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 

Abstract—Limited-angle computed tomography (CT) image 

reconstruction is a noteworthy reconstruction problem in which 

image prior models are crucial. In this work, we aimed to develop 

an appropriate regularization-based method to suppress the 

aliasing artifacts and improve the image quality for limited-angle 

CT image reconstruction. Given the observation that the 

isophotes of reconstructed images in specific missing directions, 

which are not tangent to the available projection rays, are usually 

broken and have large curvatures, a curvature-driven Euler's 

elastica regularization is introduced to rectify large curvatures 

and keep the isophotes smooth without erratic distortions. The 

developed approach is evaluated using numerical simulation and 

real CT data, and is compared with TV, and TGV-based 

reconstructions. Both qualitative and quantitative evaluation 

results demonstrate that a prospective performance can be 

obtained using the proposed Euler's elastica-based method for 

limited-angle tomography. This method has excellent aliasing 

artifact suppression and edge preservation. 

 
Index Terms—Computed tomography, limited angle problem, 

Euler's elastica, image reconstruction. 

 

I. INTRODUCTION 

imited-angle tomography is a common problem in many 

applications, such as digital dental radiography [1], digital 

breast tomosynthesis[2], and industrial inspection [3]. Image 

reconstruction from limited-angle projections can be treated as 

an inverse problem that is inherently ill-posed and difficult to 

converge to the correct solution without additional prior 

information, which is because of the available angular range of 

the sinogram being less than the ideal 180°. Therefore, target 

image reconstruction from a limited-angle scan is challenging 

in medical imaging. 

In the past decades, various methods have been proposed to 

recover the details and decrease the artifacts for limited-angle 

computed tomography (CT) image reconstruction. Two 

strategies have been widely investigated: 1) improving 

reconstruction algorithms, such as iterative reconstruction 
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re-projection [4], projection onto convex sets [5], and sinogram 

extrapolation [6-8], and 2) using additional prior knowledge. 

Recently, using additional prior information has been 

intensively studied for limited-angle problems. Prior 

knowledge can be divided into two categories: one is to directly 

reflect the specific information of object structure and the other 

one is to indicate the object properties. Preoperative prior 

information, such as surfaces and similar prior images [9-11], is 

useful for improving image quality, but it is usually difficult to 

obtain and sometimes even unavailable. Conversely, prior 

information indicating object properties is relatively easy to 

gain. Therefore, it is often introduced as additional 

regularization terms into iterative reconstruction. 

Following compressive sensing theory [12], prior knowledge 

involving sparse properties has recently gained attention for CT 

image reconstruction. Total variation (TV) regularization using 

image gradient sparsity is popular and widely used for 

incomplete data reconstruction issues [13-17]. To improve the 

performance of TV and eliminate staircase effect, higher-order 

derivatives[18], such as total variation stokes(TVS) model [19], 

and total generalized variation (TGV) model [20-22], have 

been studied. Moreover, wavelet and curvelet-based [7, 23] 

sparse models have also been studied. These regularization 

methods involving sparse prior information have shown 

obvious improvements in artifact suppression for data loss 

caused by metal implants [24], angular undersampling, and 

data truncation [15, 18, 25]. In limited-angle scanning, these 

methods can recover the missing information gradually when 

data inconsistency is limited to a certain range. However, real 

CT data acquisitions often contain various noises, scattering, 

and beam hardening, it is difficult to obtain a reliable solution 

and the reconstructed image usually suffers from aliasing 

artifacts. 

Investigating specific characterizations of limited-angle 

scanning is another potential way to achieve satisfactory 

images. The scanning angular coverage is directionally 

incomplete; therefore, reconstructions usually have directional 

features in which details are not in tangent to the projection rays 

and difficult to be recovered [26-27]. On the basis of this 

observation, Chen et al. [28] argued the unsuitability of the 

standard TV model to solve the limited-angle problem and 

proposed an improved anisotropic model. Thus, a suitable prior 

model relative to the specific scanning characteristics is 

important to obtaining satisfactory reconstructions for 

limited-angle tomography. 

Most regularization-based methods only consider a property 
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description of the whole image and are commonly incapable of 

tackling missing directional problems. Therefore, severe blurs 

usually arise in the missing directions of the reconstructed 

images. We examined the visual connectivity of the objects and 

found that the isophotes in these regions were easy to be 

multiplexed and broken; the isophote curvatures were 

significantly larger than those of the original ones. Therefore, a 

solution using continuous and smooth isophotes seemed 

suitable for limited-angle image reconstruction. To preserve the 

isophotes, a Euler's elastica model [29] which utilizes both TV 

and curvature minimization has been studied for image 

inpainting. The numerical solutions of Euler’s elastica 

functional is complex and time consuming. In 2011, Tai et al. 

[30] applied the augmented Lagrangian method to Euler’s 

elastica model and proposed a fast and efficient 

(Tai-Hahn-Chung-11, THC-11) algorithm. Euler's elastica- 

based methods show good performance in detail preservation 

from imperfectly sampled data for many image processing 

applications [30-31].  

Inspired by Tai et al.’s work, this paper aims at developing a 

curvature-driven strategy to solve the limited-angle problem 

and extending the THC-11 algorithm for specific CT image 

reconstruction task. The Euler's elastica-based CT image 

reconstruction model is introduced and an alternating direction 

minimization-based optimization method is developed. The 

developed Euler's elastica-based method could compensate for 

the broken gaps and recover details with continuous, smooth 

isophotes. Thus, this method performs effectively in aliasing 

reduction and detail recovery for limited-angle CT image 

reconstruction. 

The rest of this paper is organized as follows: In Section 2, 

the curvature-driven strategy for limited-angle problem is 

introduced. In Section 3, the proposed Euler's elastic-based 

reconstruction framework and its optimization scheme are 

described. Then, the experimental designs and quantitative 

studies on simulated and real data are reported in Sections 4 and 

5, respectively. Finally, related issues are discussed. 

II. CURVATURE-DRIVEN STRATEGY FOR THE LIMITED-ANGLE 

PROBLEM 

A. TV Regularization Model 

The TV regularization method exploits the sparsity of the 

gradient magnitude image. Mathematically, the original TV of 

an image :u is defined as 

    ,E dx


 u u                                 (1) 

where  is a bound domain, and   represents a discrete 

gradient operator. 

To solve for a minimizer of TV function, the steepest descent 

method can be used according to the following equation: 

0 .


 


u

u
                                  (2) 

Therefore, the solver of the TV model can be interpreted as 

diffusion, with diffusivity equal to 1 u , which depends on 

the gradient magnitude. 

However, in the limited-angle scans, the deficiency in 

continuous angular data hinders detail recovery in the radical 

directions that are parallel to the projection rays [26]. In this 

case, a gradient-driven diffusion cannot guarantee a certain 

minimum and may result in copies and blurs in the region along 

the missing radical directions. Figure 1 shows a reconstruction 

of a uniform-density torus using the SART-TV method. The 

available angular coverage of a fan-beam CT scanning is 90°. 

The result indicates the gaps and blocky blurs in the originally 

smooth and continuous edges caused by the gradient-driven 

diffusion. 

Original object Scanning angular coverage SART-TV reconstruction

 Fig. 1.  SART-TV reconstructions on a uniform-density torus with 

limited-angle projections. 

 

B. Curvature-based Euler’s Elastica Regularization Model 

To most human eyes, the preferred reconstruction in Figure 1 

is to connect the broken gaps and recover the torus with 

continuous sharp boundaries. A favorable solution is to have 

clearer level sets. To mediate the TV model shortage, a suitable 

solution is to consider the isophotes. In Figure 2, the isophotes 

in TV-based reconstruction are broken with patches and blurs, 

whereas those in the original image are smooth. Blurs and 

patches cause large curvatures. Therefore, a suitable way to 

mediate the limited-angle problem is to prevent the large 

curvatures in isophotes. 
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Fig. 2.  Isophotes of a TV-based reconstruction image in a limited-angle scan. 

 

To satisfy the visual connectivity principle and penalize 

large curvatures, a curvature-driven diffusion is introduced. 

Following Ref. [29], a new diffusion strength 
p

 u  is 

used instead of 1 u , where 


 


u

u
denotes the 

curvature of isophotes of u  and  0p  . The introduction of the 

curvature-driven strategy strengthens the diffusion process 

when the curvature of an isophote is large and weakens it when 
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the curvature is small. Thus, the curvature-driven model 

smoothens the isophotes, causes the boundaries to be more 

continuous, and restrains the blocky blurs. 

The TV-based model seeks a solution with the smallest 

variation in intensity, whereas the curvature-based model seeks 

a solution with the smoothest isophotes. The gradient- and 

curvature-driven diffusions represent two different 

philosophies. To combine the advantages of the two methods, a 

combination model called Euler's elastica [29–31] is adopted 

for limited-angle problems. The Euler's elastica energy is 

defined as follows: 

   2 .E a b dx


  u u                         (3) 

where a  corresponds to minimizing the TV of image, and b  

corresponds to minimizing the isophote curvature. The two 

terms are balanced through the weights a  and b . They can 

lead to desirable and smooth isophotes without noticeable 

broken gaps and avoid excessive smoothness that may cover 

details. Therefore, Euler's elastica regularization model-based 

method can promote performance for limited-angle CT image 

reconstruction. 

 

III. CT IMAGE RECONSTRUCTION USING EULER’S ELASTICA 

REGULARIZATION 

A. Imaging Model and Objective Function 

The CT imaging model can be approximated using the 

discrete linear system: 

,p Au                                    (4) 

where vector p  represents the projection data, vector u is the 

object to be reconstructed, and A  is the projection matrix.  

To solve the CT image reconstruction problem using Euler's 

elastica regularization method, we propose to minimize the 

following function: 

 
 

 
 

2

,

2

.
min .

.

       . .    .

i j

i j
a b i j

i j

s t 

      
     

 


u

u
u

u

Au p

          (5) 

where   is a tolerance parameter that sets an upper boundary 

in the allowable discrepancy between estimated and available 

data, and i  and j  are the index of pixels and 

   1 21, ,  1,i N j N  , respectively. 

B. Optimization Approach 

To derive the solution for the minimization problem in (5), 

we apply the alternating direction minimization (ADM) method 

based on the augmented Lagrangian method [30, 33–34] to 

obtain efficient and easy-to-code algorithms. By introducing 

the vectors s , n , and m , we consider the following 

constrained minimization problem, which is equivalent to (5): 

      2

, , , ,

2

min   . . ,       

,    ,

,

            . . 

,

1.

 

i j

a b i j i j

s t = ,



 

   


 




 

 


u s n m

n s

Au p e e

s u

n m

s m s

m

               (6) 

The minimization problem (5) can be converted to derive the 

saddle-point of the augmented Lagrangian energy. The 

augmented Lagrangian energy  AL  associated with (6) can be 

expressed as 

      
   

 

 

2 2
 2

,

1 1

22
2 2

23
3 2

. .  
2

       

       
2

       ( ),
2

A
i j

i i i
i

R

a b i j i j















     

     

   

    





n s Au p e

r s m s s m s

r s u s u

r n m n m m

L

    (7) 

where r1, r2, and r3 are Lagrange multipliers, λ1, λ2, λ3, and µ are 

positive constants used to balance the terms, and the function 

( )R  is defined as follows: 

0,             ,
( )

,          otherwise.  
R


 



m
m                  (8) 

To obtain accurate results, the half-point differencing 

method [30–31] was used in numerical implementation. As 

shown in Figure 3, for one point on -nodes, the first and 

second components of the relative differences are defined on its 

neighborhood ￮- and □-nodes, respectively. 

Some notations are introduced first according to the above 

grid definition. Without loss of generality, we represent a 

grayscale image to be reconstructed as an 1 2N N  matrix. The 

Euclidean space 1 2N N
R


 is denoted as V . The discrete 

backward and forward differential operators are defined using 

periodic boundary condition as follows: 

( i-1, j+1 )

( i , j )

( i , j )

( i , j ) ( i+1, j )

( i, j+1 ) ( i+1, j+1 )

( i-1, j-1 ) ( i, j-1 ) ( i+1, j-1 )

( i-1, j )

 
Fig. 3.  Grid definition. The rule of indexing variables in the augmented 

Lagrangian function (7): u  and 
1r  are defined on -nodes. The first and 

second components of s , n , m , 
2r , and 

3r are defined on ￮-nodes and 

□-nodes, respectively.. 
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1
1

1

( , ) ( 1, ),        1< ,
( , )

(1, ) ( , ),          1,  

i j i j i N
i j

j N j i

   
  

 

u u
u

u u
             (9) 

2
2

2

( , ) ( , 1),        1 ,
( , )

( ,1) ( , ),           1,  

i j i j j N
i j

i i N j

    
  

 

u u
u

u u
        (10) 

1
1

1 1

( 1, ) ( , ),        1 ,
( , )

(1, ) ( , ),          ,   

i j i j i N
i j

j N j i N

    
  

 

u u
u

u u
         (11) 

2
2

2 2

( , 1) ( , ),        1 ,
( , )

( ,1) ( , ),           .  

i j i j j N
i j

i i N j N

    
  

 

u u
u

u u
        (12) 

The discrete gradient operator :V Q  , where Q V V  , 

and the discrete divergence operator div : Q V are defined for 

u V , and s Q , respectively  

 1 2( , ) : ( , ), ( , ) ,i j i j i j    u u u                   (13) 

1 1 2 2div ( , ) : ( , ) ( , ).i j i j i j    s s s                  (14) 

A special operator is defined to measure the magnitude of s  

at ( , ) -nodesi j  , where 1s  and 2s  are defined on ￮-nodes 

and □-nodes, respectively. The operator can be formulated as 

follows: 

 

1
2 2 2

1 1 2 2
,

( , ) ( 1, ) ( , ) ( , 1)
.

2 2
i j

i j i j i j i j
       
          

s s s s
s

   (15) 

The divergence of n  at ( , ) -nodesi j   can be computed as 

 , 1 1 2 2div ( , ) ( 1, ) ( , ) ( , 1).i j i j i j i j i j      n n n n n     (16) 

Next, we explain how to solve the optimization problem (7) 

via ADM. The augmented Lagrangian function can be split into 

four subproblems with respect to u , s , n , and m , and the 

solution to minimizing  AL  is equivalent to solving the 

subproblems alternately. 

1) u-subproblem  

The minimization problem with respect to u  can be 

expressed as follows: 
2

2
1 2 2

2
2 2

arg min .
2 2

k
k k k



      
u

r
u Au p e s u    (17) 

Problem (17) can be solved using the linearization 

approximate method [35] to avoid pseudo-inverse computing. 

Let stand for discrete Fourier transform. Therefore, we have 

 1 1 T 2
2

2

div ,
k

k k k k k
 

 

 
    
                 

r
u u A Au p e s G

   (18)

 
where 1

2diag div





  
    

  
G I , and 0   is a 

parameter. In this work,   is typically set to 1.0. 

The noise term is updated as follows: 

   1 1 1

2
min 1,  ,k k k     e Au p Au p           (19)

 

2) s-subproblem  

The optimization problem for variable s  can be 

reformulated as 

      
2

1
1 1

,

2

12 1 1 2

2 2 2

arg min . . .

          .
2

k k k

i j
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a b i j i j i j

 

 





  
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  


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
s

s n r s

r r
s u m

    

(20) 

This problem can be solved using the shrinkage method [30, 

33]. The minimizer s  is derived by 

 
 

 1

2

. max 1 ,0 . ,
.

k
k k

k
i j i j

i j


 
 

  
  

c
s q

q

       (21)

 

where  
2

1 1 ,k k ka b     c n r and 

1 1 1 2

2 2

.
k k

k k k

 

 
  

r r
q u m  

3) n-subproblem  

The minimization problem related to n  can be expressed as 

     
2

21 1 3 3

, 3 2

arg min . . .
2

k
k k k

i j

b i j i j




     
n

r
n n s n m

           (22)

 
Similar to [30], the frozen coefficient method is applied to 

solve this problem. Thus, we obtain the following: 

   22 1 12 21 1
1 ,k t t

D

 
   
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  

f f
n              (23) 

   21 1 11 21 1
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    
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f f
n             (24) 

where 

    
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1
1 3 1 31 1, 1,

1
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( , ) ( , ) ( , ) 2 div

             2 div ,

k k k k
i j i j

k k
i j i j

i j i j i j g b

g b

   
 

  

   

 

f m r s n

s n

               (25) 
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2 3 2 32 , 1 , 1

1
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               (26) 

and 

 11 3 2 cos 1 ,it g z                                                       (27) 

  12 1 cos 1sin 1 cos 1sin ,j i i jt g z z z z           (28) 

  21 1 cos 1sin 1 cos 1sin ,i j j it g z z z z           (29) 

 22 3 2 cos 1 ,jt g z                                                      (30) 

 2
3 34 cos cos 2 .i jD g z z                                        (31) 

Here,
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
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2
2

2
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N


   , where iy and iy  are the discrete 

frequencies in the frequency domain. Moreover, 
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,
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4) m-subproblem  

The minimization problem with respect to m  can be 

expressed as follows: 

 
2

1
1 1 31 13

3
2

arg min ( ).
2

k k k

k k
R








 
 

   
m

r s r
m n m m    

        (32) 

The associative projection [36] of this problem can be 

computed as follows: 

 1

   

proj ,

              1,
      

         otherwise,

k 

 
 


m v

v v

v v

                          (33) 

where   1
1 1 3 1

3

k k k

k







 

 
r s r

v n . 

5) Updating the Lagrange multipliers 

Finally, the Lagrange multipliers are updated as follows: 
1 1 1 1

1 1 1( )k k k k k      r r s m s            at -nodes,     (34) 

1 1 1

21 21 2 1 1( )k k k k     r r s u               at ￮-nodes,     (35) 

1 1 1

22 22 2 2 2( )k k k k     r r s u              at □-nodes,     (36) 

1 1 1

31 31 3 1 1( )k k k k    r r n m                 at ￮-nodes,     (37) 

1 1 1

32 32 3 2 2( )k k k k    r r n m                 at □-nodes.     (38) 

 

The augmented Lagrangian function (7) is expected to be 

minimized by solving the four subproblems alternately. All of 

the subproblems have noticeably efficient closed-form 

solutions: the u-subproblem and the n-subproblem are 

converted to the Fourier-based formulations, which can be 

calculated directly using FFT techniques; the s-subproblem is 

solved by shrinkage operator and the m-subproblem is solved 

by projector operator rapidly. Thus, the proposed algorithm is 

efficient and practical for the low cost in each iteration. 

 

Algorithm 1: EE-ADM algorithm 

Input 
1 2 3, , , , , , , , ,a b      A p , initialize 0 0 0 0

, , ,u s n m , and 

0k  . 

While “not converged,” Do 

         (1) updating u  using equation (18); 

         (2) updating e using equation (19); 

         (3) updating s using equation (21); 

         (4) updating n using equations (23) and (24); 

         (5) updating m  using equation (33); 

         (6) updating Lagrange multipliers 1 2, ,r r and 3r using 

equations (34) to (38); 

         (7) 1k k  . 

End Do 

Obtain reconstruction result: u . 

 

The present method is called the Euler's elastica-based 

alternating direction minimization (EE-ADM). The overall 

workflow of the present EE-ADM method for X-ray CT image 

reconstruction is listed in Algorithm 1. The iteration can be 

stopped upon reaching the predefined criteria (e.g., the number 

of iterations and representation error). 

C. Parameter Selections 

The positive weights a  and b  are used to balance the TV 

and curvature terms of Euler’s elastica model. Their proper 

values should be chosen on the basis of scanning configurations 

and specific features of the underlying image. Generally, b a  

is adequate for most applications. Moreover, / [5,  20]b a  

may be suitable for the limited-angle CT image reconstruction 

task. 

Parameters  , 1 , 2 , and 3  are used to balance the data 

fidelity and regularization terms. For an optimal performance, 

their values should be set in accordance with both the noise 

level in the observation and the sparsity level of the underlying 

image. Moreover, they are empirically selected through visual 

inspection. Based on our experience, the higher the noise level 

is, the smaller the   should be. 1 [0.1,  10],   2 [1,  1000] 

and 3 [1,  500]   provide suitable smoothing strength for most 

reconstruction objects. 

 

IV. EXPERIMENTAL DESIGN 

A. Experimental Data Acquisition 

To validate and evaluate the performance of the proposed 

EE-ADM algorithm in limited-angle CT image reconstruction, 

a computer-simulated digital Popeye phantom[37], and 

experimental anthropomorphic phantom datasets were used for 

the experiments. 

 

   

(a) (b) (c) 

Fig. 4.  Digital and physical phantoms used in the studies: (a) a digital jaw 

phantom, (b) an anthropomorphic head phantom (Chengdu Dosimetric Phantom, 

CPET Co. Ltd, Chengdu, China), and (c) a slice of the anthropomorphic head 

phantom reconstructed using the SART-TV method with full 360 projections. 

 

1) Digital Popeye phantom study  

In the simulation study, a slice of a digital Popeye phantom 

designed by Pack et al. [37] was used. As shown in Figure 4(a), 

the Popeye phantom was modeled using anatomical abdominal 

structures and large arms. For the CT projection simulation, we 

chose a geometry representative of a fan-beam CT scanner 

setup. The imaging configurations were as follows: (1) the 

projection data of 360 projections at an interval of 1° onto a 

1024-bin linear detector array, (2) 1000 cm distance from the 

detector to the X-ray source, (3) 500 cm distance from the 
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rotation center to the source, and (4) 0.707 mm spacing 

between each detector bin. Each of the reconstructed images 

comprised 512 × 512 pixels. The size of each pixel was 0.5 mm 

× 0.5 mm. Each projection datum along the X-ray through the 

sectional image was calculated as the intersection length of an 

X-ray with a pixel. We extracted continuous 120- and 90-view 

projections from the sinogram data for illustration purposes. 

In the simulation, noise was simulated and generated using a 

Poisson model as follows: 

0Poisson( exp( )),i iN N p                        (39) 

where 
0

N  is the incident X-ray intensity, and 
i

p  denotes the 

normalized projection in real space. In the simulation, the noise 

level 
0

N  was set to 5 × 10
5
. 

2) Anthropomorphic head phantom study 

To further demonstrate the capability of the EE-ADM 

method for a realistic CT system, we performed a radiological 

anthropomorphic head phantom (Chengdu Dosimetric 

Phantom, CPET Co. Ltd., Chengdu, China) study for clinical 

use. The phantom is shown in Figure 4(b), and its specifications 

are described in the ICRU Report 48 [38]. In this study, CT 

projection data were acquired using a CT scanner comprising 

an X-ray source (Hawkeye130, Thales, France) and a flat-panel 

detector (Varian 4030E, USA) at 120 kV and 200 μA. The 

duration of each X-ray pulse in each projection view was 180 

ms during acquisition. The central slice of the sinogram data 

was extracted for 2D investigation and modeled with 1432 bins 

on a 1D detector for 2D image reconstruction. The associated 

imaging parameters of the CT scanner were as follows: (1) 360 

projection views were acquired evenly for a 360° rotation on an 

orbit, (2) the distance of the detector from the X-ray source was 

998.75 mm, (3) the distance of the rotation center from the 

source was 529.16 mm, and (4) the space in between each 

detector bin was 0.296 mm. All of the reconstructed images 

comprised 512 × 512 pixels. The size of each pixel was 0.439 

mm × 0.439 mm. For reference, a reconstructed reference slice 

from full 360 projections is presented in Figure 4(c). Two 

different cases of 120° available angular ranges were used to 

validate the performance of the proposed method. 

 

B. Comparison Methods 

To evaluate the performance of the present EE-ADM method, 

the TV-ADM[32] and TGV-ADM[21] methods were adopted 

for comparison. The optimization principle for TV-based 

method can be described as follows: 

1 2
min       . . . s t   

u
u A pu                        (40) 

And the constrained TGV minimization model for CT image 

reconstruction can be described as follows: 

 1 21 1 2
min ( ) ,      . . s t       
u,ω

A pu ω ω u     (41) 

where  T1
( )

2
   ω ω ω is a symmetrized gradient 

operator.  

The augmented Lagrangian method was applied to solve the 

generated constrained TV and TGV minimization models.  And 

for purposes of comparison, the proximal point technique [33] 

was also applied to avoid the prohibitive cost of pseudo-inverse 

computing for the u-subproblem.  

In the experiments, the regularization parameters   and 

of TV-ADM algorithm were set to 32, 64 for simulation and 16, 

32 for real data study, respectively. For TGV-ADM method, 

1  and 2  were set to 2 and 0.5, respectively. The 

regularization parameters 1 , 2 , and   were set to 32, 32, 

64 for simulation and 16, 16, 32 for real data study, respectively. 

The tolerance   was set to 10
−5

. The number of iterations was 

set to 1000 for simulation and 400 for real data study. The 

related parameters of the EE-ADM algorithm in the three 

groups of experiments are listed in Table I.  

 
TABLE I 

ALGORITHM PARAMETERS FOR THE SIMULATION AND REAL DATA STUDY. 

EE-ADM 

 a  b  1  2  3    

Simulation 1 10 2 200 10 64 

Real data study 1 20 1 200 20 32 

 

C. Performance Evaluation 

To quantify the image quality, the root mean square error 

(RMSE), peak signal-to-noise ratio (PSNR), and universal 

quality index (UQI) [39] were used as deviation measures 

between the reconstructed images f  and reference image 

Reff . 

RMSE and PSNR are used to measure the difference 

between two images. They are defined as follows: 

2

1

( ) ( )

 ,

| |

 

N

Ref

i

i i

RMSE
N







 f f

                      (42) 

 2

10
2

1

 10log dB
1

( ) ( )

  ,
Ref

N

Ref
i

MAX
PSNR

i i
N 

 
 
 
 

 
 



f

f f

         (43) 

where N is the total number of pixels in the image. 

The mean, variance, and covariance of intensities are defined 

as follows: 

1

1
( ),

N

Ref Ref
i

i
N 

 f f  
22

1

1
( ) ,

1

N

Ref Ref Ref
i

i
N




 

 f f      (44) 

1

1
( ),

N

i

i
N 

 f f  
22

1

1
( ) ,

1

N

i

i
N




 

 f f           (45) 

    
1

1
, ( ) ( ) ,

1

N

Ref Ref Ref
i

Cov i i
N 

  

f f f f f f    (46) 

Then, UQI can be calculated as follows: 

 
2 2 2 2

2 , 2
.

Ref Ref

Ref Ref

Cov
UQI

 


 

f f f f

f f

                     (47) 

A UQI value close to 1 indicates a high degree of similarity 

between the reconstructed and reference images. 
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V. RESULTS 

A. Simulation Study 

1) Visualization-based evaluation 

Figure 5 shows the results reconstructed using FBP, 

TV-ADM, TGV-ADM, and EE-ADM methods with 120°and 

90° angular coverages. The images reconstructed using FBP 

exhibited severe distortions and artifacts, and the image quality 

could be improved using three iterative reconstruction methods. 

Recovering the information near the arms was difficult because 

of the missing continuous angular sinogram. In the TV-ADM 

and TGV-ADM reconstructions, the bone structures of arms 

were distorted. Compared with the TV and TGV-based results, 

the information in these regions obtained using EE-ADM 

method could be recovered more accurately. In addition to the 

reconstructions, the difference from the ground truth is 

displayed in Figure 6. The results showed that EE-ADM 

algorithm generated smaller errors than other counterparts. 

 
 TV-ADM TGV-ADM EE-ADM 

120° scan 

   

90° scan 

   
Fig. 6.  Different images related to the ground truth of TV-ADM, TGV-ADM 

and EE-ADM reconstructions in the digital Popeye phantom study (C = 0 HU/W 

= 100 HU). 

 

  

(a) 120°scan (b) 90°scan 

Fig. 7.  Root mean square errors as a function of iteration steps for the three 

iterative methods in the digital Popeye phantom study. 

 
TABLE II 

EVALUATIONS OF THE RESULTS RECONSTRUCTED USING DIFFERENT 

ALGORITHMS IN THE DIGITAL POPEYE PHANTOM STUDY. 

  TV-ADM TGV-ADM EE-ADM 

120° 

RMSE 4.472e-04 4.373e-04 4.172e-04 

PSNR 35.90 dB 36.28dB 36.64 dB 

UQI 0.9984 0.9985 0.9986 

90° 

RMSE 7.466e-04 7.129e-04 6.692e-04 

PSNR 31.64 dB 31.97dB 32.46 dB 

UQI 0.9959 0.9961 0.9966 

 

2) Convergence analysis 

To test the convergence of the proposed method, the RMSE 

values of the reconstructions at the different iteration numbers 

were calculated; the calculation results are displayed in Figure 

7 using a  logarithmic scale. The results illustrated that 

EE-ADM algorithm could converge to a steady status for both 

scanning cases. Moreover, the convergence speed was 

increased as the available angular range increased with the 

fixed parameter settings. 
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 FBP TV-ADM TGV-ADM EE-ADM 

120°scan 

    

90°scan 

    
 

Fig. 5. Image reconstruction of the digital Popeye phantom. From left to right in each row, images reconstructed from FBP (C = 300 HU/W = 1000 HU), 

TV-ADM, TGV-ADM, and EE-ADM methods (C = 30 HU/W = 220 HU) are presented.  
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3) Quantitative evaluation 

To quantify the performance of the proposed method, the 

RMSE, PSNR, and UQI of the reconstructions from the three 

iterative methods were calculated; the calculation results are 

listed in Table II. The quantitative results from the proposed 

EE-ADM method showed better results than those from other 

algorithms in terms of the three measurements. 

4) Parameter Comparisons and Analyses 

In this section we discuss the impacts of different parameters 

of EE-ADM algorithm on the reconstructed image quality for 

limited-angle CT image reconstruction. The balance between 

the TV and curvature terms is often adjusted by the positive 

weights a  and b . Thus, we first focus the investigation on 

comparing the results reconstructed with different weights a  

and b .  

The images reconstructed with different weights with 90° 

angular coverage are shown in Figure 8. And the relative PSNR 

measures of the reconstructed images are shown in Figure 9. 

The bone structure of left arm is difficult to recover and the 

TV-based reconstruction has blurred artifacts because of the 

loss of scanning projections. In Euler’s elastica-based results, a 

large value of /a b  may lead to a similar blurring and the 

reconstructed image with parameters ( a = 10, b  = 1) have 

indistinct artifacts. As the value of b  increases, the broken 

gaps in the isophotes decrease as well, and the reconstructed 

image obtains improved visual connectivity. Thus, the 

structures in the specific region that have missing data could be 

recovered effectively. The structure of left arm of the 

reconstructed result with parameters  ( a = 1, b  = 200) is 

recovered better than that of other results. However, a large 

selection of b  may also lead to a decrease in image quality and 

result in an over-smooth effect that may overlook detailed 

textures. The adequate selection of the weights can be seen as a 

search for a balance between connectivity and smoothness 

information, and may be sensitive to data conditions. 

Parameters 1 , 2 , and 3  are associated with Lagrange 

multipliers and play important roles in the algorithm. In 90° 

angular scanning case, the PSNR measures of the reconstructed 

images with different 1 , 2 , and 3  are displayed in Figure 

10. All experiments were implemented with same parameters 

settings except the target parameter. All three penalty 

parameters have adequate selction ranges. The parameter 1  

controls the closeness between s  and m s , and it is set to 1 

or 2 in most image reconstruction tasks for optimal 

performance and simple tuning. The parameter 2  controls the 

diffusion of u . A proper initial value of 2  could be set to 100, 

and then be tuned based on specific tasks. The parameter 3  

controls the closeness between n  and m . Based on our 

experience, a large 3  
would lead a  slow convergence speed. 

When the parameter 3  is too large, it may lead a unsuitable 

over-smooth result. 

 

   
(a) a = 10, b = 1 (b) a = 1, b = 1 (c) a = 1, b = 10 

   
(d) a = 1, b = 20 (e) a = 1, b = 50 (f) a = 1, b = 200 

Fig. 8. Image reconstruction of the digital Popeye phantom with different 

weights (C = 30 HU/W = 220 HU). 

 
Fig. 9. PSNR measures of the results reconstructed with different groups of 

weights a and b. (a) a = 10, b = 1. (b) a = 1, b = 1. (c) a = 1, b = 10. (d) a = 1, b 

= 20. (e) a = 1, b = 50. (f) a = 1, b = 200.. 
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(c) 

Fig. 10. Analysis on the EE-ADM reconstruction with respect to different 

values of λ1, λ2, and λ3.  

 

 

B. Real Data Study 

1) Visualization-based evaluation 

The reconstructed images of the anthropomorphic head 

phantom using different methods are presented in Figure 11. To 

reveal texture details, the zoomed region of interest (ROI) 

images of Case 1 and Case 2 are shown in Figure 12 and 13, 

respectively. Visual inspection of the results indicates that the 

TV-ADM and TGV-ADM result remains blurry and covers 

reliable information, whereas the EE-ADM method has an 

enhanced edge and detail preservation. In the TV-ADM 

reconstructed image, blurring and blocky artifacts were visible. 

TGV-ADM method suppressed the blocky artifacts but also 

suffered blurring distortions. EE-ADM method exhibits 

remarkable advantages over the other methods in terms of 

detail preservation. 

 

2) Convergence analysis 

Figure 14 shows the plot of the RMSE values versus the 

iteration steps for the TV-ADM, TGV-ADM and EE-ADM 

methods with a logarithmic scale for RMSE. The plots show 

that the present EE-ADM method can minimize the objective 

functions with a steady solution and that it exhibits improved 

accuracy when the reconstructed images are shrunk. 

3) Quantitative evaluation 

The RMSE, PSNR, and UQI of the reconstructed images in 

the anthropomorphic head phantom study are given in Table III. 

Results show that our method exhibits a prospective 

performance in terms of accuracy and resolution, consistent 

with the findings in Tables II. 

 
 Reference TV-ADM TGV-ADM EE-ADM 

ROI 1 

    

ROI 2 

    
Fig. 12.  Reconstructed ROIs in Case 1 of the anthropomorphic head phantom (C 

= 100 HU/W = 1500 HU). 

 
 Reference TV-ADM TGV-ADM EE-ADM 

ROI 1 

    

ROI 2 

    
Fig. 13.  Reconstructed ROIs in Case 2 of the anthropomorphic head phantom (C 

= 100 HU/W = 1500 HU). 
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 FBP TV-ADM TGV-ADM EE-ADM 

Case 1 

    

Case 2 

    
 

Fig. 11. Image reconstruction of the anthropomorphic head phantom. From left to right in each row, images reconstructed from FBP, TV-ADM, TGV-ADM, and 
EE-ADM methods are presented(C=100 HU/W=1500 HU). 
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Case 1 Case 2 

Fig. 14.  Root mean square errors as a function of iteration steps for the three 

iterative methods in the anthropomorphic head phantom study. 

 
TABLE III 

EVALUATIONS OF THE RESULTS RECONSTRUCTED USING DIFFERENT 

ALGORITHMS IN THE ANTHROPOMORPHIC HEAD PHANTOM STUDY. 

  TV-ADM TGV-ADM EE-ADM 

Case 1 

RMSE 2.332e-03 2.401e-03 2.149e-03 

PSNR 25.80 dB 25.55dB 26.51 dB 

UQI 0.9606 0.9595 0.9635 

Case 2 

RMSE 1.886e-03 1.809e-3 1.603e-03 

PSNR 26.41 dB 26.77dB 27.82 dB 

UQI 0.9678 0.9686 0.9711 

 

C. Computation Time Comparison 

The average computation time of TV-ADM and EE-ADM 

methods in the experimental studies are listed in Table IV. All 

experiments were performed under MATLAB 2012a running 

on a PC with an Intel i5-2400 3.10 GHz CPU. The projector and 

backprojector computations were accelerated using Gao’s 

method [40] on a GTX 570 GPU. The table shows that the time 

consumption of EE-ADM method is a little longer than that of 

TGV-ADM method, and approximately 2.5 to 3 times longer 

than that of TV-ADM method. The additional time cost is spent 

on computing high-order variations. 

 
TABLE IV 

RUNNING TIME (IN CPU SECONDS) OF THE TV-ADM, TGV-ADM, AND 

EE-ADM METHODS FOR DIFFERENT EXPERIMENTAL STUDIES. 

  TV-ADM TGV-ADM EE-ADM 

Simulation 
120° scan 62.58 180.56 184.18 

90° scan 57.47 174.82 178.15 

Real data study 
Case 1 30.84 82.28 84.81 

Case 2 30.58 82.25 84.04 

 

VI. DISCUSSION AND CONCLUSION 

Limited-angle CT image reconstruction is an open problem, 

and research on image prior-based regularization method is 

gaining interest in the field of X-ray CT. TV regularization 

method has been applied and has shown promise in image 

reconstruction from an incomplete projection dataset. However, 

in limited-angle scanning, the TV-based method presents 

blurred artifacts in the directions tangent to the missing 

projections in the reconstructed images. This paper presents a 

novel approach to the limited-angle image reconstruction 

problem that involves a curvature-based Euler’s elastica 

regularization model. Compared with the TV-based and 

TGV-based methods, the new method yields images without 

the usual blurring and shows excellent edge preservation. 

To yield a reasonable result, several parameters should be 

optimized and are likely to be involved in any iterative 

reconstruction design that can significantly influence results. 

Although we cannot provide the “best” selection strategy, the 

suggested metrics employing Euler’s elastica regularization 

enables high-quality image recovery with limited-angle 

scanning coverage and provides a clinically useful potential for 

dental and breast radiographies. 

One limitation of our method is the prolonged time caused by 

the computation of high-order derivatives. With the 

development of high-performance devices, this procedure 

could be accelerated using graphics-processing units.  

The EE-ADM method presented in this work focuses only on 

CT image reconstruction based on limited-angle projections. 

However, the proposed method can also be used in other X-ray 

CT applications, including interior tomography and 

sparse-view reconstruction. Furthermore, it may mediate the 

limited-angle problems in geophysical exploration and radar 

imaging applications. 

In conclusion, this paper presents an Euler's elastica model to 

recover edge information while avoiding the aliasing effect for 

limited-angle CT image reconstruction. The experimental 

results show that the Euler's elastica-based method can 

effectively suppress aliasing artifacts and improve image 

quality. The findings in this work enable a more accurate 

reconstruction for limited-angle tomography and suggest 

potential use for clinical diagnoses. 
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