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Abstract

In this paper, we present several observability and unique continuation inequalities for the free Schrodinger
equation in the whole space. The observations in these inequalities are made either at two points in time or one
point in time. These inequalities correspond to different kinds of controllability for the free Schrodinger equation.
We also find that the observability inequality at two points in time is equivalent to the uncertainty principle built
up in [21].
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1 Introduction

An interesting unique continuation property for Schrodinger equations was contained in [20] (see also [22]). It

says that if u solves the following Schrédinger equation:
i0u+ Au+Vu=0 in R" x (0,1), (1.1)
(with a time-dependent potential V' in some suitable conditions and with n € N* £ {1,2,... 1), then
u=0 in B{(0) x {0,1} = u=0.

Here, R > 0, Br(0) is the closed ball in R”", centered at the origin and of radius R, and B%(0) denotes the
complement of Bg(0). In [12] (see also [15, Theorems 3-4]), it was presented that if u solves (1.1) (with V' in

some suitable conditions) and verifies that
2 2 2 2
el /o (@, 0)|| L2 gnicy + I/ u(a, 1)|| 2 @ncy < 00

for some positive constants «, 8 with a3 < 4, then u = 0. It was further proved that when o5 = 4, such property
fails. The above mentioned two properties can be treated as the qualitative unique continuation at two points in

time. It is natural to ask if one can have an observability inequality at two points in time?
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In this paper, we will present several observability and unique continuation inequalities (at either two points in

time or one point in time) for the following free Schrodinger equation (or the Schrodinger equation, for simplicity):

{ i0pu(z,t) + Au(z,t) =0, (z,t) € R™ x (0,00),

u(x,0) € L2(R™; C). (1.2)

(Here and throughout this paper, n € N7 is arbitrarily fixed.) From perspective of applications, to these inequalities
correspond different controllability properties for the Schrodinger equation.

The free Schrédinger equation (1.2) describes the evolution of the wave function for a particle without external
field (see for instance [24]). Though the Schrodinger equation with a potential V' # 0 is more attractive, the free
Schrodinger equation is also important and there are many studies on it. For instance, [6, 27, 40] studied the local
smoothing effect and Strichartz estimates of the free Schrodinger equation; [10] built up some unique continuation
and convexity properties for the free Schrodinger equation; [26] obtained some observability inequality over time
intervals for the free Schrodinger equation over a bounded domain (see also [25, 32, 41]).

Throughout this paper, we write either u(z,¢;uo) (with (z,t) € R™ x (0,00)) or e*Atug (with ¢ > 0) for
the solution of (1.2) with the initial condition that w(z,0) = wug(x) over R™; The Fourier transform of f €

L'(R™;C) N L?(R"; C) is given by
£ 1 —iz- n
7€) = Gz || fa)e =S e g e R

and extended to all of L?(R";C) in the usual way; Write respectively A¢ and |A| for the complement and the
Lebesgue measure of a set A in R™; For each subset A C R™ and each A € R, welet \A £ {\z : = € A}; Forall
a,be R, wewritea Nb2 min{a, b}; For each € R™, |z| denotes to the R”-Euclidean norm of z; w,, denotes
the volume of the unit ball in R".

There are three main theorems in this paper. The first one presents an observability inequality at two points in

time for the equation (1.2).

Theorem 1.1. Given ', 2" € R”, 71, 79 > 0and T > S > 0, there is a positive constant C = C(n) so that

/ lug(x)|?dz < C’eC“”Tis(/ ()u(x,S;u0)|2dz+/ ( )|u(x,T;u0)|2dx) (1.3)
n Bgl x/ B$2 I,I

forall ug € L*(R™;C).
Several remarks on Theorem 1.1 are given in order:

(al) Theorem 1.1 can be explained in the following manner: The integral on the left hand side of (1.3) can be
treated as a recover term, while the integrals on the right hand side of (1.3) are regarded as observation terms.
The inequality (1.3) is understood as follows: Through observing a solution at two different points in time,
each time outside of a ball, one can estimate the recover term (which says, in plain language, that one can
recover this solution). This inequality is equivalent to the exact controllability for the impulse controlled
Schrédinger equation with controls acting at two points in time, each time outside of a ball (see Subsection

5.2).

(a2) The observability inequality (1.3) seems to be new for us. Most observability inequalities for Schrédinger

equations, in published papers, have observations in time intervals. For instance, the paper [26] presents



(a3)

(ad)

(a5)

an observability inequality for the Schrodinger equation on a bounded domain €2 (in R™), with an analytic
boundary 0f2. In that inequality, the observation is made over & x (0,7), where ' > 0 and & C 99 is
a subdomain satisfying the Geometric Control Condition. This condition was introduced in [4] and then
was used in [8] to study the stabilization property and the exact controllability for the nonlinear Schrodinger
equation on a two dimensional compact Riemannian manifold without boundary. The paper [32] builds up an
observability estimate for the homogenous Schrodinger equation on a bounded domain €2. In that inequality,
the observation is made over w x (0,7"), where T > 0 and w C €2 is a subdomain satisfying the Geometric
Control Condition. The book [41] gives an observability inequality for the free Schrodinger equation over
a rectangular domain in R2. There, the observation can be made over any w x (0,7), with w an open
(nonempty) subset (see [41, Theorem 8.5.1]). More recently, the paper [1] (see [1, Theorem 1.2]) presents an
observability inequality for Schrodinger equations (with some potentials) on the disk of R?. The observation
is made over w x (0, T), where w is an open (nonempty) subset which may not satisfy the Geometric Control

Condition.

The inequality (1.3) is “optimal” in the following sense: First, V A C R", with m(A¢) > 0, VT > 0, the
following conclusion is not true (see (b) of Remark 4.2): 3C' > 0 so that

/ lug(2)|* do < C/ lu(, T;up)|? dz, Yug € L*(R™; C).
R® A

This means that we cannot recover a solution by observing it at one point in time and over a subset A C R™,
with |A¢] > 0; Second, V', 2”7 € R”, ry, ro > 0and T > S > 0, the following conclusion is not true (see
(a) of Remark 4.2): 3C > 0 so that

lug(2)|* dz < C lu(x, S;uo)|* da + |u(z, T;up)|? dz ), Yuo € L*(R™;C).
' By, (@) Bry(a)

This means that we cannot recover a solution by observing it at two different points in time, one time in a
ball, while another time outside of a ball; And last, Vz’, " € R™, ry, ro > 0and T > S > 0, the following

conclusion is not true (see (a) of Remark 4.2): 3C > 0 so that
T
/ lug(2)|* do < C’(/ lu(x, S;uo)|* da +/ / |u(a:,t;u0)|2d:cdt), Yug € L*(R™; C).
" Bg (2) 0 JB.,(z")

This can be comparable with the work in [29].

The proof of (1.3) is based on two properties as follows: First, the uncertainty principle built up in [21];
Second, the equivalence between the uncertainty principle and the observability estimate which grows like
(1.3). The aforementioned equivalence is indeed a connection between the uncertainty principle and the
observability (at two time points) for the Schrodinger equation. Such equivalence is obtained in this paper

(see Lemma 2.3). Its proof relies on the identity [10, (1.2)] (see (2.6) in our paper).

The inequality (1.3) can be extended to the case where By («') and By, (x"') are replaced by two measurable
sets A° and B¢, with |A| < oo and |B| < oo. This can be easily seen from the proof of (1.3), as well as
Theorem 2.1 (which is the uncertainty principle built up in [21]) and Lemma 2.3.
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(a6) From Theorem 1.1, one can directly derive the following observability inequality: Given zg € R", r > 0

and T > 0, there exists C = C(n) > 0 so that

T 1/2
/ luo(z)|* da < C’eC"Q/T/ (/ o) |u(a:,t;u0)2dx> dt forall ug € L*(R™;C).
n 0 B¢&(xzo

This inequality is equivalent to the standard L°°-exact controllability for the Schrodinger equation. The later

is comparable to [36, Theorem 3.1].

The second main theorem gives a unique continuation inequality at one time point for a class of solutions to the

equation (1.2). (This class of solutions consists of solutions whose initial data have exponential decay at infinity.)

Theorem 1.2. The following conclusions are true for all v > 0, a > 0and T > 0:
(i) There is C = C(n) > 0 and 0 = 0(n) € (0, 1), depending only on n, so that

g

n o 1-¢'ar
/ lug(z)|*dz < C (1 + T) / lu(, T;up) | do (/ el ug (z)|? dx) (1.4
Rn (aT)™ BE(0) R"

forall uy € Cg°(R™; C).
(ii) There is C 2 C(n) > 0 so that for any 8 > 1 and v € (0,1),

8,8 \FET K 1—y
/ lug(x)]? da < C@(a(f—"{)Tﬁ) </ lu(z, T; ug)|? dx) (/ eoll” g ()| dz) , (1.5)
R7 Be(0) R7

Sforall vy € Cg°(R™; C).

o(s) — . Then for each v € (0,1), there is no

(iii) Let a(s), s € RY, be an increasing function with lim_, o, =

positive constant C' so that

¥
/ luo(z)]? dz < C </B‘(O) lu(z, T;uo)|? dx) (/ eao‘(lz)|uo(a:)|2da:>

The last main theorem gives another kind of unique continuation inequality at one time point for a class of

1—

-
forall ug € C3°(R"™;C).

solutions to the equation (1.2).

Theorem 1.3. Given z’, 2" € R"™ 71,170 > 0, a > 0and T > 0, the following estimate holds for all uy €
C5°(R™; C):

/ lu(x, T;up)|? da (1.6)
Brz(l‘”)

" 1-6P
< Crp((ar)An) " ( [ u0>|2dx> ([ clunpas)
Brl (ZL”) R”
where C = C(n) > 0,60 = 0(n) € (0,1) and

N ' — 2" |+ 71 + 7o
=1
b * (aT) ANr

(1.7)

Several remarks on Theorem 1.2 and Theorem 1.3 are given in order:



(bl)

(b2)

(b3)

The motivation to build up Theorem 1.2 is as follows: According to Remark (a3) after Theorem 1.1, one
cannot recover a solution by observing it at one time point and outside of a ball. Hence, it should be inter-
esting to ask what we can expect by observing solutions at one time point and outside of a ball. Theorem 1.2

gives an answer to the above question.

The motivation to present Theorem 1.3 is as follows: We will see that (1.4) does not hold when BS(0)
is replaced by B,.(0) (see (c) of Remark 4.2). Thus, it could be interesting to ask what we can expect by

observing solutions at one time point and in a ball. Theorem 1.3 gives an answer to such question.

The inequalities (1.4) and (1.6) are two kinds of unique continuation inequalities at one point in time. From

(1.4), one can easily see that

alz|

e 2 up(x) € L*(R™;C) and u(x, T;up) = 0 over BE(0) = u(z,t;up) = 0 over R™ x [0, 00).

From (1.6), one can easily check that

alz|

e % ug(z) € L*(R™;C) and u(z,T;up) =0 over B, (2') = u(x,t;ug) =0 over R™ x [0, 00).

(Indeed, the left hand side of the above, together with (1.6), indicates that for each 2’/ € R™ and each 75 > 0,
u(+, T;up) = 0 over By, (x"). Then by the arbitrariness of '’ and r, we see that u(z, T; ug) = 0 over R™.

This leads to that u(z, t; up) = 0 over R” x [0, 00).)

From (1.6), we can also have that

ug =0 over By, (z") and u(x, T;uo) =0 over By (z') = u(x,t;ug) =0 over R™ x [0,00).

The inequalities (1.4) and (1.6) can be explained from the following two perspectives:

Perspective One: The integral on the left hand side of (1.4) (or (1.6)) is treated as a recover term, while on
the right hand side of (1.4) (or (1.6)), the integral over BZ(0) (or B, (x’)) is regarded as an observation term
and the integral over the whole space R" is viewed as a prior term which provides some prior information
on initial data ahead of observations. The inequality (1.4) (or (1.6)) can be explained in the following way:
If one knows in advance that the initial datum of a solution has an exponential decay at infinity, then by
observing this solution at one point in time and outside of a ball (or inside of a ball), one can estimate the
recover term, which says, in plain language, that one can recover this solution (or this solution over B,., (z")

at time 7).

Perspective Two: The inequality (1.4) is equivalent to that 3C' > 0 and € (0,1) s.t. Vr, a, T > 0 and
>0,

,],.TL

/ lug(x)|? dz < C <1 + W) (51_9_1_‘” |u(, T;uo)|* do + 5/ el ug (z)|? d:c)
" B;(0) "

for all uy € C§°(R™; C). Thus, the inequality (1.4) can be understood as follows: Through observing a

solution at one point in time and outside of a ball, we can approximately recover this solution, with the error:

r alz| 2
C (1 + (aT)") E/Rn eMNug(z)|” da.
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Notice that if [, e®!*l|ug(2)[?> = oo, then the error is cc.

The inequality (1.6) is equivalent to that 3C > 0 and 6 € (0,1) s.t. Va', 2" € R™, r1,79 > 0,a, T > 0
ande > 0,

/ lu(z, T;up)|? de
Brz (ZE”)

< Cry((al) Ary) " <51_6p/
B

lu(x, T;up)|? do + 5/
- (CE’) n

e ug () [? da:)

for all uy € C§°(R™; C). Here, p is given by (1.7). Thus, the inequality (1.6) can be understood as follows:
Through observing a solution at one point in time and in a ball, we can approximately recover this solution
over B;.,(z") at time T, with the error:

CrS((aT)/\rl)fns/ el ug(z)[? da.

If [on el |ug(x)|? = oo, then the error is co.

Notice that the recover terms in (1.4) and (1.6) are different. By (1.4), we can recover approximately a

solution over R™ x {0}, while by (1.6), we can recover approximately a solution over B, (z") x {T'}.

(b4) The inequality (1.4) is equivalent to a kind of approximate controllability for the impulse controlled Schrodinger
equation with controls acting at one point in time, while the inequality (1.6) is equivalent to a kind of approx-
imate null controllability for the initial controlled Schrodinger equation with controls acting at one point in

time. Notice that the above two kinds of controllability are not standard (see Subsection 5.2).

(b5) Theorem 1.2 is “optimal” from two perspectives. Perspective One: If 5 > 1, then for any > 0, ¢ > 0 and
T >0, thereis C' > 0 and 6 € (0, 1) so that

0 1-0
/ |uO<x>|2dxsc</B (O)|u<x,T;uO>|2dx> (/ e“"*uom?dx) Vg € O (R™;C),

while if 5 € (0, 1), then for any r > 0, ¢ > 0 and T' > 0, there isno C' > 0 or § € (0, 1) so that the above
inequality holds. Perspective Two: For each » > 0, @ > 0 and T" > 0, the following conclusion is not true

(see (¢) of Remark 4.2): 3C' > 0 and 36 € (0, 1) so that

o 1-6
/ lug(z)[*dz < C (/ o |u(zx, T; u0)|2da:> (/ ealxluo(x)de) , Yug € C5°(R™; C).
n BT O R"L

The above optimality implies in some sense that the choice of the weight e®l, € R™ (with a > 0) is
reasonable (to ensure the type of unique continuation estimates build up in (i) and (ii) of Theorem 1.2). In

plain language, other types of weights are not expected.

(b6) The proofs of Theorem 1.2 and Theorem 1.3 are mainly based on [2, Theorem 1.3], which gives an ana-
lytic interpolation inequality (see also [42]), and an estimate for some kind of the Euler’s integral in high

dimension built up in Lemma 2.11 of the current paper and the identity [10, (1.2)] (see (2.6) in our paper).

We next present three consequences of the above main theorems.



Theorem 1.4. Given r > 0, T > 0 and N > 0, the following estimate is true for all ug € L?*(Q;C) with
supp ug C By (0):

rN

/ |u0(x)|2dx < eC(H?)/ |u(x,T;u0)\2dx7 (1.8)
" B;(0)

where C = C(n) > 0.

Theorem 1.5. Given zg, 2’ € R", r > 0, a > 0, b > 0and T > 0, the following inequality holds for all
ug € CP(R™;C) and e € (0,1):

/ e =Nz, T; up) |? da (1.9)
_q1__Cb—l
< C(xo,x’,r,a,b, T) (E/ ealm“uo(x)|2dx+€e€ o / |U(Z’,T7 UO)de> )
" BT(IO)

where

_ -1
C(anml,T,a,b7T)ﬁexp{c[1+|:r0 LE|+1‘+ :|}7

(aT) AT
with C = C(n) > 0.

Theorem 1.6. Given xo € R™, r > 0, a > 0and T > 0, the following estimate is true for all ug € C§°(R™; C)
and e € (0,1):

/nmdwﬁdx (1.10)

=2
< C(=zg,r,a,T) <s(/ e ug () 2dx + ||uo|\§1n+3(Rn;c)) + g€’ / lu(z, T;up) |? da:) ,
Rn BT((E())

where

|zg|+r+1
C(zo,7,a,T) = 1+ T)2n+6 exp {ClJr aTyAr } ,
with C 2 C(n) > 0.
Two notes on Theorem 1.4-Theorem 1.6 are as follows:

(c1) The inequalities in Theorem 1.4-Theorem 1.6 are different kinds of unique continuation at one time point
for the Schrodinger equation. They correspond to different kinds of controllability which are not standard

controllability (see Subsection 5.3).

(c2) Theorem 1.4 is a direct consequence of the conclusion (i) in Theorem 1.2. Theorem 1.5 is a consequence
of Theorem 1.3. Theorem 1.6 is based on Theorem 1.3, as well as a regularity propagation property for the

Schrodinger equation (presented in Lemma 3.2 of this paper).

The main novelties of this paper are as follows: (a) We build up observability estimate at two points in time for
the Schrodinger equation in R”™. (b) We present several unique continuation (or observability) inequalities at one

point in time for the Schrodinger equation in R™. These inequalities correspond to different kinds of controllability.
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(c) We find an equivalence between the observability at two different points in time and the uncertainty principle
built up in [21] (see Lemma 2.3).

It should be interesting to extend our results to the following equations: (a) Schrodinger equations with nonzero
potentials. (b) Homogeneous Schrodinger equations on a bounded domain. Unfortunately, we are not able to extend
our results to the above cases. Let us explain the reasons. Our methods rely heavily on an identity (see (2.6)). This
identity holds for the free Schrédinger equation in R™. For the case that either R™ is replaced by a bounded domain
or the Schrodinger equation has a nonzero potential, we are not able to find a suitable substitute of (2.6). The
next question could also be interesting. Can we extend our results to the case that R"™ is replaced by R’} (where
R" £ {(21,...,2,) € R" : 2, > 0})? It might be done by symmetrizing initial data in L*(R" ; C).

For observability and unique continuation inequalities of Schrédinger equations, we would like to mention
[5,7,9, 10, 11, 12, 13, 14, 15, 19, 20, 25, 26, 28, 30, 38, 44, 45] and the references therein. For the uncertainty
principle, we refer the readers to [18, 21, 23, 31, 39] and the references therein. We think of that the uncertainty
principle built up in some of these papers may be used to get some observability estimates for Schrodinger equa-
tions. For interpolation inequalities of heat equations, we would like to mention [3, 16, 17, 33, 34, 35, 43] and the
references therein.

The rest of the paper is organized as follows: Section 2 proves Theorem 1.1-Theorem 1.3. Section 3 proves
Theorem 1.4-Theorem 1.6. Section 4 provides some further comments on the main results. Section 5 presents

applications of Theorem 1.1-Theorem 1.6 to the controllability for the Schrodinger equation.

2 Proofs of the main results

This section is devoted to proving Theorem 1.1-Theorem 1.3.

2.1 Proof of Theorem 1.1

In this subsection, we will prove Theorem 1.1. We first introduce in Theorem 2.1 the uncertainty principle built up
in [21], then show in Lemma 2.3 the equivalence between the uncertainty principle and the observability at two

points in time, finally give the proof of Theorem 1.1.
Theorem 2.1. Given subsets S, ¥ C R, with |S| < co and |Z| < oo, there is a positive constant
C(n,S,x) A Cecmin{lsllz\7|S|1/"Lw(2)7|2\1/"W(S)}’ 2.1)

with C = C(n), so that for each f € L*(R";C),

/|f<x>2dxsc<n,s,z>(/ (@) da + / |f<5>|2dg>.
Ry R7\S RZ\E

Here, w(S) (or w(X)) denotes the mean width of S (or X).

Remark 2.2. For the detailed definition of w(S) (the mean width of S), we refer the readers to [21]. Here, we
would like to mention what follows: First, when S is an open bounded subset of R™, w(.S) < oo; Second, when S

is a ball in R™, w(S) is the diameter of the ball.



Lemma 2.3. Let A and B be two measurable subsets of R™. Then the following propositions are equivalent:

(i) There exists a positive constant C1(n, A, B) so that for each f € L*(R";C),

/R; [f(@)?dz < Ci(n, A, B) (/A|f(x)2dx—|—/3|f(§)|2dg)_

(ii) There exists a positive constant Cy (n, A, B) so that for each T > 0 and each ug € L*(R™;C),

/ lug(z)* dz < C’2(7L,A,B)(/A\uo(x)\2dgg+/

2TB

|u(z, T;uo)|? dx).

2.2)

(2.3)

Furthermore, when one of the above two propositions holds, the constants C1(n, A, B) and Ca(n, A, B) can

be chosen as the same number.

Proof. Divide the proof into the following two steps:

Step 1. To show that (i)=>(ii)
Suppose that (i) is true for Cy (n, A, B). We first claim that for all T > 0 and ug € L?(R"; C),

JRZER™

< ainan) ([ l@Pars g [ e /)R ).

2.4)

Indeed, for arbitrarily fixed T > 0 and ug € L?(R";C), we define a function ug(-) over R™ in the following

manner:

2 ei\m|2/4T

Uo(z) uo(z), z € R™.

It is clear that g € L?(R";C). Then by (i), we have (2.2), with f = @y, i.e.,

/Rn [ig(z)?dz < Ci(n,A,B) (Aa(](x)2dx+/}3|a(m)2dw>,

This, along with (2.5), leads to (2.4).
We next notice from [10, (1.2)] that for all T > 0 and ug € L?(R";C),

(2T 2e= 1P 14T 4y (0 T i) = ei€1%/4T 0 (€ (2/2T), = € R™.

Then from (2.4) and (2.6), it follows that

/Rn [wo(@)*de < Ci(n, A, B) (/A Juo ()| da + /2TB|u(m,T;UO)|2d$>.

Hence, the conclusion (ii) is true, and C(n, A, B) can be taken as C1 (n, 4, B).

Step 2. To prove that (ii)=>(i)
Suppose that (ii) is true for C2(n, A, B). Arbitrarily fix f € L*(R"; C). Define a function u ¢ by

ug(z) = efil"”‘Q/zf(x), x € R™.
From (2.7) and (2.6) (where ug = uy and T' = 1/2), it follows that

F(€) = el 2up(@)(€) = ()2 2, 1/2;uy), € € R™.

(2.5)

(2.6)

Q2.7)



10 Gengsheng Wang, Ming Wang, Yubiao Zhang

This, along with (2.7) and (2.3) (where 1o = uy and T' = 1/2), yields that

[ s@Pdas= [ juo)

IN

Co(n, A, B) (/A |uf(x)|2dx+/3|u(x,1/2;uf)|2dx)
Catm 4.8 ( [ 1P a+ [ (i@ ac).

IN

Hence, the conclusion (i) is true and Cy (n, A, B) can be taken as Cz(n, A, B).

Finally, from Step 1 - Step 2, we find that when one of (i) and (ii) is true, the constants C;(n, A, B) and

Cy(n, A, B) can be chosen as the same positive number. This ends the proof of this lemma.

O
We now use Theorem 2.1 and Lemma 2.3 to prove Theorem 1.1.
Proof of Theorem 1.1. Letz', '/ € R™, ry, ro > 0and T > S > 0. Define
A =By («') and B = By, (z"). (2.8)

By Theorem 2.1, we have (2.2), where

BC

B
(A, B) isreplaced by (A, m) and Ci(n, A, B) isreplaced by C(n,AC’ m)’
with C(n, -, -) given by (2.1). Thus we can apply Lemma 2.3 to get (2.3), where
(A, B) isreplaced by (A L) and Cy(n, A, B) isreplaced by C(n,A° L)
i ,Z(T_S) ) ) ) ,Z(T_S)

The latter, together with (2.1) and (2.8), indicates that there exists C' > 0 (depending only on n) so that for each
Ug € LQ(Rn;C),

BC
/ Jug ()] dar < C(”a AS, ﬁ) (/ |uo(z)[* da + / u(z, T = S;uo)[* dl’) o (29
n ( - ) By, (z") Bz, (z'")

where

1 1
C(’[’L Ac Bc ) o CeCmin{wnr?wnrgm,w# TszﬁWJ# 7‘2”‘1%
’ ) -
2(T—-295)

1

1
} < CelwrmraT—s  (2.10)

with w,, the volume of the unit ball in R™.

Finally, by (2.9) and (2.10), we obtain that

1
/ lu(z, S;up)|? da < CeCd mrarts (/

B, (a)

lu(z, S; ug)|? dz + /

|u(z, T;uo)|? dx).
By, (o)

Because of the conservation law of the Schrodinger equation, the above leads to the inequality in Theorem 1.1.
This ends the proof of this theorem.
O



2.2 Preliminaries on Theorem 1.2 and Theorem 1.3

11

In the proofs of Theorem 1.2 and Theorem 1.3, an interpolation inequality plays a key role. This inequality will be

presented in Lemma 2.5. To prove Lemma 2.5, we need the following Lemma 2.4:

Lemma 2.4. There exists an absolute constant C' so that for each a > 0 and € N™,

1/2 n/2 18]
(Loetemeas) == ()2 ()
R a a

Proof. First, we observe that forall @ > 0 and 8 = (84,...,5,) € N,

/|§25|e’“|5|d§ < /|€26|67a(2?:1\&\/n)d5
R R
=, [ el

oo
= H?:12/ r2Big=ar/m qp
0

2B;+1 [°
- 2 (ﬁ) / 1281t 4t
a 0

n\ 218l+n
— o (7) e, T(28; + 1)
a

= o (O o

a

where I'() denotes the Euler’s integral of the second kind or the Gamma function.

We next claim that there is an absolute constant C' > 0 so that
V(20)! < alC* forall a € NT.
In fact, using the Stirling’s approximation for factorials
In(n!) =nlnn —n+O(lnn), Vn € NT,

we see that for all « € N,

In /(20)! %(204 In(2a) — 2a + O( ln(2a)))

= Inal+aln2+ O(lna).
Thus, there exists an absolute constant C'; > 1 so that
V(2a)! <expllnal + alnCy] = alC{ forall a € NT,

which leads to (2.13).

Finally, (2.11) follows from (2.12) and (2.13) at once. This ends the proof of this lemma.

2.11)

(2.12)

(2.13)

O

We now present an interpolation estimate for L2-functions whose Fourier transforms have compact supports.
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Lemma 2.5. Given x', 2" € R™, r1, 1y > 0 and a > 0, there exist two constants C 2 C(n) > 0and 6 2 0(n) €
(0,1) so that for each f € L*(R";C), with f € C5°(R";C),

or 1-0P
/ |f(2)? de < Cry(a™ + ") </ If(x)IQdfC> (/ |f(&)Pelt] d£> ;214
By (3') By, (27) Ry

where

A

payy T At

a AT

Proof. The proof is divided into two steps.

Step 1. To show that there is C = C(n) > 0 and 6 = 6(n) € (0,1) so that (2.14), with a = 1, holds for all
o, " € R > 0,79 > 0and f € L2(R";C), with f € C5°(R";C)

Arbitrarily fix 2/, 2" € R, 1 > 0,75 > 0and f € L2(R™; C), with f € Cg°(R"™; C). We first claim that there is

an absolute constant C' > 1 so that

102 £l e mny < (2m) 7% (20)™/%(Cn) |“a'\//n (€)[2el€l d¢ forall a € N™. (2.15)

In fact, since f € C§°(R™; C), we see that f is analytic and for each multi-index oo € N,
02 (@) = (2m) ¥ [ "S(ie) (e g, w e B
.
From the above equality and the Holder inequality, we see that for each multi-index a € N,

107 fll Lo mny < (27) 3\// |g2e| e~ |€|d§\// (€)|2elél de.

This, along with Lemma 2.4, leads to (2.15).

We next claim that there is C; = C1(n) > 0and ; £ 6;(n) € (0, 1) (depending only on n) so that

01

0, 2K
/ F@)? dz < war (Crrg™? 4 1) (M) 2% (/ |f(x)2dx> , 2.16)
By, (') By, (z')
where
n/2 -1

e (Z \/ [ ii@pesag, g2 CHAT o @17)

(with C' given by (2.15)) and
P |x —m”“"rl —|—7”2 (2.18)

To

Let M and ry be given by (2.17). From (2.15), we see that

(o4 a! /
|0z f(z)] < Mw» T € Byyy (7).

Then we can apply [2, Theorem 1.3] where R = 2r (see also [42]) to find that

01

Hf”L‘X’(Bzro(w’)) = CiMkel (wrlL/2|BT‘o(x/)|71||fHL1(BTO(x/))) )
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for some C] £ O (n) > 0 and §; = 0, (n) € (0, 1), depending only on n. Since ry < 71 (see (2.17)), the above
inequality, along with the Holder inequality, yields that

’

/ ‘91
C1M1791 (W}L/2|BT‘O (:[;/)|71/2Hf||L2(BTO (x’)))

IN

[ f Lo (Bayy (21))

01

A (ra”/QIIfHL%Bn (1./))) . (2.19)

IN

Write D;(z) for the closed disk in the complex plane, centered at z and of radius /. It is clear that
D,-D((k + 1)7“0) C Dy, (k"l‘o), k=1,2,.... (2.20)
Arbitrarily fix 7 € S"~!. Define a function g over the real line in the following manner:

g(s) = %f(m’ + s7), s € R. (2.21)

From (2.21) and (2.15), one can easily check that g can be extended to be an analytic function over
Qo 2{r+iyeC : z,y€R, |y| <5rp} (2.22)
and that the extension, still denoted by g, has the property:

19/l (02,) < 1- (2.23)

By (2.21), (2.22) and (2.23), we see that the function z +— g¢(4rpz) is analytic over D1(0) and verifies that
SUp..¢p, (0)9(4r02)| < 1. Then we can apply [2, Lemma 3.2] (to the above function) to find that

sup  |g(4roz)| < Cy  sup  |g(droa)|® (2.24)
2€D;/2(0) z€R, [2|<1/5

for some C% = C4(n) > 0and 6, = 05(n) € (0,1), depending only on n. Since ry < 71 (see (2.17)), by (2.24)
and (2.21), we obtain that
1 %
ol a0 < G (371 o)

This, along with (2.19), yields that

0’0,
0, —ol0,n/2 [ 1 .
1l e (Do 03) < CHCE 27 102" <M||fL2(BT1<a:/>>> : (2.25)

Meanwhile, since g is analytic over €2,,,, we can apply the Hadamard three-circle theorem (see for instance [2,

Theorem 3.1]) to get that foreach k = 1,2,.. .,

1/2 1/2 1/2
||g||L°°(D27-O(km)) < ||g||Loo(Dr0(k”r0))||g||LOO(D4r0(kTO)) < HgHL@C(DTO(kro))' (2.26)

(Here, we used (2.23).) By (2.26) and (2.20), we see that foreach k = 1,2, ...,

1/2
191l Lo (D, (k1)) < NGl Lo0 (Do (hr0)) < ||g||L/°°(Dro(k7’0))’

from which, it follows that foreach k = 1,2,...,

1 (l)k
||9||L°°(Dr0((k+1)ro)) < HgHzM(Dm(kTo)) <-- < HgHLQ‘X’(DrO(To))'
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This, along with (2.18) and (2.23), yields that
||9||L°°(u1§k§qDT0(krg)) = lilipq gl (Do (k1)) = Sup ||9||Loo(D (o))
1yq—1 LK
. ) 2
= o ||9||L°°(Dm<m>> < ”g”L‘x’(Dro(m))’
where q is the integer so that
qro > |2’ —2"|+r1+r2 > (¢g—Dro
Because it follows by (2.28) that
[0, |3;‘/ — .%‘Hl +7r + TQ] C Ui<k<qDry (ki?“o) and D, (7‘0) C Day, (O)7
we see from (2.27) that for all s € [0, |2 — @] + 11 + 7],
(5" (3"
lg(s)] < ||gHL°°(U1Sk§quU(k‘T‘g)) < ”g”L“’(DTO(ro)) < ||9||L°°(D2,,.0(0))'

From (2.21), (2.29) and (2.25), we find that for all s € [0, |2/ — 2| + r1 + 73],

|f(2' + sv)| = Mlg(s)| < M”gHLoo(Dzr 0))

79 voyny2 [ 1 o)
M |cien Ml\flle(Bﬁ(z'))

9192

(Bvl(fr )’

IN

/ /Qé 7919;7’1/2
(0201 To

Since the above inequality holds for all ¥ € S"~ ! and s € [O, |a" — 2" |+ 1 + 7"2] , we see that

9/

/ 9
9 0n/2 —
sup P < (C401 g ) T N o

|le—a’|<|z'—a'|+r1+7r2

Because g < 1 (see (2.17)), it follows from the above that

9/

0
0, — _
sup F@ < (GO ) MR, L)

lz—z/|<|z'—a'"|+ri+7rse

Since B, (2") C Bjg/—3/7|4r,+r, (*'), the above yields that

[ @R < e s )
ro x//

|le—a!|<|z'—a'|+r1+r2

201 0%

W Ty (C'QC 24 1) Mt e )||fHL2(B ("))’

IN

from which, (2.16) follows at once.

Finally, by (2.17), we see that

Cn)~!
M2 [l oy and 7o > 5) (1Am).

(2.27)

(2.28)

(2.29)
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These, combined with (2.16) and (2.18), yield that

/ (@) da
Brz(m”)

£ 1228, @y
< wurg (14 C)*(5Cn)" (L A1) ™2 + 1207 <J\(pl( )

||f||%2(3r1<m,>)>'*2

IN

(2.30)

4wn (1 + C2(5CR) " ry (ry™ + 1) M? ( e

where

P .
|2/ =2 |47y +ro I it b s )

1N\ o 1 5Cn TAT,
a 26, <2> and a2 £ min< 6, <2>

From (2.30) and (2.17), we see that f satisfies (2.14), with a = 1. This proves the conclusion in Step 1.

Step 2. To show that there is C = C(n) > 0 and 6 £ 0(n) € (0,1) so that (2.14), with a > 0, holds for all
2, 2" €R?, ry > 0,79 > 0and f € L?*(R™; C), with fe C§°(R™;C)
Arbitrarily fix 2/, 2 € R", 71 > 0,75 > 0,a > 0 and f € L*(R"; C), with f € C§°(R™; C). Define a function
g by

It is clear that
g€ L*(R™C) and §(€) =a™ % f(£/a), € € R™.

Since f € C§°(R™; C), the above implies that § € C5°(R"; C). Thus, we can use the conclusion in Step 1 to see

that there is C' > 0 and 6 € (0, 1), depending only on 7, so that

[ P
3%2(1 )
or’

1—67'
<@+ L lo@P s (/ng@»?e'ﬁ'ds) e

3

where
' e
+2+% _

/ "
—x [+t
/:1 a a =1 |"1j $| )
p + A + aAry

From (2.31), we find that

[ @pa= [ g
By (') Bra (%)

a

5

’ ’

or 1—@P
< Cry(a™+r") (/B " |f(x)|2dx> </R | f(€)[2ek] d§> )

This proves the conclusion in Step 2 and completes the proof of this lemma.

n
3
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Two consequences of Lemma 2.5 will be given in order. The first one (Corollary 2.6) is another interpolation
estimate for L2-functions whose Fourier transforms have compact supports, while the second one (Corollary 2.7)

is a kind of spectral inequality. (The name of spectral inequality in R™ arose from [37], see [37, Theorem 3.1].)

Corollary 2.6. There exist two constants C = C(n) > 0 and 0 = 6(n) € (0,1) so that for eachr > 0, a > 0 and
each f € L*(R";C), with f € C5°(R™;C),

1+

/ <o (1) (/Bg(o) |f<z>|2dz>9 a (/

Proof. Arbitrarily fix r > 0,a > 0 and f € L2(R™;C), with f € C5°(R™; C). First of all, we claim that there
exist two constants C; = Cy(n) > 0and 6; = 0;(n) € (0,1) so that

1—p'ta
|F(€)[2el¢! dE) . (2.32)

n
3

14+7/a 1_91-”/(1,

2 ” 200 ) (e [2alel
»/B,.(O) |f(2)]*de < Cy (1+ a”> </B,€(0) |f(x)] da:) </R lf(&)]%e dg) . (2.33)

Indeed, for arbitrarily fixed ¥ € S™~1, we have that B,.(2r¢) C B¢(0). Then according to Lemma 2.5, where
(.I/, .1?”, 1, 7“2) = (2’/“17, 0,7, 7”), there is C1 £ Cn(n) > 0 and 0 £ 911(71) S (0, 1) so that

n
3

/ |f(z)]* dz (2.34)
B,.(0)
o ol
< Cur(a™"+r") </ If(x)Ide> (/ |f(€)26“'5'd§>
B (2r7) ?
LR 1l ars
< Cur(a™"+r7") (/ If(w)Ide> (/ |f(£)|26“5d§>
Be(0) RY
Since
St ad [ (f@)Pdes [ f@Peta
anr a r B2(0) Ry
we find from (2.34) that
1+G/4/(7‘
Jpeoy [f@)Pda .
[ @l < ety |20 T JRLGIREET
B (0) ng |f(§)| ealél d¢ z
5(14L)
Jgeq 1 F(@)2da | .
< On(rma+1) 2O [ 1f©peeag,
Sy 1F(©)[2er1€l ag :
which leads to (2.33).
Next, since

F(©)2de < / F(e)2e0lel ag,

R

2 2 o
/Bg@)'f(z)' dxg/Rg f(2)] dxf/R
91+7‘/a
IR TE ( / f<x>|2dx)
#(0) 2 (0)

1
r

n
&
we have that

1—6} /e

( / NGRE df) ,
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which, together with (2.33), leads to (2.32). this ends the proof of this corollary.

Corollary 2.7. There exists a positive constant C' = C(n) so that for eachr > 0 and N > 0,
[ r@pas < et [P 235)
" B(0)

forall f € L2(R™; C) with supp f C By (0).
Proof. The proof is divided into the following two steps:

Step 1. To show that there is C = C(n) > 0 so that (2.35), withr = 1, holds for all N > 0 and f € L*(R™;C),
with supp f € B (0)

Arbitrarily fix N > 0 and then fix f € L2(R™; C), with supp f C By (0). By a standard density argument, we
can apply Corollary 2.6 to verify that there is C; = Cy(n) > 0and 6; = 6;(n) € (0,1) (only depending on n) so

/ s < ( / Y |f<x>|2dx> " ( /

Indeed, since f(£)elél/2 € L2(R™; C), we can choose {g} € C°(R™; C), with supp gx C By (0), so that

that

1—-6,
|f(€))2el! df) . (2.36)

n
3

lim [ |ge(&) — F()el/?2de = 0. (2.37)

k—o0 RE
Meanwhile, since supp gx C By (0) for all k € NT, we can find {hy} C C§°(R"; C), with supp hx, C Bx+1(0),

so that

1
/ |hi (&) — gr(€)e &2 12 d¢ < Ee_k_l foreach k € N*.
]Rn

3

This implies that for each k € N*,

/R |hie(€)el$1/2 — gi(€)|2 d¢ = 1 (€) = gr(§)e 2 Peléldg < 1/k,

e Bi+1(0)

which, together with (2.37), yields that

lim [ [he(€) — F(€)%el A = 0. (2.38)

Let {f1} € L?*(R"™;C) so that
fr(€) = hp(€), € €R™ foreach k€ NT.

Then by (2.38), we find that

{fi} cCE®™0), lim [ |fu(6) = f(©)PTde =0 and lim | fi — fllz2(@nic) = 0.

k—o0 Rg

From these, we can apply Corollary 2.6 (where a = 1 and r = 1) to get (2.36).
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Since supp f C By (0), it follows from (2.36) that

01
2 2 (1-6,)N
/ @) de < Cy (/Bm)'f(x) dx> e (/

Since the Fourier transform is an isometry, we obtain from the above inequality that

/|f<x>|2dxs05/916“*9”“1 / |F(@)? dw = eltnCr+1=00N1/0: / |F(@)]? dz.
R?

B£(0) 1(0)

1—-64
|f(€)2d§> :

n
3

Hence, (2.35), with » = 1, is true.

Step 2. To show that there is C = C(n) > 0 so that (2.35), with v > 0, holds for all N > 0 and f € L?(R™;C),
with supp f € By (0)

For this purpose, arbitrarily fix N > 0 and r > 0. Then fix f € L2(R™;C) with supp f C By/(0). Define a
function g by

g(a@) =" f(rz), € R", (2.39)
One can easily check that

§(&) = (2m)~v/? /R ) 2 f(rx)e” E do = r V2 f(E)r) forae. £ € R™. (2.40)

Since supp f C By (0), we see from (2.40) that supp § C B,y (0). Thus, according to the conclusion in Step 1,
there is C' 2 C/(n) so that (2.35), with (f,r, N) replaced by (g, 1,7N), is true. That is,

/ g(2)P dx < CO+N) / lg(a)? de.
n B{(0)
This, along with (2.39) and (2.40), yields that

[ iswpar= [ P

< 60(1+TN)/ |g(x)|2 dz = eC(lJrrN) / |f($)|2 dx.
B (0) B;(0)

Hence, (2.35), with » > 0 is true. We end the proof of this corollary.

2.3 Proofs of Theorem 1.2 and Theorem 1.3

We first prove Theorem 1.2.

Proof of Theorem 1.2. Throughout this proof, we arbitrarily fix
r>0,a>0,T>0 and uy € C;°(R™; C).
Define a function f as follows:

flz) 2 eii‘z|2/4Tu(x,T; ug), ¢ € R". (2.41)
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From (2.41) and (2.6), we find that
(24T)"2 f () = l€F/AT uo (€)(2/2T), « € R™.

This yields that for a.e. £ € R",

7O = g [, feeas = G [ iyt
(2(@2?);/2/ " (o) / (TR (T e T d
_ (zji)TT?;Q/Q / T ) ()™ 2T d
= (—2iT)"/2ei‘”;/4Tuo(n)|n:_2T5 = (—21T)"/2e I yy (—2T€). (2.42)

We are going to prove the conclusions (i)-(iii) in the theorem one by one.

We first show the conclusion (i) of Theorem 1.2. By (2.41), we have that

/ |u(x,T;uo)|2dx = / \f(a:)|2 dx.

Then by Corollary 2.6, where a is replaced by 27°a, we find that

0 273

' 9 r" fBC (0) |f ()] de £rey|2.2Talg|
[ e rwpas < o1+ ) PRICELTE / e ag

x

1+ -5

Ta

/ F©)PSTe g,
2

c(1+ - ) Joe(0) /(@) dz
T ) \ Toy IR 8 ag

for some C' 2 C(n) > 0and § 2 6(n) € (0,1) (depending only on n). From this, (2.41) and (2.42), after some

IN

computations, we obtain that

/ |u(z, T} u0)|2dx
R

o't ar 1-9'taT
" 2 2 al¢]
< C <1+ (aT)”> </$(0) |u(z, T; uo)| dl’) </R£ luo(§)["e d€>

The above inequality, together with the conservation law of the Schrodinger equation, leads to (1.4). Hence, the

conclusion (i) of the theorem is true.

We next show the conclusion (ii) of Theorem 1.2. Arbitrarily fix 8 > 1 and v € (0,1). We divide the proof

into the following two steps:
Step 1. To show that there exists C = C(n) so that

- Y 1—v
[ 1t Pz < celaim) ™ ( / |f(:r)|2dx> ( / e“'QTEBIf(§)2d£> (2.43)
n Bg(0) R?

3

Indeed, for an arbitrarily fixed N > 0, we define two functions g; and g- in LQ(R"; C) so that

7 £ XBN(o)f and go £ XBJCV(O)f-
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It is clear that f = gy + go in L?(R™; C). Then by applying Corollary 2.7 to g1, we obtain that

[ @rds < 2 [ ln@pPdee2 [ P

x

IN

QEC(HTN)/ |gl(x)|2dx—|—2/ lg2(2)|? d
Bg(0) R

460(1+TN) /
BE

LeC+TN) / | f(2) ] da + 6C0+N) / 192(2) 2 de, (2.44)
Bg(0) R

n
T

IN

(F@F + loa@)P) do +2 | (o) o

(0)

IN

for some C' > 0, depending only on n. Meanwhile, since the Fourier transform is an isometry, we have that
[ s@pPas = [ 1a©Fd = [ 0 ©Ff©Fd
Rz ¢ Re
—a B S a B
= O [ g (O (€)Y e
R‘!L
€

This, along with (2.44), yields that

J

Since it follows from the Young inequality that

|f(l‘)|2dl‘ < 460(1+TN)/

» F(2)[2 da +660(1+r1v)—a(2TN)ﬁ/ 1762278 e (2.45)
<(0

Re

n
T

CrN = [CT( —’y)a(2T)5)_5}[((1—7)@(2T)'8)%N}

(
H[er(a =) ] + S = aeD)) ]
[(cr)/(aem)P (1 = 7))

IA

(1-

1
B-1

IN

+ (1 7)a(2TN)’,

we get from (2.45) that

IRCRE

T

BB

_1
< GeCJr(m)ﬁ_ (e(lfv)a@TN)ﬁ/ |f(x)‘2dx+efw(2TN)ﬁ/ £ (€)|2e212Tel” dg).
B (0) R

.
Since N was arbitrarily taken from [0, co), the above indicates that for all € (0, 1),
cBB

/ F)Pde < 6° (@) (g—ﬂ—w/ |f(33)|2d33+57/ F©)PeTe ac).
R Be(0) Ry

One can directly check that the above inequality holds for all ¢ > 0. Minimizing it w.r.t. ¢ > 0 leads to (2.43).

Here, we used the inequality:

inf (e—ﬂ—ﬂA n gVB) <2A7B'™ forall A, B> 0.

This ends the proof of Step 1.

Step 2. To prove (1.5)
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From (2.41), (2.43) and (2.42), after some computations, we see that

/|u(x,T;u0)\2dx:/ F(2)]2 do
Ry

R

e Y
ol FEDT ([ ypas) ([
Bg(0) Re

cBrB \FET !
oD ([ e rwras) ([
Bz(0) R

which, along with the conservation law of the Schrodinger equation, leads to (1.5). This ends the proof of the

IN

1—~
ea|2T€‘ﬁ |f(§)‘2 df)

IN

1—y
Jug (€)[2e?lel” df) :

n
(3

conclusion (ii).

(iii) By contradiction, suppose that the conclusion (iii) was not true. Then there would exist #+ > 0, a > 0,
T>0,4¢ (0,1), C' > 0 and an increasing function G(s) defined over [0, c0), with lim,_,, s~ @(s) = 0, so that
for each vg € C§°(R"™; C), the solution of (1.2) satisfies that

Y 1-%
/ |vo(:r)|2d:r§é</ |u(z,T;vo)|2dx> (/ edé‘(l‘”)|v0(x)2dx) . (2.46)
n BS(O) Rn

Arbitrarily fix g € L?(R™; C) with g € C§°(R"; C). Define vy , € C§°(R™; C) in the following manner:

§(6) = (—2AT)"2eTIE ) (—2T¢), € € R™, (2.47)
One can easily check that
g(x) = e_ilx‘2/4fu(x, f; vog), T € R™ (2.48)
Indeed, let f, verify that
folx) = e_i|m|2/4fu(x,f; Vo,g), T € R™ (2.49)

Then by (2.41), (2.42) (where (T, ug) = (f, v0,)) and (2.47), we find that
Fo(€) = (~2T)"2e T g o (—2T¢) = 3(€), € € R,

which implies that f; = g. This, along with (2.49), leads to (2.48).
By (2.48), the conservation law (for the Schrodinger equation), (2.46) and (2.47), we get that

/ g(@)Pde = / fu(, T .92 dar = / o, () ? da

A~ A~ ”y ~ A 1_;\Y
C (/ |u(x,T;v07g)|2dx> </ eaa(m|)|vo,g(a:)|2da:>
B2(0) n
g
¢ ( / |g<a:>|2das> ( /
B(0) R

By this, using a standard density argument, we can show that for each g € L?(R™; C) with supp § compact,

5 1-9
[P < C</B C(O)|g<x>|2dx> (/ ”e@d@“)m(swds) .

3

IN

et @TIED 5 (¢) 2 ds> :

n
3
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Since &(+) is increasing and because the Fourier transform is an isometry, the above yields that that for each N > 1

and each g € L?(R"™; C) with supp g C By (0),

[ @k s < é( Lo g<x>2dx> ( / nemm)a(f)m)

© €

,’?
— Cﬁe(l—fy)d&@fN) / |g(a?)|2 dz /
B2(0) R

Two observations are given in order: First, according to [37, Proposition 3.4], there is Cy > 0 and Ny > 0 so
that for each N > Ny, there is fy € L*(R";C) \ {0} with supp fv C By (0) such that

(CoN / (@) da < / () ? do.
B2(0) Ry

A

c
7

1-4
lg(x)]? dx) . (2.50)

n
x

Second, (2.50) implies that N > 1 and each g € L?(R"; C) with supp g C By (0),

/ lg(x)? dz < CF 77 20N / 9()P? da.
R7 B2(0)

These two observations show that for each N > N,

Al 1=Faaiop
eCON S CgeTaOé(QTN),

from which, it follows that
AC < lim &(2T'N) '

0< —=2 < i =
2(1—4)al ~ N— 2TN

This leads to a contradiction, since lim,_, o s_ld(s) = 0. Hence, the conclusion (iii) is true.

In summary, we finish the proof of this theorem.

We are on the position to prove Theorem 1.3.

Proof of Theorem 1.3. Arbitrarily fix 2/, 7 € R, r1, 70 > 0,a > 0,T > 0 and ug € C§°(R™; C). Define a

function f as follows:
f(z) = e_i‘xlz/‘lTu(x,T; up), * € R™. (2.51)
By the same way to get (2.42), we obtain that
F(&) = (~2T)"2e T g (—2T€), € € R™

This, along with (2.51) and Lemma 2.5 (where a is replaced by 2aT’), yields that

/ |u(x, T; u)|? dz =/ |f(2)]? dz
Br, (z) By, (')
e
Clrg((2aT)*n +r1_") (/ |f(x)|2 dx) (/ |f(é~)|262aT\§\ d§>
By, (z') .
1-671

o1
Clrg((an" + 7"1_") (/B - |u(z, T} uo)\Z dx) </R |u0(x)|2ea‘ml da;) (2.52)

1-671

IN

IN
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for some C; = C;(n) > 0and 6; £ 0;(n) € (0,1), where

T—a"| 1+
29 2" — 2"
P + (2aT) Ny

Since

(aT)_1 +Tf1 < 2((aT) /\rl)_l, (aT)Ary < (2aT) A7y and 607 € (0,1),

we get from (2.52) that

[ TP
Br2 (I”)

9[*1
Is (@) |u(x, T;up) [ dz\
< Clrg((aT)—1+r1—1)n/ |u0($)|26alrdx< fl a0 (@) 2] dz

.-

9[*2

- fB.(m,)|u(z,T;uo)|2dx !

< o (@)an) " [ '“O@'?ea'w( o (o) Petel dz )
.

with
|e" — 2" |+ r1 + 1o
(2aT) N1y

This implies that (1.6) is true. We end the proof of this theorem.

|&" — " | +r1 + 1
(aT)Ar

B 21+ and fBo =1+

3 Proofs of Theorem 1.4-Theorem 1.6

Theorem 1.4 is indeed a direct consequence of Theorem 1.2, while the proofs of both Theorem 1.5 and Theorem

1.6 rely on Theorem 1.3 and other properties. We begin with the proof of Theorem 1.4.

Proof of Theorem 1.4. Arbitrarily fix r > 0, T > 0, N > 0 and vy € L?*(R";C) with supp ug C By(0). By a
standard density argument, we can apply (i) of Theorem 1.2 (where a = ) to get that for some C 2 C(n) >0

and 6 = 6(n) € (0,1) (depending only on n),

02 1_p2
/ uo<x>|2dxgzc</ |u<x,T;uo>|2dx) (/ e%'f|uo<x>|2dw) G0
n Be(0) R7

At the same time, since supp uo C By (0), we have that

/e%‘$||uo(m)|2dm§e%N/ luo(z)|* d.
n ]R'n.

This, along with (3.1), yields that

02,
/ Juo(2)? da < (20)77 e 5 F / o lu(z, T; up)|* da.

r

Hence, (1.8) stands. This ends the proof of Theorem 1.4.
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The following lemma will be used in the proofs of Theorem 1.5 and Theorem 1.6.

Lemma 3.1. Let z € (0,1) and 0 € (0, 1). Then the following conclusions are true:
(i) For each a > 0,

oo N a a
6 —_—a
F<7> 1 \1;19\7
> 2l hs < g \Tingy )1 127!

k=1
where T'(-) denotes the Euler’s integral of the second kind.
(ii) For each e > 0 and o > 0,

oo
. 4 C1g- _
Zmekk‘_l_s < ga5651n5+5+m o (In(a|lnz| +¢)) :
Proof. (i) Since 0 € (0, 1), it follows that
Sty [T

Next, because = € (0, 1), we find that

k+1 0o
07 e=alm=1) 47 = e“/ 2 e dr.
1

s

29 = exp[_eln|lnx|+rln0}.

Then, by changing variable s = In | In z| + 7 In 6 and noticing that € (0, 1), we find that

o In|lnz|+In 6 1
T s a —
xf) e~ dr = e—€ e“ne‘(s In|Inx|) ds
1 oo [Ind|
|lna:|_7\1“9\ In|lnz|+In6 o g8
— W eTnd] dS,
n
—o0

from which, it follows that

0o In|lnz|+Ilné
/ 29 e dr ‘]nx| T et / (65)|159\e—ese—s de?
1 |1n9‘ —o0

-2 Inz|0 — 25 o]
In | Tme] | a__q Inz| me a_ 1
— # n\lne\ e—ndn§¥ 77\11;9\ e—ﬁdn.
0 0

[1In 6| [1In 6|
This, along with (3.4), leads to (3.2) and ends the proof of the conclusion (i).
(ii) Since 0 € (0, 1), it follows that

oo

0 1+e k+1 9]
k. _q1_ k+ 1 T _1_— LA
E P E k1+e / 20t EdTSQH“E/ 20 e dr
k=1 k=1 k 1

Next, because = € (0, 1), we see that

o7

2% = exp[—|Inzle™ ™).

Since 6 € (0, 1), the above yields that

oo . In@ .
/ 2 dr = |1n0|5/ e~ Inzle |s|717¢ ds
1 —00

In6 0
[in el e
= |ln0|€/ B Ine *|1¢(—ef)de* = |ln9|€/ e " ‘|1n77\ 1=y
1

— 00 5

~Ldn.

(3.2)

(3.3)

(3.4)

3.5)
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From this, we find that for each N > %,

- 07 _—1 N [1n | 1 1 o0 [In | 1 1
/ 2t Tdr = |1n9|8[/ e 7 |lan|7 "~ d?7+/ e |lnn|m 7T dn}
1 % N

[

< ImofEfe 5 [ fmg e tant [ gl
< [Idf e . [nn] nn+N|nnl ndn

6

[e—‘LN’”‘ (1—=[Im0]*(In N)~) + Ilnels(lnm_a}

1
9
1 _ IInz| € —e
g[e ¥+ |Inf*(In N)~°].

IN

Let a > 0. Taking N = y/a|Inz| 4+ ef~2 in the above inequality leads to that

o) . 11 — [In x| _
/ 2 dr < - [e Velmal+e0=2 4 [In@|°2° (In(a|Inz| + ef~?)) E} (3.6)
1
Since
[1n z| B _oz_l(a| Inz| + ef=2) alef=2

_\/a|ln:r\+e€*2 Vallnz| + ef—2 Va|lnz| + ef—2

—a 'allnz|+ef-2 +a teh

IN

and because
0<f<1 and (Ins)* < afefmEmeta s forall s > 1,
we find from (3.6) that

<. 1 - - —1o9— —€
/ e dr < = [670‘ "Vellnzl+ed=2+a" e | |In 6~ '°2° (In(a| Inz| + ef~?)) ]
1 £

1 —1y- - 1 _
< 7{0[5651n576+eo¢ 0 12E(ln(a|lnx\+6072)) 5+a5651n675+a % 126(111(04“11.%‘4*6972)) 5:|
e
2 . .
< 7a5€51n575+ea tg 12€(ln(a|lnx|+e)) )
e

This, together with (3.5), leads to (3.3), and ends the proof of the conclusion (ii).

In summary, we finish the proof of this lemma.

We are now on the position to prove Theorem 1.5.

Proof of Theorem 1.5. Let g, z’ € R*,r > 0,a > 0,b > 0and T > 0. It suffices to show the desired inequality
(1.9) for any ug € C°(R™;C) \ {0} and € € (0, 1).
For this purpose, we arbitrarily fix ug € C5°(R™; C) \ {0}. Define the following three numbers

e [ e B2 [ e T s B2 [ e g T
n r»(Zo

n

The proof is divided into the following several steps.

Step 1. To prove that there exist two positive constants Cy = Cy(n) and Co = Cy(n) so that

A
Rb S C3(x0,$/,7‘,a,b7 T)Q(Fi)Ala (37)
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where
Cs(z0,2',7,a,b,T) £ 14 C1T(Cob((aT) Ar)) exp [b~ ((aT) Ar) "+ b(|lzo — 2| +1)] (3.8
and

g(n) £ (Iny)~@PUaTIND) 1y 51 (3.9)

In fact, by Theorem 1.3 (with (z’, 2", 71, 72) being replaced by (¢, 2’, 7, 2kb~1)), with k € NT, and the definitions
of A, and By, we see that for each k € N7,

- -1,
14 lzo =2 I+2kb " T4y

—n/Bi\* G@TIAT
/ fu(, Tyuo) P da < 276"k ((aT) A7) ™" () A,
Bawy- ! A1
211 (@)

for some C' > 0 and 6 € (0,1) depending only on n. This, along with the fact that k& < new* forall k € NT,

yields that
/ e U=z, T up) |2 da < Z/ e 2D |y (z, T up)|? da

n i1 J2(k—1)b- 1 <|o—a'|<2kb—1

oo 14 lzo=erl42kb T 4 71(/‘;)Qf,b.4+r
ny—n -n 2 —k & 0 ‘ '
< C@2n)"b " ((aT) A7) e Ze " A;. (3.10)
1

k=1

Meanwhile, since B; < A; (which follows from the definitions of A; and Bj, the conservation law for the

Schrodinger equation and the fact that ug # 0), we can apply (i) of Lemma 3.1, where

o — ! .
1y lzo—a v

0 (aT)Ar 5
(a,2,0) = (1. (B1/41) o7 ),
to get that
00 91+“ﬂ1_‘1‘(/‘;)2—’m _ b((aT)Ar)
anr zg—a’|+r 2[In
Z e*k(&) < eb((aT) A T)F b((aT) Ar) gLzl I &| g
P Ay 2| Iné| 2| In 6| A,

This, together with (3.10) and the facts that 2”1 < (n — 1)!e® for all z > 0 and that (aT) A r < r, indicates that

/ e V=22, T; up)|? da

_ b((aT)AT)

_ —n 3b((aT) A7), (b((aT) A T) 1y lzo=alltr By 20 7]
< ny—mn 3 (aTYAT )
< C@n)"b " ((aT)AT) e o] r Y] 0 | In A1| Ay
C(2n)"e? —nt+1 1, e b((aT) A7) Aq\ — St
T ((aT)Ar+|zo—x H—r)l—\ In =2 A
g D@D AT)) e Y] (1 Bl) L
C(2n)"e? - - L b((aT) A ) Ap\ S
C@n)te” b~ (@A T +b(wo—a' [+ p ((2L@D) AT) N o AL "
- [In 6| (n—1)te 2| In 6| (nBl) !

This, as well as (3.9), shows (3.7).

Step 2. To show (1.9) for the above-mentioned ug and any ¢ € (0, 1)
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Let C; £ C1(n) and Cy £ Cy(n) be given by Step 1. Since

R SY)
a i
cef < gef

1B
5((@aT)AT)

, when 0 < < and € € (0,1),

it suffices to show that for each ¢ € (0, 1),

—1

1
Ry < Cy(wo,2,7,0,b,T) (EAl e T Bl) , (3.11)

where

bfl o
04(x0,x/,r,a,b,T)Aclexp{Q(cl+c;1+1)(02+1)[1+ + 20 x|+r]}.

(aT)Nr
The proof of (3.11) is organized by two parts.

Part 2.1. To show (3.11) in the case that b < W

First, we claim that for each ¢ € (0, 1),
1
Ry < Cs <5A1 +ees NN B1> : (3.12)

where C3 £ Cs(xg,2',7,a,b,T) is given by (3.8). In fact, for an arbitrarily fix £ > 0, there are only two possi-
bilities: either R, < C3eA; or Ry, > C3eA;. In the first case, (3.12) is obvious. In the second case, we first claim

that

O<e<

b
1. 1
Gui < (3.13)

Indeed, the first and the second inequalities in (3.13) is clear. To prove the last inequality in (3.13), two facts are
given in order: First, we observe from (3.8) that C5 > 1. Second, by the definitions of A; and R, using the

conservation law of the Schrodinger equation, we find that

Rb:/ e_b‘w_$/‘|u(x,T;u0)|2dx§/

These two facts lead to the last inequality in (3.13) at once.

Since b <

lu(z, T; uo) |2z :/ lug () |dx g/ e ug () [2dz = A.
]Rn

n n

-1
W, we see that the function z — ze® 2“7 with its domain (0,1), is decreasing.

This, along with (3.13), indicates that

_ 1 _ 1
Ry ( Ry, )~ T2baTIAN < et 4C2b((aT)A'r').

T3A7 3.14
CSAle (3.14)

[ T
Cob((aT)AT)

Meanwhile, since the function: f(x) = e® , with its domain (0, 00), is decreasing and its inverse is the

function g (given by (3.9)), we get from (3.7) that

Ay Aq Ry

Ry, _C2b((;T)/\r)
B = f(g(E)) < ﬂ) = elTsar) : (3.15)
From (3.15) and (3.14), it follows that

R, A Ry (B )*4021:((5@”)

R, = C Aip <o {— o3k B

b S0 A B S lopa ¢ T !
-1

S 03668 Cob((aT)AT) Bl_
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Since ¢ was arbitrarily taken from (0, 1), the above leads to (3.12) for the case that R;, > CseA;. Hence, (3.12) is
true.

Next, we claim that

_ b=l + |zg — 2| + 7
Ca(wo,z',7,a,b,T) < exp {2(01 Ot [1 A } . (3.16)
To this end, we first observe that for each s € (0, 1],
] 1 o)
I(s) = / e ¥ tdr = / e "t tda +/ e it da
0 0 1
0 ek [e’e)
< =)+ g / e “dx
1 _
= (- g tel<(e—Ds ' +1<2 +1<e™ " (3.17)

Since we are in the case that b < m, it follows from (3.8) and (3.17), with s = C3b((aT) A 1), that

Cs(xg,2’,r,a,0,T) < 1+ eC1e2Cz b7 (aT)Ar) ! exp [b7'((aT) Ar) ™!+ b(|zg — 2’| +7)]
e =2+

< evexp [Cr+ (26, + D0 ((@T) Ar)TH 4+ Cy (aT) At

This leads to (3.16).
Now, by (3.12) and (3.16), we reach the aim of Part 2.1.

Part 2.2. To show (3.11) in the case that b > W
In this case, it follows from the definition of R that R, < R T Then by (3.12) and (3.16) (where b is

Co((@T)Ar

replaced by W), we find that for each ¢ € (0, 1),

T — 1
R, < exp{2<01+051+1>[1+ Ca((e >A(2)T)+A'x: x'”]} (s4s +2 " B1)
-1 —a 1= GohaTIATY
< exp{2(01 +C +D[1+ G+ b +(a§“0) = | ”}} (eAl tees D >Bl) :

from which, we reach the aim of Part 2.2.

In summary, we finish the proof of (3.11), which completes the proof of the theorem.

O
Next, we are going to prove Theorem 1.6. Before it, one lemma will be introduced.
Lemma 3.2. Given k € N, there exists a constant C(k,n) so that for any T > 0 and ug € C§°(R™; C),
/R e fue, T o) do < C(k,m)(1+T)* (nuonéwm + / ) |x|4kuO<x>2dx) .G

Proof. Arbitrarily fix k € N*, T'> 0 and ug € C§°(R™; C). For each x € R", write x = (21, - ,x,). One can
directly check that for each j € {1,...,n}, the operators (z; + 2i(t — T)@Ij)k and i0; + A are commutative.
This yields that for each j € {1,...,n},

(10 + A) (xj + 2i(t — T)@L.j)ku(x, tyug) = (a:j + 2i(t — T)@xj)k(iat + A)u(zx, t;up)
= 0, (z,t) € R" x RT,
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from which, it follows that for each j € {1,...,n},
u(z, t;uy) = (x5 + 2i(t — T)@m].)ku(ac,t; up), (z,t) € R" x R,
where u;j(z) £ (z; — 2iT0,,)*uo(x), « € R". In particular, we have that for each j € {1,...,n},
u(z, Tiuj) = x?u(az,T; up), € R™.

These, along with the conservation law for the Schrédinger equation, yields that for each j € {1,...,n},
/ \x?u(x,T; uo)|2 dz = / |u(z, T} uj)|2 dz
n ]R"’

_ / \uj(m)|2dm:/ \(2; — 20T, )Fuo(x)[? da. (3.19)
RTL n

Next, we claim that there exists C7(k,n) > 0 so that for each j € {1,...,n},
/ (2 — 20T, )Fuo(2) dx < Ci (kyn) (1 + T)*" (|u0||§m(mc) + / 2] o () 2 dx) . (320)
n Rn
For this purpose, we arbitrarily fix j from {1,...,n}. Since the operator (z; — i9,,)" is a polynomial of ; and
amj , with degree 2k, and because
(02, 5] - Op; 5 — 250z, = 1,
the polynomial (z; — i0,, )2k is a linear combination of the following monomials
{x;@ﬁj c0<r+s<2kr, sGN*U{O}}.

By this, we see that

/ () — iy, )Fo(a) dz = / (- i0s,)*0(2), 0(2))y dz
< Gk Y /n\(8;jv(x),x§v(x)>c|dx, (321)

0<r+s<2k

where v is the function defined by
v(r) 2 ug(V2Tx), x € R", (3.22)

and where and through the proof, Cs(k, n) stands for a positive constant (depending only on k, n), which may vary
in different contexts.

From (3.22) and (3.21), we find that

. . x
/n |(z; — QzTaxj)kuo(x)F dz = /n [(z; — 2ZT81j)kv(ﬁ

— (2T)3 / (5 — 0y, *0(x) 2 dz

)|2dx

< G nEDE Y /"|<8;jv(a:),x§v(x)>c\dx

0<r+4s<2k
— Cylkin) Z (2T)2k+;,7-/ (95, uo (@), zjug(2))c| do
0<r+s<2k R™
< Cg(k,n)(l—i-T)Qk Z (/ ‘8§JU0($)|2 d.r—l—/ |x§u0(x)|2 dx)
0<r+s<2k " R
<

ol )1+ TP (oo )+ [l d )
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This leads to (3.20).

Finally, since

|2k:nk(m%+”'

+ 22\ k _
- n) <k 1(x%k+.“+x%k)7x€Rn,

|z
it follows from (3.19) that

n
/ |z %% Ju(z, T; up) |* dz < nF~t Z/ |x§u(x,T;u0)|2 dx
n j=1 R7

< S [ ey - 2010, un()
Jfl R‘H,

This, along with (3.20), leads to (3.18). We end the proof of this lemma.
O

Remark 3.3. Lemma 3.2 gives a quantitative property for solutions of (1.2). This quantitative property is compara-
ble with the following qualitative property for solutions of (1.2): If ug € L?(|z|**dz)NH?* for some k € N*U{0},

then
T2y € L?(|x|*dx) N H?* forall T € RT.
The above-mention qualitative property was given in [30].
We now give the proof of Theorem 1.6.

Proof of Theorem 1.6. Letxg € R™,r > 0,a > 0and T > 0. When uy = 0, (1.10) holds clearly for all € € (0, 1).
We now arbitrarily fix ug € Co(R™; C) \ {0}. Define the following three numbers:

/ Juo (@) Pe®*da + [[uol| 3 ss gric)» Ba é/ |u(z, T; uo)* dz,
n Br(zo)

Ao

Az 2 / lug ()| *!dz.
R

n
3

Step 1. To prove that there exists a constant C £ (n) > 1 so that

A
sup / (14 [z)) "z, Tiup)|Pde < C(zo,7,a,T)§ <2> As, (3.23)
1<n<2 Jrn B,
where the constant C(xg, 7, a,T) is given by
C(zo,r,a0,T) = 1 , (3.24)
and the function § is defined by
1
q £___— p>1 3.25
g9(n) iy re) "2 (3.25)

By the definitions of Ay and As, we see that A3 < Aj. Then by Theorem 1.3 (where (z/, 2", 71, rs) is replaced
by (z0, 0,7, k)) and the definitions of A3 and Bs, we find that when k € NT,

lzgl+k+tr 14 lzaltktr
(aT)Ar Al_g (aT)Ar
3

1+

/ lu(z, T;uo)?dz < CE™((aT) A7) "BS
By

Lo lzol+ktr

—n + aT)Ar
CE"((aT) Ar) "By 7" ALY

|zl +k+T
+ aTyAr

IN
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for some C' > 0 and 6 € (0, 1) depending only on n. The above inequality yields that for each 5 € [1,2],

oo

/ (1+ J2)~"" " u(z, T; uo)[2 dz < Z/ =1 (e, T ) 2 da
n = Je—1<|a|<k

= B, 6" @R
< C((ar)rr)™" Zk*“"(A—z) Ay, (3.26)
k=1

Since ug # 0, by the definitions of A, and Bs, and by the conservation law for the Schrodinger equation, we

obtain that By, < As. Then by (ii) of Lemma 3.1, where

Ly lzolr
o " @DAr |zl +r

1 —1—
79(aT)/\r7/r}’0 (@T)AT ,

(z,0,e,a) = ((BQ/AQ)

we see that for each n € [1, 2],

o ot "“”(g‘qf)';t” 1o lzal4r—1
> k—l—n(@) < Lprn G rinnneo’ DR ! : (3.27)
— A N (1n(\1n§—;|—|—e))77
Therefore, we have that
| lah ™ e, TP o
4C' lwol+r 14 1zoltr—1 A
< — ((aT) A r)inefnfnw,%ﬁ ennntnted " (TAr B2 .
n (In(|In Z2[ +¢))
—np—2-2120 o109 te0” @A A
< 4C(aT)AT) "0 @DAre — 5
In(|In 22| + )
|z +7
< 4ACRle@DA 397272ﬁ e2n 2+2+e0” GO —A2
- In(|In %| +e)
_9 lzgl+r+1 A
< 4Cmle2m2H2(0 et )o T e DAY 2 (3.28)

In(|In %| +e)
(In the first inequality of (3.28), we used (3.26) and (3.27); In the last three inequalities of (3.28), we used the facts
that

—2 AT
)

0 €(0,1) and ((aT)AT)™ < nle@rr < ple?
Since 6 € (0, 1), (3.23) follows from (3.28), as well as (3.24) and (3.25). This ends the proof of Step 1.

Step 2. To show that there exists Co = Cy(n) > 1 so that

Ay

/ |UQ(LL‘)|2 dx < C3<.’L'Q,T,G7T)—7 (329)
" In(In g—z +e)
where
gz
Cs(zo,7,a,T) £ (1+T)*"+0e (3.30)

Choose 1y € {1, 2} so that

n+1+n=0 ( mod2).
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By Lemma 3.2 (where k = W), it follows that
/Rn || 0 | (2, T ug)|* dae < Oy (1 4 T)" im0 (HuOH%nHMO(Rn;C) + /Rn | 2+ 140) |y (2) 2 dx)
for some C'3; > 0 depending only on n. The above inequality yields that

[ el (e TP de < [ 2M R o e, o) do (3.31)
R"’L

n

< 032(1+T)"+1+’70(/ |u(m,T;u0)|2da:+HUOHEHHW(R”;C)—F/ |x|2("+1+"0)\u0(x)\2dx)
be

n

for some C32 > 0 depending only on n. Since
(a|x|)2(”+1+77°) <[2(n+1+ no)]!e“‘ml, r e R”,
and because

max{1,a 2100} = max{1, (aT) 210 20+ 14m0) Y
(1+ T)2(n+1+?70) max{1, (aT') A 7’)72(”+1+770)}

< (1_|_T)3(n+3)(1_|_((aT)/\r)71)2("+3)’

IN

we obtain from (3.31) and the definition of A, that

/ (1+ |x\)”+1+"0|u(m, T; uo)|2 dz

IN

Cia3(1 +T)n+1+no(‘|uO| %wa(u@n;«:) +/ a—2(n+1+no)ea\xl|u0(:c)|2 d:c)
]R'n.
< Caz(1+T)" TP max{1,a= 2140} 4,
< Cay(1+ T (14 ((aT) Ar) )0 4, (3.32)
for some C'33 > 0 depending only on n.

Now, by the conservation law for the Schrodinger equation, (3.32) and (3.23), we find that

/|u0(x)|2dx:/ lu(x, T;up)|? dz (3.33)
Rn ]R‘n,
3 3
< ( / <1+|x|>”“+”0|u<x,T;uo>|2dw) ( / <1+x|>““°|u<x,T;uo>|2dw)
R™ R™
A
< VCs3(L+T)* (1 + ((aT) Ar)~")"/C(x0,7,0,T) 2
ln(hl%Jre)
2
» A
< /Cs3(1+T)2"0(n 4 ) @A /O (g, 1, a,T) 2

,/ln(lng—z —1—6)'

(Notice that in the last inequality in (3.33), we used that 2”3 < (n + 3)!e* forall x > 0.) Now, (3.29) follows
from (3.33) and (3.24) at once. This ends the proof of Step 2.

Step 3. To show (1.10) for the above-mentioned uo and each e € (0,1)
It suffices to show that for each € € (0,1),

-2
S = lug(2)|* do < C3 (EAQ + ce® Bg) ) (3.34)
Rn
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where C3 £ C3(z0, 7, a, T) is given by (3.30). In fact, for an arbitrarily fixed ¢ > 0, there are only two possibilities:
either S < C3eAs or S > C3eAs. In the first case, (3.34) is obvious. In the second case, since C3 > 1 (see (3.30)),
it follows from the definitions of S and A, that

O<e<

1. 3.35
Cady © (3.35)

z—2 . . . . .
Since the function: x — xze® , with its domain (0, 1), is decreasing, we see from (3.35) that

5 y-2 _
S oAy =2

<ee® . .
Cady <ee (3.36)

—2

Meanwhile, since the function z — e~¢e¢” , with its domain (0,1), is decreasing and because the inverse of
1

V/In(In z+e)

the aforementioned function is the function: x +— , with its domain (1, c0), we get from (3.29) that

A ( S )—2
sz < e e B (3.37)
Now, it follows from (3.37) and (3.36) that
S A S (oamy) 2
s = C —B<C[ —ege a7 }B
305y By 2= 3 losa,¢ € 2

—2

572 e
< (Csee”%e® By < (Czee® Bs.

Because ¢ was arbitrarily taken from (0, 1), the above leads to (3.34). This ends the proof of (1.10).

In summary, we complete the proof of this theorem.

4 Further comments on the main results

The purpose of this section is to present the next Theorem 4.1. From it, we can see that the inequalities in The-
orem 1.1 and Theorem 1.2 cannot be improved greatly (see Remark 4.2). For instance, in the inequality (1.3) in

Theorem 1.1, (By, (2'), By, (x")) cannot be replaced by (By, (z'), By, (z")).

Theorem 4.1. The following conclusions are true:

(i) Let ', 2" € R™, 71, ro > 0 and T > 0. Then there exists a sequence {uy} C L*(R™;C), with
/ |ug(z)]*de =1 forall k€ NT, 4.1
so that
lim / lug (2)|* dz = lim lu(x, T;uy)|* dz = 0. 4.2)
k—o0 Bgl (z') k— o0 By, (z")
(ii) Let ', " € R™, r1, ro > 0, Sy > 0 and So > 0. Then there exists a sequence {uy} C L?(R";C), with

/ lug(x)|*dz =1 forall ke NT, (4.3)
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so that

Sa
lim lu(x, S1;up)?dz = lim / lu(, t; up)|> dedt = 0. (4.4)
0 JB,(")

k— o0 k—o0
B, (=)

(iii) For each subset A C R™, with m(A¢) > 0, and each T > 0, there does not exist a positive constant C' > 0 so
that

/ luo(z)]? dz < C/A lu(z, T;uo)|? dz 4.5)

forall ug € L*(R™;C).
(iv) For each xg € R™, r > 0, a > 0 and T > 0, there exists a sequence of {u} C C§°(R™;C) and M > 0 so
that

/ ey ()] de < M and / |ug(x)|*dz =1 forall ke Nt (4.6)

and so that

lim lu(, T;ug)* dz = 0. 4.7)
k—oco Br(ﬂﬂo)
Proof. Foreach T € R\ {0} and f € L?(R"; C), we define a function u,, s by
ur f(z) & e*ilwﬁ/‘”f(x), x € R"™ (4.8)
By [10, (1.2)] and (4.8), we see that for all 7 € R \ {0} and f € L?(R™; C),

(QiT)”/Ze_ilx‘z/‘lTu(x,T;uT,f) = ei|§|2/TTu\T7f(€)(x/2T) = f(x/27), © € R™

(Here and in what follows, u(z, 7;u, 1) = (€*A7u, s)(x) when 7 < 0.) Thus, one has that for all 7 € R\ {0} and
f € L3(R™;C),

u($7T§ U‘r,f) = (27;7_)_n/Qei‘$|2/47—fA($/27—)ﬂ z € R™ 4.9)

Now, we prove the conclusions (i)-(iv) one by one.

(i) Let2’, 2" € R™, r1, 9 > 0and T > 0. Let g be a function so that
g€ Co°(R™;C) and ||gllr2rnic) = 1. (4.10)
For each k € N, let
ge(z) 2 K" 2g(k(z — 2)), © € R™. 4.11)
We define a sequence of {uy} C L?(R";C) as follows:
up(z) £ e*i‘””|2/4Tg;C (x), z€R" keNT, 4.12)

By (4.8) and (4.12), we have that

ur.g, = uy forall ke NT.



From this, (4.9) and (4.11), after some computations, we see that for each k¥ € N¥,

xT

ﬁ)e—iw-ajl/2T’ r e R™.

w(z, Tiuy,) = (24T) ™/ 2eilel* /AT jp=n/25(
Three observations are given in order: First, by (4.12) and (4.11), we find that

lim lug(z)|*dz = lim lg(z)|* dz = 0;
k— o0 Bfﬁ (:D’) k—o0 Bzrl (0)

Second, from (4.12), (4.11) and (4.10), we see that
/ lug(x)|*dz = / lge(x)|?dz =1 forall k€ NT;
Ry Ry
Third, from (4.13) and (4.10), we obtain that

lim lu(x, T;ug)*dz = lim |§(z)|* dz = 0.
k—o0 Brz(x//) k—o0 B ry ( !/ )
2Tk

Now, from the above three observations, we get (4.1) and (4.2). This ends the proof the conclusion (i).
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4.13)

(ii) Let ', 2/ € R™, r1, r2 > 0, 57 > 0 and So > 0. Let g and g, with k € NT, satisfy (4.10) and (4.11),

respectively. Since the Schrodinger equation is time-reversible, we can find a sequence {uy} C L?(R"; C) so that

Uk(x) £ U(.’b, Slvuk) = gk(x)a T e Rna ke NJr'
By (4.14), (4.10) and (4.11), we find that

lim log(x)|*dz = lim lg(z)[*dz =0
k—o0 Bf‘l (z) k—o0 Birl (0)

and

/ log(z)Pdz = / lgp(x)|?dz =1 forall k€ NT.
R R

n
x

Next, by (4.14) and (4.8), we have that
v =ur s With (7, f) = (t,ei"lz/“gk()).
Then by (4.9), we get that for each k € N*,
(e, o) = (2i8) /20 14 GiIEF /At g (6)(2/20), (2,1) € R™ x (R \ {0}).
Meanwhile, from (4.11), it follows that for all ¢ € R\ {0} and a.e. x € R™,

Cl€F/ g, (6)(z) = (QW)*”/Q/ne*”'ge”'g'”‘“gk(é)df
3

= Om [l e — ) ag
R

n
3

_ (271_)7n/2k7n/267ix-z' / efil"f/keﬂg/k”rl’/|2/4tg(£) dé'

Ry

(4.14)

(4.15)

(4.16)

4.17)
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This, along with (4.17) and (4.10), yields that for each ¢t € R\ {0},

[ to)Pde < (Bu@n) s futeto)l?
B,,Vz(w”)

2E€By (')
< Bt (cml) ™ [ lalac)
(3
which implies that
lim |u(z,t;vp,)|*dz = 0 foreach ¢t € R\ {0}. (4.18)

k— oo Br2 (z//)

At the same time, by the conservation law for the Schrodinger equation and (4.16), we find that for all k& and
t e R\ {0},

/ |u(x,t;vk)|2dm§/ \u(:r:,t;vk)|2dx:/ log(x)|? do = 1.
B’V‘z(m//) " n

By this and (4.18), we can apply the Lebesgue dominated convergence theorem to get that

k—o0

So—54
lim / |u(z, t;vp,)|> dadt = 0. (4.19)
Sy By, (')
Since vi(z) = u(x, S1;uk), © € R™ (see (4.14)), by (4.15), (4.16) and (4.19), one can directly check that the
above-mentioned sequence {uy } satisfies (4.3) and (4.4). This ends the proof of the conclusion (ii).

(iii) By contradiction, suppose that the conclusion (iii) in this theorem was not true. Then there would exist

Ao C R™, withm(A§) > 0,Cy > 0and T > 0 so that
/ lug ()] da < C’l/ lu(x, T;uo)|* dz forall ug € L*(R™;C). (4.20)
n AO
From (4.8), (4.20) and (4.9), we find that for each f € L?(R";C),

| iferae= [ if@pdc= [ jurg@pac<c |

E" R;f Ao

Since |A§| > 0, by taking f € L2(R™;C) \ {0} with supp f C A§/2T in the above inequality, we are led to a

contradiction. Hence, the conclusion (iii) in this theorem is true.

(e, T; ug, )P dz = Gy / FOP de.

A0/2T

(iv) Arbitrarily fix o € R", 7 > 0,a > 0and T > 0. Let g € C§°(R™; C) be a function so that

/R G Pde= [ lg@Pde=1. @21)

¢ Ry
Let @ € S™~1. We define a sequence {uy} C C5°(R™; C) by
ug(z) & eiilxlz/“e*kix'ﬁg(az), z € R". (4.22)
By (4.22) and (4.8), we have that
up = urp, with 7 =T and f(z)=e ¥ V(z), zcR",
from which and (4.9), it follows that for each k € N7,

u(w, Tyuy) = (24T) /24T g (

.
“:;T“), ¢ €R", ke N*.
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This yields that for each k € NT,

/ |u(m,T;uk)|2daﬁ:/ (=) da.
By (o) B s (2%57T)

Since f]R” |g(2)|? dz < oo (see (4.21)), the above implies that
/ |u(z, T;up)[*dz — 0 as k — oc. (4.23)
BT(CE())

Meanwhile, from (4.22) and (4.21), we find that for each k € N1,

/e“lm‘|uk(m)|2dm = /e”’l”’||g(x)\2dx<oo
Ry

n
R x

and

[ @l = [ @)=
R Rn

From these and (4.23), we obtain (4.6) and (4.7). This ends the proof the conclusion (iv).

In summary, we finish the proof of this theorem.
O

Remark 4.2. (a) From (i) and (ii) of Theorem 4.1, one can easily check that for any 2/, ” € R™, ry, ro > 0 and

T > S > 0, there is no constant C' > 0 so that any of the following inequalities holds:

/ [ug(x)[? dz < C(/ lu(z, S;uo)|* da +/ lu(z, T; uo)|* dx), Y ug € L*(R™; C);
n Bgl (z') BTZ (')

T
/ luo(2)|? dz < c(/ lu(z, S;uo)[? da +/ / |u(x,t;u0)\2dxdt>, Y uo € L2(R™; C).
R" Bg (a') 0 JB, @)

Hence, the terms on the right hand side of (1.3) in Theorem 1.1 cannot be replaced by either

c(/ |u(x,5;u0)\2dm+/ [ula, T o) [ dz)
" (xl) B""2(w//)

r

or

T
C(/ |u(z, S;u0)|2dx+/ / \u(m,t;u0)|2dxdt).
Be, (@) 0 JB., @

(b) From (iii) of Theorem 4.1, we see that in order to have (4.5) (the observability at one point in time), it is
necessary that | A°| = 0. That is, in order to recover a solution by observing it at one point in time, we must observe
it at one time point and over the whole R™. From this, conclusions in (a) of this remark and Theorem 1.1, we see
that the observability at two points in time is “optimal”.

(c) From (iv) of Theorem 4.1, we find that for any > 0,a > 0 and 7' > 0, thereisno C' > 0 or 6 € (0,1) so

0 1-0
/ uo<x>2dx<c</ u(x,T;uo>|2dx> ([ ehuntopa)
Rn B, (0) Rn

for all ug € C§°(R™; C). Hence, the inequality in (i) of Theorem 1.2 will not be true if BE(0) is replaced by B,.(0).

that



38 Gengsheng Wang, Ming Wang, Yubiao Zhang

S Applications

In this section, we consider the applications of Theorems 1.1-1.6 to different controllability properties (for impulse
controlled Schrodinger equations), which are Theorems 5.3, 5.5, 5.7, 5.9, 5.11 and 5.13, respectively. The main

differences among these controllability properties are explained as follows:

e From the perspective of control location and control instant, Theorem 5.3 holds controls active at two dif-
ferent time points and each time outside of a ball; Theorem 5.5 and Theorem 5.9 hold controls active at one
time point and outside of a ball; Theorem 5.7, Theorem 5.11 and Theorem 5.13 hold controls active at one

time point and inside of a ball.

e From the perspective of controllability type, Theorem 5.3 studies the exact controllability (see Remark 5.4
for the detailed explanations); Theorem 5.9 studies a nonstandard exact controllability (see Remark 5.10
for the detailed explanations); Theorem 5.5 and Theorem 5.13 give two kinds of nonstandard approximate
controllability (see Remarks 5.6 and 5.14 for the detailed explanations, respectively); Theorem 5.7 and
Theorem 5.11 build up two kinds of nonstandard approximate null controllability (see Remarks 5.8 and 5.12

for the detailed explanations, respectively).

5.1 A functional analysis framework

This subsection presents an equivalence lemma (Lemma 5.1) between some observability and some controllability
in an abstract framework. With the aid of it, we can use inequalities in Theorems 1.1-1.6 to study some controlla-

bility for the Schrodinger equation.

Lemma 5.1. Let K be either R or C. Let X, Y and Z be three Banach spaces over K, with their dual spaces X,
Y*and Z*. Let R € L(Z,X) and O € L(Z,Y ). Then the following two propositions are equivalent:
(i) There exists 6’0 > 0and &y > 0 so that for each z € Z,

IRz[1% < CollO21[3 + éoll2117- (5.1)
(ii) There exists Cy > 0 and ¢ > 0 so that for each x* € X*, there is y* € Y™ satisfying that

o < lz*|%-- (5.2)

1 , 1
- * B} *R* *_O* *
G+ R - 0%y

Furthermore, when one of the above two propositions holds, the constant pairs (Cy, o) and (Co, &) can be

chosen to be the same.

Remark 5.2. The part (i) of Lemma 5.1 presents a non-standard observability. In this part, Z is a state space, Y is
an observation space, we call X as a state transformation space of Z. Further, O is an observation operator, while
we call R as a state transformation operator. The inequality (5.1) means that we can approximately recover the
transferred state Rz by observing Oz, the error is governed by /& ||| 7.

The part (ii) of Lemma 5.1 presents a non-standard controllability. In this part, Y* is a control space, X is
a state space, and we call Z* as a state transformation space of X *. Furthermore, O* is a control operator, while

we call R* as a state transformation operator. The inequality (5.2) can be understood as follows: For each state x*,
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there is a control y* so that O*y* is close to the target R*x*, with the distance less that /2g||x*|| x+. Moreover,

the norm of this control is governed by v/Co||z*|| x =

Proof of Lemma 5.1. The proof is divided into the following several steps.

Step 1. To show that (ii)=(i)
Suppose that (ii) is true. Then, for each x* € X, there exists y;. € Y™ so that (5.2), with y* = y3., is true. From
this, it follows that for any z* € X* and z € Z,

(Rz,x")x x+ = (2, R*2")z 2= (z,R*2" — O"yi) 7.2+ + (2,0"y}.) 2.2+

= (5, R*2" = O"yp) 2.2 +(Oz,y5 ) v,y

By this and the Cauchy-Schwarz inequality, we deduce that for each z* € X* and z € Z,

1 1
Rz xx-] < (VC IR — 0"y ze ) + (VEollO ol Dy
(Reat)xel < (VGlela) (gl e = 0%l ) + (VaIOA) (Sl Iv-)
12 (1 1 1/2
< (Collt + eol0sIR) " (G = 0l + i1
0 €o
1/2, «
< (Collzl% + =ollOzI3) " la” 1 x--

Hence, (5.1), with (@0, €9)= (Co, €p), is true.

Step 2. To show that (i)=>(ii)

Suppose that (i) is true. Define a subspace E of Y x Z in the following manner:
Eé{( aoOz,\/éT)z) : ZEZ}.
The norm of F is inherited form the following usual norm of Y x Z:
I(£.Dllvxz 2 (1715 +lgl2)"*, (F.9) €Y x 2. (53)
Arbitrarily fix * € X*. Define an operator 7+ by

Ter + FE — K
( éooz,\/éTJZ> —  (z*,Rz)x~ x. (5.4)

By (5.1) and (5.4), we can easily check that 7~ is well defined and linear. We now claim that

1 Te lemxy < lz*]x-- (5.5)
Indeed, by the definition of E, we see that given (f, g) € FE, there is z € Z so that

(f,9) = ( CoOz, \/52) :
Then by (5.4), we find that

|Te- (f,9)] = (2", Rz) x= x| < [|2" || x~

RZ”X
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This, along with (5.1), shows (5.5).
Since 7.~ is a linear and bounded functional, we can apply the Hahn-Banach extension theorem to find T in

(Y x Z)* so that

and so that
||7;*||£(YXZ,K) = 1T |l (e x)- (5.7

These, together with (5.3) and (5.5), yield that

Te-(£,0)] < Ja*||x-|If]ly forall feY,
|7'*(0, ) < =z |x+lgllz forall g€ Z.
Thus, there exists (yi., z%.) € Y* x Z* so that
E*(fvo) = <y;*af>Y*,Y for all f S Y,
’7;:* (0,9) = <Z;*39>Z*,Z fOI' all g S Za
from which, it follows that
7;:* (f7 g) = <y;*7f>Y*,Y + <Z;*ag>Z*,Z for any (fvg) €Y x Z. (58)

Two observations are given in order: The first one reads

7o < Ml (1% (5.9)

Ve + Iz

[
while the second one is as
R*z* — O*( Coygc = /éozp In Z*. (5.10)

When (5.9) and (5.10) are proved, the conclusion (ii) (with (Cy,e0)= (60, €o)) follows at once.
To prove (5.9), we see from (5.8), (5.7) and (5.3) that for each (f,g) € Y x Z,

* 1/2
(Woes Dyey + (20 9) 2o 2] < Nl (1IR + Nlgl%)

Meanwhile, for each § € (0, 1), we can choose (fs,gs) € Y x Z so that

Waer fvey = Ny l3- +01(1), Ifslly = llyz-lly

*y
(z2-.05)2+2 = |25 +02(1), llgsllz = llz3- ]l 2=,

where 01 (1) and 02(1) are so that
lim o01(1) = lim o0(1) =0.

§—0+ §—0t

From these, it follows that

22

7+ = lo1()] = o2 ()] < [l=*[|x- (Ily7-]

7513+ + [l23- |
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Sending § — 07 in the above inequality leads to (5.9).
To prove (5.10), we find from (5.4), (5.6) and (5.8) that for all z € Z,

(z*, R2) x- x = (yt, \/ CoO2)y=y + (25, V/E02) 2+ 2,
which yields that for all z € Z,
(R*z*,2) 7+ 7 = (O*(\) Coun), 2) 2.2 + (VE02e 2) 20 2

This leads to (5.10).

Step 3. About the constant pairs (Cy, £0) and (Cy, €0)
From the proofs in Step 1 and Step 2, we see that when one of the propositions (i) and (ii) holds, (Cp, () and

(6‘07 €0) can be chosen to be the same pair. This ends the proof of this lemma.

O
We end this subsection with introducing the following dual equation:
iDup(w, ) + Apla,t) =0, (w,t) €R" x (0,7), S
o(x,T) = 2(z), z € R, '

where T > 0 and z € L?*(R"™). Write (-, -; T, z) for the solution to (5.11). The equation (5.11) will play an

important role in the studies of different controllability for the Schrédinger equation.

5.2 Applications of Theorem 1.1-Theorem 1.3 to controllability

First, we will use Theorem 1.1, as well as Lemma 5.1, to prove the exact controllability for the following impulse

controlled Schrédinger equation:

{ iaﬂt(l’, t) + AU(I, t) = 5{25271}XB,,‘":1 (x’)(z)hl (.I) + 5{t:T2}XBﬁ2 (:D”)(x)hQ(x)a (JC, t) € R™ x (07 T)a

u(0, ) = ug(x), - (5.12)

where 2/, 2 € R™, ry, 75 > 0, T, 71 and 75 are three numbers with 0 < 7, < 75 < T, ug € L?(R"; C), controls

hy and hs are taken from the space L2(IR™; C). Write u; (-, ; ug, h1, h2) for the solution to the equation (5.12).

Theorem 5.3. Let ', v/ € R" and r1, 7o > 0. Let T, 11 and 7> be three numbers with 0 < 171 < 79 < T. Then
for each ug € L*(R"; C) and ur € L*(R™;C), there is a pair of controls (hy, h) in L*(R"™; C) x L?(R™;C) so
that

ui(x, T;uo, h1, he) = up(z), z € R" (5.13)
and so that
Crirg —2— i 2
1l Z2gnc) + Ih2llfe ey < Ce™™ %7 [Jlur — €T uo | Lo g g - (5.14)

where the constant C' = C(n) is given by Theorem 1.1.



42 Gengsheng Wang, Ming Wang, Yubiao Zhang

Proof. We organize the proof by the following two steps:

In Step 1, we aim to prove that for each z € L?(R"; C),

/ |2(2)? dz < CeCM T (/
n B

where C' £ C(n) is given by Theorem 1.1. To this end, we set

lo(z, 71; T, z)|2dx+/ o(z, 72; T, z)\de>7 (5.15)

£ (@) Be, (")
Then it follows from (1.2) and (5.11) that for each ¢ € [0, 72 — 71],
u(x, t;uy) = (e (x) = (2= D2) (2) = p(x, t + 15T, 2), € R™. (5.16)

By Theorem 1.1 (where ug = uq and T' = 75 — 71), we find that

/ uy ()2 dz - < Oec“’"“*”(/
n B

This, along with (5.16), implies that

By (')

lu(z, 7 — 715 u1)]? dx).

\ul(x)\de+/

£ (@) B;, (a")

(@, T, 2)? de + /

|<p(x,Tg;T,z)|2dx>.
Bg, (z')

Because of the conservation law of the Schrodinger equation, the above inequality leads to (5.15).
In Step 2, we aim to use Lemma 5.1 and (5.15) to prove (5.13) and (5.14). For this purpose, we let
X 2 [*(R™C)=X*Y 2 L*R";C) x L*(R:;C)=Y* and Z 2 L*(R";C) = Z* (5.17)
and define two operators R : Z — X and O : Z — Y as follows:
Rz&2z, 0Oz2 ()(Bg1 (x/)(-)go(',ﬁ;T,z),XB;z (xn)(~)g0(~,72;T,z)) foreach z € Z. (5.18)
By (5.18) and (5.17), one can directly check, that
R*f=f VfeL*(R"%C); O*(hi,hs) =ui(-,T;0,h1,hs), ¥ (hi,hy) € L*(R";C) x L*(R™;C). (5.19)
Arbitrarily fix ¥ € N*. From (5.15) and (5.18), we find that for each z € L*(R"; C),

1

T 1
IRz |5 < Ce™ 7|02 + 12113 (5.20)

where C' > 0 is given by (5.15) and || - ||y denotes the usual norm of L?(R"; C) x L%(R";C).

Arbitrarily fix ug, ur € L?>(R"; C). Define a function over R" in the following manner:
f(z) 2 up(z) — e®Tug(x), =€ R™ (5.21)

By Lemma 5.1 and (5.20), it follows that there exists (h{’k, h;k) € Y™ so that

—Crir L * *
Cre M (W] g S I+ RIRTF = O (B b )5 < 11 (5.22)
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By (5.17) and (5.22), one can easily find that there exits a subsequence {£;}32; of N* and (h],hd) € L2(R™;C) x
L?(R™; C) so that

f f faf . 2/mn. 2/mn. :
(hl,kjvhz,k-j) — (h1,hy) weakly in L*(R";C) x L*(R™;C), as j — o0

and so that

R*f—O*(h], ., hi ) = R*f—O*(h{,hl) weaklyin L*(R";C), as j — oc.
(Here, we used the fact that the operator O is linear and bounded. This fact follows from (5.18).) These yield that

(AL, A2 ey x 22 @niey < hjfgg.}f (R o, PL G2y w2 enicys @8 G = 00
and that

IR*f = O" (b, h)llpzric) < Tminf [R*f = O"(hi . by llnzescy, as j = oo
From these and (5.22), it follows that
* * Crirg ——
R*f = 0O"(h{,hl) and ||(h{7hg)HQLZ(R";C)XLQ(R”;(C) < Ce"M | fl1 Rz - (5.23)

Now, (5.13) and (5.14) follow from (5.23), (5.19) and (5.21) at once. This ends the proof of this theorem.
O

Remark 5.4. The above theorem can be understood as follows: For each ug, uy € L? (R™; C), there exists a pair
of controls (in L?(R™; C) x L?(R"; C)) steering the solution of (5.12) from v at time 0 to u7 at time 7. Moreover,

a bound of the norm of this pair of controls is explicitly given.

Next, we will use the inequality (1.4) in (i) of Theorem 1.2, as well as Lemma 5.1, to get some kind of

approximate controllability for the following impulse controlled Schrédinger equation:

{ i0yu(x,t) + Au(z,t) = Oft=7} X Be(0) (x)h(z,t), (z,t) € R™ x (0,T),

u(z,0) = uy, r € R™, (524)

where T > 7 > 0 and r > 0, both the initial data uo and the control h are taken from the space L? (R™; C). Write

us(, *; ug, ) for the solution to the equation (5.24). Define, for each a > 0, a Banach space:

Xaé{feLZ(R”;C) : / e“'lf(x)lex<oo}, (5.25)

endowed with the norm:

1/2
. 2 ([ elr@pas) . sex.

One can directly check that for each @ > 0, the dual space of X, reads
X; = @ 0) 1, (5.26)

with the norm || - || x» given by

1/2
||9||X;é(/R e-a'wg<x>|2dx) L ge X
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Theorem 5.5. Letr > 0,a > 0andT > 7 > 0. Let C > 0 and 6 € (0, 1) be given by (i) of Theorem 1.2. Write
p 20T € (0,1).

Then for any € > 0, ug, ur € L*(R™; C), there is a control h € L?(R"; C) so that

er \h(z)[* dz + e Juz(:, T; uo, h) _UT(')H.QX;
RTL

< C(1+

,r’ﬂ

(@(T —=7)"

Proof. First of all, we claim that for each z € C§°(R™; C) and each ¢ > 0,

) / lur(z) — €2 ug(x)|? da, (5.27)

/n |2(2)|? da (5.28)

’I“n 1—p
< C 1+> 5/ el 2 (x 2dx+577/ oz, 7;T,2)*dz | .
( o ( e le(z) e

To this end, arbitrarily fix z € C§°(R™; C). It follows from (1.2) and (5.11) that
u(z,t;2) = o(x, T — T, 2), (z,t) € R™ x [0,T]. (5.29)

Then by (i) of Theorem 1.2 (where ug and T are replaced by Zz and T' — 7, respectively), we find that

[ E@P da
< C (1 + (a(TTjT))") (/Bg(o) ?L(SC,TT;»?)Pd:E)p (/W eIz (x)|? dx>1p,

from which and (5.29), we find that

/n |z(z)]? dz
< C (1 + (a(T’"jT))n) (/Bg(o) o(z, 7 T, z)|2dg;)p (/ ealmz(a:)|2da:>l_p.

This, along with the Young inequality, yields (5.28).

Next, we will use Lemma 5.1 and (5.28) to prove (5.27). For this purpose, we let
X2 L*R"C)=X" Y2 L*(R"C)=Y" and Z 2 X,,, (5.30)
where the space X, is given by (5.25). Define two operators R : Z — X and O : Z — Y by
Rz %2 2z foreach z € X,; Oz = xBe(0)()p(, 7T, 2) foreach z € X,. (5.31)
One can directly check that
R*f=f VfeL*R"C); Oh=uy(-,T;0,h), Vh € L*(R";C). (5.32)
Arbitrarily fix € > 0. By (5.28), (5.31) and (5.25), we can use a standard density argument to verify that

IR2[172 ey < CollO2[172gn 0y + e2ll2]|%, foreach 2 € X, (5.33)
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where

n

G20 (1 AL

) e and 5, 2 C (1 + w) c. (5.34)
Arbitrarily fix ug and ur in L?(R"; C). Define a function f by

f 2 up —e®Tuy over R™. (5.35)
According to Lemma 5.1 and (5.33), there exists h e LQ(R"; C) (depending on ¢, up and ur) so that

1
allhfl 7- < IIfll%--

1
2.+ —||R*f — O*hI|
&2

From this, (5.30), (5.32), (5.34), (5.35) and (5.26), we obtain (5.27). This ends the proof of this theorem.
O

Remark 5.6. The above theorem can be understood follows: For each ug, up € L? (R™; C) and € > 0, there exists
a control (in L2(R™; C)) steering the solution of (5.24) from u at time 0 to the target BgX . (ur) at time T'. (Here,
BY “ (ur) denotes the closed ball in X, centered at u7 and of radius €.) Moreover, a bound of the norm of this

control is explicitly given.

Finally, we will use the inequality (1.6) in Theorem 1.3, as well as Lemma 5.1, to get some kind of approximate
null controllability for the following impulse controlled Schrodinger equation:

{ Zatu(z7t) + AU(SE,t) = 5{t:0}XBT1 (m’)(x)h(xat)v (l‘,t) € R™ x (OaT)v

u(z,0) = ug, x € R™, (5.36)

where T' > 0, 2’ € R™ and r; > 0, both the initial data ug and the control & are taken from the space L2 (R™;C).
Write ug3(+, -; ug, k) for the solution to the equation (5.36). Define, for each o > 0 and 2’/ € R", the following

subspace:
L*(B,,(z");C) 2 {f € L*(R™";C) : f=0 over B (z")}. (5.37)

Theorem 5.7. Let z', "/ € R", 71,70 > 0,a > 0and T > 0. Let C > 0 and p > 0 be given by Theorem 1.3.
Then for each e > 0 and ug € L*(B,,(2"); C), there is a control h € L2(R™; C) so that

el / \h(m)|2dx+€_1||u3(-,T;u0,h)H_2X; < Cr?((aT)/\rl)_n/ luo(2)|* de. (5.38)
" B7‘2 (fL',/)
Proof. First of all, we claim that for each z € C§°(R™; C) and each ¢ > 0,
/ lo(x,0; T, 2)|* da (5.39)
B7‘2 (I”)

1-6P

< Crg((aT)/\rl)in(ef op /B ( )|<p(:z:,();T,z)|2dx+€/ e“‘z‘|z(x)|2dx).
1 I/ n

To this end, we arbitrarily fix z € C§°(R™; C). It follows from (1.2) and (5.11) that

u(z,t;2) = oz, T — ; T, 2), (z,t) € R™ x [0,T]. (5.40)
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Then by Theorem 1.3 (where ug = z), we find that

/ |u(z, T 2)|2 dz
Br2 (.’I:”)

or 1-67
< OT;((QT) /\rl)fn </ |u(z, T} 2)|2dx> </ ea\1||z(x)|2 dx) .
Brl(x,) n

This, along with (5.40), leads to that

/ (@, 05T, )2 da
BT‘Q(:(/J/)

01’

< op((ar) Ar) " (/Brl(m/)|tp(x,0;T,z)|2dx> </neaz|z(x)|2dx>l_9p.

Now (5.39) follows from the above inequality and the Young inequality at once.

Next, we will use Lemma 5.1 and (5.39) to prove (5.38). For this purpose, we let
X 2B, (z"):;C)=X*, Y2 LR C)=Y" and Z 2 X,, (5.41)
where the space X, is given by (5.25). Define two operators R : Z — X and O : Z — Y by

Rz & XB,, @) ()p(- 0;T, z) foreach z € Xg;
0z 2 XBgl(m/)(-)ap(-,O;T,z) foreach z € X, (5.42)

One can directly check that
R*f =uz(-, T3 £,0), V f € L*(By,(2");C);  O*h =us(-,T;0,h), Vh € L*(R™; C). (5.43)
Arbitrarily fix € > 0. By (5.39), (5.42) and (5.25), we can use a standard density argument to verify that
|Rz||% < Cs]|0z||3 +e3]|z||% forall z € Z, (5.44)
where

Cs 2 Crg((aT) Ar) e 7 and e3 2 Crf ((aT) Ary) e (5.45)

Arbitrarily fix ug € EQ(BT2 (2"); C) (given by (5.37)). From Lemma 5.1 and (5.44), we find that there exists h"°

(depending on € and 1) so that
1 ug ||2 1 * * 7 uQ |2 2
a1y + — IR uo — O"h*|IZ. < Jluo[lx--
3 €3

This, along with (5.41), (5.43), (5.45) and (5.26), yields (5.38). This ends the proof of this theorem.
O

Remark 5.8. The above theorem can be understood as follows: For each ug € L%(B,,(2");C) and & > 0, there
exists a control (in L?(R"; C)) steering the solution of (5.36) from w at time O to the target BX a (0) at time 7.

Moreover, a bound of the norm of this control is explicitly given.
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5.3 The applications of Theorem 1.4-Theorem 1.6 to controllability

First, we will use the inequality (1.8) in Theorem 1.4, as well as Lemma 5.1, to get some kind of exact controlla-

bility for the following impulse controlled Schrodinger equation:

{ Zatu(xvt) + A’U,(.Z‘,t) = 5{t:T}XB$(O) (.I)h(x,t)7 (‘T7t) € R" x (OvT)7

u(z,0) = uy, x € R™ (5.46)

where T and 7 be two numbers with 0 < 7 < T, r > 0, both the initial data ug and the control A are taken from

the space L?(R"; C). Write uy(+, -; uo, h) for the solution to the equation (5.46).

Theorem 5.9. Let0 < 7 < T,r > 0and N > 0. Let C = C(n) > 0 be given by Theorem 1.4. Then for each
ug, ur € L?(R™; C), there is a control h € L?(R™;C) so that

ug(z, T;up, h) = ur, v € By (0) (5.47)
and so that
S (1+2) AT
Hh||L2(R";C) < ez T—7 HUT —e u0||Lz(Rn;(c). (548)
Proof. First of all, we claim that for each z € EQ(BN(O); C),

/ |z(x)2dx§e<3(1+£’ﬂ)/B(0) lp(z, 7, T, 2)|? da. (5.49)

(Here, L2(Bx(0); C) is given by (5.37), with B,, (") being replaced by By(0).) To this end, arbitrarily fix
z € L2(By(0); C). It follows from (1.2) and (5.11) that

u(z, t;2) = p(x, T —t;T, 2), (x,t) € R" x [0,T]. (5.50)
Then by Theorem 1.4 (where ug and T are replaced by z and T' — T, respectively), we find that
[ Ewrar <) [ =k a,
" B;(0)
where C' > 0 is given by Theorem 1.4. This, along with (5.50), leads to (5.49).
Next, we will use Lemma 5.1 and (5.49) to prove (5.47) and (5.48). Let
X2 [2R"%C)=X* Y2 L*R"C)=Y" and Z 2 L*(By(0);C) = Z*. (5.51)
Define two operators R : Z — X and O : Z — Y by
Rz £ 2z foreach z € L?(By(0);C);
Oz 2 Xpeo)()p(-,7:T,2) foreach z € L*(By(0);C). (5.52)
One can directly check that
R*f = Xgyo) [ V[ €L*RC); Oh=xpyoual-T;0,h), Vh e L*(R™;C). (5.53)
From (5.49) and (5.52), we find that

N

1
IR2|1% < €0 72%) 10212 + Cl=l3 forall ke NF, 2 € 2 (5.54)
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Arbitrarily fix ug, ur € L?(R™;C). Define a function f by

ATy over R™. (5.55)

fEup—e
By Lemma 5.1 and (5.54), it follows that there exists h,i € L*(R™;C) so that

OO E25) 12, 4+ RIR* S — O°h] % < |IfI%. forall ke N*. (5.56)

Since {hi}i"zl is bounded in L*(R"; C) (see (5.56) and (5.51)), there exits a subsequence {k;}32, of N* and
hf € L*(R"; C) so that

hij — b/ weakly in L*(R™;C), as j — oo
and so that
R*f — o*hgj — R*f — O*h! weaklyin L?(By(0);C), as j — oco.
These yield that
1B |12y < liminf 1B [ Zaancys R F = O [l12(py o) < liminf |R*f = O*h{ |25y (0):c)-
From these and (5.56), it follows that

_rN_
R*f =0"h' over By(0) and [[h/[|72gn.c) < eC(1+T77)|\f||%2(Rn;C). (5.57)

Now, (5.13) and (5.14) follow from (5.51), (5.57), (5.53) and (5.55) at once. This ends the proof of this theorem.
O

Remark 5.10. The above theorem can be understood as follows: For each ug, ur € L?(R";C) and N > 0,
there exists a control in L?(R"; C) steering the solution of (5.46) from w at time 0 to uz at time T’ over By (0).

Moreover, a bound of the norm of this control is explicitly given.

Next, we will use the inequality (1.9) in Theorem 1.5, as well as Lemma 5.1, to get some kind of approximate

null controllability for the following impulse controlled Schrodinger equation:

{ i0pu(w,t) + Au(x,t) = dp4—0) X B, (x0) (@) R(2, 1), (2,t) € R™ x (0,7, (5.58)

u(z,0) = uy, x €R™,

where T' > 0, zg € R™ and » > 0, both the initial data ug and the control h are taken from the space L2 (R™; C).
Write us (-, -; ug, h) for the solution to the equation (5.58). Before state the main result, we define, for each b > 0

and =’ € R", the following space:
Xy 2 {f € L3R C) : / ele='l| £ ()2 da < oo},
Rn

with the norm || - [|x, ,, given by

1/2
||f|x,,,m,é(/R e”"”"clf(x)Ide) FeXp.
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One can directly check that the dual space of X, ./ is as
Xi, = CP®%C) o,

with the norm | - [|x; , given by

1/2
o, = ([ et NawPas) " g€ op@nio)

Theorem 5.11. Let 29,2 € R", r > 0,a > 0,b > 0and T > 0. Let C(xg,2’,7,a,b,T) and C be given by
Theorem 1.5. Then for each ¢ € (0,1) and ug € Xy 4/, there is a control h € L*(R™; C) so that

1 (G AYX0) 1
LoD >/ B A+ s Truo, W% < Clao,a'sra b, Dluol, . (559
. .

Proof. First of all, we claim that for each z € C§°(R™; C) and each ¢ € (0, 1),
/ e =22, 0; T, 2)|? da (5.60)

*I’Zﬂiﬁﬁfwcj
< C(wg,2',7,a,b,T) (Eee
B

lo(x,0; T, 2)|* do + 5/ el?l|z(2)|? dx).

n

T(l'O)

To this end, we arbitrarily fix z € C§°(R™; C). It follows from (1.2) and (5.11) that
u(z, t;2) = p(x, T — t;T, 2), (x,t) € R" x [0,T]. (5.61)
Then by Theorem 1.5 (where uy = Z), we find that for each ¢ € (0, 1),
[ et e T e

—1— 1
< Cluo,a,rabT)(zes T / u(z, ;%) dz + e / eI 2@ do).
B R™

~(z0)

This, along with (5.61), leads to (5.60).

Next, we will use Lemma 5.1 and (5.60) to prove (5.59). For this purpose, we let
X&2X; . YEL*R%C)=Y" and Z 2 X,
where the space X, is given by (5.25). Define two operators R : Z - X and O : Z — Y by
Rz = p(-,0;T,2); Oz= XBe(z0) ()P, 0; T, z) forall z € X,. (5.62)
One can directly check that
R*f =us(-,T; f,0), Vf € Xpo; Oh=us(-,T;0,h), Vh € L*(R™;C). (5.63)
Arbitrarily fix e € (0,1). From (5.60), (5.62) and (5.25), we can use a standard density argument to get that
|Rz||% < Cs]|Oz||3 +es5|2]|% foreach z € Z, (5.64)
where

*1*ZﬁiC%fWGi

Cs 2 C(xo,2',7,a,b, T)ee’ and g5 = C(xg,2',7,a,b,T)e. (5.65)
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Arbitrarily fix ug € C§°(R"™; C). Define a function f by
f(z) 2 ug(x), x € R™. (5.66)
Then by Lemma 5.1 and (5.64), there exists h/ (depending on € and ) so that

7o <N Fl%-

1
h'
enlid

1
2.4+ —||R*f — O*hI|
€5

This, along with (5.63), (5.65), (5.66) and (5.26), yields that (5.59) holds. This ends the proof of this theorem.
O

Remark 5.12. The above theorem can be understood as follows: For each ug € X3 ;- and € > 0, there exists a
control (in L2(R"; C)) steering the solution of (5.58) from ug at time 0 to the target Bf @ (0) at time T'. Moreover,

a bound of the norm of this control is explicitly given.

Finally, we will use the inequality (1.10) in Theorem 1.6, as well as Lemma 5.1, to get some kind of approxi-

mate controllability for the following impulse controlled Schrodinger equation:

{ iatu(x7 t) + AU(Z‘, t) = 5{t:T}XBT.(J:O)('r)h(x’ t)7 (ﬂf, t) € R™ x (Oa T)7 (567)

u(z,0) = ug, x eR”,
where T' > 7 > 0, xg € R™ and r > 0, both the initial data ug and the control i are taken from the space
L?(R™; C). Write ug(-, ; ug, h) for the solution to the equation (5.67). For each a > 0, we write @, for the

completion of C5°(R™; C) in the following norm:

N

I, 2 ([ i@ e+ 1isan) + 1 € CFRNO) (568

One can easily check that the space @, is continuously imbedded to L?(R™; C). Denote by Q? the dual space of
Q. with respect to the pivot space L?(R"; C).

Theorem 5.13. Let xg € R”, r > 0,a>0and T > 17 > 0. Let C(xg,7,a,T — T) be given by Theorem 1.6, with
T being replaced by T — 7. Then for each ¢ € (0,1) and ug, ur € L?>(R";C), there is a control h € L*(R";C)

so that

e leme / (@) da + e ug( T o, h) — ur ()13

< C(zo,r,a,T —7)||ur — eiATU()H%z(Rn;(C). (5.69)
Proof. First of all, we claim that for each z € C§°(R";C) and each ¢ € (0, 1),
/ |z(z)*dz < Clxo,7,0,T —7) (6665_2 /B o lo(x, 73T, 2)|* dz
n r(Zo
vel [ e a(a)P a4 e Bmssgen) ) (5.70)
To this end, we arbitrarily fix z € C§°(R™; C). It follows from (1.2) and (5.11) that

u(z,t;2) = oz, T — ; T, 2), (z,t) € R™ x [0,T]. (5.71)
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Then by Theorem 1.6 (where (ug, T') is replaced by (z,T — 7)), we find that for each € € (0, 1),

REGRE

— - 572 N
< Clwo,r,a,T 1) <s( / 2@ e ldn + |2 s ey ) + o€ /B u(x,T—T;aFdx),

7‘(w0)
This, along with (5.71), leads to (5.70).

Next, we will use Lemma 5.1 and (5.70) to prove (5.69). Let
X2 L2R"C)=X* YA L) R"C)=Y" and Z £ Q,,
where (), is given by (5.68). Define two operators R : Z — X and O : Z — Y by
Rz £ z; 022 Xpey) ()p(-,7:T, 2) foreach z € Z. (5.72)
One can directly check that
R*f=f VfeL*R"C); Oh=ug(-,T;0,h), Vh € L*(R";C). (5.73)
Arbitrarily fix € € (0, 1). From (5.70), (5.72) and (5.68), we can use a standard density argument to get that
IR2[1% < Cs]|Oz[[3 + e6l|z]|% foreach z € Q, (5.74)
where
Cs 2 C(zo,7,0,T — 7)668572 and g6 = C(xg,7,a,T — T)e. (5.75)
Arbitrarily fix ug and ur in L?(R"; C). Define a function f by

ATy over R™. (5.76)

fEup—eé
Then by Lemma 5.1 and (5.74), there exists h/ (depending on ¢, ug and u7) so that

1
a}llhfl 7 < 1%,

1
.4+ —||R*f — O*hI|
]

which, along with (5.73), (5.75) and (5.76), leads to (5.69). This ends the proof of the theorem.
O

Remark 5.14. The above theorem can be understood as follows: For each ug, ur € L?(R™;C) and € > 0, there
exists a control (in L?(R™; C)) steering the solution of (5.67) from ug at time O to the target Bg o (ur) at time T.
Here, B? @ (ur) denotes the closed ball in @, centered at ur and of radius e. Moreover, a bound of the norm of

this control is explicitly given.
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