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Nonlinear classifiers (i.e., Kernel support vector machines (SVMs)) are effective for nonlinear data classifi-
cation. However, nonlinear classifiers are usually prohibitively expensive when dealing with large nonlinear

data. Ensembles of linear classifiers have been proposed to address this inefficiency, which is called the

ensemble linear classifiers for nonlinear data problem. In this paper, a new iterative learning approach is
introduced, which involves two steps at each iteration: partitioning the data into clusters according to Gaus-

sian mixture models with local consistency and then training basic classifiers (i.e., linear SVMs) for each

cluster. The two divide-and-conquer steps are combined into a graphical model. Meanwhile, with training
each classifier is regarded as a task, clustered multi-task learning is employed to capture the relatedness

among different tasks and avoid overfitting in each task. In addition, two novel extensions are introduced

based on the proposed approach. First, the approach is extended for quality-aware web data classification.
In this problem, the types of web data vary in terms of information quality. The ignorance of the variations

of information quality of web data leads to poor classification models. The proposed approach can effectively

integrate quality-aware factors into web data classification. Secondly, the approach is extended for listwise
learning to rank to construct an ensemble of linear ranking models, whereas most existing listwise ranking

methods construct a solely linear ranking model. Experimental results on benchmark datasets show that
our approach outperforms state-of-the-art algorithms. During prediction for nonlinear classification, it also

obtains comparable classification performance to kernel SVMs, with much higher efficiency.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance—documentation; H.4.0
[Information Systems Applications]: General

Additional Key Words and Phrases: Divide-and-conquer, classification, listwise learning to rank, clustering, multi-task learn-
ing.

1. INTRODUCTION
Kernel support vector machines (SVMs) [Cortes and Vapnik 1995] are widely used for nonlinear
data classification in machine learning community. Although kernel SVMs often produce satisfacto-
ry classification results, it can be computationally expensive when dealing with large datasets. The
complexity of kernel SVMs relies on the number of support vectors, which grows approximately
linearly with the size of the training data. On the other hand, while a linear classifier is extremely
efficient [Fan et al. 2008], it cannot handle nonlinear data with an acceptable accuracy, since it fails
to consider the underlying structures of nonlinear data (e.g., clusters and manifolds). To address this
issue, ensembles of linear models have been proposed. However, these methods either lack robust-
ness, such as the CSVM model [Gu and Han 2013], or are time-consuming, such as the SVM-KNN
model [Zhang et al. 2006]. In our early work [Mao et al. 2014], a divide-and-conquer method was
proposed, in which the training data are divided into subsets according to Gaussian mixture model
(GMM) clustering and linear SVM classifiers are constructed using a multi-task learning strategy
for each subset.

In this paper, an iteratively divide-and-conquer classification approach is proposed to better cap-
ture the intrinsic property of non-linear data. Each iteration contains a dividing step and a conquer
step. Instead of being independent of each other, these two steps are combined into a generative
model and alternatively performed in each iteration. Consequently, the two steps promote each
other. In the dividing step, the involved training data are partitioned into a number of clusters (or
training subsets) using GMM; in the conquer step, a basic linear classifier (e.g., a linear SVM)
is trained for each cluster. In order to exploit the local manifold structure to improve clustering
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performance, the locally consistent regularizer [Liu et al. 2010] is incorporated into the clustering
process. In order to ensure that the data points in each cluster are linearly separable, some clusters
may have relatively few points, which can result in overfitting. In this work, we consider training a
linear SVM classifier for a cluster as a single task, and the training of the classifier ensemble as a
multi-task learning problem. Clustered multi-task learning [Zhou et al. 2011a] is used to exploit the
intrinsic relatedness between tasks, and avoid overfitting for each task. We use the EM algorithm
[Dempster et al. 1977] to solve for model parameters based on the maximum likelihood estimation
framework. During testing (or prediction), a test instance is first mapped into a cluster and the cor-
responding basic classifier of the cluster is used to classify the instance. In addition, our approach
can also be utilized for semi-supervised learning, which enables our model to make full use of the
available unlabeled data to detect the manifold structure.

Further, the proposed approach provides a new technical path to deal with two other distinct
problems, namely, quality-aware web data classification and listwise learning to rank. These two
problems can also be solved by utilizing the proposed approach with a slight extension. In quality-
aware web data classification, the types of web data vary in terms of information quantity or quality.
For example, some pages contain numerous texts, whereas some others contain few texts; some
web videos are in high resolution, whereas some other web videos are in low resolution. As a con-
sequence, the quality of extracted features from different web data may also vary greatly. Existing
learning algorithms on web data classification ignore the variations of data quality. Based on the
proposed approach, the quality-aware factors of web data are utilized to partition web data into sub-
sets. In each subset, the data quality of different samples varies slightly. An ensemble of classifiers
is then trained.

Listwise learning to rank (LTR) has received great attention in recent years as it is useful in
many applications, such as information retrieval, data mining, natural language processing, and
speech recognition [Qin et al. 2008]. In listwise LTR, the input space contains a ranked list (or
permutations) for a set of instances each of which is described by the preference features. A number
of listwise LTR algorithms have been proposed in previous literature. The target ranking models in
most existing listwise ranking studies are linear. In our early work [Wu et al. 2016], an ensemble of
linear rankers has been investigated and initial promising results have been obtained. In this work,
the proposed approach is used for listwise LTR in a more effective way.

The proposed approach is based on locally consistent clustering and multi-task learning and thus
it is called LCC-MTL for brevity. Experimental results on benchmark datasets demonstrate that
the proposed approach outperforms the state-of-the-art methods. In summary, this paper makes the
following three main contributions:

— We propose a new iteratively divide-and-conquer classification approach (LCC-MTL) in which a
new generative model is used to combine locally consistent clustering and linear classifier learn-
ing. Compared with existing models, the parameters of the model are estimated more efficiently.
Multi-task learning is employed to train multiple linear SVMs on nonlinear datasets to avoid over-
fitting. Our approach can be also used for semi-supervised learning so as to use the unlabeled data
to obtain more effective results in dividing.

— Besides nonlinear data classification, two novel extensions of LCC-MTL are investigated for two
other learning problems. The first problem is quality-aware web data classification; the second is
listwise learning to rank. Based on the proposed approach, two new algorithms, namely, LCC-
MTLQ and LCC-MTLR, are obtained for the two learning problems, respectively.

— In nonlinear data classification with linear SVMs, LCC-MTL achieves much higher efficiency than
kernel SVM with comparable classification performances; in web data classification, LCC-MTLQ
achieves better performances than existing quality-aware web data classification algorithms; in
listwise ranking, LCC-MTLR also achieves better results than two classical ranking algorithms
and our early proposed method.

The rest of the paper is organized as follows. Section 2 brief reviews backgrounds of this study.
Section 3 introduces the methodologies of the proposed approach and the algorithm for nonlinear
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data classification with linear SVMs. Section 4 describes two extensions for the proposed approach
in web data classification and listwist LTR. Section 5 reports experimental results. Finally, conclu-
sions are given in Section 6.

2. RELATED WORK
This section introduces studies that are closely related to this work.

2.1. SVMs for nonlinear data
Kernel SVMs are high time-consumption in both training and classification for nonlinear data when
the data size is large. A number of recent studies have been proposed to deal with this problem. The
following two categories of methods attract considerable attentions.

2.1.1. Learning with linear SVMs. This kind of methods divides feature space into regions and
applies an ensemble of linear SVMs to approach non-linear classification functions. A typical ap-
proach is lazy learning: given a testing sample, a classifier is trained in a sub-region of the input
space near the sample and then used to classify the sample. SVM-KNN [Zhang et al. 2006] and
the adaptive SVM nearest neighbor classifier [Blanzieri and Melgani 2006] belong to this category.
Since the learning process is postponed until the testing phase, these methods are inefficient during
testing. In contrast, some methods construct local classifiers during the training phase (eager learn-
ing), usually employing a divide-and-conquer strategy involving two steps: partitioning the data into
clusters and training a classifier for each cluster. MLSVM [Fu et al. 2010], infinite SVM [Zhu et al.
2011] and CSVM [Gu and Han 2013] fall into this category. There also exist other eager learning
methods based on local coordinate coding, such as LLSVM [Ladický and Torr 2011]. These meth-
ods either lack robustness, such as CSVM, or are time-consuming, such as SVM-KNN, MLSVM
and LLSVM. Most of the above mentioned methods suffer from disadvantages arising from non-
convexity optimization. Oiwa and Fujimaki [2014] proposed novel convex region-specific linear
models, namely, partition-wise linear models, which are based on convexity optimization.

In our early work [Mao et al. 2014], a new generative model is proposed to partition the data
using GMM clustering and to train linear SVMs using multi-task learning.

2.1.2. Learning with feature mapping. A kernel can be viewed as an implicit non-linear feature
mapping from an original into a high-dimensional space. Some existing studies utilize explicit fea-
ture mapping technique to approximate kernel functions. This kind of methods first maps original
data into a low-dimensional feature space in which the kernel of any two samples is well approxi-
mated by their inner product. Rahimi and Recht [2007] proposed a random projection-based method
to approximate shift-invariant kernels. Vempati et al. [2010] extended the work conducted by Rahi-
mi and Recht [2007] to approximate generalized radial-basic function (RBF) kernels. Pham and
Pagh [2013] proposed an effective randomized tensor product technique, called Tensor Sketching,
which can approximate any polynomial kernel. Pele et al. [2013] embedded an input vector into
a high-dimensional but sparse vector and constructed a linear classifier based on piecewise linear
functions in the individual features and pairwise features.

The present study on nonlinear data also belongs to the first technical path. Nevertheless, the
proposed approach is iterative to partition training data into subsets and then learn linear SVMs.

2.2. Quality-aware fusion
Biometrics refers to the automatic identification of users based on their physiological and behavioral
characteristics. Information fusion is received considerable attention in biometrics and proved to be
effective by extensive studies [Nandakumar et al. 2007]. Recent studies on multi-modal biometrics
give attention to the quality-aware fusion method because the quality of biometric data is usually
negatively affected by factors such as environment, noise, devices, and physiological or behavioral
change by the user himself/herself [Kittler et al. 2007]. However, the factors affecting one biometric
modality often does not affect other biometric modalities. For example, if illumination variation is
regarded as a degrading factor for the face biometrics, it is completely irrelevant to the fingerprint
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modality. Therefore, evaluating the qualities of the multiple modalities of biometric data and dy-
namically fusion the multi-modal information with quality-aware factors is investigated. A number
of quality-aware fusion algorithms are developed. Poh and Kittler [2012] proposed a unified frame-
work for quality-aware fusion of multi-modal biometrics. Quality-aware fusion assumes that the
classifiers in each modality are given. As a result, quality-aware fusion only pursues dynamic fu-
sion strategies while quality-aware learning pursues both dynamic fusion and classifier parameters.

Obvious differences exist between quality-aware web data classification and quality-aware fusion
in biometrics: (1) quality-aware web data classification focuses on learning classifiers, whereas
quality-aware fusion focuses on fusion and assumes that classifiers are given; (2) quality-aware
fusion is designed only for multi-modal data, whereas the data in quality-aware classification can be
single-model. Our early work [Wu et al. 2014] proposed the first quality-aware learning algorithm
that information quantity and quality are considered in web data classification. The training data are
partitioned into training subsets according to GMM clustering on quality-aware factors. A multi-
task feature learning approach is utilized to select features on each subset. This algorithm is not
iterative.

2.3. Multi-Task Learning
Multi-task learning (MTL) is a method where multiple related tasks are learned simultaneously to
improve generalization performance. This approach has drawn widespread attention in recent years.
Some methods are formulated under the regularization framework [Evgeniou and Pontil 2004; Zhou
et al. 2011a], and others are based on the Bayesian model [Yu et al. 2005; Zhang and Yeung 2010].
Recently, Luo et al. [2013; 2015] firstly introduced manifold regularization into MTL and obtained
promising results in multi-label image classification.

2.4. Listwise learning to rank (LTR)
Listwise LTR is a crucial technique for information retrieval. Existing listwise LTR algorithms first
define a loss function over a ground-truth ordering and a predicted ordering generated by the ranking
function. An optimal ranking function is then trained according to the minimization of training loss.
Two classical methods are ListMLE [Xia et al. 2008] and ListNet [Cao et al. 2007]. The former
defines a likelihood loss function based on the Packett-Luce Model [Cao et al. 2007], while the latter
defines a loss function based on KL-divergence between two permutation probability distributions.
The target ranking models in most listwise ranking studies are linear. There are a limited number
of studies that construct nonlinear listwise ranking models which are mainly based on the decision
tree. Pavlov et al. [2010] combined a sequence of boosted tree as a ranking model based on the
bag strategy. Moon et al. [2010] also constructed the ranking model based on the combination of
decision tree. These two algorithms still require the relevance labels during training, although the
labels are claimed to be unavailable for conventional listwise setting. Our early work [Wu et al.
2016] proposed the first learning algorithm (RPC-MTL) for piecewise linear ranking models in
listwise LTR. Nevertheless, the clustering step in RPC-MTL is required to preserve the rankings of
instances in different objects. Therefore, the clustering procedure is quite heuristic. In this study, the
learning for piecewise linear ranking model is investigated in a unified view with the other learning
problems, i.e., nonlinear data classification and quality-aware web data classification. The manifold
structure of training data in LTR can be better captured.

3. THE PROPOSED APPROACH
In order to facilitate analysis, we introduce following notations. Assuming there areN i.i.d. samples
whose features are X = {xi}i=1,··· ,N , where xi represents features. The corresponding labels are
Y = {yi}i=1,··· ,N . The latent variables Z = {zi}i=1,··· ,N denote the assignments of samples to
the K mixtures. The parameters µ = {µk}k=1,··· ,K and Σ = {Σk}k=1,··· ,K denote the centroids
and covariance matrixes of Gaussian components, respectively. W = {wk}k=1,··· ,K represents the
parameters of the K basic models (e.g., linear SVMs in nonlinear classification) for the K clusters.
We denote by π = {πk}k=1,··· ,K the mixing coefficients of the GMM. Let Θ = {π, µ,Σ,W} be the
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Fig. 1. The overall of the proposed approach LCC-MTL for nonlinear classification.

Fig. 2. The generative graphical model of LCC-MTL

total set of parameters of our model. In quality-aware classification, let di be the additional quality-
aware factors for sample xi. In listwise LTR, xi is further represented by (x1

i , ..., x
ni
i ), where ni

denotes the number of objects in xi, and the (ordering) label yi on xi is represented by (y1
i , ..., y

ni
i ),

where yji is the rank assigned to the object xji .

3.1. Overall of the Proposed Approach
We first use nonlinear data classification to illustrate the proposed approach. The extensions to web
data classification and listwise LTR are introduced in the next section. The overall of the proposed
approach LCC-MTL is presented in Fig. 1. In a single divide-and-conquer learning procedure, a
clustering step is utilized to partition the raw training set (X,Y ) into a number of training subsets
(clusters). A number of basic classifiers are subsequently trained for each training subset. This
divide-and-conquer process relies heavily on the clustering results in the dividing stage. To this
end, an iteratively divide-and-conquer approach is adopted. Once the learning is finished, in the
prediction stage, the features (xtest) of a test sample are extracted. The clustering model is then
used to assign xtest into a cluster based on cluster parameters. Finally, the cluster’s corresponding
classifier is applied to classify the test sample according to xtest.

Specifically, the proposed approach LCC-MTL is iterated between two steps: partitioning the
data into several clusters with a locally consistent Gaussian mixture model (GMM) and training a
basic classifier (a linear SVM in this work) in each of these clusters. We assume the samples in
each sufficiently small cluster are linearly separable. Instead of being independent of each other,
the two steps promote each other: the clustering results of the GMM can improve the classification
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performance of the basic classifier in each cluster, and vice versa. This idea has been integrated
into a generative graphical model (also called LCC-MTL) as shown in Fig. 2. The upper part of the
generative model corresponds to the GMM, which is responsible for partitioning the input space into
clusters. Given a prior probability (π) of picking a Gaussian component, a sample is first generated
based on the GMM with parameters µ and Σ. The lower part is the generative process for the label
yi, which is generated based on the sample xi and the parameter W of the function to be learnt.

3.2. A New Generative Graphical Model
From Fig. 1, the joint distribution over X and Y can be written as follows:

P (X,Y |Θ) =

N∏
i=1

P (xi, yi|Θ)

=

N∏
i=1

K∑
zi=1

πziP (xi|zi, µ,Σ)P (yi|xi, zi,W )

=

N∏
i=1

K∑
k=1

πkN (xi|zi = k, µk,Σk)P (yi|xi, wk) (1)

which is obtained by summing the joint distribution of observed variablesX and Y over all possible
latent states of Z, with zi taking values in {1, · · · ,K}. The mixing coefficient πk is the prior
probability of picking the kth Gaussian component. P (xi|zi = k, µ,Σ) = N (xi|zi = k, µk,Σk)
is a Gaussian component of the mixture, specifying the probability of xi conditioned on the kth
component. P (yi|xi, wk) is the posterior probability of the ith sample output by the kth classifier.
We estimate the parameters of our model by maximum likelihood estimation. The regularized log-
likelihood function can be formulated as:

L(Θ) =

N∑
i=1

logP (xi, yi|Θ) + Ω(W )

=

N∑
i=1

log

K∑
k=1

πkN(xi|zi = k, µk,Σk)P(yi|xi, wk)+Ω(W )

=

N∑
i=1

log

K∑
k=1

πkN(xi|zi = k, µk,Σk)P(yi|xi, wk)+Ω(W ) (2)

where Ω(W ) denotes a regularization term on the weight vectors of the classifiers. This term en-
codes prior knowledge about the K classifiers. In the following two subsections, the locally con-
sistent regularizer and multi-task learning will be incorporated into the above maximum likelihood
estimation framework.

3.3. Incorporating the Locally Consistent Regularizer
The first step of our model is to partition the data with a GMM. However, the standard GMM fits
the data in the Euclidean space. Previous studies have shown that naturally occurring data may live
on or near to an underlying sub-manifold and the clustering performance can be greatly enhanced
if the local manifold structure is exploited. Liu et al. [2010] proposed the Locally Consistent Gaus-
sian Mixture Model (LCGMM), which smoothes the conditional probability distribution along the
geodesics of the data manifold. A nearest neighbor graph is first constructed on the training data to
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model the nonlinear manifold structure. The edge weight matrix of the graph is defined as follows:

Aij =

{
1 if xi ∈ Np(xj) or xj ∈ Np(xi).
0 otherwise.

(3)

where Np(di) denotes the p nearest neighbors of di. Let Pi = P (zi|xi, µ,Σ) denote the distribu-
tion on zi given xi, µ, and Σ based on the GMM models. Let Pi(k) = P (zi = k|xi, µ,Σ). The
smoothness of Pi on the graph can be measured by the following locally consistent regularizer:

R =
1

2

N∑
i,j=1

(D(Pi||Pj) +D(Pj ||Pi))Aij (4)

where D(Pi||Pj) =
∑K
k=1 Pi(k) log Pi(k)

Pj(k) is the KL-Divergence between the conditional distribu-
tion Pi and Pj . The smaller of R, the smoother of Pi over the nearest neighbor graph. In other
words, if two samples are close on the manifold, their distributions over different Gaussian com-
ponents are likely to be similar. The regularizer can be directly incorporated into our maximum
likelihood estimation framework, which is now formulated as:

L(Θ)=

N∑
i=1

log

K∑
k=1

πkN(xi|zi = k, µk,Σk)P(yi|xi,wk)+ Ω(W )−λR (5)

Since the performance is quite insensitive to the regularization parameter λ and the number of
nearest neighbors p, we set them to 0.1 and 20 respectively as in [Liu et al. 2010]. The locally
consistent regularizer significantly enhances the clustering performance of GMM in the first step of
our model.

3.4. Incorporating Multi-Task Learning
Our model learns the multiple predictors simultaneously rather than independently. More specifi-
cally, if training a predictor (e.g., a linear SVM) in a cluster is regarded as a task, training predictors
for all clusters corresponds to a multi-task learning problem2. This idea is inspired by the fact that
in order to ensure that the samples in each cluster are linearly separable, the samples available for
each cluster may be limited, which may lead to over-fitting in each cluster. More importantly, since
all the clusters are partitioned from the same dataset, they should be latently related in some way.
Multi-task learning can be employed to capture the intrinsic relatedness between tasks and avoid
over-fitting in each task.

In this paper, clustered multi-task learning [Jacob et al. 2008; Zhou et al. 2011a] is utilized,
which assumes that tasks can be clustered into different groups, and tasks from the same group have
similar weight vectors. When training a classifier, we often desire a decision boundary that is smooth
and has constrained curvature, since a decision boundary with arbitrary curvature would be likely to
overfit the data [Ladický and Torr 2011]. Clustered multi-task learning is helpful as tasks in adjacent
regions on the decision boundary should have similar weight vectors and should be clustered into
one group. Clustered multi-task learning can be formalized in to the following regularizer:

ΩMT (W ) =

R∑
r=1

∑
k∈Ir

‖wk − w̄r‖22 (6)

The above equation assumes that the total K tasks are clustered into R clusters, with the index set
of the rth cluster defined as Ir = {k|k ∈ cluster r}. The average weight vector of the rth cluster is
denoted by w̄r = 1

mr

∑
k∈Ir wk, where there are mr tasks in the rth cluster. Eq. (6) measures the

within-cluster variance, which requires tasks from the same cluster to have similar weight vectors.

2The learning tasks for different clusters are different yet related.
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3.5. The EM Algorithm and Implementation
A typical technique for finding maximum likelihood estimates of parameters in latent variable mod-
els is the EM algorithm. We now apply the EM algorithm to the above LCC-MTL model. Let
Θ(t) = {π(t), µ(t),Σ(t),W (t)} = {π(t)

k , µ
(t)
k ,Σ

(t)
k , w

(t)
k }k=1,··· ,K denote the collection of parame-

ters at the tth iteration.
In the tth E step, the posterior probability of assigning the ith sample to the kth linear SVM is

evaluated as:

Pi(k)(t) =
π

(t)
k N (xi|zi = k, µ

(t)
k ,Σ

(t)
k )P (yi|xi, w(t)

k )∑K
k=1 π

(t)
k N (xi|zi = k, µ

(t)
k ,Σ

(t)
k )P (yi|xi, w(t)

k )
(7)

This posterior probability is then utilized to derive the following lower bound on the log-likelihood
function:

Q(Θ(t+1); Θ(t)) =

N∑
i=1

K∑
k=1

Pi(k)(t) log
[
π

(t+1)
k ·

N(xi|zi = k, µ
(t+1)
k ,Σ

(t+1)
k )P (yi|xi, w(t+1)

k )
]

+ Ω(W (t+1))−λR (8)

where Ω(W (t+1)) is the regularization term for W (t+1).
In the tth M step, the parameter is updated to Θ(t+1) by maximizing (8). Considering the incorpo-

rated locally consistent regularizer, the GMM-related parameters {π, µ,Σ} are updated as follows:

π
(t+1)
k =

Nk
N

(9)

µ
(t+1)
k =

1

Nk

∑N

i=1
Pi(k)(t)xi −

λ

2Nk

∑N

i,j=1

((
Pi(k)(t) − Pj(k)(t)

)
(xi − xj)

)
Aij (10)

Σ
(t+1)
k =

1

Nk

∑N

i=1
Pi(k)(t)Si,k −

λ

2Nk

∑N

i,j=1

((
Pi(k)(t)− Pj(k)(t)

)
(Si,k − Sj,k)

)
Aij (11)

where

Nk =

N∑
i=1

Pi(k)(t) and Si,k = (xi − µ(t+1)
k )(xi − µ(t+1)

k )T (12)

The update of W depends on the concrete forms of P (yi|xi, w(t)
k ) and Ω(W (t)).

Fig. 3. The generative graphical model of semi-supervised LCC-MTL
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3.6. Semi-supervised LCC-MTL
In many applications, labeled data are expensive to collect. Semi-supervised learning addresses
this problem by using the abundant unlabeled data. Our model can be naturally extended to semi-
supervised learning as shown in Fig. 3. In the left part of Fig. 3, an unlabeled sample xj is generated
according to the variable zj and the associated parameters π, µ, and Σ; in the right part, a sample xi
and its label yi are generated with the same process as shown in Fig. 2. The left and the right parts
share the same parameters π, µ, and Σ. Semi-supervised LCC-MTL utilizes sufficient unlabeled data
XU to capture the inherent data structures. The unlabeled data setXU , together with the labeled data
setXL, YL, gives the information about the parameters {π, µ,Σ}. The log-likelihood function in (5)
now can be formulated as:

L(Θ) =
∑
xi∈XL

log

K∑
k=1

πkN(xi|zi = k, µk,Σk)P(yi|xi, wk)

+
∑

xj∈XU

log

K∑
k=1

πkN(xj |zj = k, µk,Σk) +Ω(W )− λR (13)

where the first two terms are the “supervised” term based on XL and “unsupervised” term based
on XU , respectively. Here, the locally consistent regularizer R is computed over both labeled and
unlabeled data. The abundant unlabeled data make the locally consistent regularizer detect the local
manifold structure more accurately, which leads to the improvement of classification performance
shown in the experimental section. It is also possible to use a weight to balance the contributions of
labeled and unlabeled data in maximum likelihood estimation.

3.7. LCC-MTL for Nonlinear Data Classification with Linear SVMs
As presented earlier, LCC-MTL is motivated by nonlinear data classification. This subsection intro-
duces the concrete algorithm of LCC-MTL in nonlinear data classification with linear SVMs. Our
previous work [Mao et al. 2014] has shown that it is generally a reasonable choice to cluster the
tasks into groups when applying multiple linear SVMs to nonlinear datasets. We recall that training
a linear SVM usually leads to the following quadratic optimization problem:

min
w

‖w‖22
2

+ C
∑
i

`(w;xi, yi) (14)

where the first term, inversely proportional to the classifier margin, is the regularization term on the
weight vector of the linear SVM and the second term is the total loss incurred. To incorporate linear
SVM, we define the probability of P (yi|xi, wk)3 as follows:

P (yi|xi, wk) = exp(−`(wk;xi, yi)) (15)

where `(wk;xi, yi) = max(0, 1 − yi · wTk xi). The value of P (yi|xi, wk) will be equal to 1 if the
loss `(wk;xi, yi) is zero, otherwise P (yi|xi, wk) will be less than 1.

Further, we define Ω(W ) = ΩMT + ||w||22. To update the weight vectors W of the linear SVMs,
we then solve the following optimization problem:

max
W (t+1)

N∑
i=1

K∑
k=1

P (ck|di)(t) logP (yi|xi, w(t+1)
k )−α

R∑
r=1

∑
k∈Ir

‖w(t+1)
k − w̄(t+1)

r ‖22−β
K∑

k=1

‖w(t+1)
k ‖22 (16)

With the first term regarded as a weighted loss function, Eq. (16) is equivalent to the clustered multi-
task learning problem, which can be solved using the MALSAR package [Zhou et al. 2011b]. Since

3Our definition follows the definition in [Sollich 2000]. Because the loss function in our definition is the standard hinge loss,
the value of the probability is definitely in the range of (0, 1]. Therefore, the normalization used in [Sollich 2000] is not
required.
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ALGORITHM 1: LCC-MTL
Input: Training data {(xi, yi)|i = 1, · · · , N} and the number of clusters K, λ, t = 1
Output: Parameter Θ = {πk, µk,Σk, wk|k = 1, · · · ,K}

Initialise Θ by K-means and linear SVMs.
repeat

E step: Evaluate Pi(k)(t) using Eq. (7).
M step: Re-estimate π(t+1)

k , µ(t+1)
k and Σ

(t+1)
k using Eqs. (9), (10) and (11), respectively.

Re-estimate w(t+1)
k for all k simultaneously as a multi-task learning problem using Eq. (16).

t = t+ 1.
until convergence
For quality-aware web data classification, train kernel SVMs for each training subset using multi-task
kernel SVMs [Cai and Cherkassky 2012].

the linear SVMs do not change abruptly across iterations, we initialize their weight vectors with the
results of the last iteration, which greatly accelerates the training.

A sketch of the algorithm is presented in Algorithm 1. K-means is utilized to initialize the mixing
coefficients π, centroids µ and covariance matrixes Σ. A linear SVM is then trained for each cluster,
resulting in the initial weight vectors W .

We now show that each iteration of EM is guaranteed to increase the log-likelihood in Eq. (5).
The difference between the log-likelihood function values in two successive iterations is formulated
as:

L(Θ(t+1))− L(Θ(t))

= |Q(Θ(t+1); Θ(t))−Q(Θ(t); Θ(t))| − [H(Θ(t+1); Θ(t))−H(Θ(t); Θ(t))] (17)

where H(Θ; Θ(t)) =
∑
Z logP (Z|X,Y,Θ)P (Z|X,Y,Θ(t)). The first term on the right-hand side

of Equation (17) is non-negative, which is derived by the M step. The second term is less than
or equal 0 by Jensen’s inequality [Hastie et al. 2001]. Therefore, since the log-likelihood is non-
decreasing, our algorithm is guaranteed to converge. For the real datasets in the experiments, our
algorithm generally converges within 10 iterations.

During testing, a new sample (featured by x) is classified by the weighted average of the linear
classifiers:

K∑
k=1

πkN (x|z = k, µk,Σk)
(
P (1|x,wk)− P (−1|x,wk)

)
(18)

The sample is classified as positive if the weighted average is greater than 0, and negative otherwise.
Obviously, the prediction complexity is linear in the number of tasksK. Prediction efficiency is par-
ticularly critical for large-scale or online applications. The prediction complexity of the proposed
method is O(K). The prediction complexity of kernel SVM is O(Nk), where Nk is the number
of support vectors. Because Nk is usually much larger than K, the prediction complexity of the
proposed method is much lower than that of SVM. For example, in the IJCNN1 set in our experi-
ments,K is about ten, whereNk is about 7924. The prediction complexity of SpSVM (an improved
algorithm of SVM) [Keerthi et al. 2006] is also larger than that of the proposed method because
the value of Nk in SpSVM is also larger than K. The prediction complexity of SVM-KNN is al-
so O(Nk). The prediction complexity of LLSVM is O(Na), where Na is the number of anchor
points. In practice, Na is usually much larger than K. The prediction complexities of CSVM and
LSVM-MTL are the same to that of the proposed method.

The training complexity of the proposed method mainly depends on the two iterative steps, i.e.,
GMM clustering and accelerating projected gradient-based optimizing. The accelerating projected
gradient-based optimizing equals to the optimizing for a clustered multi-task learning problem,
which is borrowed from MALSAR [Zhou et al. 2011b]. The accelerating projected gradient-based
optimizing is efficient according to the experiments conducted in [Zhou et al. 2011b]. Because our
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Fig. 4. Three web pages with different proportions of images and texts.

Fig. 5. Three images with different lengths of text descriptions.

Fig. 6. Two web videos with different visual quality.

algorithm generally converges within 10 iterations on the involved data sets in the experiments, the
consumption time of the training stage for the proposed method is close to that of kernel SVM.

4. TWO EXTENSIONS OF LCC-MTL
4.1. Web Data Classification with Quality-aware Factors
We first explain why the quality should be considered in Web data classification in detail. The types
of web data vary in two aspects:

— Information quantity is usually distinct. Take web pages as an example. Some pages contain many
images, whereas some pages contain few images. Some pages contain numerous texts, whereas
some other pages contain few texts. This phoneme still exists for images. Some web images have
many text descriptions, whereas some other web images have limited text descriptions. Fig. 4
shows three web pages with different proportions of texts and images. In Fig. 4(a), the page con-
tains a number of images and few texts; in Fig. 4(c), the page contains few images but plentiful
texts. Fig. 5 shows three examples of web images with different lengthes of text descriptions.

— Information quality is usually distinct. The quality of web images and videos is greatly affected
by factors such as the performance of capture devices and the environment. As many web images
and videos are produced by low-quality devices, they are with low resolutions or distorted colors.
Fig. 6 illustrates how videos with similar contents differ in quality (e.g., resolution and color
distortion). It is very likely that the Fig. 6(a) video is obtained by a low-quality camera.

In Fig. 4, image features (or text features) should make distinct contributions in the classification
of Fig. 4(a) and Fig. 4(c) pages. Likewise, text features should make distinct contributions when
classifying the three images in Fig. 5. Considering that information quantity can also be viewed as
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Fig. 7. The generative graphical model of LCC-MTL in quality-aware Web data classification (a) and the semi-supervised
version (b).

a quality measure for web information, the factors related to both information quantity and quality
are called quality-aware factors. Some typical quality-aware factors are the text length of a web
document, the image count in a web page, and visual quality of a web image or video. Quality-
aware factors should ideally be considered during classifier training and testing.

The proposed approach can still be applied to quality-aware web data classification4 with a s-
light modification that the data partition relies solely on quality-aware factors instead of the whole
features, and the SVM models rely solely on features (xi). The modified approach and the semi-
supervised version are shown in Fig. 7. Let D be the set of quality factors and di ∈ D be the quality
factors of the i-th sample xi. Eq. (1) becomes

P (X,D, Y |Θ) =

N∏
i=1

P (xi, di, yi|Θ)

=

N∏
i=1

K∑
zi=1

πziP (di|zi, µ,Σ)P (yi|xi, zi,W )

=

N∏
i=1

K∑
k=1

πkN (di|zi = k, µk,Σk)P (yi|xi, wk) (19)

Theoretically, in web data classification, any types of classifiers (e.g., random forest) can be used.
Because SVM is proven effective in our early work, SVM is still used. The entire algorithmic steps
are similar to those shown in Algorithm 1 by replacing xi with di in Eqs. (7-11) in the E- and M-
steps. The algorithm is called LCC-MTLQ. Ideally, multi-task kernel SVMs [Cai and Cherkassky
2012] should be used in each iteration. However, the training complexity is quite high. To accelerate
the training speed, the linear SVMs are used in iteration and kernel SVMs are used in the last
iteration for web data classification.

4.2. Listwise Learning to Rank with Linear Rankers
As introduced previously, almost all existing LTR algorithms utilize linear ranking functions
(rankers) to model data. Nevertheless, real-world data are usually non-linear and our early work
[Wu et al. 2016] shows that a piece-wise linear ranker is more effectiveness. In our early work, a
divide-and-conquer learning process is used and a ranking-preserve clustering approach is lever-
aged to divide training data into training subsets. In this work, the proposed approach is used and
an iterative divide-and-conquer learning algorithm is obtained for listwise LTR.

4Theoretically, this problem also belongs to nonlinear data classification. Nevertheless, there are two distinct differences.
First, this problem contains quality-aware factors; second, the “classification accuracy” instead of the “prediction complexi-
ty” is the primary consideration.
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To apply the proposed approach, the joint distribution over X and Y is written as follows:

P (X,Y |Θ) =

N∏
i=1

P (xi, yi|Θ) =

N∏
i=1

∑
zi∈{0,1,··· ,K}ni

P (zi)P (xi|zi, µ,Σ)P (yi|xi, zi,W ) (20)

where zji = k means that xji is generated according to the k-th component, P (zi) =
∏ni

j=1 πzji
, and

P (xi|zi, µ,Σ) =

ni∏
j=1

p(xji |µzji ,Σzji ) (21)

P (yi|xi, zi,W ) is calculated according to the Packett-Luce model [Cao et al. 2007] shown as fol-
lows:

P (yi|xi, zi,W ) =

ni∏
j=1

exp(WT

z
y
−1
i

(j)

i

x
y−1
i (j)
i )

∑ni

l=j exp(W
T

z
y
−1
i

(l)

i

x
y−1
i (l)
i )

(22)

where y−1
i (j) is the instance index of the jth rank in xi.

The lower bound on the log-likelihood function defined in Eq. (8) becomes:

Q(Θ(t+1); Θ(t)) = E(lnP (X,Y, Z|Θ(t+1))|X,Y,Θ(t))

=

N∑
i=1

∑
zi

(lnP (zi) + lnP (xi|zi, µ,Σ) + lnP (yi|xi, zi,W (t+1)))P (zi|xi, yi,Θ(t))

+ Ω(W (t+1))−λR (23)

where Ω(W (t+1)) is the regularization term for W (t+1), and

P (zi|xi, yi,Θ(t)) =
P (xi, zi, yi|Θ(t))

P (xi, yi|Θ(t))
(24)

Let Xinst be the set of all instances in X . For an instance υ, let I(υ) and J(υ) be the index of
the sample that contains υ and the index of υ in the sample, respectively. By maximizing Eq. (23),
we obtain

π
(t+1)
k = Nk/N (25)

µ
(t+1)
k =

N∑
i=1

ni∑
j=1

xji τ
(t)
i,j,k/N+

λ

2Nk

∑
υ,ν∈Xinst

((
τ

(t)
I(υ),J(υ),k−τ

(t)
I(ν),J(ν),k

)
(υ−ν)

)
AI(υ),J(υ),I(ν),J(ν)

(26)

Σ
(t+1)
k =

1

Nk

N∑
i=1

ni∑
j=1

τ
(t)
i,j,kSi,j,k

− λ

2Nk

∑
υ,ν∈Xinst

((
τ

(t)
I(υ),J(υ),k − τ

(t)
I(ν),J(ν),k

)
(SI(υ),J(υ),k − SI(ν),J(ν),k)

)
AI(υ),J(υ),I(ν),J(ν)

(27)

where
τ

(t)
i,j,k = P (zji = k|xi, yi,Θ(t)) (28)
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ALGORITHM 2: LCC-MTL for listwise ranking (LCC-MTLR)
Input: Training data {(xi, yi)|i = 1, · · · , N}, the number of clusters K, λ, t = 1
Output: Parameter Θ = {πk, µk,Σk, wk|k = 1, · · · ,K}

Initialise Θ by K-means and ListMLE.
repeat

Sampling: Sample MS
(t)
i for each object xi according to Eq. (32).

E step: Evaluate τ (t)i,j,k using Eq. (24) based on MSi.

M step: Re-estimate π(t+1)
k , µ(t+1)

k and Σ
(t+1)
k for all k using Eqs. (25), (26) and (27), respectively.

Re-estimate w(t+1)
k for all k simultaneously using Eq. (33).

t = t+ 1.
until convergence

Nk =

N∑
i=1

τ
(t)
i,j,k (29)

Si,j,k = (xji − µ
(t+1)
k )(xji − µ

(t+1)
k )T (30)

The parameter W (t+1) is obtained by maximizing

QW (Θ(t+1); Θ(t)) =

N∑
i=1

∑
zi

(lnP (yi|xi, zi,W (t+1)))P (zi|xi, yi,Θ(t)) + λΩ(W (t+1)) (31)

where Ω(W (t+1)) is defined by Eq. (6).
The computational complexity of P (zi|xi, yi,Θ(t)) is O(Kni). Therefore, when eitherK or ni is

large, it is impractical to calculate the exact value of P (zi|xi, yi,Θ(t)). In this work, the Metropolis
sampling method is adopted to approximately calculate the value of P (zi|xi, yi,Θ(t)). During sam-
pling, the proportion of the conditional probability of a new candidate sample (z′′) to the previous
sampled sample (z′) must be calculated. Based on Eq. (24), the following equation is obtained:

P (z′′|xi, yi,Θ(t))

P (z′|xi, yi,Θ(t))
=
P (z′′)P (xi|z′′, µ(t),Σ(t))P (yi|xi, z′′,W (t))

P (z′)P (xi|z′, µ(t),Σ(t))P (yi|xi, z′,W (t))
(32)

z′′ can be generated according to the following process. Given z′, a random number j ∈
{1, · · · , |z′|} is selected. We change the value of z′j randomly, and z′′ is then obtained. Whether z′′

is accepted depends on the value of P (z′′|xi,yi,Θ
(t))

P (z′|xi,yi,Θ(t))
. Assuming that for each training sample xi, we

obtain a set of sampled MS
(t)
i = {z(i)(1), · · · , z(i)(M)} in the tth iteration. We can then calculate

the approximate value of P (zi|xi, yi,Θ(t)) according to MSi and Eq. (31) can be approximately
maximized. The value of W can then be obtained. However, this work adopts a heuristic yet more
efficient method. P (zi|xi, yi,Θ(t)) is assumed to attain its maximum value at z∗ ∈ MS

(t)
i . Then

Eq. (31) is reduced to the following equation:

QW (Θ(t+1); Θ(t)) =

N∑
i=1

lnP (yi|xi, z∗i ,W (t+1)) + λ1ΩMT (W (t+1)) (33)

The above maximization can be solved via stochastic gradient descent. The algorithmic steps are
shown in Algorithm 2.

5. EXPERIMENTS
This section evaluates the proposed approach LCC-MTL on the aforementioned three learning prob-
lems, namely, nonlinear data classification with linear SVMs, quality-aware web data classification,
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and listwise LTR. The two extensions of LCC-MTL on the latter two problems are called LCC-
MTLQ and LCC-MTLR, respectively.

5.1. Nonlinear Data Classification with Linear SVMs
5.1.1. Datasets. We use six benchmark datasets: IJCNN1, SVMGUIDE1, SKIN segmentation,

LETTER recognition, Pendigits and Landsat Satellite. The first two are taken from the LibSVM
website [Chang and Lin 2011], and the others are available at the UCI machine learning repository
[Bache and Lichman 2013]. All the datasets have been divided into training and testing sets except
the SKIN and LETTER datasets. For the SKIN dataset, the first half of positive and negative samples
are used for training. For the LETTER dataset, letters ‘A’, ‘B’, ‘C’ and ‘D’, ‘E’, ‘F’ are grouped into
the positive and negative classes respectively, with the two-thirds of each class used for training. In
order to use the datasets for binary classification, for the Pendigits dataset, digits ‘0-4’ are labelled
as the positive class and the remaining digits are labelled as the negative class. For the Landsat
Satellite dataset, classes ‘1-3’ are labelled as positive, with the remaining labelled as negative. Each
sample vector in each dataset is l2-normalized to unit length. Table I gives a brief summary of these
datasets.

Table I. Summary of the real datasets in our experiments

Datasets # training # test # features # classes
IJCNN1 49,990 91,701 22 2

SVMGUIDE1 3,089 4000 4 2
SKIN 125,000 120,057 3 2

LETTER 3,093 1,546 16 2
Pendigits 7,494 3,498 16 2

Landsat Satellite 4,435 2000 36 2

We compare LCC-MTL with twelve previously-mentioned methods: Linear SVM, Kernel SVM,
SVM-KNN, SpSVM, HME, K-means+SVM, MLSVM, LLSVM, CSVM, Partition-wise linear
models (PLM)5 [Oiwa and Fujimaki 2014], Tensor sketching (TS)6 [Pham and Pagh 2013], and
our early method LSVM-MTL. For kernel SVM, we use the RBF kernel. For SpSVM, the number
of basis functions is set to 70. For HME, the number of experts is set to 16 to construct a balanced
hierarchy. The parameters of all the other methods are set as in [Gu and Han 2013], with most pa-
rameters set by cross validation. For those methods involving K-means clustering or other random
factors, we calculate the average accuracy and the standard deviation on the test set over 10 random
repetitions. The results are presented in Table II. Here, we set the number of clusters K to 14 for
K-means+SVM, CSVM, and LCC-MTL. The parameter settings for PLM and TS are the same as
the settings in [Oiwa and Fujimaki 2014] and [Pham and Pagh 2013], respectively.

Unsurprisingly, linear SVM achieves the lowest performance on all the datasets. Kernel SVM
achieves the best performance on all the datasets except the SVMGUIDE1 dataset. Nevertheless,
kernel SVM can be prohibitively expensive when dealing with large datasets. Our proposed LCC-
MTL achieves not only comparable performance to kernel SVM, but also much higher efficiency in
prediction. The reason lies in the fact that the prediction complexity of LCC-MTL is linear in the
number of tasks K, while the prediction complexity of kernel SVM scales with the number of sup-
port vectors. For example, withK = 14, the prediction time of LCC-MTL on the IJCNN1 dataset is
0.24 seconds, whereas the time of kernel SVM is 34.71 seconds, with 7924 support vectors learned.
SpSVM is a kind of kernel SVM fast evaluation by reducing the number of basis functions (support
vectors). Although we set the number of basis functions to 70, five times of the number of tasks,
its performance is not comparable to our method. HME is a classical mixture of experts method.
Its slightly inferior performance may be due to that its gating function is not flexible enough in

5The authors did not provide the code. Therefore, we implemented it according to the paper.
6The codes are available at https://bitbucket.org/johanvts/fastkernel/.
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Table II. Comparison of different classifiers in terms of classification accuracy (%)

Datasets IJCNN1 SVMGUIDE1 SKIN LETTER Pendigits Landsat Satellite
Linear SVM 91.01 79.13 97.43 84.60 80.84 86.01
Kernel SVM 98.72 87.95 99.60 99.35 98.91 91.20
SVM-KNN 92.45 85.78 98.88 95.05 97.43 86.93

SpSVM 95.13±0.43 87.67±0.10 99.47±0.12 93.79±0.38 95.93±0.63 88.84±0.27
HME 93.92±0.27 88.43±0.32 97.05±0.18 93.63±0.21 95.25±0.14 87.32±0.19

K-means+SVM 93.87±0.53 83.25±0.72 97.82±0.28 93.66±0.35 96.89±0.19 87.55±0.23
MLSVM 93.41±0.19 83.27±0.64 98.12±0.37 93.89±0.42 97.21±0.26 87.63±0.28
LLSVM 94.07±0.45 87.64±0.30 98.36±0.21 95.68±0.17 98.11±0.38 87.42±0.11
CSVM 95.41±0.34 86.32±0.47 98.72±0.15 94.37±0.26 97.14±0.18 88.98±0.21

LSVM-MTL 96.32±0.27 87.88±0.43 98.70±0.19 96.12±0.14 98.28±0.23 89.70±0.15
PLM 95.51±0.48 87.65±0.57 99.18±0.13 97.37±0.28 98.24±0.22 89.36±0.23
TS 94.79±0.33 85.42±0.56 96.16±0.17 95.81±0.22 97.63±0.13 88.60±0.25

LCC-MTL 96.42±0.25 88.62±0.41 99.50±0.21 97.09±0.16 98.63±0.24 90.80±0.17

partitioning the feature space and the adopted expert function is the generalized linear model rather
than the SVM. Even though SVM-KNN and LLSVM perform well on some datasets, they are slow
due to the nature of lazy learning and local coordinate coding respectively. LLSVM is sometimes
slower than kernel SVM [Gu and Han 2013]. The poor performance of K-means+SVM is likely
a result of its ignorance of the relatedness among the multiple tasks. MLSVM only yields slightly
better results than K-means+SVM with a considerable increase in computational complexity. PLM
also achieves close performances to LCC-MTL. The performances of TS are not stable due to the
partial reason that TS assumes that the polynomial kernel is suitable for the data.
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Fig. 8. Comparison of classification accuracies for CSVM and LCC-MTL with respect to the number of clusters K

CSVM is highly similar with the proposed algorithm, and hence we compare it with LCC-MTL
in more detail. Fig. 8 shows the classification accuracies of CSVM and LCC-MTL with the num-
ber of clusters K ranging from 2 to 20. LCC-MTL outperforms CSVM and LSVM-MTL on all
the datasets. The performance of LCC-MTL generally improves with the number of clusters. Two
factors may account for this improvement. First, when the number of clusters increases, the sam-
ples in each cluster become linearly separable, and the corresponding linear SVM can classify them
well. Second, with the increasing number of clusters (tasks), multi-task learning is better utilized
to transfer knowledge among tasks and avoid overfitting. The performance of LCC-MTL generally
stabilizes as K exceeds a certain threshold. Therefore, LCC-MTL is quite robust to the choice of
K. In practice, K can be set slightly larger, as efficiency is only slightly affected.

We then remove three-quarters of labels of training data in IJCNN1 and Landsat Satellite. Su-
pervised LCC-MTL using only labeled data achieves accuracies of 0.84 in IJCNN1 and 0.79 in
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Fig. 9. The distribution of NIC and NWC on the cannabis web page data set and three typical web pages.

Landsat Satellite, while semi-supervised LCC-MTL achieves accuracies of 0.89 in IJCNN1 and
0.86 in Landsat Satellite, respectively. This improvement demonstrates that semi-supervised LCC-
MTL can exploit the abundant unlabeled data to capture the manifold structure of data.

5.2. Web Data Classification
5.2.1. Experimental setup. Two common-usedly classification algorithms, namely SVM and ran-

dom forest (RF) [Breiman 2001], are used as the baseline competing methods. The two algorithms,
namely, LQHC and LQSC, presented in our early work [Wu et al. 2014] are also used as the compet-
ing methods. Another intuitive algorithm, which directly takes quality-aware factors as additional
features, is also compared. This algorithm directly combines the conventional and quality-aware
factors as a new feature vector for each sample, so it is called direct concatenation. The radial
basis kernel is chosen for (kernel) SVM. The parameters C and g are searched via five-cross valida-
tion in {0.1, 1, 10, 50, 100} and {0.001, 0.01, 0.1, 1, 10}, respectively. For the SVM used in LQHC
and LQSC, the parameters are searched with the same settings. For RF, only the number of trees
in {10, 50, 100, 200, 300} is changed, and other parameters are default. Specifically, the parameter
γ in LQHC and LQSC is searched in {0.0001, 0.001, 0.01, 0.1, 1}. For the direct concatenation al-
gorithm, the SVM is used. The maximum number of iterations used in LQSC is set to 20. Three
measures, namely, precision, recall, and F1, are used.

5.2.2. Results on cannabis web page recognition. Illicit cannabis web pages pose a negative in-
fluence on users, especially teenagers [Wang et al. 2011]. The data set consisting of 4427 normal
and cannabis web pages in [Wang et al. 2011] is used. Throughout the experiments, all the web
pages are randomly split into two equal parts. One part is used for training and the other is used for
testing. The randomly splitting is repeated 10 times and the average classification results are record-
ed. Given a web page, let Ic be its image count and Wc be its word count. They are normalized as
follows: NIc = min(Ic/80, 1) and NWc = min(Wc/8000, 1).

Some pages contain more than 2000 words, whereas some pages contain no more than 10 words.
Some pages contain more than 50 images, whereas some pages contain no image. Three typical
pages are also shown in Fig. 9. The parametersNIc andNWc are taken as the quality-aware factors7

of each page.
The document frequency method is used for text features. A total of 100 words are used. There-

fore, the text features for each page are a 100-dimensional vector. A page usually contains more than
one image. The image features are extracted as follows. First, the standard scale-invariant feature
transform [Lowe 2004] is used for local patch description, and the bag of word model [Csurka et al.
2004] is used to construct the histogram for each image. Second, all histograms are clustered into
m subsets. All the images of each page are allocated into m clusters, and the normalized histogram
of the numbers of images in all the m clusters is taken as the feature vector. In the experiments, m

7It should be noted that some other factors such as the number of hyperlinks and the image sizes can be also taken as
quality-aware factors. These factors will be considered in our future work.
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Fig. 10. The clustering of the quality-aware factors of the cannabis web page set.

Fig. 11. The clustering of quality-based factors of the cannabis web page set according to word counts (a), and the F1
values of the corresponding data subsets (b).

is set to 50. Therefore, the image features of each page consist of a 50-dimensional vector. The text
and image features of each page are concatenated, and a 150-dimensional feature vector is obtained.

The clustering results with K-means for ImgC and WordC are shown in Fig. 10. In Fig. 10(a),
the pages are divided into three clusters, namely, image dominant (the top cluster), text dominant
(the right cluster), and mixture of images and texts. In Fig. 10(b), the pages are divided into four
clusters. The cluster of mixture of images and texts and the cluster of text dominant in Fig. 10(a) are
further divided into three parts in Fig. 10(b). The right part contains more texts than the middle part,
while the middle part contains more texts than the left part. We have also observed that the clusters
do not have clear margins. Therefore, using a soft clustering strategy is more reasonable than that
using a hard strategy.

To explore the effects of ImgC and WordC on the classification, the data are spit according
to the two factors. The left image of Fig. 11 shows the data clustering by using WordC. The
corresponding data subset of each quality cluster are random split into two equal parts. One part is
used for training and the other is used for test. The random split is repeated 10 times and the average
classification results are recorded. The F1 values on the three clusters’ corresponding data sets by
SVM are shown in the right image of Fig. 11. The text length is not positively correlated with the
classification results. Given that the number of images of the collected pages is mainly in [0, 5], the
pages are directly divided into three subsets if Ic ≤ 2, or 2 < Ic ≤ 5, or Ic > 5. The F1 values of
the three subsets are 0.5498, 0.6635, and 0.8333, respectively.

Table III shows the classification results of the seven competing algorithms. In LQHC, LQSC, and
LCC-MTLQ, the number of clusters (K) is set as 3. All the four learning algorithms using quality-
aware factors (Direct concatenation, LQHC, LQSC, LCC-MTLQ) achieve better results compared
with the other three algorithms which are based on conventional features alone. The F1 value of
LCC-MTLQ is about 5.15% higher than that of the SVM which does not utilize dividing features.

To test the robustness of LCC-MTLQ, we perform LCC-MTLQ under different numbers of clus-
ters (K). Fig. 12 shows the recognition results of LCC-MTLQ with the increasing of K in terms of
the F1 values. WhenK = 1, the F1 value of LCC-MTLQ equals to kernel SVM. The reason is that
when K = 1, LCC-MTLQ is reduced to kernel SVM. When K ≥ 1, LCC-MTLQ achieve increas-
ing F1 values. When K equals 6, the F1 values is 0.9719. The partial reason for the performance
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Table III. The results on the cannabis web page recognition.

Precision Recall F1
SVM (on conventional features xi) 0.9323 0.8563 0.8926
RF (on conventional features xi) 0.9291 0.8580 0.8921

Wang [Wang et al. 2011] (on conventional features xi) 0.9211 0.8933 0.9070
Direct concatenation 0.9195 0.9001 0.9097

LQHC (K = 3) 0.9676 0.8887 0.9265
LQSC (K = 3) 0.9781 0.8983 0.9365

LCC-MTLQ (K = 3) 0.9753 0.9148 0.9441

Fig. 12. The variations of the F1 values of LCC-MTLQ with different numbers of clusters (K) on the cannabis page set.

Table IV. The F1 values based on the partial labeled cannabis web
pages.

1/4
labeled data

1/2
labeled data

3/4
labeled data

(Supervised)
LCC-MTLQ (K = 3) 0.8817 0.9047 0.9304

(Supervised)
LCC-MTLQ (K = 5) 0.8967 0.9323 0.9576

Semi-supervised
LCC-MTLQ (K = 3) 0.9109 0.9287 0.9317

Semi-supervised
LCC-MTLQ (K = 5) 0.9316 0.9570 0.9634

improvement is that with the increase of K, the quality-aware factors in each training subset vary
slightly and become more similar with each other. Further more, although the numbers of samples in
each training subset become smaller leading that the corresponding classifiers may be insufficiently
learned, the multi-task learning used here alleviates this problem by transferring knowledge among
training subsets.

To evaluate the performance of semi-supervised LCC-MTLQ, one-, two-, and three-quarters of
labels of the training data are removed to construct three partial labeled training sets, respectively.
We then compare semi-supervised LCC-MTLQ and (supervised) LCC-MTLQ. Semi-supervised
LCC-MTLQ is run on the whole partial labeled training data, whereas LCC-MTLQ is only run
on the labeled data. The results are shown in Table IV. Semi-supervised LCC-MTLQ consistently
outperforms (supervised) LCC-MTLQ when a number of unlabeled samples are available during
the dividing step.

5.2.3. Results on pornographic image recognition. Recently, pornographic image recognition has
attracted much attention in both academic research and industrial application. Most existing algo-
rithms rely on the skin features of images. Therefore, skin detection is a key step and severs as
the basis in many previous algorithms. However, the illumination of web images is very complex-
ity. Fig. 13 shows normal images from the Internet. The top three images feature the same person.
However, the skin colors change under different illumination conditions. The bottom three images
are captured by Phone or PC cameras and have low-quality illumination conditions. Considering

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1, Publication date: January 20xx.



1:20

Fig. 13. Six images from the Internet.

Fig. 14. (a) The distribution of the quality-aware factors of the pornographic image set and some skin patches. (b) The
clusters of the quality-aware factors and the F1 values.

that skin detection plays a crucial role in existing studies, we evaluate the quality of detected skin
pixels and then apply the quality into succeeding model training and classification.

Assessing directly the quality of extracted skin pixels for pornographic image classification is
difficult. Note that the quality of extracted skin pixels is most affected by illumination [Hu et al.
2007]. Therefore, we adopt an alternative strategy. First, we estimate the illumination of each im-
age. We then cluster the illumination and sort images with similar illumination conditions into the
same cluster. Consequently, the quality levels of detected skin pixels of the images in the same
training subset may be similar. The algorithm proposed by Van et al. [2007] is applied to estimate
the illumination of an input image. The algorithm outputs the illumination color with two quantities
(wR,wB) which are taken as the quality-aware factors for an image.

The image data introduced in [Zuo et al. 2010] is applied. The distribution of the estimated illu-
mination is shown in Fig. 14. The images in some areas have bad illumination conditions. Fig. 14(a)
also shows the skin patches of some sample images. The colors of skins with different illumination
conditions vary significantly.

To explore the relationship between the classification performance and illumination, we divide the
data set according to the estimated illumination. The corresponding data subset for each cluster is
random split into two equal parts. One part is used for training and the other is used for testing. The
random split is repeated 10 times. A RBF kernel SVM classifier is used and the average classification
results are recorded. Finally, the F1 values of the different clusters’ corresponding data subsets are
obtained. Fig. 14(b) shows the clustering of quality-aware factors and the F1 results. The clusters
with worse illumination have lower F1 values.

The skin detection and feature extraction adapt the methods used by Zuo et al. [2010]. Table
V shows the classification results of the five competing methods. For LQHC, LQSC, and LCC-
MTLQ, the number of clusters is set to 3. All the learning algorithms using quality-aware factors,
Direct concatenation, LQHC, LQSC, and LCC-MTLQ, still achieve better results than the others
do. The F1 value of the LCC-MTL method is about 5.30% higher than that of the SVM without
considering information quality.
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Table V. The results on the pornographic image recognition.

Precision Recall F1
SVM (only on features xi) 0.9097 0.8920 0.9008
RF (only on features xi) 0.9196 0.9018 0.9106

LQHC (K = 3) 0.9325 0.9144 0.9234
LQSC (K = 3) 0.9524 0.9339 0.9430

LCC-MTLQ (K = 3) 0.9672 0.9408 0.9538
We then perform LCC-MTLQ under different numbers of clusters. Fig. 15 shows the F1 values

with the increasing of K. Similar observations to those from Fig. 12 are obtained.

Fig. 15. The variations of the F1 values of LCC-MTLQ with different numbers of clusters (K) on the porno image set.

Table VI. The F1 values based on the partial labeled porno images.

1/4
labeled data

1/2
labeled data

3/4
labeled data

(Supervised)
LCC-MTLQ (K = 3) 0.9038 0.9233 0.9307

(Supervised)
LCC-MTLQ (K = 5) 0.9082 0.9361 0.9556

Semi-supervised
LCC-MTLQ (K = 3) 0.9285 0.9406 0.9499

Semi-supervised
LCC-MTLQ (K = 5) 0.9377 0.9621 0.9692

To evaluate the performance of semi-supervised LCC-MTLQ on this classification task, one-,
two-, and three-quarters of labels of the training data are also removed to construct three partial la-
beled training set. Semi-supervised LCC-MTLQ is run on total partial labeled training data, whereas
(supervised) LCC-MTLQ is only run on the labeled data. The results are shown in Table VI. Semi-
supervised LCC-MTLQ outperforms (supervised) LCC-MTLQ especially when only 1/4 training
data are labeled.

5.3. Results on Listwise LTR
This section compares the proposed algorithm LCC-MTLR against two classical linear LTR algo-
rithms (ListMLE and ListNet) and our early proposed algorithm RPC-MTL [Wu et al. 2016]. Two
benchmark LTR data sets, namely, MQ2007-list and MQ2008-list, are used. These two data sets
are compiled by the LETOR package [Liu 2009] and used in various listwise LTR studies. They
are construted based on Gov2 Web page collection and two query sets from Million Query track
of TREC 2007 and TREC 2008. MQ2007-list contains about 1700 queries with ranked documents
and MQ2008-list contains about 800 queries with ranked documents. Each query-document pair is
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featured by a 46-dimensional vector. LETOR provides a 5-fold partition for these two data sets to
facilitate 5-fold cross validation strategy. In each fold, there are three subsets for learning: training,
validation and testing. Both data sets do not provide relevance scores. We follow the score setting in
[Wu et al. 2016]: The score of the top-1 document is defined as 1 and the score of the document in
the end of the ranking list is defined as 0. The scores of the middle documents are linearly calculated
based on their ranking positions. Both the numbers of clusters in RPC-MTL and LCC-MTLR are
set as five on the two data sets. In LCC-MTLR, the sampling size is set as 1000 for each object.

The results of NDCG@n (n = 1, 2, · · · , 10) on the two data sets are respectively displayed in
Figs. 16 and 17. By conducting the t-test, LCC-MTLR outperforms the other competing methods
when n < 5. When n ≥ 5, LCC-MTL is comparable to RPC-MTL. In addition, the results of LCC-
MTLR are still better than those of ListMLE and ListNet when n ≥ 5. To evaluate the robustness of
LCC-MTLR in terms of the number of clusters (i.e., K), we compare the values of NDCG@1 and
5 under different K values. There results are shown in Fig. 18. When K increases, the performance
of LCC-MTLR increases and becomes stable when K ≥ 6.

Fig. 16. The NDCG results on MQ2007-list.

Fig. 17. The NDCG results on MQ2008-list.

6. CONCLUSION
In this paper, we have proposed a new divide-and-conquer approach, called LCC-MTL, to deal with
the learning for nonlinear data classification with linear SVMs. LCC-MTL consists of two iterative
steps, i.e., clusters the data using a GMM with local consistency and trains a classifier for each clus-
ter. These two steps are combined into a generative model and implemented with an EM algorithm.
Furthermore, we have considered the training of each classifier as a single task and used clustered
multi-task learning to capture the relatedness among tasks. The proposed approach has also been ex-
tended to two distinct learning problems, namely, quality-aware web data classification and listwise
learning to rank. Two new algorithms are obtained for these two problems. Experimental results
on benchmark datasets demonstrate that the LCC-MTL and the two extensions (i.e., LCC-MTLQ
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Fig. 18. The variations of the NDCG values of LCC-MTLR with different numbers (K) of clusters.

and LCC-MTLR) outperform state-of-the-art methods in nonlinear classification, quality-ware web
data classification, and listwise LTR, respectively. In the prediction phase, it also achieves much
higher efficiency than kernel SVMs with comparable classification performance in nonlinear data
classification.
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