x′, x′′ ∈ Rn, r1, r2 > 0 and T > S ≥ 0, the following

conclusion is not true (see (a) of Remark 4.2): ∃C > 0 so that∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr1 (x′)

|u(x, S;u0)|2 dx+

∫ T

0

∫
Br2 (x′′)

|u(x, t;u0)|2 dxdt
)
, ∀u0 ∈ L2(Rn;C).

This can be comparable with the work in [29].

(a4) The proof of (1.3) is based on two properties as follows: First, the uncertainty principle built up in [21];

Second, the equivalence between the uncertainty principle and the observability estimate which grows like

(1.3). The aforementioned equivalence is indeed a connection between the uncertainty principle and the

observability (at two time points) for the Schrödinger equation. Such equivalence is obtained in this paper

(see Lemma 2.3). Its proof relies on the identity [10, (1.2)] (see (2.6) in our paper).

(a5) The inequality (1.3) can be extended to the case whereBcr1(x′) andBcr2(x′′) are replaced by two measurable

sets Ac and Bc, with |A| < ∞ and |B| < ∞. This can be easily seen from the proof of (1.3), as well as

Theorem 2.1 (which is the uncertainty principle built up in [21]) and Lemma 2.3.
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(a6) From Theorem 1.1, one can directly derive the following observability inequality: Given x0 ∈ Rn, r > 0

and T > 0, there exists C , C(n) > 0 so that

∫
Rn
|u0(x)|2 dx ≤ CeCr

2/T

∫ T

0

(∫
Bcr(x0)

|u(x, t;u0)|2 dx

)1/2

dt for all u0 ∈ L2(Rn;C).

This inequality is equivalent to the standard L∞-exact controllability for the Schrödinger equation. The later

is comparable to [36, Theorem 3.1].

The second main theorem gives a unique continuation inequality at one time point for a class of solutions to the

equation (1.2). (This class of solutions consists of solutions whose initial data have exponential decay at infinity.)

Theorem 1.2. The following conclusions are true for all r > 0, a > 0 and T > 0:

(i) There is C , C(n) > 0 and θ , θ(n) ∈ (0, 1), depending only on n, so that

∫
Rn
|u0(x)|2 dx ≤ C

(
1 +

rn

(aT )n

)(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)θ1+ r
aT (∫

Rn
ea|x||u0(x)|2 dx

)1−θ1+
r
aT

(1.4)

for all u0 ∈ C∞0 (Rn;C).

(ii) There is C , C(n) > 0 so that for any β > 1 and γ ∈ (0, 1),∫
Rn
|u0(x)|2 dx ≤ Ce

(
Cβrβ

a(1−γ)Tβ

) 1
β−1

(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)γ (∫
Rn
ea|x|

β

|u0(x)|2 dx

)1−γ

, (1.5)

for all u0 ∈ C∞0 (Rn;C).

(iii) Let α(s), s ∈ R+, be an increasing function with lims→∞
α(s)
s = 0. Then for each γ ∈ (0, 1), there is no

positive constant C so that∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)γ (∫
Rn
eaα(|x|)|u0(x)|2 dx

)1−γ

for all u0 ∈ C∞0 (Rn;C).

The last main theorem gives another kind of unique continuation inequality at one time point for a class of

solutions to the equation (1.2).

Theorem 1.3. Given x′, x′′ ∈ Rn, r1, r2 > 0, a > 0 and T > 0, the following estimate holds for all u0 ∈
C∞0 (Rn;C): ∫

Br2 (x′′)

|u(x, T ;u0)|2 dx (1.6)

≤ Crn2
(
(aT ) ∧ r1

)−n(∫
Br1 (x′)

|u(x, T ;u0)|2 dx

)θp (∫
Rn
ea|x||u0(x)|2 dx

)1−θp

,

where C , C(n) > 0, θ , θ(n) ∈ (0, 1) and

p , 1 +
|x′ − x′′|+ r1 + r2

(aT ) ∧ r1
. (1.7)

Several remarks on Theorem 1.2 and Theorem 1.3 are given in order:
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(b1) The motivation to build up Theorem 1.2 is as follows: According to Remark (a3) after Theorem 1.1, one

cannot recover a solution by observing it at one time point and outside of a ball. Hence, it should be inter-

esting to ask what we can expect by observing solutions at one time point and outside of a ball. Theorem 1.2

gives an answer to the above question.

The motivation to present Theorem 1.3 is as follows: We will see that (1.4) does not hold when Bcr(0)

is replaced by Br(0) (see (c) of Remark 4.2). Thus, it could be interesting to ask what we can expect by

observing solutions at one time point and in a ball. Theorem 1.3 gives an answer to such question.

(b2) The inequalities (1.4) and (1.6) are two kinds of unique continuation inequalities at one point in time. From

(1.4), one can easily see that

e
a|x|
2 u0(x) ∈ L2(Rn;C) and u(x, T ;u0) = 0 over Bcr(0)⇒ u(x, t;u0) = 0 over Rn × [0,∞).

From (1.6), one can easily check that

e
a|x|
2 u0(x) ∈ L2(Rn;C) and u(x, T ;u0) = 0 over Br1(x′)⇒ u(x, t;u0) = 0 over Rn × [0,∞).

(Indeed, the left hand side of the above, together with (1.6), indicates that for each x′′ ∈ Rn and each r2 > 0,

u(·, T ;u0) = 0 over Br2(x′′). Then by the arbitrariness of x′′ and r2, we see that u(x, T ;u0) = 0 over Rn.

This leads to that u(x, t;u0) = 0 over Rn × [0,∞).)

From (1.6), we can also have that

u0 = 0 over Bcr2(x′′) and u(x, T ;u0) = 0 over Br1(x′)⇒ u(x, t;u0) = 0 over Rn × [0,∞).

(b3) The inequalities (1.4) and (1.6) can be explained from the following two perspectives:

Perspective One: The integral on the left hand side of (1.4) (or (1.6)) is treated as a recover term, while on

the right hand side of (1.4) (or (1.6)), the integral over Bcr(0) (or Br1(x′)) is regarded as an observation term

and the integral over the whole space Rn is viewed as a prior term which provides some prior information

on initial data ahead of observations. The inequality (1.4) (or (1.6)) can be explained in the following way:

If one knows in advance that the initial datum of a solution has an exponential decay at infinity, then by

observing this solution at one point in time and outside of a ball (or inside of a ball), one can estimate the

recover term, which says, in plain language, that one can recover this solution (or this solution over Br2(x′′)

at time T ).

Perspective Two: The inequality (1.4) is equivalent to that ∃C > 0 and θ ∈ (0, 1) s.t. ∀ r, a, T > 0 and

ε > 0,∫
Rn
|u0(x)|2 dx ≤ C

(
1 +

rn

(aT )n

)(
ε1−θ−1− r

aT

∫
Bcr(0)

|u(x, T ;u0)|2 dx+ ε

∫
Rn
ea|x||u0(x)|2 dx

)

for all u0 ∈ C∞0 (Rn;C). Thus, the inequality (1.4) can be understood as follows: Through observing a

solution at one point in time and outside of a ball, we can approximately recover this solution, with the error:

C

(
1 +

rn

(aT )n

)
ε

∫
Rn
ea|x||u0(x)|2 dx.
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Notice that if
∫
Rn e

a|x||u0(x)|2 =∞, then the error is∞.

The inequality (1.6) is equivalent to that ∃C > 0 and θ ∈ (0, 1) s.t. ∀x′, x′′ ∈ Rn, r1, r2 > 0, a, T > 0

and ε > 0, ∫
Br2 (x′′)

|u(x, T ;u0)|2 dx

≤ Crn2
(
(aT ) ∧ r1

)−n(
ε1−θ−p

∫
Br1 (x′)

|u(x, T ;u0)|2 dx+ ε

∫
Rn
ea|x||u0(x)|2 dx

)

for all u0 ∈ C∞0 (Rn;C). Here, p is given by (1.7). Thus, the inequality (1.6) can be understood as follows:

Through observing a solution at one point in time and in a ball, we can approximately recover this solution

over Br2(x′′) at time T , with the error:

Crn2
(
(aT ) ∧ r1

)−n
ε

∫
Rn
ea|x||u0(x)|2 dx.

If
∫
Rn e

a|x||u0(x)|2 =∞, then the error is∞.

Notice that the recover terms in (1.4) and (1.6) are different. By (1.4), we can recover approximately a

solution over Rn × {0}, while by (1.6), we can recover approximately a solution over Br2(x′′)× {T}.

(b4) The inequality (1.4) is equivalent to a kind of approximate controllability for the impulse controlled Schrödinger

equation with controls acting at one point in time, while the inequality (1.6) is equivalent to a kind of approx-

imate null controllability for the initial controlled Schrödinger equation with controls acting at one point in

time. Notice that the above two kinds of controllability are not standard (see Subsection 5.2).

(b5) Theorem 1.2 is “optimal” from two perspectives. Perspective One: If β ≥ 1, then for any r > 0, a > 0 and

T > 0, there is C > 0 and θ ∈ (0, 1) so that∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)θ (∫
Rn
ea|x|

β

|u0(x)|2 dx

)1−θ

, ∀u0 ∈ C∞0 (Rn;C),

while if β ∈ (0, 1), then for any r > 0, a > 0 and T > 0, there is no C > 0 or θ ∈ (0, 1) so that the above

inequality holds. Perspective Two: For each r > 0, a > 0 and T > 0, the following conclusion is not true

(see (c) of Remark 4.2): ∃C > 0 and ∃ θ ∈ (0, 1) so that∫
Rn
|u0(x)|2 dx ≤ C

(∫
Br(0)

|u(x, T ;u0)|2 dx

)θ (∫
Rn
ea|x||u0(x)|2 dx

)1−θ

, ∀u0 ∈ C∞0 (Rn;C).

The above optimality implies in some sense that the choice of the weight ea|x|, x ∈ Rn (with a > 0) is

reasonable (to ensure the type of unique continuation estimates build up in (i) and (ii) of Theorem 1.2). In

plain language, other types of weights are not expected.

(b6) The proofs of Theorem 1.2 and Theorem 1.3 are mainly based on [2, Theorem 1.3], which gives an ana-

lytic interpolation inequality (see also [42]), and an estimate for some kind of the Euler’s integral in high

dimension built up in Lemma 2.11 of the current paper and the identity [10, (1.2)] (see (2.6) in our paper).

We next present three consequences of the above main theorems.
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Theorem 1.4. Given r > 0, T > 0 and N > 0, the following estimate is true for all u0 ∈ L2(Ω;C) with

suppu0 ⊂ BN (0): ∫
Rn
|u0(x)|2 dx ≤ eC

(
1+ rN

T

) ∫
Bcr(0)

|u(x, T ;u0)|2 dx, (1.8)

where C , C(n) > 0.

Theorem 1.5. Given x0, x
′ ∈ Rn, r > 0, a > 0, b > 0 and T > 0, the following inequality holds for all

u0 ∈ C∞0 (Rn;C) and ε ∈ (0, 1):∫
Rn
e−b|x−x

′||u(x, T ;u0)|2 dx (1.9)

≤ C(x0, x
′, r, a, b, T )

(
ε

∫
Rn
ea|x||u0(x)|2 dx+ εeε

−1− Cb−1

(aT )∧r
∫
Br(x0)

|u(x, T ;u0)|2 dx

)
,

where

C(x0, x
′, r, a, b, T ) , exp

{
C
[
1 +
|x0 − x′|+ r + b−1

(aT ) ∧ r

]}
,

with C , C(n) > 0.

Theorem 1.6. Given x0 ∈ Rn, r > 0, a > 0 and T > 0, the following estimate is true for all u0 ∈ C∞0 (Rn;C)

and ε ∈ (0, 1):∫
Rn
|u0(x)|2 dx (1.10)

≤ C(x0, r, a, T )

(
ε
(∫

Rn
ea|x||u0(x)|2dx+ ‖u0‖2Hn+3(Rn;C)

)
+ εee

ε−2
∫
Br(x0)

|u(x, T ;u0)|2 dx

)
,

where

C(x0, r, a, T ) , (1 + T )2n+6 exp
{
C1+

|x0|+r+1

(aT )∧r

}
,

with C , C(n) > 0.

Two notes on Theorem 1.4-Theorem 1.6 are as follows:

(c1) The inequalities in Theorem 1.4-Theorem 1.6 are different kinds of unique continuation at one time point

for the Schrödinger equation. They correspond to different kinds of controllability which are not standard

controllability (see Subsection 5.3).

(c2) Theorem 1.4 is a direct consequence of the conclusion (i) in Theorem 1.2. Theorem 1.5 is a consequence

of Theorem 1.3. Theorem 1.6 is based on Theorem 1.3, as well as a regularity propagation property for the

Schrödinger equation (presented in Lemma 3.2 of this paper).

The main novelties of this paper are as follows: (a) We build up observability estimate at two points in time for

the Schrödinger equation in Rn. (b) We present several unique continuation (or observability) inequalities at one

point in time for the Schrödinger equation in Rn. These inequalities correspond to different kinds of controllability.
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(c) We find an equivalence between the observability at two different points in time and the uncertainty principle

built up in [21] (see Lemma 2.3).

It should be interesting to extend our results to the following equations: (a) Schrödinger equations with nonzero

potentials. (b) Homogeneous Schrödinger equations on a bounded domain. Unfortunately, we are not able to extend

our results to the above cases. Let us explain the reasons. Our methods rely heavily on an identity (see (2.6)). This

identity holds for the free Schrödinger equation in Rn. For the case that either Rn is replaced by a bounded domain

or the Schrödinger equation has a nonzero potential, we are not able to find a suitable substitute of (2.6). The

next question could also be interesting. Can we extend our results to the case that Rn is replaced by Rn+ (where

Rn+ , {(x1, . . . , xn) ∈ Rn : xn > 0})? It might be done by symmetrizing initial data in L2(Rn+;C).

For observability and unique continuation inequalities of Schrödinger equations, we would like to mention

[5, 7, 9, 10, 11, 12, 13, 14, 15, 19, 20, 25, 26, 28, 30, 38, 44, 45] and the references therein. For the uncertainty

principle, we refer the readers to [18, 21, 23, 31, 39] and the references therein. We think of that the uncertainty

principle built up in some of these papers may be used to get some observability estimates for Schrödinger equa-

tions. For interpolation inequalities of heat equations, we would like to mention [3, 16, 17, 33, 34, 35, 43] and the

references therein.

The rest of the paper is organized as follows: Section 2 proves Theorem 1.1-Theorem 1.3. Section 3 proves

Theorem 1.4-Theorem 1.6. Section 4 provides some further comments on the main results. Section 5 presents

applications of Theorem 1.1-Theorem 1.6 to the controllability for the Schrödinger equation.

2 Proofs of the main results

This section is devoted to proving Theorem 1.1-Theorem 1.3.

2.1 Proof of Theorem 1.1

In this subsection, we will prove Theorem 1.1. We first introduce in Theorem 2.1 the uncertainty principle built up

in [21], then show in Lemma 2.3 the equivalence between the uncertainty principle and the observability at two

points in time, finally give the proof of Theorem 1.1.

Theorem 2.1. Given subsets S,Σ ⊂ Rn, with |S| <∞ and |Σ| <∞, there is a positive constant

C(n, S,Σ) , CeCmin{|S||Σ|,|S|1/nw(Σ),|Σ|1/nw(S)}, (2.1)

with C , C(n), so that for each f ∈ L2(Rn;C),∫
Rnx
|f(x)|2 dx ≤ C(n, S,Σ)

(∫
Rnx\S

|f(x)|2 dx+

∫
Rnξ \Σ

|f̂(ξ)|2 dξ

)
.

Here, w(S) (or w(Σ)) denotes the mean width of S (or Σ).

Remark 2.2. For the detailed definition of w(S) (the mean width of S), we refer the readers to [21]. Here, we

would like to mention what follows: First, when S is an open bounded subset of Rn, w(S) <∞; Second, when S

is a ball in Rn, w(S) is the diameter of the ball.
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Lemma 2.3. Let A and B be two measurable subsets of Rn. Then the following propositions are equivalent:

(i) There exists a positive constant C1(n,A,B) so that for each f ∈ L2(Rn;C),∫
Rnx
|f(x)|2 dx ≤ C1(n,A,B)

(∫
A

|f(x)|2 dx+

∫
B

|f̂(ξ)|2 dξ

)
. (2.2)

(ii) There exists a positive constant C2

(
n,A,B

)
so that for each T > 0 and each u0 ∈ L2(Rn;C),∫

Rn
|u0(x)|2 dx ≤ C2(n,A,B)

(∫
A

|u0(x)|2 dx+

∫
2TB

|u(x, T ;u0)|2 dx
)
. (2.3)

Furthermore, when one of the above two propositions holds, the constants C1(n,A,B) and C2(n,A,B) can

be chosen as the same number.

Proof. Divide the proof into the following two steps:

Step 1. To show that (i)⇒(ii)

Suppose that (i) is true for C1(n,A,B). We first claim that for all T > 0 and u0 ∈ L2(Rn;C),∫
Rn
|u0(x)|2 dx

≤ C1

(
n,A,B

)(∫
A

|u0(x)|2 dx+
1

(2T )n

∫
2TB

| ̂ei|ξ|2/4Tu0(ξ)(x/2T )|2 dx

)
. (2.4)

Indeed, for arbitrarily fixed T > 0 and u0 ∈ L2(Rn;C), we define a function ũ0(·) over Rn in the following

manner:

ũ0(x) , ei|x|
2/4Tu0(x), x ∈ Rn. (2.5)

It is clear that ũ0 ∈ L2(Rn;C). Then by (i), we have (2.2), with f = ũ0, i.e.,∫
Rn
|ũ0(x)|2 dx ≤ C1

(
n,A,B

)(∫
A

|ũ0(x)|2 dx+

∫
B

|̂̃u0(x)|2 dx

)
.

This, along with (2.5), leads to (2.4).

We next notice from [10, (1.2)] that for all T > 0 and u0 ∈ L2(Rn;C),

(2iT )n/2e−i|x|
2/4Tu(x, T ;u0) = ̂ei|ξ|2/4Tu0(ξ)(x/2T ), x ∈ Rn. (2.6)

Then from (2.4) and (2.6), it follows that∫
Rn
|u0(x)|2 dx ≤ C1

(
n,A,B

)(∫
A

|u0(x)|2 dx+

∫
2TB

|u(x, T ;u0)|2 dx

)
.

Hence, the conclusion (ii) is true, and C2

(
n,A,B

)
can be taken as C1

(
n,A,B

)
.

Step 2. To prove that (ii)⇒(i)

Suppose that (ii) is true for C2(n,A,B). Arbitrarily fix f ∈ L2(Rn;C). Define a function uf by

uf (x) = e−i|x|
2/2f(x), x ∈ Rn. (2.7)

From (2.7) and (2.6) (where u0 = uf and T = 1/2), it follows that

f̂(ξ) = ̂ei|x|2/2uf (x)(ξ) = (i)n/2e−i|ξ|
2/2u(ξ, 1/2;uf ), ξ ∈ Rn.
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This, along with (2.7) and (2.3) (where u0 = uf and T = 1/2), yields that∫
Rn
|f(x)|2 dx =

∫
Rn
|uf (x)|2 dx ≤ C2(n,A,B)

(∫
A

|uf (x)|2 dx+

∫
B

|u(x, 1/2;uf )|2 dx

)
≤ C2(n,A,B)

(∫
A

|f(x)|2 dx+

∫
B

|f̂(ξ)|2 dξ

)
.

Hence, the conclusion (i) is true and C1(n,A,B) can be taken as C2(n,A,B).

Finally, from Step 1 - Step 2, we find that when one of (i) and (ii) is true, the constants C1(n,A,B) and

C2(n,A,B) can be chosen as the same positive number. This ends the proof of this lemma.

We now use Theorem 2.1 and Lemma 2.3 to prove Theorem 1.1.

Proof of Theorem 1.1. Let x′, x′′ ∈ Rn, r1, r2 > 0 and T > S ≥ 0. Define

A = Bcr1(x′) and B = Bcr2(x′′). (2.8)

By Theorem 2.1, we have (2.2), where

(A,B) is replaced by
(
A,

B

2(T − S)

)
and C1(n,A,B) is replaced by C

(
n,Ac,

Bc

2(T − S)

)
,

with C(n, ·, ·) given by (2.1). Thus we can apply Lemma 2.3 to get (2.3), where

(A,B) is replaced by
(
A,

B

2(T − S)

)
and C2(n,A,B) is replaced by C

(
n,Ac,

Bc

2(T − S)

)
.

The latter, together with (2.1) and (2.8), indicates that there exists C > 0 (depending only on n) so that for each

u0 ∈ L2(Rn;C),

∫
Rn
|u0(x)|2 dx ≤ C

(
n,Ac,

Bc

2(T − S)

)(∫
Bcr1

(x′)

|u0(x)|2 dx+

∫
Bcr2

(x′′)

|u(x, T − S;u0)|2 dx

)
, (2.9)

where

C
(
n,Ac,

Bc

2(T − S)

)
= Ce

Cmin

{
ωnr

n
1 ωnr

n
2

1
2n(T−S)n

,ω
1
n
n r1r2

1
T−S ,ω

1
n
n r2r1

1
T−S

}
≤ CeCω

1
n
n r1r2

1
T−S , (2.10)

with ωn the volume of the unit ball in Rn.

Finally, by (2.9) and (2.10), we obtain that∫
Rn
|u(x, S;u0)|2 dx ≤ CeCc

1
n
0 r1r2

1
T−S ×

(∫
Bcr1

(x′)

|u(x, S;u0)|2 dx+

∫
Bcr2

(x′′)

|u(x, T ;u0)|2 dx
)
.

Because of the conservation law of the Schrödinger equation, the above leads to the inequality in Theorem 1.1.

This ends the proof of this theorem.
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2.2 Preliminaries on Theorem 1.2 and Theorem 1.3

In the proofs of Theorem 1.2 and Theorem 1.3, an interpolation inequality plays a key role. This inequality will be

presented in Lemma 2.5. To prove Lemma 2.5, we need the following Lemma 2.4:

Lemma 2.4. There exists an absolute constant C so that for each a > 0 and β ∈ Nn,(∫
Rn
|ξ2β |e−a|ξ| dξ

)1/2

≤
(

2n

a

)n/2
β!

(
Cn

a

)|β|
. (2.11)

Proof. First, we observe that for all a > 0 and β = (β1, . . . , βn) ∈ Nn,∫
Rn
|ξ2β |e−a|ξ| dξ ≤

∫
Rn
|ξ2β |e−a(Σni=1|ξi|/n) dξ

= Πn
i=1

∫
Rξi
|ξi|2βie−a|ξi|/n dξi

= Πn
i=12

∫ ∞
0

r2βie−ar/n dr

= Πn
i=12

(n
a

)2βi+1
∫ ∞

0

t2βie−t dt

= 2n
(n
a

)2|β|+n
Πn
i=1Γ(2βi + 1)

= 2n
(n
a

)2|β|+n
Πn
i=1(2βi)!, (2.12)

where Γ(·) denotes the Euler’s integral of the second kind or the Gamma function.

We next claim that there is an absolute constant C > 0 so that

√
(2α)! ≤ α!Cα for all α ∈ N+. (2.13)

In fact, using the Stirling’s approximation for factorials

ln(η!) = η ln η − η +O(ln η), ∀ η ∈ N+,

we see that for all α ∈ N+,

ln
√

(2α)! =
1

2

(
2α ln(2α)− 2α+O

(
ln(2α)

))
= lnα! + α ln 2 +O(lnα).

Thus, there exists an absolute constant C1 > 1 so that

√
(2α)! ≤ exp [lnα! + α lnC1] = α!Cα1 for all α ∈ N+,

which leads to (2.13).

Finally, (2.11) follows from (2.12) and (2.13) at once. This ends the proof of this lemma.

We now present an interpolation estimate for L2-functions whose Fourier transforms have compact supports.
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Lemma 2.5. Given x′, x′′ ∈ Rn, r1, r2 > 0 and a > 0, there exist two constants C , C(n) > 0 and θ , θ(n) ∈
(0, 1) so that for each f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C),∫

Br2 (x′′)

|f(x)|2 dx ≤ Crn2 (a−n + r−n1 )

(∫
Br1 (x′)

|f(x)|2 dx

)θp (∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θp

, (2.14)

where

p , 1 +
|x′ − x′′|+ r1 + r2

a ∧ r1
.

Proof. The proof is divided into two steps.

Step 1. To show that there is C , C(n) > 0 and θ , θ(n) ∈ (0, 1) so that (2.14), with a = 1, holds for all

x′, x′′ ∈ Rn, r1 > 0, r2 > 0 and f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C)

Arbitrarily fix x′, x′′ ∈ Rn, r1 > 0, r2 > 0 and f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C). We first claim that there is

an absolute constant C > 1 so that

‖∂αx f‖L∞(Rnx ) ≤ (2π)−
n
2 (2n)n/2(Cn)|α|α!

√∫
Rnξ
|f̂(ξ)|2e|ξ| dξ for all α ∈ Nn. (2.15)

In fact, since f̂ ∈ C∞0 (Rn;C), we see that f is analytic and for each multi-index α ∈ Nn,

∂αx f(x) = (2π)−
n
2

∫
Rnξ
eix·ξ(iξ)αf̂(ξ) dξ, x ∈ Rn.

From the above equality and the Hölder inequality, we see that for each multi-index α ∈ Nn,

‖∂αx f‖L∞(Rnx ) ≤ (2π)−
n
2

√∫
Rnξ
|ξ2α|e−|ξ| dξ

√∫
Rnξ
|f̂(ξ)|2e|ξ| dξ.

This, along with Lemma 2.4, leads to (2.15).

We next claim that there is C1 , C1(n) > 0 and θ1 , θ1(n) ∈ (0, 1) (depending only on n) so that

∫
Br2 (x′′)

|f(x)|2 dx ≤ ωnrn2 (C1r
−n/2
0 + 1)2

(
M2
)1− θ1

2K

(∫
Br1 (x′)

|f(x)|2 dx

) θ1
2K

, (2.16)

where

M ,
(n
π

)n/2√∫
Rnξ
|f̂(ξ)|2e|ξ| dξ, r0 ,

(Cn)−1 ∧ r1

5
< 1 (2.17)

(with C given by (2.15)) and

K ,
|x′ − x′′|+ r1 + r2

r0
. (2.18)

Let M and r0 be given by (2.17). From (2.15), we see that

|∂αx f(x)| ≤M α!

(5r0)|α|
, x ∈ B4r0(x′).

Then we can apply [2, Theorem 1.3] where R = 2r0 (see also [42]) to find that

‖f‖L∞(B2r0
(x′)) ≤ C ′1M

1−θ′1
(
ω1/2
n |Br0(x′)|−1‖f‖L1(Br0 (x′))

)θ′1
,



13

for some C ′1 , C ′1(n) > 0 and θ′1 , θ′1(n) ∈ (0, 1), depending only on n. Since r0 < r1 (see (2.17)), the above

inequality, along with the Hölder inequality, yields that

‖f‖L∞(B2r0 (x′)) ≤ C ′1M
1−θ′1

(
ω1/2
n |Br0(x′)|−1/2‖f‖L2(Br0 (x′))

)θ′1
≤ C ′1M

1−θ′1
(
r
−n/2
0 ‖f‖L2(Br1 (x′))

)θ′1
. (2.19)

Write Dl(z) for the closed disk in the complex plane, centered at z and of radius l. It is clear that

Dr0((k + 1)r0) ⊂ D2r0(kr0), k = 1, 2, . . . . (2.20)

Arbitrarily fix ~v ∈ Sn−1. Define a function g over the real line in the following manner:

g(s) =
1

M
f(x′ + s~v), s ∈ R. (2.21)

From (2.21) and (2.15), one can easily check that g can be extended to be an analytic function over

Ωr0 , {x+ iy ∈ C : x, y ∈ R, |y| < 5r0} (2.22)

and that the extension, still denoted by g, has the property:

‖g‖L∞(Ωr0 ) ≤ 1. (2.23)

By (2.21), (2.22) and (2.23), we see that the function z 7→ g(4r0z) is analytic over D1(0) and verifies that

supz∈D1(0)|g(4r0z)| ≤ 1. Then we can apply [2, Lemma 3.2] (to the above function) to find that

sup
z∈D1/2(0)

|g(4r0z)| ≤ C ′2 sup
x∈R, |x|≤1/5

|g(4r0x)|θ
′
2 (2.24)

for some C ′2 , C ′2(n) > 0 and θ′2 , θ′2(n) ∈ (0, 1), depending only on n. Since r0 < r1 (see (2.17)), by (2.24)

and (2.21), we obtain that

‖g‖L∞(D2r0
(0)) ≤ C ′2

(
1

M
‖f‖L∞(B2r0

(x′))

)θ′2
.

This, along with (2.19), yields that

‖g‖L∞(D2r0
(0)) ≤ C ′2C ′1

θ′2r
−θ′1θ

′
2n/2

0

(
1

M
‖f‖L2(Br1 (x′))

)θ′1θ′2
. (2.25)

Meanwhile, since g is analytic over Ωr0 , we can apply the Hadamard three-circle theorem (see for instance [2,

Theorem 3.1]) to get that for each k = 1, 2, . . . ,

‖g‖L∞(D2r0 (kr0)) ≤ ‖g‖
1/2
L∞(Dr0 (kr0))‖g‖

1/2
L∞(D4r0 (kr0)) ≤ ‖g‖

1/2
L∞(Dr0 (kr0)). (2.26)

(Here, we used (2.23).) By (2.26) and (2.20), we see that for each k = 1, 2, . . . ,

‖g‖L∞(Dr0 ((k+1)r0)) ≤ ‖g‖L∞(D2r0 (kr0)) ≤ ‖g‖
1/2
L∞(Dr0 (kr0)),

from which, it follows that for each k = 1, 2, . . . ,

‖g‖L∞(Dr0 ((k+1)r0)) ≤ ‖g‖
1
2

L∞(Dr0 (kr0)) ≤ · · · ≤ ‖g‖
( 1
2 )k

L∞(Dr0 (r0)).
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This, along with (2.18) and (2.23), yields that

‖g‖L∞(∪1≤k≤qDr0 (kr0)) = sup
1≤k≤q

‖g‖L∞(Dr0 (kr0)) ≤ sup
1≤k≤q

‖g‖(
1
2 )k−1

L∞(Dr0 (r0))

≤ sup
1≤k≤q

‖g‖(
1
2 )q−1

L∞(Dr0 (r0)) ≤ ‖g‖
( 1
2 )K

L∞(Dr0 (r0)), (2.27)

where q is the integer so that

qr0 ≥ |x′ − x′′|+ r1 + r2 > (q − 1)r0. (2.28)

Because it follows by (2.28) that

[
0, |x′ − x′′|+ r1 + r2

]
⊂ ∪1≤k≤qDr0(kr0) and Dr0(r0) ⊂ D2r0(0),

we see from (2.27) that for all s ∈
[
0, |x′ − x′′|+ r1 + r2

]
,

|g(s)| ≤ ‖g‖L∞(∪1≤k≤qDr0 (kr0)) ≤ ‖g‖
( 1
2 )K

L∞(Dr0 (r0)) ≤ ‖g‖
( 1
2 )K

L∞(D2r0
(0)). (2.29)

From (2.21), (2.29) and (2.25), we find that for all s ∈
[
0, |x′ − x′′|+ r1 + r2

]
,

|f(x′ + s~v)| = M |g(s)| ≤M‖g‖
1

2K

L∞(D2r0
(0))

≤ M

[
C ′2C

′
1
θ′2r
−θ′1θ

′
2n/2

0

(
1

M
‖f‖L2(Br1 (x′))

)θ′1θ′2] 1

2K

=
(
C ′2C

′
1
θ′2r
−θ′1θ

′
2n/2

0

)2−K

M1− θ
′
1θ
′
2

2K ‖f‖
θ′1θ
′
2

2K

L2(Br1 (x′)).

Since the above inequality holds for all ~v ∈ Sn−1 and s ∈
[
0, |x′ − x′′|+ r1 + r2

]
, we see that

sup
|x−x′|≤|x′−x′′|+r1+r2

|f(x)| ≤
(
C ′2C

′
1
θ′2r
−θ′1θ

′
2n/2

0

)2−K

M1− θ
′
1θ
′
2

2K ‖f‖
θ′1θ
′
2

2K

L2(Br1 (x′)).

Because r0 < 1 (see (2.17)), it follows from the above that

sup
|x−x′|≤|x′−x′′|+r1+r2

|f(x)| ≤
(
C ′2C

′
1
θ′2r
−n/2
0 + 1

)
M1− θ

′
1θ
′
2

2K ‖f‖
θ′1θ
′
2

2K

L2(Br1 (x′)).

Since Br2(x′′) ⊂ B|x′−x′′|+r1+r2(x′), the above yields that∫
Br2 (x′′)

|f(x)|2 dx ≤ ωnr
n
2 sup
|x−x′|≤|x′−x′′|+r1+r2

|f(x)|2

≤ ωnr
n
2

(
C ′2C

′
1
θ′2r
−n/2
0 + 1

)2

M2(1− θ
′
1θ
′
2

2K
)‖f‖

2θ′1θ
′
2

2K

L2(Br1 (x′)),

from which, (2.16) follows at once.

Finally, by (2.17), we see that

M ≥ ‖f‖L2(Br1 (x′)) and r0 ≥
(Cn)−1

5
(1 ∧ r1).
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These, combined with (2.16) and (2.18), yield that∫
Br2 (x′′)

|f(x)|2 dx

≤ ωnr
n
2 (1 + C1)2(5Cn)n[(1 ∧ r1)−n/2 + 1]2M2

(
‖f‖2L2(Br1 (x′))

M2

)α1

≤ 4ωn(1 + C1)2(5Cn)nrn2 (r−n1 + 1)M2

(
‖f‖2L2(Br1 (x′))

M2

)α2

, (2.30)

where

α1 , θ1

(
1

2

) |x′−x′′|+r1+r2
r0

and α2 , min

{
θ1,

(
1

2

)5Cn
}1+

|x′−x′′|+r1+r2
1∧r1

.

From (2.30) and (2.17), we see that f satisfies (2.14), with a = 1. This proves the conclusion in Step 1.

Step 2. To show that there is C , C(n) > 0 and θ , θ(n) ∈ (0, 1) so that (2.14), with a > 0, holds for all

x′, x′′ ∈ Rn, r1 > 0, r2 > 0 and f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C)

Arbitrarily fix x′, x′′ ∈ Rn, r1 > 0, r2 > 0, a > 0 and f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C). Define a function

g by

g(x) = a
n
2 f(ax), x ∈ Rn.

It is clear that

g ∈ L2(Rn;C) and ĝ(ξ) = a−
n
2 f̂(ξ/a), ξ ∈ Rn.

Since f̂ ∈ C∞0 (Rn;C), the above implies that ĝ ∈ C∞0 (Rn;C). Thus, we can use the conclusion in Step 1 to see

that there is C > 0 and θ ∈ (0, 1), depending only on n, so that∫
B r2
a

( x
′′
a )

|g(x)|2 dx

≤ C
(r2

a

)n (
1 +

(r1

a

)−n)∫
B r1
a

( x
′
a )

|g(x)|2 dx

θp
′ (∫

Rnξ
|ĝ(ξ)|2e|ξ| dξ

)1−θp
′

, (2.31)

where

p′ = 1 +
|x
′

a −
x′′

a |+
r1
a + r2

a

1 ∧ r1
a

= 1 +
|x′ − x′′|+ r1 + r2

a ∧ r1
.

From (2.31), we find that∫
Br2 (x′′)

|f(x)|2 dx =

∫
B r2
a

( x
′′
a )

|g(x)|2 dx

≤ Crn2 (a−n + r−n1 )

(∫
Br1 (x′)

|f(x)|2 dx

)θp′ (∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θp
′

.

This proves the conclusion in Step 2 and completes the proof of this lemma.
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Two consequences of Lemma 2.5 will be given in order. The first one (Corollary 2.6) is another interpolation

estimate for L2-functions whose Fourier transforms have compact supports, while the second one (Corollary 2.7)

is a kind of spectral inequality. (The name of spectral inequality in Rn arose from [37], see [37, Theorem 3.1].)

Corollary 2.6. There exist two constants C , C(n) > 0 and θ , θ(n) ∈ (0, 1) so that for each r > 0, a > 0 and

each f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C),

∫
Rnx
|f(x)|2 dx ≤ C

(
1 +

rn

an

)(∫
Bcr(0)

|f(x)|2 dx

)θ1+ r
a (∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θ1+
r
a

. (2.32)

Proof. Arbitrarily fix r > 0, a > 0 and f ∈ L2(Rn;C), with f̂ ∈ C∞0 (Rn;C). First of all, we claim that there

exist two constants C1 , C1(n) > 0 and θ1 , θ1(n) ∈ (0, 1) so that

∫
Br(0)

|f(x)|2 dx ≤ C1

(
1 +

rn

an

)(∫
Bcr(0)

|f(x)|2 dx

)θ1+r/a1
(∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θ1+r/a1

. (2.33)

Indeed, for arbitrarily fixed ~v ∈ Sn−1, we have that Br(2r~v) ⊂ Bcr(0). Then according to Lemma 2.5, where

(x′, x′′, r1, r2) = (2r~v, 0, r, r), there is C11 , C11(n) > 0 and θ11 , θ11(n) ∈ (0, 1) so that∫
Br(0)

|f(x)|2 dx (2.34)

≤ C11r
n(a−n + r−n)

(∫
Br(2r~v)

|f(x)|2 dx

)θ1+ 4r
a∧r

11
(∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θ
1+ 4r

a∧r
11

≤ C11r
n(a−n + r−n)

(∫
Bcr(0)

|f(x)|2 dx

)θ1+ 4r
a∧r

11
(∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θ
1+ 4r

a∧r
11

.

Since

1

a ∧ r
≤ 1

a
+

1

r
, θ11 ∈ (0, 1) and

∫
Bcr(0)

|f(x)|2 dx ≤
∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ,

we find from (2.34) that

∫
Br(0)

|f(x)|2 dx ≤ C11r
n(a−n + r−n)

 ∫
Bcr(0)

|f(x)|2 dx∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ

θ
1+ 4r

a∧r
11 ∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

≤ C11(rna−n + 1)

 ∫
Bcr(0)

|f(x)|2 dx∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ

θ
5(1+ r

a
)

11 ∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ,

which leads to (2.33).

Next, since ∫
Bcr(0)

|f(x)|2 dx ≤
∫
Rnx
|f(x)|2 dx =

∫
Rnξ
|f̂(ξ)|2 dξ ≤

∫
Rnξ
|f̂(ξ)|2ea|ξ| dξ,

we have that ∫
Bcr(0)

|f(x)|2 dx ≤

(∫
Bcr(0)

|f(x)|2 dx

)θ1+r/a1
(∫

Rnξ
|f̂(ξ)|2ea|ξ| dξ

)1−θ1+r/a1

,
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which, together with (2.33), leads to (2.32). this ends the proof of this corollary.

Corollary 2.7. There exists a positive constant C , C(n) so that for each r > 0 and N ≥ 0,∫
Rn
|f(x)|2 dx ≤ eC(1+rN)

∫
Bcr(0)

|f(x)|2 dx (2.35)

for all f ∈ L2(Rn;C) with supp f̂ ⊂ BN (0).

Proof. The proof is divided into the following two steps:

Step 1. To show that there isC , C(n) > 0 so that (2.35), with r = 1, holds for allN ≥ 0 and f ∈ L2(Rn;C),

with supp f̂ ⊂ BN (0)

Arbitrarily fix N ≥ 0 and then fix f ∈ L2(Rn;C), with supp f̂ ⊂ BN (0). By a standard density argument, we

can apply Corollary 2.6 to verify that there is C1 , C1(n) > 0 and θ1 , θ1(n) ∈ (0, 1) (only depending on n) so

that ∫
Rnx
|f(x)|2 dx ≤ C1

(∫
Bc1(0)

|f(x)|2 dx

)θ1 (∫
Rnξ
|f̂(ξ)|2e|ξ| dξ

)1−θ1

. (2.36)

Indeed, since f̂(ξ)e|ξ|/2 ∈ L2(Rn;C), we can choose {gk} ⊂ C∞0 (Rn;C), with supp gk ⊂ Bk(0), so that

lim
k→∞

∫
Rnξ
|gk(ξ)− f̂(ξ)e|ξ|/2|2 dξ = 0. (2.37)

Meanwhile, since supp gk ⊂ Bk(0) for all k ∈ N+, we can find {hk} ⊂ C∞0 (Rn;C), with supphk ⊂ Bk+1(0),

so that ∫
Rnξ
|hk(ξ)− gk(ξ)e−|ξ|/2|2 dξ ≤ 1

k
e−k−1 for each k ∈ N+.

This implies that for each k ∈ N+,∫
Rnξ
|hk(ξ)e|ξ|/2 − gk(ξ)|2 dξ =

∫
Bk+1(0)

|hk(ξ)− gk(ξ)e−|ξ|/2|2e|ξ| dξ ≤ 1/k,

which, together with (2.37), yields that

lim
k→∞

∫
Rnξ
|hk(ξ)− f̂(ξ)|2e|ξ| dξ = 0. (2.38)

Let {fk} ⊂ L2(Rn;C) so that

f̂k(ξ) = hk(ξ), ξ ∈ Rn for each k ∈ N+.

Then by (2.38), we find that

{f̂k} ⊂ C∞0 (Rn;C), lim
k→∞

∫
Rnξ
|f̂k(ξ)− f̂(ξ)|2e|ξ| dξ = 0 and lim

k→∞
‖fk − f‖L2(Rn;C) = 0.

From these, we can apply Corollary 2.6 (where a = 1 and r = 1) to get (2.36).
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Since supp f̂ ⊂ BN (0), it follows from (2.36) that

∫
Rnx
|f(x)|2 dx ≤ C1

(∫
Bc1(0)

|f(x)|2 dx

)θ1
e(1−θ1)N

(∫
Rnξ
|f̂(ξ)|2 dξ

)1−θ1

.

Since the Fourier transform is an isometry, we obtain from the above inequality that∫
Rnx
|f(x)|2 dx ≤ C1/θ1

1 e(1−θ1)N/θ1

∫
Bc1(0)

|f(x)|2 dx = e[lnC1+(1−θ1)N ]/θ1

∫
Bc1(0)

|f(x)|2 dx.

Hence, (2.35), with r = 1, is true.

Step 2. To show that there isC , C(n) > 0 so that (2.35), with r > 0, holds for allN ≥ 0 and f ∈ L2(Rn;C),

with supp f̂ ⊂ BN (0)

For this purpose, arbitrarily fix N ≥ 0 and r > 0. Then fix f ∈ L2(Rn;C) with supp f̂ ⊂ BN (0). Define a

function g by

g(x) = rn/2f(rx), x ∈ Rn. (2.39)

One can easily check that

ĝ(ξ) = (2π)−n/2
∫
Rnx
rn/2f(rx)e−ix·ξ dx = r−n/2f̂(ξ/r) for a.e. ξ ∈ Rn. (2.40)

Since supp f̂ ⊂ BN (0), we see from (2.40) that supp ĝ ⊂ BrN (0). Thus, according to the conclusion in Step 1,

there is C , C(n) so that (2.35), with (f, r,N) replaced by (g, 1, rN), is true. That is,∫
Rn
|g(x)|2 dx ≤ eC(1+rN)

∫
Bc1(0)

|g(x)|2 dx.

This, along with (2.39) and (2.40), yields that∫
Rn
|f(x)|2 dx =

∫
Rn
|g(x)|2 dx

≤ eC(1+rN)

∫
Bc1(0)

|g(x)|2 dx = eC(1+rN)

∫
Bcr(0)

|f(x)|2 dx.

Hence, (2.35), with r > 0 is true. We end the proof of this corollary.

2.3 Proofs of Theorem 1.2 and Theorem 1.3

We first prove Theorem 1.2.

Proof of Theorem 1.2. Throughout this proof, we arbitrarily fix

r > 0, a > 0, T > 0 and u0 ∈ C∞0 (Rn;C).

Define a function f as follows:

f(x) , e−i|x|
2/4Tu(x, T ;u0), x ∈ Rn. (2.41)



19

From (2.41) and (2.6), we find that

(2iT )n/2f(x) = ̂ei|ξ|2/4Tu0(ξ)(x/2T ), x ∈ Rn.

This yields that for a.e. ξ ∈ Rn,

f̂(ξ) =
1

(2π)n/2

∫
Rnx
f(x)e−ix·ξ dx =

(2iT )−n/2

(2π)n/2

∫
Rnx

(2iT )n/2f(x)e−ix·ξ dx

=
(2iT )−n/2

(2π)n/2
(2T )n

∫
Rnx

(2iT )n/2f(2Tx)e−ix·(2Tξ) dx

=
(−2iT )n/2

(2π)n/2

∫
Rnx

̂ei|η|2/4Tu0(η)(x)eix·(−2Tξ) dx

= (−2iT )n/2ei|η|
2/4Tu0(η)|η=−2Tξ = (−2iT )n/2eiT |ξ|

2

u0(−2Tξ). (2.42)

We are going to prove the conclusions (i)-(iii) in the theorem one by one.

We first show the conclusion (i) of Theorem 1.2. By (2.41), we have that∫
Rnx
|u(x, T ;u0)|2 dx =

∫
Rnx
|f(x)|2 dx.

Then by Corollary 2.6, where a is replaced by 2Ta, we find that

∫
Rnx
|u(x, T ;u0)|2 dx ≤ C

(
1 +

rn

(2Ta)n

) ∫
Bcr(0)

|f(x)|2 dx∫
Rnξ
|f̂(ξ)|2e2Ta|ξ| dξ

θ1+
r

2Ta ∫
Rnξ
|f̂(ξ)|2e2Ta|ξ| dξ

≤ C

(
1 +

rn

(Ta)n

) ∫
Bcr(0)

|f(x)|2 dx∫
Rnξ
|f̂(ξ)|2e2Ta|ξ| dξ

θ1+
r
Ta ∫

Rnξ
|f̂(ξ)|2e2Ta|ξ| dξ,

for some C , C(n) > 0 and θ , θ(n) ∈ (0, 1) (depending only on n). From this, (2.41) and (2.42), after some

computations, we obtain that∫
Rnx
|u(x, T ;u0)|2 dx

≤ C

(
1 +

rn

(aT )n

)(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)θ1+ r
aT (∫

Rnξ
|u0(ξ)|2ea|ξ| dξ

)1−θ1+
r
aT

.

The above inequality, together with the conservation law of the Schrödinger equation, leads to (1.4). Hence, the

conclusion (i) of the theorem is true.

We next show the conclusion (ii) of Theorem 1.2. Arbitrarily fix β > 1 and γ ∈ (0, 1). We divide the proof

into the following two steps:

Step 1. To show that there exists C , C(n) so that∫
Rnx
|f(x)|2 dx ≤ Ce

(
Cβrβ

aTβ(1−γ)

) 1
β−1

(∫
Bcr(0)

|f(x)|2 dx

)γ (∫
Rnξ
ea|2Tξ|

β

|f̂(ξ)|2 dξ

)1−γ

(2.43)

Indeed, for an arbitrarily fixed N ≥ 0, we define two functions g1 and g2 in L2(Rn;C) so that

ĝ1 , χBN (0)f̂ and ĝ2 , χBcN (0)f̂ .



20 Gengsheng Wang, Ming Wang, Yubiao Zhang

It is clear that f = g1 + g2 in L2(Rn;C). Then by applying Corollary 2.7 to g1, we obtain that∫
Rnx
|f(x)|2 dx ≤ 2

∫
Rnx
|g1(x)|2 dx+ 2

∫
Rnx
|g2(x)|2 dx

≤ 2eC(1+rN)

∫
Bcr(0)

|g1(x)|2 dx+ 2

∫
Rnx
|g2(x)|2 dx

≤ 4eC(1+rN)

∫
Bcr(0)

(
|f(x)|2 + |g2(x)|2

)
dx+ 2

∫
Rnx
|g2(x)|2 dx

≤ 4eC(1+rN)

∫
Bcr(0)

|f(x)|2 dx+ 6eC(1+rN)

∫
Rnx
|g2(x)|2 dx, (2.44)

for some C > 0, depending only on n. Meanwhile, since the Fourier transform is an isometry, we have that∫
Rnx
|g2(x)|2 dx =

∫
Rnξ
|ĝ2(ξ)|2 dξ =

∫
Rnξ
|χBcN (0)(ξ)f̂(ξ)|2 dξ

= e−a(2TN)β
∫
Rnξ
|χBcN (0)(ξ)f̂(ξ)|2ea(2TN)β dξ.

This, along with (2.44), yields that∫
Rnx
|f(x)|2 dx ≤ 4eC(1+rN)

∫
Bcr(0)

|f(x)|2 dx+ 6eC(1+rN)−a(2TN)β
∫
Rnξ
|f̂(ξ)|2ea|2Tξ|

β

dξ. (2.45)

Since it follows from the Young inequality that

CrN =
[
Cr
(
(1− γ)a(2T )β

)− 1
β

][(
(1− γ)a(2T )β

) 1
βN
]

≤ (1− 1

β
)
[
Cr
(
(1− γ)a(2T )β

)− 1
β

] β
β−1

+
1

β

[(
(1− γ)a(2T )β

) 1
βN
]β

≤
[
(Cr)β/

(
a(2T )β(1− γ)

)] 1
β−1

+ (1− γ)a(2TN)β ,

we get from (2.45) that∫
Rnx
|f(x)|2 dx

≤ 6e
C+
(

Cβrβ

a(2T )β(1−γ)

) 1
β−1 (

e(1−γ)a(2TN)β
∫
Bcr(0)

|f(x)|2 dx+ e−γa(2TN)β
∫
Rnξ
|f̂(ξ)|2ea|2Tξ|

β

dξ
)
.

Since N was arbitrarily taken from [0,∞), the above indicates that for all ε ∈ (0, 1),∫
Rnx
|f(x)|2 dx ≤ 6e

C+
(

Cβrβ

a(2T )β(1−γ)

) 1
β−1 (

ε−(1−γ)

∫
Bcr(0)

|f(x)|2 dx+ εγ
∫
Rnξ
|f̂(ξ)|2ea|2Tξ|

β

dξ
)
.

One can directly check that the above inequality holds for all ε > 0. Minimizing it w.r.t. ε > 0 leads to (2.43).

Here, we used the inequality:

inf
ε>0

(
ε−(1−γ)A+ εγB

)
≤ 2AγB1−γ for all A, B ≥ 0.

This ends the proof of Step 1.

Step 2. To prove (1.5)
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From (2.41), (2.43) and (2.42), after some computations, we see that∫
Rnx
|u(x, T ;u0)|2 dx =

∫
Rnx
|f(x)|2 dx

≤ Ce

(
Cβrβ

aTβ(1−γ)

) 1
β−1

(∫
Bcr(0)

|f(x)|2 dx

)γ (∫
Rnξ
ea|2Tξ|

β

|f̂(ξ)|2 dξ

)1−γ

≤ Ce

(
Cβrβ

aTβ(1−γ)

) 1
β−1

(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)γ (∫
Rnξ
|u0(ξ)|2ea|ξ|

β

dξ

)1−γ

,

which, along with the conservation law of the Schrödinger equation, leads to (1.5). This ends the proof of the

conclusion (ii).

(iii) By contradiction, suppose that the conclusion (iii) was not true. Then there would exist r̂ > 0, â > 0,

T̂ > 0, γ̂ ∈ (0, 1), Ĉ > 0 and an increasing function α̂(s) defined over [0,∞), with lims→∞ s−1α̂(s) = 0, so that

for each v0 ∈ C∞0 (Rn;C), the solution of (1.2) satisfies that∫
Rn
|v0(x)|2 dx ≤ Ĉ

(∫
Bcr̂(0)

|u(x, T̂ ; v0)|2 dx

)γ̂ (∫
Rn
eâα̂(|x|)|v0(x)|2 dx

)1−γ̂

. (2.46)

Arbitrarily fix g ∈ L2(Rn;C) with ĝ ∈ C∞0 (Rn;C). Define v0,g ∈ C∞0 (Rn;C) in the following manner:

ĝ(ξ) = (−2iT̂ )n/2eiT̂ |ξ|
2

v0,g(−2T̂ ξ), ξ ∈ Rn. (2.47)

One can easily check that

g(x) = e−i|x|
2/4T̂u(x, T̂ ; v0,g), x ∈ Rn. (2.48)

Indeed, let fg verify that

fg(x) = e−i|x|
2/4T̂u(x, T̂ ; v0,g), x ∈ Rn. (2.49)

Then by (2.41), (2.42) (where (T, u0) = (T̂ , v0,g)) and (2.47), we find that

f̂g(ξ) = (−2iT̂ )n/2eiT̂ |ξ|
2

v0,g(−2T̂ ξ) = ĝ(ξ), ξ ∈ Rn,

which implies that fg = g. This, along with (2.49), leads to (2.48).

By (2.48), the conservation law (for the Schrödinger equation), (2.46) and (2.47), we get that∫
Rnx
|g(x)|2 dx =

∫
Rnx
|u(x, T̂ ; v0,g)|2 dx =

∫
Rnx
|v0,g(x)|2 dx

≤ Ĉ

(∫
Bcr̂(0)

|u(x, T̂ ; v0,g)|2 dx

)γ̂ (∫
Rn
eâα̂(|x|)|v0,g(x)|2 dx

)1−γ̂

= Ĉ

(∫
Bcr̂(0)

|g(x)|2 dx

)γ̂ (∫
Rnξ
eâα̂(2T̂ |ξ|)|ĝ(ξ)|2 dξ

)1−γ̂

.

By this, using a standard density argument, we can show that for each g ∈ L2(Rn;C) with supp ĝ compact,∫
Rnx
|g(x)|2 dx ≤ Ĉ

(∫
Bcr̂(0)

|g(x)|2 dx

)γ̂ (∫
Rnξ
eâα̂(2T̂ |ξ|)|ĝ(ξ)|2 dξ

)1−γ̂

.
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Since α̂(·) is increasing and because the Fourier transform is an isometry, the above yields that that for eachN ≥ 1

and each g ∈ L2(Rn;C) with supp ĝ ⊂ BN (0),∫
Rnx
|g(x)|2 dx ≤ Ĉ

(∫
Bcr̂(0)

|g(x)|2 dx

)γ̂ (∫
Rnξ
eâα̂(2T̂N)|ĝ(ξ)|2 dξ

)1−γ̂

= Ĉe(1−γ̂)âα̂(2T̂N)

(∫
Bcr̂(0)

|g(x)|2 dx

)γ̂ (∫
Rnx
|g(x)|2 dx

)1−γ̂

. (2.50)

Two observations are given in order: First, according to [37, Proposition 3.4], there is C0 > 0 and N0 > 0 so

that for each N ≥ N0, there is fN ∈ L2(Rn;C) \ {0} with supp f̂N ⊂ BN (0) such that

eC0N

∫
Bcr̂(0)

|fN (x)|2 dx ≤
∫
Rnx
|fN (x)|2 dx.

Second, (2.50) implies that N ≥ 1 and each g ∈ L2(Rn;C) with supp ĝ ⊂ BN (0),∫
Rnx
|g(x)|2 dx ≤ Ĉ

1
γ̂ e

1−γ̂
γ̂ âα̂(2T̂N)

∫
Bcr̂(0)

|g(x)|2 dx.

These two observations show that for each N ≥ N0,

eC0N ≤ Ĉ
1
γ̂ e

1−γ̂
γ̂ âα̂(2T̂N),

from which, it follows that

0 <
γ̂C0

2(1− γ̂)âT̂
≤ lim
N→∞

α̂(2T̂N)

2T̂N
.

This leads to a contradiction, since lims→∞ s−1α̂(s) = 0. Hence, the conclusion (iii) is true.

In summary, we finish the proof of this theorem.

We are on the position to prove Theorem 1.3.

Proof of Theorem 1.3. Arbitrarily fix x′, x′′ ∈ Rn, r1, r2 > 0, a > 0, T > 0 and u0 ∈ C∞0 (Rn;C). Define a

function f as follows:

f(x) , e−i|x|
2/4Tu(x, T ;u0), x ∈ Rn. (2.51)

By the same way to get (2.42), we obtain that

f̂(ξ) = (−2iT )n/2eiT |ξ|
2

u0(−2Tξ), ξ ∈ Rn.

This, along with (2.51) and Lemma 2.5 (where a is replaced by 2aT ), yields that∫
Br2 (x′′)

|u(x, T ;u0)|2 dx =

∫
Br2 (x′′)

|f(x)|2 dx

≤ C1r
n
2

(
(2aT )−n + r−n1

)(∫
Br1 (x′)

|f(x)|2 dx

)θp11
(∫

Rnξ
|f̂(ξ)|2e2aT |ξ| dξ

)1−θp11

≤ C1r
n
2

(
(aT )−n + r−n1

)(∫
Br1 (x′)

|u(x, T ;u0)|2 dx

)θp11
(∫

Rnx
|u0(x)|2ea|x| dx

)1−θp11

(2.52)
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for some C1 , C1(n) > 0 and θ1 , θ1(n) ∈ (0, 1), where

p1 , 1 +
|x′ − x′′|+ r1 + r2

(2aT ) ∧ r1
.

Since

(aT )−1 + r−1
1 ≤ 2((aT ) ∧ r1)−1, (aT ) ∧ r1 ≤ (2aT ) ∧ r1 and θ1 ∈ (0, 1),

we get from (2.52) that∫
Br2 (x′′)

|u(x, T ;u0)|2 dx

≤ C1r
n
2

(
(aT )−1 + r−1

1

)n ∫
Rn
|u0(x)|2ea|x| dx

(∫
Br1 (x′)

|u(x, T ;u0)|2 dx∫
Rn |u0(x)|2ea|x| dx

)θβ11

≤ C1r
n
2 2n

(
(aT ) ∧ r1

)−n ∫
Rn
|u0(x)|2ea|x| dx

(∫
Br1 (x′)

|u(x, T ;u0)|2 dx∫
Rn |u0(x)|2ea|x| dx

)θβ21

,

with

β1 , 1 +
|x′ − x′′|+ r1 + r2

(2aT ) ∧ r1
and β2 , 1 +

|x′ − x′′|+ r1 + r2

(aT ) ∧ r1
.

This implies that (1.6) is true. We end the proof of this theorem.

3 Proofs of Theorem 1.4-Theorem 1.6

Theorem 1.4 is indeed a direct consequence of Theorem 1.2, while the proofs of both Theorem 1.5 and Theorem

1.6 rely on Theorem 1.3 and other properties. We begin with the proof of Theorem 1.4.

Proof of Theorem 1.4. Arbitrarily fix r > 0, T > 0, N > 0 and u0 ∈ L2(Rn;C) with supp u0 ⊂ BN (0). By a

standard density argument, we can apply (i) of Theorem 1.2 (where a = r
T ) to get that for some C , C(n) > 0

and θ , θ(n) ∈ (0, 1) (depending only on n),

∫
Rn
|u0(x)|2 dx ≤ 2C

(∫
Bcr(0)

|u(x, T ;u0)|2 dx

)θ2 (∫
Rn
e
r
T |x||u0(x)|2 dx

)1−θ2

(3.1)

At the same time, since supp u0 ⊂ BN (0), we have that∫
Rn
e
r
T |x||u0(x)|2 dx ≤ e rT N

∫
Rn
|u0(x)|2 dx.

This, along with (3.1), yields that∫
Rn
|u0(x)|2 dx ≤ (2C)

1
θ2 e

1−θ2

θ2
rN
T

∫
Bcr(0)

|u(x, T ;u0)|2 dx.

Hence, (1.8) stands. This ends the proof of Theorem 1.4.
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The following lemma will be used in the proofs of Theorem 1.5 and Theorem 1.6.

Lemma 3.1. Let x ∈ (0, 1) and θ ∈ (0, 1). Then the following conclusions are true:

(i) For each a > 0,

∞∑
k=1

xθ
k

e−ak ≤ ea

| ln θ|
Γ
( a

| ln θ|

)
| lnx|−

a
| ln θ| , (3.2)

where Γ(·) denotes the Euler’s integral of the second kind.

(ii) For each ε > 0 and α > 0,

∞∑
k=1

xθ
k

k−1−ε ≤ 4

ε
αεeε ln ε+ε+eα−1θ−1(

ln(α| lnx|+ e)
)−ε

. (3.3)

Proof. (i) Since θ ∈ (0, 1), it follows that

∞∑
k=1

xθ
k

e−ak ≤
∞∑
k=1

∫ k+1

k

xθ
τ

e−a(τ−1) dτ = ea
∫ ∞

1

xθ
τ

e−aτ dτ. (3.4)

Next, because x ∈ (0, 1), we find that

xθ
τ

= exp[−eln | ln x|+τ ln θ].

Then, by changing variable s = ln | lnx|+ τ ln θ and noticing that θ ∈ (0, 1), we find that∫ ∞
1

xθ
τ

e−aτ dτ =

∫ ln | ln x|+ln θ

−∞

1

| ln θ|
e−e

s

e
a
| ln θ| (s−ln | ln x|) ds

=
| lnx|−

a
| ln θ|

| ln θ|

∫ ln | ln x|+ln θ

−∞
e

a
| ln θ| s−e

s

ds,

from which, it follows that∫ ∞
1

xθ
τ

e−aτ dτ =
| lnx|−

a
| ln θ|

| ln θ|

∫ ln | ln x|+ln θ

−∞
(es)

a
| ln θ| e−e

s

e−s des

=
| lnx|−

a
| ln θ|

| ln θ|

∫ | ln x|θ
0

η
a
| ln θ|−1e−η dη ≤ | lnx|

− a
ln θ

| ln θ|

∫ ∞
0

η
a
| ln θ|−1e−η dη.

This, along with (3.4), leads to (3.2) and ends the proof of the conclusion (i).

(ii) Since θ ∈ (0, 1), it follows that

∞∑
k=1

xθ
k

k−1−ε ≤
∞∑
k=1

(k + 1)1+ε

k1+ε

∫ k+1

k

xθ
τ

τ−1−ε dτ ≤ 21+ε

∫ ∞
1

xθ
τ

τ−1−ε dτ. (3.5)

Next, because x ∈ (0, 1), we see that

xθ
τ

= exp[−| lnx|eτ ln θ].

Since θ ∈ (0, 1), the above yields that∫ ∞
1

xθ
τ

τ−1−ε dτ = | ln θ|ε
∫ ln θ

−∞
e−| ln x|e

s

|s|−1−ε ds

= | ln θ|ε
∫ ln θ

−∞
e−
| ln x|
e−s | ln e−s|−1−ε(−es) de−s = | ln θ|ε

∫ ∞
1
θ

e−
| ln x|
η | ln η|−1−εη−1 dη.
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From this, we find that for each N ≥ 1
θ ,∫ ∞

1

xθ
τ

τ−1−ε dτ = | ln θ|ε
[ ∫ N

1
θ

e−
| ln x|
η | ln η|−1−εη−1 dη +

∫ ∞
N

e−
| ln x|
η | ln η|−1−εη−1 dη

]
≤ | ln θ|ε

[
e−
| ln x|
N

∫ N

1
θ

| ln η|−1−εη−1 dη +

∫ ∞
N

| ln η|−1−εη−1 dη
]

=
1

ε

[
e−
| ln x|
N

(
1− | ln θ|ε(lnN)−ε

)
+ | ln θ|ε(lnN)−ε

]
≤ 1

ε

[
e−
| ln x|
N + | ln θ|ε(lnN)−ε

]
.

Let α > 0. Taking N =
√
α| lnx|+ eθ−2 in the above inequality leads to that∫ ∞

1

xθ
τ

τ−1−ε dτ ≤ 1

ε

[
e
− | ln x|√

α| ln x|+eθ−2 + | ln θ|ε2ε
(

ln(α| lnx|+ eθ−2)
)−ε]

(3.6)

Since

− | lnx|√
α| lnx|+ eθ−2

= −α
−1(α| lnx|+ eθ−2)√
α| lnx|+ eθ−2

+
α−1eθ−2√

α| lnx|+ eθ−2

≤ −α−1
√
α| lnx|+ eθ−2 + α−1eθ−1,

and because

0 < θ < 1 and (ln s)ε ≤ αεeε ln ε−ε+α−1s for all s > 1,

we find from (3.6) that∫ ∞
1

xθ
τ

τ−1−ε dτ ≤ 1

ε

[
e−α

−1
√
α| ln x|+eθ−2+α−1eθ−1

+ | ln θ−1|ε2ε
(

ln(α| lnx|+ eθ−2)
)−ε]

≤ 1

ε

[
αεeε ln ε−ε+eα−1θ−1

2ε
(

ln(α| lnx|+ eθ−2)
)−ε

+ αεeε ln ε−ε+α−1θ−1

2ε
(

ln(α| lnx|+ eθ−2)
)−ε]

≤ 2

ε
αεeε ln ε−ε+eα−1θ−1

2ε
(

ln(α| lnx|+ e)
)−ε

.

This, together with (3.5), leads to (3.3), and ends the proof of the conclusion (ii).

In summary, we finish the proof of this lemma.

We are now on the position to prove Theorem 1.5.

Proof of Theorem 1.5. Let x0, x
′ ∈ Rn, r > 0, a > 0, b > 0 and T > 0. It suffices to show the desired inequality

(1.9) for any u0 ∈ C∞0 (Rn;C) \ {0} and ε ∈ (0, 1).

For this purpose, we arbitrarily fix u0 ∈ C∞0 (Rn;C) \ {0}. Define the following three numbers

A1 ,
∫
Rn
|u0(x)|2ea|x|dx; B1 ,

∫
Br(x0)

|u(x, T ;u0)|2 dx; Rb ,
∫
Rn
e−b|x−x

′||u(x, T ;u0)|2 dx.

The proof is divided into the following several steps.

Step 1. To prove that there exist two positive constants C1 , C1(n) and C2 , C2(n) so that

Rb ≤ C3(x0, x
′, r, a, b, T )g

(A1

B1

)
A1, (3.7)
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where

C3(x0, x
′, r, a, b, T ) , 1 + C1Γ

(
C2b((aT ) ∧ r)

)
exp

[
b−1((aT ) ∧ r)−1 + b(|x0 − x′|+ r)

]
, (3.8)

and

g(η) , (ln η)−C2b((aT )∧r), η > 1 (3.9)

In fact, by Theorem 1.3 (with (x′, x′′, r1, r2) being replaced by (x0, x
′, r, 2kb−1)), with k ∈ N+, and the definitions

of A1 and B1, we see that for each k ∈ N+,

∫
B2kb−1 (x′)

|u(x, T ;u0)|2 dx ≤ C2nb−nkn
(
(aT ) ∧ r

)−n(B1

A1

)θ1+ |x0−x′|+2kb−1+r
(aT )∧r

A1

for some C > 0 and θ ∈ (0, 1) depending only on n. This, along with the fact that k ≤ ne
1
nk for all k ∈ N+,

yields that ∫
Rn
e−b|x−x

′||u(x, T ;u0)|2 dx ≤
∞∑
k=1

∫
2(k−1)b−1≤|x−x′|<2kb−1

e−2(k−1)|u(x, T ;u0)|2 dx

≤ C(2n)nb−n
(
(aT ) ∧ r

)−n
e2

 ∞∑
k=1

e−k
(B1

A1

)θ1+ |x0−x′|+2kb−1+r
(aT )∧r

A1. (3.10)

Meanwhile, since B1 < A1 (which follows from the definitions of A1 and B1, the conservation law for the

Schrödinger equation and the fact that u0 6= 0), we can apply (i) of Lemma 3.1, where

(a, x, θ) =
(

1,
(
B1/A1

)θ1+ |x0−x′|+r(aT )∧r

, θ
2

b((aT )∧r)

)
,

to get that

∞∑
k=1

e−k
(B1

A1

)θ1+ |x0−x′|+2kb−1+r
(aT )∧r

≤ eb((aT ) ∧ r)
2| ln θ|

Γ

(
b((aT ) ∧ r)

2| ln θ|

)[
θ1+

|x0−x
′|+r

(aT )∧r | ln B1

A1
|
]− b((aT )∧r)

2| ln θ|

.

This, together with (3.10) and the facts that xn−1 ≤ (n− 1)!ex for all x > 0 and that (aT ) ∧ r ≤ r, indicates that∫
Rn
e−b|x−x

′||u(x, T ;u0)|2 dx

≤ C(2n)nb−n
(
(aT ) ∧ r

)−n
e3 b((aT ) ∧ r)

| ln θ|
Γ

(
b((aT ) ∧ r)

2| ln θ|

)[
θ1+

|x0−x
′|+r

(aT )∧r | ln B1

A1
|
]− b((aT )∧r)

2| ln θ|

A1

=
C(2n)ne3

| ln θ|
(
b((aT ) ∧ r)

)−n+1
e

1
2 b((aT )∧r+|x0−x′|+r)Γ

(
b((aT ) ∧ r)

2| ln θ|

)(
ln
A1

B1

)− b((aT )∧r)
2| ln θ|

A1

≤ C(2n)ne3

| ln θ|
(n− 1)!eb

−1((aT )∧r)−1+b(|x0−x′|+r)Γ

(
b((aT ) ∧ r)

2| ln θ|

)(
ln
A1

B1

)− b((aT )∧r)
2| ln θ|

A1.

This, as well as (3.9), shows (3.7).

Step 2. To show (1.9) for the above-mentioned u0 and any ε ∈ (0, 1)
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Let C1 , C1(n) and C2 , C2(n) be given by Step 1. Since

εeε
−1− α

b((aT )∧r) ≤ εeε
−1− β

b((aT )∧r)
, when 0 < α < β and ε ∈ (0, 1),

it suffices to show that for each ε ∈ (0, 1),

Rb ≤ C4(x0, x
′, r, a, b, T )

(
εA1 + εeε

−1− 1
C2b((aT )∧r)

B1

)
, (3.11)

where

C4(x0, x
′, r, a, b, T ) , C1 exp

{
2(C1 + C−1

2 + 1)(C2 + 1)
[
1 +

b−1 + |x0 − x′|+ r

(aT ) ∧ r

]}
.

The proof of (3.11) is organized by two parts.

Part 2.1. To show (3.11) in the case that b ≤ 1
C2((aT )∧r)

First, we claim that for each ε ∈ (0, 1),

Rb ≤ C3

(
εA1 + εeε

− 1
C2b((aT )∧r)

B1

)
, (3.12)

where C3 , C3(x0, x
′, r, a, b, T ) is given by (3.8). In fact, for an arbitrarily fix ε > 0, there are only two possi-

bilities: either Rb ≤ C3εA1 or Rb > C3εA1. In the first case, (3.12) is obvious. In the second case, we first claim

that

0 < ε <
Rb
C3A1

< 1. (3.13)

Indeed, the first and the second inequalities in (3.13) is clear. To prove the last inequality in (3.13), two facts are

given in order: First, we observe from (3.8) that C3 > 1. Second, by the definitions of A1 and Rb, using the

conservation law of the Schrödinger equation, we find that

Rb =

∫
Rn
e−b|x−x

′||u(x, T ;u0)|2dx ≤
∫
Rn
|u(x, T ;u0)|2dx =

∫
Rn
|u0(x)|2dx ≤

∫
Rn
ea|x||u0(x)|2dx = A1.

These two facts lead to the last inequality in (3.13) at once.

Since b ≤ 1
C2((aT )∧r) , we see that the function x 7→ xex

− 1
C2b((aT )∧r) , with its domain (0, 1), is decreasing.

This, along with (3.13), indicates that

Rb
C3A1

e(
Rb
C3A1

)
− 1
C2b((aT )∧r)

≤ εeε
− 1
C2b((aT )∧r)

. (3.14)

Meanwhile, since the function: f(x) = ex
− 1
C2b((aT )∧r) , with its domain (0,∞), is decreasing and its inverse is the

function g (given by (3.9)), we get from (3.7) that

A1

B1
= f(g(

A1

B1
)) ≤ f(

Rb
C3A1

) = e(
Rb
C3A1

)
− 1
C2b((aT )∧r)

. (3.15)

From (3.15) and (3.14), it follows that

Rb = C3
Rb
C3A1

A1

B1
B1 ≤ C3

[ Rb
C3A1

e(
Rb
C3A1

)
− 1
C2b((aT )∧r)

]
B1

≤ C3εe
ε
− 1
C2b((aT )∧r)

B1.
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Since ε was arbitrarily taken from (0, 1), the above leads to (3.12) for the case that Rb > C3εA1. Hence, (3.12) is

true.

Next, we claim that

C3(x0, x
′, r, a, b, T ) ≤ exp

{
2(C1 + C−1

2 + 1)
[
1 +

b−1 + |x0 − x′|+ r

(aT ) ∧ r

]}
. (3.16)

To this end, we first observe that for each s ∈ (0, 1],

Γ(s) =

∫ ∞
0

e−xxs−1 dx =

∫ 1

0

e−xxs−1 dx+

∫ ∞
1

e−xxs−1 dx

≤
∞∑
k=0

∫ e−k

e−k−1

e(1−s)(k+1) dx+

∫ ∞
1

e−x dx

= (e− 1)
1

es − 1
+ e−1 ≤ (e− 1)s−1 + 1 ≤ 2s−1 + 1 ≤ e2s−1

. (3.17)

Since we are in the case that b ≤ 1
C2((aT )∧r) , it follows from (3.8) and (3.17), with s = C2b((aT ) ∧ r), that

C3(x0, x
′, r, a, b, T ) ≤ 1 + eC1e2C−1

2 b−1((aT )∧r)−1

exp
[
b−1((aT ) ∧ r)−1 + b(|x0 − x′|+ r)

]
≤ e · exp

[
C1 + (2C−1

2 + 1)b−1((aT ) ∧ r)−1 + C−1
2

|x0 − x′|+ r

(aT ) ∧ r

]
.

This leads to (3.16).

Now, by (3.12) and (3.16), we reach the aim of Part 2.1.

Part 2.2. To show (3.11) in the case that b > 1
C2((aT )∧r)

In this case, it follows from the definition of Rb that Rb ≤ R 1
C2((aT )∧r)

. Then by (3.12) and (3.16) (where b is

replaced by 1
C2((aT )∧r) ), we find that for each ε ∈ (0, 1),

Rb ≤ exp

{
2(C1 + C−1

2 + 1)
[
1 +

C2((aT ) ∧ r) + |x0 − x′|+ r

(aT ) ∧ r

]}(
εA1 + εeε

−1

B1

)
≤ exp

{
2(C1 + C−1

2 + 1)
[
1 + C2 +

b−1 + |x0 − x′|+ r

(aT ) ∧ r

]}(
εA1 + εeε

−1− 1
C2b((aT )∧r)

B1

)
,

from which, we reach the aim of Part 2.2.

In summary, we finish the proof of (3.11), which completes the proof of the theorem.

Next, we are going to prove Theorem 1.6. Before it, one lemma will be introduced.

Lemma 3.2. Given k ∈ N+, there exists a constant C(k, n) so that for any T > 0 and u0 ∈ C∞0 (Rn;C),∫
Rn
|x|2k|u(x, T ;u0)|2 dx ≤ C(k, n)(1 + T )2k

(
‖u0‖2H2k(Rn;C) +

∫
Rn
|x|4k|u0(x)|2 dx

)
. (3.18)

Proof. Arbitrarily fix k ∈ N+, T > 0 and u0 ∈ C∞0 (Rn;C). For each x ∈ Rn, write x = (x1, · · · , xn). One can

directly check that for each j ∈ {1, . . . , n}, the operators
(
xj + 2i(t − T )∂xj

)k
and i∂t + ∆ are commutative.

This yields that for each j ∈ {1, . . . , n},

(i∂t + ∆)
(
xj + 2i(t− T )∂xj

)k
u(x, t;u0) =

(
xj + 2i(t− T )∂xj

)k
(i∂t + ∆)u(x, t;u0)

= 0, (x, t) ∈ Rn × R+,
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from which, it follows that for each j ∈ {1, . . . , n},

u(x, t;uj) =
(
xj + 2i(t− T )∂xj

)k
u(x, t;u0), (x, t) ∈ Rn × R+,

where uj(x) , (xj − 2iT∂xj )
ku0(x), x ∈ Rn. In particular, we have that for each j ∈ {1, . . . , n},

u(x, T ;uj) = xkju(x, T ;u0), x ∈ Rn.

These, along with the conservation law for the Schrödinger equation, yields that for each j ∈ {1, . . . , n},∫
Rn
|xkju(x, T ;u0)|2 dx =

∫
Rn
|u(x, T ;uj)|2 dx

=

∫
Rn
|uj(x)|2 dx =

∫
Rn
|(xj − 2iT∂xj )

ku0(x)|2 dx. (3.19)

Next, we claim that there exists C1(k, n) > 0 so that for each j ∈ {1, . . . , n},∫
Rn
|(xj − 2iT∂xj )

ku0(x)|2 dx ≤ C1(k, n)(1 + T )2k

(
‖u0‖2H2k(Rn;C) +

∫
Rn
|x|4k|u0(x)|2 dx

)
. (3.20)

For this purpose, we arbitrarily fix j from {1, . . . , n}. Since the operator (xj − i∂xj )2k is a polynomial of xj and

∂xj , with degree 2k, and because

[∂xj , xj ] , ∂xjxj − xj∂xj = 1,

the polynomial (xj − i∂xj )2k is a linear combination of the following monomials{
xrj∂

s
xj : 0 ≤ r + s ≤ 2k, r, s ∈ N+ ∪ {0}

}
.

By this, we see that ∫
Rn
|(xj − i∂xj )kv(x)|2 dx =

∫
Rn

〈
(xj − i∂xj )2kv(x), v(x)

〉
C dx

≤ C2(k, n)
∑

0≤r+s≤2k

∫
Rn
|〈∂sxjv(x), xrjv(x)〉C|dx, (3.21)

where v is the function defined by

v(x) , u0(
√

2Tx), x ∈ Rn, (3.22)

and where and through the proof, C2(k, n) stands for a positive constant (depending only on k, n), which may vary

in different contexts.

From (3.22) and (3.21), we find that∫
Rn
|(xj − 2iT∂xj )

ku0(x)|2 dx =

∫
Rn
|(xj − 2iT∂xj )

kv(
x√
2T

)|2 dx

= (2T )k+n
2

∫
Rn
|(xj − i∂xj )kv(x)|2 dx

≤ C2(k, n)(2T )k+n
2

∑
0≤r+s≤2k

∫
Rn
|〈∂sxjv(x), xrjv(x)〉C|dx

= C2(k, n)
∑

0≤r+s≤2k

(2T )
2k+s−r

2

∫
Rn
|〈∂sxju0(x), xrju0(x)〉C|dx

≤ C2(k, n)(1 + T )2k
∑

0≤r+s≤2k

(∫
Rn
|∂sxju0(x)|2 dx+

∫
Rn
|xrju0(x)|2 dx

)

≤ C2(k, n)(1 + T )2k

(
‖u0‖2H2k(Rn;C) +

∫
Rn
|x|4k|u0(x)|2 dx

)
.
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This leads to (3.20).

Finally, since

|x|2k = nk
(x2

1 + · · ·+ x2
n

n

)k
≤ nk−1

(
x2k

1 + · · ·+ x2k
n

)
, x ∈ Rn,

it follows from (3.19) that ∫
Rn
|x|2k|u(x, T ;u0)|2 dx ≤ nk−1

n∑
j=1

∫
Rn
|xkju(x, T ;u0)|2 dx

≤ nk−1
n∑
j=1

∫
Rn
|(xj − 2iT∂xj )

ku0(x)|2 dx.

This, along with (3.20), leads to (3.18). We end the proof of this lemma.

Remark 3.3. Lemma 3.2 gives a quantitative property for solutions of (1.2). This quantitative property is compara-

ble with the following qualitative property for solutions of (1.2): If u0 ∈ L2(|x|4kdx)∩H2k for some k ∈ N+∪{0},
then

eiT4u0 ∈ L2(|x|4kdx) ∩H2k for all T ∈ R+.

The above-mention qualitative property was given in [30].

We now give the proof of Theorem 1.6.

Proof of Theorem 1.6. Let x0 ∈ Rn, r > 0, a > 0 and T > 0. When u0 = 0, (1.10) holds clearly for all ε ∈ (0, 1).

We now arbitrarily fix u0 ∈ C0(Rn;C) \ {0}. Define the following three numbers:

A2 ,
∫
Rn
|u0(x)|2ea|x|dx+ ‖u0‖2Hn+3(Rn;C), B2 ,

∫
Br(x0)

|u(x, T ;u0)|2 dx,

A3 ,
∫
Rnξ
|u0(x)|2ea|x|dx.

Step 1. To prove that there exists a constant C1 , C1(n) > 1 so that

sup
1≤η≤2

∫
Rn

(1 + |x|)−n−1−η|u(x, T ;u0)|2 dx ≤ C(x0, r, a, T )g̃

(
A2

B2

)
A2, (3.23)

where the constant C(x0, r, a, T ) is given by

C(x0, r, a, T ) , eC
1+
|x0|+r+1
(aT )∧r

1 , (3.24)

and the function g̃ is defined by

g̃(η) ,
1

ln(ln η + e)
, η ≥ 1 (3.25)

By the definitions of A2 and A3, we see that A3 ≤ A2. Then by Theorem 1.3 (where (x′, x′′, r1, r2) is replaced

by (x0, 0, r, k)) and the definitions of A2 and B2, we find that when k ∈ N+,∫
Bk

|u(x, T ;u0)|2 dx ≤ Ckn
(
(aT ) ∧ r

)−n
Bθ

1+
|x0|+k+r
(aT )∧r

2 A1−θ
1+
|x0|+k+r
(aT )∧r

3

≤ Ckn
(
(aT ) ∧ r

)−n
Bθ

1+
|x0|+k+r
(aT )∧r

2 A1−θ
1+
|x0|+k+r
(aT )∧r

2
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for some C > 0 and θ ∈ (0, 1) depending only on n. The above inequality yields that for each η ∈ [1, 2],∫
Rn

(1 + |x|)−n−1−η|u(x, T ;u0)|2 dx ≤
∞∑
k=1

∫
k−1≤|x|<k

k−n−1−η|u(x, T ;u0)|2 dx

≤ C
(
(aT ) ∧ r

)−n ∞∑
k=1

k−1−η
(B2

A2

)θ1+ |x0|+k+r(aT )∧r

A2. (3.26)

Since u0 6= 0, by the definitions of A2 and B2, and by the conservation law for the Schrödinger equation, we

obtain that B2 < A2. Then by (ii) of Lemma 3.1, where

(x, θ, ε, α) =
((
B2/A2

)θ1+ |x0|+r(aT )∧r

, θ
1

(aT )∧r , η, θ−1− |x0|+r
(aT )∧r

)
,

we see that for each η ∈ [1, 2],

∞∑
k=1

k−1−η
(B2

A2

)θ1+ |x0|+k+r(aT )∧r

≤ 4

η
θ−η−η

|x0|+r
(aT )∧r eη ln η+η+eθ

1+
|x0|+r−1
(aT )∧r 1(

ln(| ln B2

A2
|+ e)

)η . (3.27)

Therefore, we have that∫
Rn

(1 + |x|)−n−1−η|u(x, T ;u0)|2 dx

≤ 4C

η

(
(aT ) ∧ r

)−n
θ−η−η

|x0|+r
(aT )∧r eη ln η+η+eθ

1+
|x0|+r−1
(aT )∧r A2(

ln(| ln B2

A2
|+ e)

)η
≤ 4C((aT ) ∧ r)−nθ−2−2

|x0|+r
(aT )∧r e2 ln 2+2+eθ

− 1
(aT )∧r A2

ln(| ln B2

A2
|+ e)

≤ 4Cn!e
1

(aT )∧r eθ
−2−2

|x0|+r
(aT )∧r

e2 ln 2+2+eθ
− 1

(aT )∧r A2

ln(| ln B2

A2
|+ e)

≤ 4Cn!e2 ln 2+2e(θ−2+e+1)θ
−2
|x0|+r+1
(aT )∧r A2

ln(| ln B2

A2
|+ e)

. (3.28)

(In the first inequality of (3.28), we used (3.26) and (3.27); In the last three inequalities of (3.28), we used the facts

that

θ ∈ (0, 1) and ((aT ) ∧ r)−n ≤ n!e
1

(aT )∧r ≤ n!eθ
−2 1

(aT )∧r
.)

Since θ ∈ (0, 1), (3.23) follows from (3.28), as well as (3.24) and (3.25). This ends the proof of Step 1.

Step 2. To show that there exists C2 , C2(n) > 1 so that∫
Rn
|u0(x)|2 dx ≤ C3(x0, r, a, T )

A2√
ln(ln A2

B2
+ e)

, (3.29)

where

C3(x0, r, a, T ) , (1 + T )2n+6eC
1+
|x0|+r+1
(aT )∧r

2 (3.30)

Choose η0 ∈ {1, 2} so that

n+ 1 + η0 = 0 ( mod 2).



32 Gengsheng Wang, Ming Wang, Yubiao Zhang

By Lemma 3.2 (where k = n+1+η0
2 ), it follows that∫

Rn
|x|n+1+η0 |u(x, T ;u0)|2 dx ≤ C31(1 + T )n+1+η0

(
‖u0‖2Hn+1+η0 (Rn;C) +

∫
Rn
|x|2(n+1+η0)|u0(x)|2 dx

)
for some C31 > 0 depending only on n. The above inequality yields that∫

Rn
(1 + |x|)n+1+η0 |u(x, T ;u0)|2 dx ≤

∫
Rn

2n+1+η0(1 + |x|n+1+η0)|u(x, T ;u0)|2 dx (3.31)

≤ C32(1 + T )n+1+η0
(∫

Rn
|u(x, T ;u0)|2 dx+ ‖u0‖2Hn+1+η0 (Rn;C) +

∫
Rn
|x|2(n+1+η0)|u0(x)|2 dx

)
for some C32 > 0 depending only on n. Since

(a|x|)2(n+1+η0) ≤ [2(n+ 1 + η0)]!ea|x|, x ∈ Rn,

and because

max{1, a−2(n+1+η0)} = max{1, (aT )−2(n+1+η0)T 2(n+1+η0)}

≤ (1 + T )2(n+1+η0) max{1, (aT ) ∧ r)−2(n+1+η0)}

≤ (1 + T )3(n+3)
(
1 + ((aT ) ∧ r)−1

)2(n+3)
,

we obtain from (3.31) and the definition of A2 that∫
Rn

(1 + |x|)n+1+η0 |u(x, T ;u0)|2 dx

≤ C33(1 + T )n+1+η0
(
‖u0‖2Hn+3(Rn;C) +

∫
Rn
a−2(n+1+η0)ea|x||u0(x)|2 dx

)
≤ C33(1 + T )n+1+η0 max{1, a−2(n+1+η0)}A2

≤ C33(1 + T )4(n+3)
(
1 + ((aT ) ∧ r)−1

)2(n+3)
A2 (3.32)

for some C33 > 0 depending only on n.

Now, by the conservation law for the Schrödinger equation, (3.32) and (3.23), we find that∫
Rn
|u0(x)|2 dx =

∫
Rn
|u(x, T ;u0)|2 dx (3.33)

≤
(∫

Rn
(1 + |x|)n+1+η0 |u(x, T ;u0)|2 dx

) 1
2
(∫

Rn
(1 + |x|)−n−1−η0 |u(x, T ;u0)|2 dx

) 1
2

≤
√
C33(1 + T )2n+6(1 + ((aT ) ∧ r)−1)n+3

√
C(x0, r, a, T )

A2√
ln(ln A2

B2
+ e)

≤
√
C33(1 + T )2n+6(n+ 3)!e1+((aT )∧r)−1√

C(x0, r, a, T )
A2√

ln(ln A2

B2
+ e)

.

(Notice that in the last inequality in (3.33), we used that xn+3 ≤ (n+ 3)!ex for all x > 0.) Now, (3.29) follows

from (3.33) and (3.24) at once. This ends the proof of Step 2.

Step 3. To show (1.10) for the above-mentioned u0 and each ε ∈ (0, 1)

It suffices to show that for each ε ∈ (0, 1),

S ,
∫
Rn
|u0(x)|2 dx ≤ C3

(
εA2 + εee

ε−2

B2

)
, (3.34)
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whereC3 , C3(x0, r, a, T ) is given by (3.30). In fact, for an arbitrarily fixed ε > 0, there are only two possibilities:

either S ≤ C3εA2 or S > C3εA2. In the first case, (3.34) is obvious. In the second case, since C3 > 1 (see (3.30)),

it follows from the definitions of S and A2 that

0 < ε <
S

C3A2
< 1. (3.35)

Since the function: x 7→ xee
x−2

, with its domain (0, 1), is decreasing, we see from (3.35) that

S

C3A2
ee

( S
C3A2

)−2

≤ εee
ε−2

. (3.36)

Meanwhile, since the function x 7→ e−eee
x−2

, with its domain (0, 1), is decreasing and because the inverse of

the aforementioned function is the function: x 7→ 1√
ln(ln x+e)

, with its domain (1,∞), we get from (3.29) that

A2

B2
≤ e−eee

( S
C3A2

)−2

. (3.37)

Now, it follows from (3.37) and (3.36) that

S = C3
S

C3A2

A2

B2
B2 ≤ C3

[ S

C3A2
e−eee

( S
C3A2

)−2 ]
B2

≤ C3εe
−eee

ε−2

B2 ≤ C3εe
eε
−2

B2.

Because ε was arbitrarily taken from (0, 1), the above leads to (3.34). This ends the proof of (1.10).

In summary, we complete the proof of this theorem.

4 Further comments on the main results

The purpose of this section is to present the next Theorem 4.1. From it, we can see that the inequalities in The-

orem 1.1 and Theorem 1.2 cannot be improved greatly (see Remark 4.2). For instance, in the inequality (1.3) in

Theorem 1.1, (Bcr1(x′), Bcr2(x′′)) cannot be replaced by (Bcr1(x′), Br2(x′′)).

Theorem 4.1. The following conclusions are true:

(i) Let x′, x′′ ∈ Rn, r1, r2 > 0 and T > 0. Then there exists a sequence {uk} ⊂ L2(Rn;C), with∫
Rn
|uk(x)|2 dx = 1 for all k ∈ N+, (4.1)

so that

lim
k→∞

∫
Bcr1

(x′)

|uk(x)|2 dx = lim
k→∞

∫
Br2 (x′′)

|u(x, T ;uk)|2 dx = 0. (4.2)

(ii) Let x′, x′′ ∈ Rn, r1, r2 > 0, S1 > 0 and S2 > 0. Then there exists a sequence {uk} ⊂ L2(Rn;C), with∫
Rn
|uk(x)|2 dx = 1 for all k ∈ N+, (4.3)
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so that

lim
k→∞

∫
Bcr1

(x′)

|u(x, S1;uk)|2 dx = lim
k→∞

∫ S2

0

∫
Br2 (x′′)

|u(x, t;uk)|2 dxdt = 0. (4.4)

(iii) For each subset A ⊂ Rn, with m(Ac) > 0, and each T > 0, there does not exist a positive constant C > 0 so

that ∫
Rn
|u0(x)|2 dx ≤ C

∫
A

|u(x, T ;u0)|2 dx (4.5)

for all u0 ∈ L2(Rn;C).

(iv) For each x0 ∈ Rn, r > 0, a > 0 and T > 0, there exists a sequence of {uk} ⊂ C∞0 (Rn;C) and M > 0 so

that ∫
Rn
ea|x||uk(x)|2 dx ≤M and

∫
Rn
|uk(x)|2 dx = 1 for all k ∈ N+ (4.6)

and so that

lim
k→∞

∫
Br(x0)

|u(x, T ;uk)|2 dx = 0. (4.7)

Proof. For each τ ∈ R \ {0} and f ∈ L2(Rn;C), we define a function uτ,f by

uτ,f (x) , e−i|x|
2/4τf(x), x ∈ Rn. (4.8)

By [10, (1.2)] and (4.8), we see that for all τ ∈ R \ {0} and f ∈ L2(Rn;C),

(2iτ)n/2e−i|x|
2/4τu(x, τ ;uτ,f ) = ̂ei|ξ|2/4τuτ,f (ξ)(x/2τ) = f̂(x/2τ), x ∈ Rn.

(Here and in what follows, u(x, τ ;uτ,f ) = (ei∆τuτ,f )(x) when τ < 0.) Thus, one has that for all τ ∈ R \ {0} and

f ∈ L2(Rn;C),

u(x, τ ;uτ,f ) = (2iτ)−n/2ei|x|
2/4τ f̂(x/2τ), x ∈ Rn. (4.9)

Now, we prove the conclusions (i)-(iv) one by one.

(i) Let x′, x′′ ∈ Rn, r1, r2 > 0 and T > 0. Let g be a function so that

g ∈ C∞0 (Rn;C) and ‖g‖L2(Rn;C) = 1. (4.10)

For each k ∈ N+, let

gk(x) , kn/2g(k(x− x′)), x ∈ Rn. (4.11)

We define a sequence of {uk} ⊂ L2(Rn;C) as follows:

uk(x) , e−i|x|
2/4T gk

(
x
)
, x ∈ Rn, k ∈ N+. (4.12)

By (4.8) and (4.12), we have that

uT,gk = uk for all k ∈ N+.
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From this, (4.9) and (4.11), after some computations, we see that for each k ∈ N+,

u(x, T ;uk) = (2iT )−n/2ei|x|
2/4T k−n/2ĝ(

x

2Tk
)e−ix·x

′/2T , x ∈ Rn. (4.13)

Three observations are given in order: First, by (4.12) and (4.11), we find that

lim
k→∞

∫
Bcr1

(x′)

|uk(x)|2 dx = lim
k→∞

∫
Bckr1

(0)

|g(x)|2 dx = 0;

Second, from (4.12), (4.11) and (4.10), we see that∫
Rnx
|uk(x)|2 dx =

∫
Rnx
|gk(x)|2 dx = 1 for all k ∈ N+;

Third, from (4.13) and (4.10), we obtain that

lim
k→∞

∫
Br2 (x′′)

|u(x, T ;uk)|2 dx = lim
k→∞

∫
B r2

2Tk
( x
′′

2Tk )

|ĝ(x)|2 dx = 0.

Now, from the above three observations, we get (4.1) and (4.2). This ends the proof the conclusion (i).

(ii) Let x′, x′′ ∈ Rn, r1, r2 > 0, S1 > 0 and S2 > 0. Let g and gk, with k ∈ N+, satisfy (4.10) and (4.11),

respectively. Since the Schrödinger equation is time-reversible, we can find a sequence {uk} ⊂ L2(Rn;C) so that

vk(x) , u(x, S1;uk) = gk(x), x ∈ Rn, k ∈ N+. (4.14)

By (4.14), (4.10) and (4.11), we find that

lim
k→∞

∫
Bcr1

(x′)

|vk(x)|2 dx = lim
k→∞

∫
Bckr1

(0)

|g(x)|2 dx = 0 (4.15)

and ∫
Rnx
|vk(x)|2 dx =

∫
Rnx
|gk(x)|2 dx = 1 for all k ∈ N+. (4.16)

Next, by (4.14) and (4.8), we have that

vk = uτ,f with (τ, f) = (t, ei|·|
2/4tgk(·)).

Then by (4.9), we get that for each k ∈ N+,

u(x, t; vk) = (2it)−n/2ei|x|
2/4t ̂ei|ξ|2/4tgk(ξ)(x/2t), (x, t) ∈ Rn × (R \ {0}). (4.17)

Meanwhile, from (4.11), it follows that for all t ∈ R \ {0} and a.e. x ∈ Rn,

̂ei|ξ|2/4tgk(ξ)(x) = (2π)−n/2
∫
Rnξ
e−ix·ξei|ξ|

2/4tgk(ξ) dξ

= (2π)−n/2
∫
Rnξ
e−ix·ξei|ξ|

2/4tkn/2g(k(ξ − x′)) dξ

= (2π)−n/2k−n/2e−ix·x
′
∫
Rnξ
e−ix·ξ/kei|ξ/k+x′|2/4tg(ξ) dξ.
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This, along with (4.17) and (4.10), yields that for each t ∈ R \ {0},∫
Br2 (x′′)

|u(x, t; vk)|2 dx ≤ |Br2(x′′)| sup
x∈Br2 (x′′)

|u(x, t; vk)|2

≤ |Br2(x′′)|
(

(4π|t|k)−n/2
∫
Rnξ
|g(ξ)|dξ

)2

,

which implies that

lim
k→∞

∫
Br2 (x′′)

|u(x, t; vk)|2 dx = 0 for each t ∈ R \ {0}. (4.18)

At the same time, by the conservation law for the Schrödinger equation and (4.16), we find that for all k and

t ∈ R \ {0}, ∫
Br2 (x′′)

|u(x, t; vk)|2 dx ≤
∫
Rn
|u(x, t; vk)|2 dx =

∫
Rn
|vk(x)|2 dx = 1.

By this and (4.18), we can apply the Lebesgue dominated convergence theorem to get that

lim
k→∞

∫ S2−S1

−S1

∫
Br2 (x′′)

|u(x, t; vk)|2 dxdt = 0. (4.19)

Since vk(x) = u(x, S1;uk), x ∈ Rn (see (4.14)), by (4.15), (4.16) and (4.19), one can directly check that the

above-mentioned sequence {uk} satisfies (4.3) and (4.4). This ends the proof of the conclusion (ii).

(iii) By contradiction, suppose that the conclusion (iii) in this theorem was not true. Then there would exist

A0 ⊂ Rn, with m(Ac0) > 0, C1 > 0 and T > 0 so that∫
Rn
|u0(x)|2 dx ≤ C1

∫
A0

|u(x, T ;u0)|2 dx for all u0 ∈ L2(Rn;C). (4.20)

From (4.8), (4.20) and (4.9), we find that for each f ∈ L2(Rn;C),∫
Rnξ
|f̂(ξ)|2 dξ =

∫
Rnx
|f(x)|2 dx =

∫
Rn
|uT,f (x)|2 dx ≤ C1

∫
A0

|u(x, T ;uT,f )|2 dx = C1

∫
A0/2T

|f̂(ξ)|2 dξ.

Since |Ac0| > 0, by taking f ∈ L2(Rn;C) \ {0} with supp f̂ ⊂ Ac0/2T in the above inequality, we are led to a

contradiction. Hence, the conclusion (iii) in this theorem is true.

(iv) Arbitrarily fix x0 ∈ Rn, r > 0, a > 0 and T > 0. Let g ∈ C∞0 (Rn;C) be a function so that∫
Rnξ
|ĝ(ξ)|2 dξ =

∫
Rnx
|g(x)|2 dx = 1. (4.21)

Let ~v ∈ Sn−1. We define a sequence {uk} ⊂ C∞0 (Rn;C) by

uk(x) , e−i|x|
2/4T e−kix·~vg(x), x ∈ Rn. (4.22)

By (4.22) and (4.8), we have that

uk = uτ,f , with τ = T and f(x) = e−kix·~vg(x), x ∈ Rn,

from which and (4.9), it follows that for each k ∈ N+,

u(x, T ;uk) = (2iT )−n/2ei|x|
2/4T ĝ

(x+ k~v

2T

)
, x ∈ Rn, k ∈ N+.
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This yields that for each k ∈ N+,∫
Br(x0)

|u(x, T ;uk)|2 dx =

∫
B r

2T
(
x0+k~v

2T )

|ĝ(x)|2 dx.

Since
∫
Rn |ĝ(x)|2 dx <∞ (see (4.21)), the above implies that∫

Br(x0)

|u(x, T ;uk)|2 dx→ 0 as k →∞. (4.23)

Meanwhile, from (4.22) and (4.21), we find that for each k ∈ N+,∫
Rnx
ea|x||uk(x)|2 dx =

∫
Rnx
ea|x||g(x)|2 dx <∞

and ∫
Rnx
|uk(x)|2 dx =

∫
Rnx
|g(x)|2 dx = 1.

From these and (4.23), we obtain (4.6) and (4.7). This ends the proof the conclusion (iv).

In summary, we finish the proof of this theorem.

Remark 4.2. (a) From (i) and (ii) of Theorem 4.1, one can easily check that for any x′, x′′ ∈ Rn, r1, r2 > 0 and

T > S ≥ 0, there is no constant C > 0 so that any of the following inequalities holds:∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr1 (x′)

|u(x, S;u0)|2 dx+

∫
Br2 (x′′)

|u(x, T ;u0)|2 dx
)
, ∀ u0 ∈ L2(Rn;C);

∫
Rn
|u0(x)|2 dx ≤ C

(∫
Bcr1

(x′)

|u(x, S;u0)|2 dx+

∫ T

0

∫
Br2 (x′′)

|u(x, t;u0)|2 dxdt
)
, ∀ u0 ∈ L2(Rn;C).

Hence, the terms on the right hand side of (1.3) in Theorem 1.1 cannot be replaced by either

C
(∫

Bcr1
(x′)

|u(x, S;u0)|2 dx+

∫
Br2 (x′′)

|u(x, T ;u0)|2 dx
)

or

C
(∫

Bcr1
(x′)

|u(x, S;u0)|2 dx+

∫ T

0

∫
Br2 (x′′)

|u(x, t;u0)|2 dxdt
)
.

(b) From (iii) of Theorem 4.1, we see that in order to have (4.5) (the observability at one point in time), it is

necessary that |Ac| = 0. That is, in order to recover a solution by observing it at one point in time, we must observe

it at one time point and over the whole Rn. From this, conclusions in (a) of this remark and Theorem 1.1, we see

that the observability at two points in time is “optimal”.

(c) From (iv) of Theorem 4.1, we find that for any r > 0, a > 0 and T > 0, there is no C > 0 or θ ∈ (0, 1) so

that ∫
Rn
|u0(x)|2 dx ≤ C

(∫
Br(0)

|u(x, T ;u0)|2 dx

)θ (∫
Rn
ea|x||u0(x)|2 dx

)1−θ

for all u0 ∈ C∞0 (Rn;C). Hence, the inequality in (i) of Theorem 1.2 will not be true ifBcr(0) is replaced byBr(0).
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5 Applications

In this section, we consider the applications of Theorems 1.1-1.6 to different controllability properties (for impulse

controlled Schrödinger equations), which are Theorems 5.3, 5.5, 5.7, 5.9, 5.11 and 5.13, respectively. The main

differences among these controllability properties are explained as follows:

• From the perspective of control location and control instant, Theorem 5.3 holds controls active at two dif-

ferent time points and each time outside of a ball; Theorem 5.5 and Theorem 5.9 hold controls active at one

time point and outside of a ball; Theorem 5.7, Theorem 5.11 and Theorem 5.13 hold controls active at one

time point and inside of a ball.

• From the perspective of controllability type, Theorem 5.3 studies the exact controllability (see Remark 5.4

for the detailed explanations); Theorem 5.9 studies a nonstandard exact controllability (see Remark 5.10

for the detailed explanations); Theorem 5.5 and Theorem 5.13 give two kinds of nonstandard approximate

controllability (see Remarks 5.6 and 5.14 for the detailed explanations, respectively); Theorem 5.7 and

Theorem 5.11 build up two kinds of nonstandard approximate null controllability (see Remarks 5.8 and 5.12

for the detailed explanations, respectively).

5.1 A functional analysis framework

This subsection presents an equivalence lemma (Lemma 5.1) between some observability and some controllability

in an abstract framework. With the aid of it, we can use inequalities in Theorems 1.1-1.6 to study some controlla-

bility for the Schrödinger equation.

Lemma 5.1. Let K be either R or C. Let X , Y and Z be three Banach spaces over K, with their dual spaces X∗,

Y ∗ and Z∗. Let R ∈ L(Z,X) and O ∈ L(Z, Y ). Then the following two propositions are equivalent:

(i) There exists Ĉ0 > 0 and ε̂0 > 0 so that for each z ∈ Z,

‖Rz‖2X ≤ Ĉ0‖Oz‖2Y + ε̂0‖z‖2Z . (5.1)

(ii) There exists C0 > 0 and ε0 > 0 so that for each x∗ ∈ X∗, there is y∗ ∈ Y ∗ satisfying that

1

C0
‖y∗‖2Y ∗ +

1

ε0
‖R∗x∗ −O∗y∗‖2Z∗ ≤ ‖x∗‖2X∗ . (5.2)

Furthermore, when one of the above two propositions holds, the constant pairs (C0, ε0) and (Ĉ0, ε̂0) can be

chosen to be the same.

Remark 5.2. The part (i) of Lemma 5.1 presents a non-standard observability. In this part, Z is a state space, Y is

an observation space, we call X as a state transformation space of Z. Further, O is an observation operator, while

we call R as a state transformation operator. The inequality (5.1) means that we can approximately recover the

transferred state Rz by observing Oz, the error is governed by
√
ε̂0‖z‖Z .

The part (ii) of Lemma 5.1 presents a non-standard controllability. In this part, Y ∗ is a control space, X∗ is

a state space, and we call Z∗ as a state transformation space of X∗. Furthermore, O∗ is a control operator, while

we call R∗ as a state transformation operator. The inequality (5.2) can be understood as follows: For each state x∗,
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there is a control y∗ so that O∗y∗ is close to the target R∗x∗, with the distance less that
√
ε0‖x∗‖X∗ . Moreover,

the norm of this control is governed by
√
C0‖x∗‖X∗ .

Proof of Lemma 5.1. The proof is divided into the following several steps.

Step 1. To show that (ii)⇒(i)

Suppose that (ii) is true. Then, for each x∗ ∈ X∗, there exists y∗x∗ ∈ Y ∗ so that (5.2), with y∗ = y∗x∗ , is true. From

this, it follows that for any x∗ ∈ X∗ and z ∈ Z,

〈Rz, x∗〉X,X∗ = 〈z,R∗x∗〉Z,Z∗ = 〈z,R∗x∗ −O∗y∗x∗〉Z,Z∗ + 〈z,O∗y∗x∗〉Z,Z∗

= 〈z,R∗x∗ −O∗y∗x∗〉Z,Z∗ + 〈Oz, y∗x∗〉Y,Y ∗ .

By this and the Cauchy-Schwarz inequality, we deduce that for each x∗ ∈ X∗ and z ∈ Z,

|〈Rz, x∗〉X,X∗ | ≤
(√

C0‖z‖Z
)( 1√

C0

‖R∗x∗ −O∗y∗x∗‖Z∗
)

+
(√
ε0‖Oz‖Y

)( 1
√
ε0
‖y∗x∗‖Y ∗

)
≤

(
C0‖z‖2Z + ε0‖Oz‖2Y

)1/2( 1

C0
‖R∗x∗ −O∗y∗x∗‖2Z∗ +

1

ε0
‖y∗x∗‖2Y ∗

)1/2

≤
(
C0‖z‖2Z + ε0‖Oz‖2Y

)1/2‖x∗‖X∗ .
Hence, (5.1), with (Ĉ0, ε̂0)= (C0, ε0), is true.

Step 2. To show that (i)⇒(ii)

Suppose that (i) is true. Define a subspace E of Y × Z in the following manner:

E ,

{(√
Ĉ0Oz,

√
ε̂0z

)
: z ∈ Z

}
.

The norm of E is inherited form the following usual norm of Y × Z:

‖(f, g)‖Y×Z ,
(
‖f‖2Y + ‖g‖2Z

)1/2
, (f, g) ∈ Y × Z. (5.3)

Arbitrarily fix x∗ ∈ X∗. Define an operator Tx∗ by

Tx∗ : E → K(√
Ĉ0Oz,

√
ε̂0z

)
7→ 〈x∗, Rz〉X∗,X . (5.4)

By (5.1) and (5.4), we can easily check that Tx∗ is well defined and linear. We now claim that

‖Tx∗‖L(E,K) ≤ ‖x∗‖X∗ . (5.5)

Indeed, by the definition of E, we see that given (f, g) ∈ E, there is z ∈ Z so that

(f, g) =

(√
Ĉ0Oz,

√
ε̂0z

)
.

Then by (5.4), we find that

|Tx∗(f, g)| = |〈x∗, Rz〉X∗,X | ≤ ‖x∗‖X∗‖Rz‖X .
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This, along with (5.1), shows (5.5).

Since Tx∗ is a linear and bounded functional, we can apply the Hahn-Banach extension theorem to find T̃x∗ in

(Y × Z)∗ so that

T̃x∗(f, g) = Tx∗(f, g) for all (f, g) ∈ E (5.6)

and so that

‖T̃x∗‖L(Y×Z,K) = ‖Tx∗‖L(E,K). (5.7)

These, together with (5.3) and (5.5), yield that

|T̃x∗(f, 0)| ≤ ‖x∗‖X∗‖f‖Y for all f ∈ Y,

|T̃x∗(0, g)| ≤ ‖x∗‖X∗‖g‖Z for all g ∈ Z.

Thus, there exists (y∗x∗ , z
∗
x∗) ∈ Y ∗ × Z∗ so that

T̃x∗(f, 0) = 〈y∗x∗ , f〉Y ∗,Y for all f ∈ Y,

T̃x∗(0, g) = 〈z∗x∗ , g〉Z∗,Z for all g ∈ Z,

from which, it follows that

T̃x∗(f, g) = 〈y∗x∗ , f〉Y ∗,Y + 〈z∗x∗ , g〉Z∗,Z for any (f, g) ∈ Y × Z. (5.8)

Two observations are given in order: The first one reads

‖y∗x∗‖2Y ∗ + ‖z∗x∗‖2Z∗ ≤ ‖x∗‖2X∗ , (5.9)

while the second one is as

R∗x∗ −O∗(
√
Ĉ0y

∗
x∗) =

√
ε̂0z
∗
x∗ in Z∗. (5.10)

When (5.9) and (5.10) are proved, the conclusion (ii) (with (C0, ε0)= (Ĉ0, ε̂0)) follows at once.

To prove (5.9), we see from (5.8), (5.7) and (5.3) that for each (f, g) ∈ Y × Z,

|〈y∗x∗ , f〉Y ∗,Y + 〈z∗x∗ , g〉Z∗,Z | ≤ ‖x∗‖X∗
(
‖f‖2Y + ‖g‖2Z

)1/2
.

Meanwhile, for each δ ∈ (0, 1), we can choose (fδ, gδ) ∈ Y × Z so that

〈y∗x∗ , fδ〉Y ∗,Y = ‖y∗x∗‖2Y ∗ + o1(1), ‖fδ‖Y = ‖y∗x∗‖Y ∗ ,

〈z∗x∗ , gδ〉Z∗,Z = ‖z∗x∗‖2Z∗ + o2(1), ‖gδ‖Z = ‖z∗x∗‖Z∗ ,

where o1(1) and o2(1) are so that

lim
δ→0+

o1(1) = lim
δ→0+

o2(1) = 0.

From these, it follows that

‖y∗x∗‖2Y ∗ + ‖z∗x∗‖2Z∗ − |o1(1)| − |o2(1)| ≤ ‖x∗‖X∗
(
‖y∗x∗‖2Y ∗ + ‖z∗x∗‖2Z∗

)1/2
.
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Sending δ → 0+ in the above inequality leads to (5.9).

To prove (5.10), we find from (5.4), (5.6) and (5.8) that for all z ∈ Z,

〈x∗, Rz〉X∗,X = 〈y∗x∗ ,
√
Ĉ0Oz〉Y ∗,Y + 〈z∗x∗ ,

√
ε̂0z〉Z∗,Z ,

which yields that for all z ∈ Z,

〈R∗x∗, z〉Z∗,Z = 〈O∗(
√
Ĉ0y

∗
x∗), z〉Z∗,Z + 〈

√
ε̂0z
∗
x∗ , z〉Z∗,Z .

This leads to (5.10).

Step 3. About the constant pairs (C0, ε0) and (Ĉ0, ε̂0)

From the proofs in Step 1 and Step 2, we see that when one of the propositions (i) and (ii) holds, (C0, ε0) and

(Ĉ0, ε̂0) can be chosen to be the same pair. This ends the proof of this lemma.

We end this subsection with introducing the following dual equation:{
i∂tϕ(x, t) + ∆ϕ(x, t) = 0, (x, t) ∈ Rn × (0, T ),
ϕ(x, T ) = z(x), x ∈ Rn, (5.11)

where T > 0 and z ∈ L2(Rn). Write ϕ(·, ·;T, z) for the solution to (5.11). The equation (5.11) will play an

important role in the studies of different controllability for the Schrödinger equation.

5.2 Applications of Theorem 1.1-Theorem 1.3 to controllability

First, we will use Theorem 1.1, as well as Lemma 5.1, to prove the exact controllability for the following impulse

controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=τ1}χBcr1 (x′)(x)h1(x) + δ{t=τ2}χBcr2 (x′′)(x)h2(x), (x, t) ∈ Rn × (0, T ),

u(0, x) = u0(x), x ∈ Rn,
(5.12)

where x′, x′′ ∈ Rn, r1, r2 > 0, T , τ1 and τ2 are three numbers with 0 ≤ τ1 < τ2 ≤ T , u0 ∈ L2(Rn;C), controls

h1 and h2 are taken from the space L2(Rn;C). Write u1(·, ·;u0, h1, h2) for the solution to the equation (5.12).

Theorem 5.3. Let x′, x′′ ∈ Rn and r1, r2 > 0. Let T , τ1 and τ2 be three numbers with 0 ≤ τ1 < τ2 ≤ T . Then

for each u0 ∈ L2(Rn;C) and uT ∈ L2(Rn;C), there is a pair of controls (h1, h2) in L2(Rn;C)× L2(Rn;C) so

that

u1(x, T ;u0, h1, h2) = uT (x), x ∈ Rn (5.13)

and so that

‖h1‖2L2(Rn;C) + ‖h2‖2L2(Rn;C) ≤ Ce
Cr1r2

1
τ2−τ1

∥∥uT − ei∆Tu0

∥∥2

L2(Rn;C)
, (5.14)

where the constant C , C(n) is given by Theorem 1.1.
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Proof. We organize the proof by the following two steps:

In Step 1, we aim to prove that for each z ∈ L2(Rn;C),∫
Rn
|z(x)|2 dx ≤ CeCr1r2

1
τ2−τ1

(∫
Bcr1 (x′)

|ϕ(x, τ1;T, z)|2 dx+

∫
Bcr2 (x′′)

|ϕ(x, τ2;T, z)|2 dx
)
, (5.15)

where C , C(n) is given by Theorem 1.1. To this end, we set

u1(x) , ϕ(x, τ1;T, z), x ∈ Rn.

Then it follows from (1.2) and (5.11) that for each t ∈ [0, τ2 − τ1],

u(x, t;u1) = (ei∆tu1)(x) = (ei∆tei∆(τ1−T )z)(x) = ϕ(x, t+ τ1;T, z), x ∈ Rn. (5.16)

By Theorem 1.1 (where u0 = u1 and T = τ2 − τ1), we find that∫
Rn
|u1(x)|2 dx ≤ CeCr1r2

1
τ2−τ1

(∫
Bcr1

(x′)

|u1(x)|2 dx+

∫
Bcr2

(x′′)

|u(x, τ2 − τ1;u1)|2 dx
)
.

This, along with (5.16), implies that∫
Rn
|ϕ(x, τ1;T, z)|2 dx ≤ CeCr1r2

1
τ2−τ1

(∫
Bcr1

(x′)

|ϕ(x, τ1;T, z)|2 dx+

∫
Bcr2

(x′′)

|ϕ(x, τ2;T, z)|2 dx
)
.

Because of the conservation law of the Schrödinger equation, the above inequality leads to (5.15).

In Step 2, we aim to use Lemma 5.1 and (5.15) to prove (5.13) and (5.14). For this purpose, we let

X , L2(Rn;C) = X∗, Y , L2(Rn;C)× L2(Rn;C) = Y ∗ and Z , L2(Rn;C) = Z∗ (5.17)

and define two operatorsR : Z → X and O : Z → Y as follows:

Rz , z; Oz ,
(
χBcr1 (x′)(·)ϕ(·, τ1;T, z), χBcr2 (x′′)(·)ϕ(·, τ2;T, z)

)
for each z ∈ Z. (5.18)

By (5.18) and (5.17), one can directly check, that

R∗f = f, ∀ f ∈ L2(Rn;C); O∗(h1, h2) = u1(·, T ; 0, h1, h2), ∀ (h1, h2) ∈ L2(Rn;C)× L2(Rn;C). (5.19)

Arbitrarily fix k ∈ N+. From (5.15) and (5.18), we find that for each z ∈ L2(Rn;C),

‖Rz‖2X ≤ Ce
Cr1r2

1
τ2−τ1 ‖Oz‖2Y +

1

k
‖z‖2Z . (5.20)

where C > 0 is given by (5.15) and ‖ · ‖Y denotes the usual norm of L2(Rn;C)× L2(Rn;C).

Arbitrarily fix u0, uT ∈ L2(Rn;C). Define a function over Rn in the following manner:

f(x) , uT (x)− ei∆Tu0(x), x ∈ Rn. (5.21)

By Lemma 5.1 and (5.20), it follows that there exists (hf1,k, h
f
2,k) ∈ Y ∗ so that

C−1e−Cr1r2
1

τ2−τ1 ‖(hf1,k, h
f
2,k)‖2Y ∗ + k‖R∗f −O∗(hf1,k, h

f
2,k)‖2Z∗ ≤ ‖f‖2X∗ . (5.22)
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By (5.17) and (5.22), one can easily find that there exits a subsequence {kj}∞j=1 of N+ and (hf1 , h
f
2 ) ∈ L2(Rn;C)×

L2(Rn;C) so that

(hf1,kj , h
f
2,kj

)→ (hf1 , h
f
2 ) weakly in L2(Rn;C)× L2(Rn;C), as j →∞

and so that

R∗f −O∗(hf1,kj , h
f
2,kj

)→ R∗f −O∗(hf1 , h
f
2 ) weakly in L2(Rn;C), as j →∞.

(Here, we used the fact that the operator O is linear and bounded. This fact follows from (5.18).) These yield that

‖(hf1 , h
f
2 )‖L2(Rn;C)×L2(Rn;C) ≤ lim inf

j→∞
‖(hf1,kj , h

f
2,kj

)‖2L2(Rn;C)×L2(Rn;C), as j →∞

and that

‖R∗f −O∗(hf1 , h
f
2 )‖L2(Rn;C) ≤ lim inf

j→∞
‖R∗f −O∗(hf1,kj , h

f
2,kj

)‖L2(Rn;C), as j →∞.

From these and (5.22), it follows that

R∗f = O∗(hf1 , h
f
2 ) and ‖(hf1 , h

f
2 )‖2L2(Rn;C)×L2(Rn;C) ≤ Ce

Cr1r2
1

τ2−τ1 ‖f‖2L2(Rn;C). (5.23)

Now, (5.13) and (5.14) follow from (5.23), (5.19) and (5.21) at once. This ends the proof of this theorem.

Remark 5.4. The above theorem can be understood as follows: For each u0,uT ∈ L2(Rn;C), there exists a pair

of controls (in L2(Rn;C)×L2(Rn;C)) steering the solution of (5.12) from u0 at time 0 to uT at time T . Moreover,

a bound of the norm of this pair of controls is explicitly given.

Next, we will use the inequality (1.4) in (i) of Theorem 1.2, as well as Lemma 5.1, to get some kind of

approximate controllability for the following impulse controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=τ}χBcr(0)(x)h(x, t), (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0, x ∈ Rn, (5.24)

where T > τ ≥ 0 and r > 0, both the initial data u0 and the control h are taken from the space L2(Rn;C). Write

u2(·, ·;u0, h) for the solution to the equation (5.24). Define, for each a > 0, a Banach space:

Xa ,

{
f ∈ L2(Rn;C) :

∫
Rn
ea|x||f(x)|2 dx <∞

}
, (5.25)

endowed with the norm:

‖f‖Xa ,

(∫
Rn
ea|x||f(x)|2 dx

)1/2

, f ∈ Xa.

One can directly check that for each a > 0, the dual space of Xa reads

X∗a = C∞0 (Rn;C)
‖·‖X∗a , (5.26)

with the norm ‖ · ‖X∗a given by

‖g‖X∗a ,

(∫
Rn
e−a|x||g(x)|2 dx

)1/2

, g ∈ X∗a .
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Theorem 5.5. Let r > 0, a > 0 and T > τ ≥ 0. Let C > 0 and θ ∈ (0, 1) be given by (i) of Theorem 1.2. Write

p , θ1+ r
a(T−τ) ∈ (0, 1).

Then for any ε > 0, u0, uT ∈ L2(Rn;C), there is a control h ∈ L2(Rn;C) so that

ε
1−p
p

∫
Rn
|h(x)|2 dx+ ε−1‖u2(·, T ;u0, h)− uT (·)‖2X∗a

≤ C

(
1 +

rn

(a(T − τ))n

)∫
Rn
|uT (x)− ei∆Tu0(x)|2 dx, (5.27)

Proof. First of all, we claim that for each z ∈ C∞0 (Rn;C) and each ε > 0,∫
Rn
|z(x)|2 dx (5.28)

≤ C

(
1 +

rn

(a(T − τ))n

)(
ε

∫
Rn
ea|x||z(x)|2 dx+ ε−

1−p
p

∫
Bcr(0)

|ϕ(x, τ ;T, z)|2 dx

)
.

To this end, arbitrarily fix z ∈ C∞0 (Rn;C). It follows from (1.2) and (5.11) that

u(x, t; z̄) = ϕ(x, T − t;T, z), (x, t) ∈ Rn × [0, T ]. (5.29)

Then by (i) of Theorem 1.2 (where u0 and T are replaced by z̄ and T − τ , respectively), we find that∫
Rn
|z(x)|2 dx

≤ C

(
1 +

rn

(a(T − τ))n

)(∫
Bcr(0)

|u(x, T − τ ; z̄)|2 dx

)p(∫
Rn
ea|x||z(x)|2 dx

)1−p

,

from which and (5.29), we find that∫
Rn
|z(x)|2 dx

≤ C

(
1 +

rn

(a(T − τ))n

)(∫
Bcr(0)

|ϕ(x, τ ;T, z)|2 dx

)p(∫
Rn
ea|x||z(x)|2 dx

)1−p

.

This, along with the Young inequality, yields (5.28).

Next, we will use Lemma 5.1 and (5.28) to prove (5.27). For this purpose, we let

X , L2(Rn;C) = X∗, Y , L2(Rn;C) = Y ∗ and Z , Xa, (5.30)

where the space Xa is given by (5.25). Define two operatorsR : Z → X and O : Z → Y by

Rz , z for each z ∈ Xa; Oz , χBcr(0)(·)ϕ(·, τ ;T, z) for each z ∈ Xa. (5.31)

One can directly check that

R∗f = f, ∀ f ∈ L2(Rn;C); O∗h = u2(·, T ; 0, h), ∀h ∈ L2(Rn;C). (5.32)

Arbitrarily fix ε > 0. By (5.28), (5.31) and (5.25), we can use a standard density argument to verify that

‖Rz‖2L2(Rn;C) ≤ C2‖Oz‖2L2(Rn;C) + ε2‖z‖2Xa for each z ∈ Xa (5.33)
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where

C2 , C

(
1 +

rn

(a(T − τ))n

)
ε−

1−p
p and ε2 , C

(
1 +

rn

(a(T − τ))n

)
ε. (5.34)

Arbitrarily fix u0 and uT in L2(Rn;C). Define a function f by

f , uT − ei∆Tu0 over Rn. (5.35)

According to Lemma 5.1 and (5.33), there exists hf ∈ L2(Rn;C) (depending on ε, u0 and uT ) so that

1

C2
‖hf‖2Y ∗ +

1

ε2
‖R∗f −O∗hf‖2Z∗ ≤ ‖f‖2X∗ .

From this, (5.30), (5.32), (5.34), (5.35) and (5.26), we obtain (5.27). This ends the proof of this theorem.

Remark 5.6. The above theorem can be understood follows: For each u0,uT ∈ L2(Rn;C) and ε > 0, there exists

a control (in L2(Rn;C)) steering the solution of (5.24) from u0 at time 0 to the target BX
∗
a

ε (uT ) at time T . (Here,

B
X∗a
ε (uT ) denotes the closed ball in X∗a , centered at uT and of radius ε.) Moreover, a bound of the norm of this

control is explicitly given.

Finally, we will use the inequality (1.6) in Theorem 1.3, as well as Lemma 5.1, to get some kind of approximate

null controllability for the following impulse controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=0}χBr1 (x′)(x)h(x, t), (x, t) ∈ Rn × (0, T ),

u(x, 0) = u0, x ∈ Rn, (5.36)

where T > 0, x′ ∈ Rn and r1 > 0, both the initial data u0 and the control h are taken from the space L2(Rn;C).

Write u3(·, ·;u0, h) for the solution to the equation (5.36). Define, for each r2 > 0 and x′′ ∈ Rn, the following

subspace:

L̃2(Br2(x′′);C) , {f ∈ L2(Rn;C) : f = 0 over Bcr2(x′′)}. (5.37)

Theorem 5.7. Let x′, x′′ ∈ Rn, r1, r2 > 0, a > 0 and T > 0. Let C > 0 and p > 0 be given by Theorem 1.3.

Then for each ε > 0 and u0 ∈ L̃2(Br2(x′′);C), there is a control h ∈ L2(Rn;C) so that

ε
1−θp
θp

∫
Rn
|h(x)|2 dx+ ε−1‖u3(·, T ;u0, h)‖2X∗a ≤ Cr

n
2

(
(aT ) ∧ r1

)−n ∫
Br2 (x′′)

|u0(x)|2 dx. (5.38)

Proof. First of all, we claim that for each z ∈ C∞0 (Rn;C) and each ε > 0,∫
Br2 (x′′)

|ϕ(x, 0;T, z)|2 dx (5.39)

≤ Crn2
(
(aT ) ∧ r1

)−n(
ε−

1−θp
θp

∫
Br1 (x′)

|ϕ(x, 0;T, z)|2 dx+ ε

∫
Rn
ea|x||z(x)|2 dx

)
.

To this end, we arbitrarily fix z ∈ C∞0 (Rn;C). It follows from (1.2) and (5.11) that

u(x, t; z̄) = ϕ(x, T − t;T, z), (x, t) ∈ Rn × [0, T ]. (5.40)
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Then by Theorem 1.3 (where u0 = z̄), we find that∫
Br2 (x′′)

|u(x, T ; z̄)|2 dx

≤ Crn2
(
(aT ) ∧ r1

)−n(∫
Br1 (x′)

|u(x, T ; z̄)|2 dx

)θp (∫
Rn
ea|x||z(x)|2 dx

)1−θp

.

This, along with (5.40), leads to that∫
Br2 (x′′)

|ϕ(x, 0;T, z)|2 dx

≤ Crn2
(
(aT ) ∧ r1

)−n(∫
Br1 (x′)

|ϕ(x, 0;T, z)|2 dx

)θp (∫
Rn
ea|x||z(x)|2 dx

)1−θp

.

Now (5.39) follows from the above inequality and the Young inequality at once.

Next, we will use Lemma 5.1 and (5.39) to prove (5.38). For this purpose, we let

X , L̃2(Br2(x′′);C) = X∗, Y , L2(Rn;C) = Y ∗ and Z , Xa, (5.41)

where the space Xa is given by (5.25). Define two operatorsR : Z → X and O : Z → Y by

Rz , χBr2 (x′′)(·)ϕ(·, 0;T, z) for each z ∈ Xa;

Oz , χBcr1 (x′)(·)ϕ(·, 0;T, z) for each z ∈ Xa, (5.42)

One can directly check that

R∗f = u3(·, T ; f, 0), ∀ f ∈ L̃2(Br2(x′′);C); O∗h = u3(·, T ; 0, h), ∀h ∈ L2(Rn;C). (5.43)

Arbitrarily fix ε > 0. By (5.39), (5.42) and (5.25), we can use a standard density argument to verify that

‖Rz‖2X ≤ C3‖Oz‖2Y + ε3‖z‖2Z for all z ∈ Z, (5.44)

where

C3 , Crn2
(
(aT ) ∧ r1

)−n
ε−

1−θp
θp and ε3 , Crn2

(
(aT ) ∧ r1

)−n
ε. (5.45)

Arbitrarily fix u0 ∈ L̃2(Br2(x′′);C) (given by (5.37)). From Lemma 5.1 and (5.44), we find that there exists hu0

(depending on ε and u0) so that

1

C3
‖hu0‖2Y ∗ +

1

ε3
‖R∗u0 −O∗hu0‖2Z∗ ≤ ‖u0‖2X∗ .

This, along with (5.41), (5.43), (5.45) and (5.26), yields (5.38). This ends the proof of this theorem.

Remark 5.8. The above theorem can be understood as follows: For each u0 ∈ L̃2(Br2(x′′);C) and ε > 0, there

exists a control (in L2(Rn;C)) steering the solution of (5.36) from u0 at time 0 to the target BX
∗
a

ε (0) at time T .

Moreover, a bound of the norm of this control is explicitly given.
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5.3 The applications of Theorem 1.4-Theorem 1.6 to controllability

First, we will use the inequality (1.8) in Theorem 1.4, as well as Lemma 5.1, to get some kind of exact controlla-

bility for the following impulse controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=τ}χBcr(0)(x)h(x, t), (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0, x ∈ Rn, (5.46)

where T and τ be two numbers with 0 ≤ τ < T , r > 0, both the initial data u0 and the control h are taken from

the space L2(Rn;C). Write u4(·, ·;u0, h) for the solution to the equation (5.46).

Theorem 5.9. Let 0 ≤ τ < T , r > 0 and N > 0. Let C , C(n) > 0 be given by Theorem 1.4. Then for each

u0, uT ∈ L2(Rn;C), there is a control h ∈ L2(Rn;C) so that

u4(x, T ;u0, h) = uT , x ∈ BN (0) (5.47)

and so that

‖h‖L2(Rn;C) ≤ e
C
2

(
1+ N

T−τ

)
‖uT − ei∆Tu0‖L2(Rn;C). (5.48)

Proof. First of all, we claim that for each z ∈ L̃2(BN (0);C),∫
Rn
|z(x)|2 dx ≤ eC

(
1+ rN

T−τ

) ∫
Bcr(0)

|ϕ(x, τ ;T, z)|2 dx. (5.49)

(Here, L̃2(BN (0);C) is given by (5.37), with Br2(x′′) being replaced by BN (0).) To this end, arbitrarily fix

z ∈ L̃2(BN (0);C). It follows from (1.2) and (5.11) that

u(x, t; z̄) = ϕ(x, T − t;T, z), (x, t) ∈ Rn × [0, T ]. (5.50)

Then by Theorem 1.4 (where u0 and T are replaced by z̄ and T − τ , respectively), we find that∫
Rn
|z(x)|2 dx ≤ eC

(
1+ rN

T−τ

) ∫
Bcr(0)

|u(x, T − τ ; z̄)|2 dx,

where C > 0 is given by Theorem 1.4. This, along with (5.50), leads to (5.49).

Next, we will use Lemma 5.1 and (5.49) to prove (5.47) and (5.48). Let

X , L2(Rn;C) = X∗, Y , L2(Rn;C) = Y ∗ and Z , L̃2(BN (0);C) = Z∗. (5.51)

Define two operatorsR : Z → X and O : Z → Y by

Rz , z for each z ∈ L̃2(BN (0);C);

Oz , χBcr(0)(·)ϕ(·, τ ;T, z) for each z ∈ L̃2(BN (0);C). (5.52)

One can directly check that

R∗f = χBN (0)f, ∀ f ∈ L2(Rn;C); O∗h = χBN (0)u4(·, T ; 0, h), ∀h ∈ L2(Rn;C). (5.53)

From (5.49) and (5.52), we find that

‖Rz‖2X ≤ e
C
(

1+ rN
T−τ

)
‖Oz̃‖2Y +

1

k
‖z‖2Z for all k ∈ N+, z ∈ Z. (5.54)
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Arbitrarily fix u0, uT ∈ L2(Rn;C). Define a function f by

f , uT − ei∆Tu0 over Rn. (5.55)

By Lemma 5.1 and (5.54), it follows that there exists hfk ∈ L2(Rn;C) so that

e−C
(

1+ rN
T−τ

)
‖hfk‖

2
Y ∗ + k‖R∗f −O∗hfk‖

2
Z∗ ≤ ‖f‖2X∗ for all k ∈ N+. (5.56)

Since {hfk}∞k=1 is bounded in L2(Rn;C) (see (5.56) and (5.51)), there exits a subsequence {kj}∞j=1 of N+ and

hf ∈ L2(Rn;C) so that

hfkj → hf weakly in L2(Rn;C), as j →∞

and so that

R∗f −O∗hfkj → R
∗f −O∗hf weakly in L2(BN (0);C), as j →∞.

These yield that

‖hf‖L2(Rn;C) ≤ lim inf
j→∞

‖hfkj‖
2
L2(Rn;C); ‖R

∗f −O∗hf‖L2(BN (0);C) ≤ lim inf
j→∞

‖R∗f −O∗hfkj‖L2(BN (0);C).

From these and (5.56), it follows that

R∗f = O∗hf over BN (0) and ‖hf‖2L2(Rn;C) ≤ e
C
(

1+ rN
T−τ

)
‖f‖2L2(Rn;C). (5.57)

Now, (5.13) and (5.14) follow from (5.51), (5.57), (5.53) and (5.55) at once. This ends the proof of this theorem.

Remark 5.10. The above theorem can be understood as follows: For each u0, uT ∈ L2(Rn;C) and N > 0,

there exists a control in L2(Rn;C) steering the solution of (5.46) from u0 at time 0 to uT at time T over BN (0).

Moreover, a bound of the norm of this control is explicitly given.

Next, we will use the inequality (1.9) in Theorem 1.5, as well as Lemma 5.1, to get some kind of approximate

null controllability for the following impulse controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=0}χBr(x0)(x)h(x, t), (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0, x ∈ Rn, (5.58)

where T > 0, x0 ∈ Rn and r > 0, both the initial data u0 and the control h are taken from the space L2(Rn;C).

Write u5(·, ·;u0, h) for the solution to the equation (5.58). Before state the main result, we define, for each b > 0

and x′ ∈ Rn, the following space:

Xb,x′ ,

{
f ∈ L2(Rn;C) :

∫
Rn
eb|x−x

′||f(x)|2 dx <∞
}
,

with the norm ‖ · ‖Xb,x′ given by

‖f‖Xb,x′ ,
(∫

Rn
eb|x−x

′||f(x)|2 dx

)1/2

, f ∈ Xb,x′ .
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One can directly check that the dual space of Xb,x′ is as

X∗b,x′ = C∞0 (Rn;C)
‖·‖X∗

b,x′ ,

with the norm ‖ · ‖X∗
b,x′

given by

‖g‖X∗
b,x′

,

(∫
Rn
e−b|x−x

′||g(x)|2 dx

)1/2

, g ∈ C∞0 (Rn;C).

Theorem 5.11. Let x0, x
′ ∈ Rn, r > 0, a > 0, b > 0 and T > 0. Let C(x0, x

′, r, a, b, T ) and C be given by

Theorem 1.5. Then for each ε ∈ (0, 1) and u0 ∈ Xb,x′ , there is a control h ∈ L2(Rn;C) so that

1

ε
e−( 1

ε )
1+ 1

Cb((aT )∧r)
∫
Rn
|h(x)|2 dx+

1

ε
‖u5(·, T ;u0, h)‖2X∗a ≤ C(x0, x

′, r, a, b, T )‖u0‖2Xb,x′ . (5.59)

Proof. First of all, we claim that for each z ∈ C∞0 (Rn;C) and each ε ∈ (0, 1),∫
Rn
e−b|x−x

′||ϕ(x, 0;T, z)|2 dx (5.60)

≤ C(x0, x
′, r, a, b, T )

(
εeε
−1− 1

Cb((aT )∧r)
∫
Br(x0)

|ϕ(x, 0;T, z)|2 dx+ ε

∫
Rn
ea|x||z(x)|2 dx

)
.

To this end, we arbitrarily fix z ∈ C∞0 (Rn;C). It follows from (1.2) and (5.11) that

u(x, t; z̄) = ϕ(x, T − t;T, z), (x, t) ∈ Rn × [0, T ]. (5.61)

Then by Theorem 1.5 (where u0 = z̄), we find that for each ε ∈ (0, 1),∫
Rn
e−b|x−x

′||u(x, T ; z̄)|2 dx

≤ C(x0, x
′, r, a, b, T )

(
εeε
−1− 1

Cb((aT )∧r)
∫
Br(x0)

|u(x, T ; z̄)|2 dx+ ε

∫
Rn
ea|x||z(x)|2 dx

)
.

This, along with (5.61), leads to (5.60).

Next, we will use Lemma 5.1 and (5.60) to prove (5.59). For this purpose, we let

X , X∗b,x′ , Y , L2(Rn;C) = Y ∗ and Z , Xa,

where the space Xa is given by (5.25). Define two operatorsR : Z → X and O : Z → Y by

Rz , ϕ(·, 0;T, z); Oz , χBcr(x0)(·)ϕ(·, 0;T, z) for all z ∈ Xa. (5.62)

One can directly check that

R∗f = u5(·, T ; f, 0), ∀ f ∈ Xb,x′ ; O∗h = u5(·, T ; 0, h), ∀h ∈ L2(Rn;C). (5.63)

Arbitrarily fix ε ∈ (0, 1). From (5.60), (5.62) and (5.25), we can use a standard density argument to get that

‖Rz‖2X ≤ C5‖Oz‖2Y + ε5‖z‖2Z for each z ∈ Z, (5.64)

where

C5 , C(x0, x
′, r, a, b, T )εeε

−1− 1
Cb((aT )∧r)

and ε5 , C(x0, x
′, r, a, b, T )ε. (5.65)
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Arbitrarily fix u0 ∈ C∞0 (Rn;C). Define a function f by

f(x) , u0(x), x ∈ Rn. (5.66)

Then by Lemma 5.1 and (5.64), there exists hf (depending on ε and u0) so that

1

C5
‖hf‖2Y ∗ +

1

ε5
‖R∗f −O∗hf‖2Z∗ ≤ ‖f‖2X∗ .

This, along with (5.63), (5.65), (5.66) and (5.26), yields that (5.59) holds. This ends the proof of this theorem.

Remark 5.12. The above theorem can be understood as follows: For each u0 ∈ Xb,x′ and ε > 0, there exists a

control (in L2(Rn;C)) steering the solution of (5.58) from u0 at time 0 to the target BX
∗
a

ε (0) at time T . Moreover,

a bound of the norm of this control is explicitly given.

Finally, we will use the inequality (1.10) in Theorem 1.6, as well as Lemma 5.1, to get some kind of approxi-

mate controllability for the following impulse controlled Schrödinger equation:{
i∂tu(x, t) + ∆u(x, t) = δ{t=τ}χBr(x0)(x)h(x, t), (x, t) ∈ Rn × (0, T ),
u(x, 0) = u0, x ∈ Rn, (5.67)

where T > τ ≥ 0, x0 ∈ Rn and r > 0, both the initial data u0 and the control h are taken from the space

L2(Rn;C). Write u6(·, ·;u0, h) for the solution to the equation (5.67). For each a > 0, we write Qa for the

completion of C∞0 (Rn;C) in the following norm:

‖f‖Qa ,

(∫
Rn
ea|x||f(x)|2 dx+ ‖f‖2Hn+3(Rn;C)

) 1
2

, f ∈ C∞0 (Rn;C). (5.68)

One can easily check that the space Qa is continuously imbedded to L2(Rn;C). Denote by Q∗a the dual space of

Qa with respect to the pivot space L2(Rn;C).

Theorem 5.13. Let x0 ∈ Rn, r > 0, a > 0 and T > τ ≥ 0. Let C(x0, r, a, T − τ) be given by Theorem 1.6, with

T being replaced by T − τ . Then for each ε ∈ (0, 1) and u0,uT ∈ L2(Rn;C), there is a control h ∈ L2(Rn;C)

so that

ε−1e−e
ε−2
∫
Rn
|h(x)|2 dx+ ε−1‖u6(·, T ;u0, h)− uT (·)‖2Q∗a

≤ C(x0, r, a, T − τ)‖uT − ei∆Tu0‖2L2(Rn;C). (5.69)

Proof. First of all, we claim that for each z ∈ C∞0 (Rn;C) and each ε ∈ (0, 1),∫
Rn
|z(x)|2 dx ≤ C(x0, r, a, T − τ)

(
εee

ε−2
∫
Br(x0)

|ϕ(x, τ ;T, z)|2 dx

+ε
( ∫

Rn
ea|x||z(x)|2 dx+ ‖z‖2Hn+3(Rn;C)

))
. (5.70)

To this end, we arbitrarily fix z ∈ C∞0 (Rn;C). It follows from (1.2) and (5.11) that

u(x, t; z̄) = ϕ(x, T − t;T, z), (x, t) ∈ Rn × [0, T ]. (5.71)
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Then by Theorem 1.6 (where (u0, T ) is replaced by (z̄, T − τ)), we find that for each ε ∈ (0, 1),∫
Rn
|z(x)|2 dx

≤ C(x0, r, a, T − τ)

(
ε
(∫

Rn
|z(x)|2ea|x|dx+ ‖z̄‖2Hn+3(Rn;C)

)
+ εee

ε−2
∫
Br(x0)

|u(x, T − τ ; z̄)|2 dx

)
,

This, along with (5.71), leads to (5.70).

Next, we will use Lemma 5.1 and (5.70) to prove (5.69). Let

X , L2(Rn;C) = X∗, Y , L2(Rn;C) = Y ∗ and Z , Qa,

where Qa is given by (5.68). Define two operatorsR : Z → X and O : Z → Y by

Rz , z; Oz , χBcr(x0)(·)ϕ(·, τ ;T, z) for each z ∈ Z. (5.72)

One can directly check that

R∗f = f, ∀ f ∈ L2(Rn;C); O∗h = u6(·, T ; 0, h), ∀h ∈ L2(Rn;C). (5.73)

Arbitrarily fix ε ∈ (0, 1). From (5.70), (5.72) and (5.68), we can use a standard density argument to get that

‖Rz‖2X ≤ C6‖Oz‖2Y + ε6‖z‖2Z for each z ∈ Qa (5.74)

where

C6 , C(x0, r, a, T − τ)εee
ε−2

and ε6 , C(x0, r, a, T − τ)ε. (5.75)

Arbitrarily fix u0 and uT in L2(Rn;C). Define a function f by

f , uT − ei∆Tu0 over Rn. (5.76)

Then by Lemma 5.1 and (5.74), there exists hf (depending on ε, u0 and uT ) so that

1

C6
‖hf‖2Y ∗ +

1

ε6
‖R∗f −O∗hf‖2Z∗ ≤ ‖f‖2X∗ ,

which, along with (5.73), (5.75) and (5.76), leads to (5.69). This ends the proof of the theorem.

Remark 5.14. The above theorem can be understood as follows: For each u0, uT ∈ L2(Rn;C) and ε > 0, there

exists a control (in L2(Rn;C)) steering the solution of (5.67) from u0 at time 0 to the target BQ
∗
a

ε (uT ) at time T .

Here, BQ
∗
a

ε (uT ) denotes the closed ball in Q∗a, centered at uT and of radius ε. Moreover, a bound of the norm of

this control is explicitly given.
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