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ABSTRACT

Retinex theory deals with compensation for illumination ef-
fects in images, which is usually an ill-posed problem. The
existence of noises may severely challenge the performance
of Retinex algorithms. Therefore, the main aim of this paper
is to present a general variational Retinex model to effectively
and robustly restore images corrupted by both noises and in-
tensity inhomogeneities. Our strategy is to simultaneously re-
cover the noise-free image and decompose it into reflectance
and illumination component. The proposed model can be
solved efficiently using the Alternating Direction Method of
Multiplier (ADMM). Numerous experiments are conducted
to demonstrate the advantages of the proposed model with
Retinex illusions and medical image bias field correction for
images in presence of Gaussian noise or impulsive noise.

Index Terms— Retinex, intensity inhomogeneity, denois-
ing, image decomposition, high-order model, ADMM

1. INTRODUCTION

The Retinex theory [1] addresses the problem of decompos-
ing the illumination from the reflectance in the given images.
Such problem also exists in medical image processing, the
so-called intensity inhomogeneity, which leads to the inten-
sity variation even for the same tissue within an image. It
makes other image analysis techniques such as segmentation,
registration, etc., that relying on the assumption of uniform
intensity, impossible to identify the region correctly.

Various implementations and algorithms have been stud-
ied for Retinex problem. Path-based methods were originated
by Land and McCann [1] and further studied in [2, 3]. Ho-
momorphic filtering type Retinex algorithms modeled the re-
flectance as a low-pass version of the given image based on
a convolution with a wide Gaussian kernel [4, 5]. In PDE-
based models and variational formulations, Morel et al. [6]
formulated the illumination as a spatially smooth image and
the reflectance as a piecewise constant image, which was fur-
ther solved as a Poisson equation by Fast Fourier Transfor-
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m (FFT). Based on the assumption of the spatial smoothness
of the illumination, Kimmel et al. [7] proposed a variation-
al model by penalizing on the reflectance. Ng and Wang [8]
proposed a similar model by penalizing both the reflectance
and illumination images. Ma et al.[9] developed a Total Vari-
ation (TV) [10] based model to extract the reflectance image
with a data term in gradient field. Zosso et al. [11, 12] further
extended the TV-based Retinex models to a unified non-local
formulation. Recently, Duan et al. [13, 14] investigated vari-
ational models for Retinex using Lg pseudo norm to regular-
ize the reflectance image. Liang and Zhang [15] proposed a
convex Retinex model, which decompose the gradient field of
images into salient edges and relatively smoother illumination
field.

1.1. Summary of Previous Methods

To set up the Retinex problem mathematically, we focus on
decomposing a given image I into the reflection component R
and the illumination component L, which satisfies I(xz,y) =
R(z,y) - L(z,y) for (z,y) € Q, Q C R? being the domain of
the image. Actually, most Retinex algorithms were proposed
in the logarithmic domain by ¢ = log I, = log L, r = log R,
and thereby ¢« = [ + r. Besides, there may be additional as-
sumptions on r and [, e.g., the box constraint 55, =] — o0, 0]
and B; = [i, +oo[ are introduced for  and [ under the as-
sumption that R € (0, 1] in [8].

In real applications, intensity inhomogeneities and noises
may simultaneously exist in given images, such as MR im-
ages, ultrasound images etc.. Although various algorithms
have gained great success in dealing with Retinex problem-
s, these methods paid little attention to the noises contained
in the given images. Especially, after taken the logarithmic
transform, the distribution of the noise is also changed, which
makes the noise even harder for modeling. Therefore, when
noise is severe, these algorithms may fail to restore the reflec-
tion image with high quality.

1.2. Our Contributions

In this paper, we propose a general variational model for im-
ages in presence of both Retinex illusion and severe noises.
More specifically, we recover the image by a TV regulariza-
tion and a data fidelity term derived according to the distri-
bution of the noises, and then decompose the restored im-



age into reflectance and illumination. Similar to [15], first-
and second-order TV regularization are implemented for re-
flectance and illumination, respectively. Furthermore, we pro-
pose an efficient algorithm based on an alternating direction
method of multiplier, all subproblems of which can be effi-
ciently solved by either closed-form solution or the fast non-
linear iteration methods such as the Newton-type methods.
We conclude the new features of our Retinex model as fol-
lows

e Our framework can be easily extended to other Retinex
models, such as Ng and Wang’s Retinex model [8], Lg
regularized Mumford-Shah model [13, 14], etc..

e Our proposed model is capable to deal with different
types of noises, such as Gaussian noise, impulsive noise
and Poisson noise etc., as long as we modify the data
fidelity term according to the noise distribution.

2. PROBLEM FORMULATION

2.1. HoTVL1 Retinex Model

Based on the primary goal of Retinex theory, Liang and Zhang
[15] proposed the HOTVL1 model as follows

. 1 . 2 T 2
min {g/ﬂ(z—r—l) dx-l—g/ﬂl dz
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where the first- and second-order TV are used to regularize
the reflectance and illumination, respectively. Compared to
[8], HOTVL1 model (1) used the high-order regularization
for illumination component to guarantee smoother solutions,
which was shown effectively by the numerical implementa-
tions.

2.2. The Proposed Model

6]

Suppose the given images are corrupted by both intensity in-
homogeneity and noises. We consider to simultaneously re-
cover the noise-free image and decompose it into reflectance
image and illumination image. More specifically, we propose
a novel Retinex model by combining the HoTVL1 model (1)
and the data fidelity term derived according to different noise
models. We use the additive Gaussian noise as an example,
and obtain the following minimization problem

o1
min 511 = ulf + @l Vull + IV A

st,bu=e’, v=r-+1

Since there is a log transformation, we assume that the con-
straint for u is B, = (0,+oo[. Obviously, the above con-
strained problem can be also applied to other noise models by
using a suitable data fidelity term, e.g., || —u]|; for impulsive
noise.

3. MINIMIZATION ALGORITHM

In order to simplify (2), we define some new notations and
auxiliary variables as follows

x = m y = {Z], A=[d,1d], L= {Z VOQ}.

We further define the following functionals,
1
Gu) = I - ull3+ ol Vulls, HE) = [ylls.4

where ||y||1,5,+ = Bllpll1+7]lqll1. As aresult, the minimization
problem (2) can be rewritten as follows

min G(u) + H(y), st,u=e",v=A4Ax,y=ILx. (3)
u,v,x,y

Therefore, the corresponding augmented Lagrangian func-
tional of (3) is given as

L(uw,x,y;A1, A2, Az) = G(u) + H(y) + (A1,u —€”)
1% v 1Z
+ gl =€l + (Ao, — Ax) + o~ Axl3 (g
V.
+(As,y — Lx) + 7 |ly — L3,

where v, V5, V3 are positive constants, and A, Az, Az =

Rp } are the Lagrange multipliers.

q
The minimization problem (4) is solved by alternatively

minimizing the variable u, v, x, y. In each iteration, the oth-
er three sets of variables are fixed with values obtained from
the previous iteration. We discuss the solution to each set of
variables separately as follows.

3.1. Subproblem 1: computing u

The sub-minimization problem w.r.t. the variable u can be
written as follows

min G(w) + (Ar,u) + 5 flu - e[, )
By introducing a new variable h = Vu and applying the
augmented Lagrangian method, we can obtain the following
saddle-point problem

v Al 2
Mg
! (0)

+ (Aa,h — Vu) + %Hh — Vul2.
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According to [16], the variable v and h can be solved ef-
ficiently by FFT and the closed-form solution, respectively.
Firstly, we give the solution to u directly as follows

_ ffl(f(w—f(D;)ﬂAiMhl)—f(D;)f(Ai+V4h2>)
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where g = I — Ay +v1e” and D, D/, D, D?‘j denote the
backward and forward difference operators with the periodic
boundary condition. Besides, there is a projection step in each
iteration due to the box constraint on u.

On the other hand, the variable h can be computed by

a 1
h = max (071— Zm)'uﬁ

where w = Vu — % More details can be found in [16].



3.2. Subproblem 2: computing v

The sub-minimization problem w.r.t. the variable v is ob-
tained as

. v 1% v 1%
I’Illel <A1,—€ >+ Eluu_e ||g+<A27’U>+ ?QHU—A.XTH; (7)

the optimality condition of which gives us a nonlinear equa-
tion. We denote

g(’l})::7A16U+I/1€2U7V1U€v+A2+I/2(U —r—=10. (@8
Based on the basic Newton method, we compute v by
V= o~ g(0F) /g (0P,
where ¢'(v) = 2v1e?" — Aje¥ — viue® + vo. It requires the

inner iterations for solving v, where the iteration number are
fixed as 10 in the numerical implementation.

3.3. Subproblem 3: computing x

The sub-minimization problem w.r.t. the variable x is given
as

min (Az, —Ax)+ 2 |[v— Ax|3+ (As, —Lx) + 2 [y~ Lx[3, ©)
which can be rewritten in terms of r and [ as
min (Ag, = — 1) + 2o —r — U + (A, ~Vr)

(10)
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Both the variable r and [ can be solved by FFT, the solutions
of which are given as

p F1 (f(m) — A D) FA,+vsp) —J:(D;)J:(AZJFVSPQ))
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where m = Ag + vov — 15, and
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where n = Ag + vov — vor.

3.4. Subproblem 4: computing y

The sub-minimization problem w.r.t. the variable y gives us
min H(y) + (As.y) + 5 |y — L3, an

which can be rewritten by p and q as

. 1%
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Similarly to the sub-minimization problem of h, we can ob-
tain the closed-form solution to p and q as

A
_ B _1 ; _ p.
p—maX(O,l_gw)S, with S—VT'_TB,
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In the end of each iteration, we update the Lagrange mul-

tipliers accordingly
A~ A +vi(u—ev);

A2 {— A2 + 1/2(1} — AX),
A3 — A3 + 1/3(_)’ — Lx).

4. NUMERICAL EXPERIMENTS

In this section, we compare our model with the HoTVLI1
model [15] and LOMS model [14] in order to demonstrate the
advantages of our model in dealing with noises and intensity
inhomogeneity.

There are several parameters in our model (2), i.e., the
regularization parameters «, /3, v and the penalty parameter
w. The regularization parameter « is one of the most criti-
cal parameters in our model, which is relevant to the noise
level contained in the test images. In the numerical tests, we
choose o from o = 0.001 to o = 0.1 as the noise increases.
The parameter /3 is used to regularize the reflectance solution
r. For test images with different intensity inhomogeneity, we
choose § from 8§ = 0.001 to 8 = 0.2. The parameter 7 is
used to enforce the smoothness of the illumination /. For d-
ifferent test images, we can simply fix v as v = 0.08. All
penalty parameters v;, 1 = 1,2, 3,4, are setto v; = 0.2.

4.1. Examples of Brain Images

Example 1: Brain Images. We select two slices from
the T1 brain volume with 5% noise and 40% intensity non-
uniformity, which are downloaded from McGill BrainWeb:
http://www.bic.mni.mcgill.ca/brainweb/. The input images,
the corrected images of our model together with the results of
the HOTVL1 model and LOMS model are shown in Fig. 1(a),
(b), (¢), (d), respectively. To quantitatively evaluate the per-
formance of the three methods, we compute both Peak Signal
to Noise Ratio (PSNR) and Mean Squared Error (MSE) and
list the values in Table 1. It can be observed that both PSNR
and MSE of our model are significantly better than the other
two methods, which demonstrate its advantage in removing
the noises and intensity inhomogeneity.

(a) Input

(b) Our Model

(c) HOTVL1  (d) LOMS

Fig. 1. The corrected results of our model, HoTVL1 model and
LOMS model on T1 brain images.

Table 1. PSNR and MSE of T1 brain images.

Our model | HoTVLI1 LOMS
Test PSNR 30.0261 27.5423 | 27.4783
image 1 | MSE 0.0010 0.0018 0.0018
Test PSNR 30.7099 28.8196 | 28.5584
image 2 | MSE 0.0008 0.0013 0.0014




Example 2: Stable Performance for Intensity Inhomogeneity and
Noises. We select one slice from the T1 brain volume and generate
10 different images by adding Gaussian white noise of mean 0 and
variance 0.001 and intensity inhomogeneity of different profiles. T-
wo selected results are displayed in Fig. 2. In the experiment, we fix
the parameters of the three methods for all 10 images, which are giv-
en in the figure. In Fig. 3 (a), we plot the PSNR of the 10 images for
the three methods, which demonstrate that our model gives the best
denoising results. Simultaneously, Fig. 3 (b) gives the energy decay
of our model for the first image in Fig. 2 to illustrate the convergence
of the proposed method.

(b) Our Model (c¢) HoTVL1

(a) Input (d) LOMS

Fig. 2. Performances of three methods with noises and intensity
inhomogeneity of different profiles. The parameters for our model
are « = 0.03, 5 = 0.01, v = 0.08, px = 0.2 and for HoTVL1
model are « = 0.15, 8 = 10, u = 0.02, 7 = 1e—03 and for LOMS
model are o = 0.05, p = 1.0,0 = 4.0.

L

1 2 3 4 5 6 7 8 9 10 0 1000 2000 3000 4000 5000
Images Iterations

(a) (b)

Fig. 3. Comparison of three models in terms of PSNR and the nu-
merical energy of our model for the first image in Fig. 2.
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On the other hand, we evaluate the performance of bias correc-
tion of our model using the coefficient of variations (CV) to quantify
the degree of intensity inhomogeneity. We define CV for each tissue
T (WM, GM and CSF) as CV(T) = 23 x 100%, where o(T) and
1(T) are the standard deviation and the mean of the intensities in the
tissue T. The CV values of White Matter (WM), Gray Matter (GM)
and Cerebrospinal Fluid (CSF) are evaluated on the bias corrected
images of the three methods and plotted by boxplots in Fig.4. We
can see that CV of our model is better than HoTVL1 model, which

is better than LOMS model.

4.2. Examples of Retinex Illusion Images

Example 3: Checkboard and Cube Images. We start with Retinex
illusion examples with the checkboard shadow image and the
Logvineko’s cube shadow illusion image. We add the Gaussian
white noise of mean O and variance 0.001 to both images. The
results of the HOTVL1 model and our model are displayed in Fig.
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Fig. 4. Comparison of the performance in terms of CV(%).

5. We observe that the HOTVL1 model fails to remove all noises
contained in the test images.
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Fig. 5. Decomposition comparison of the checkboard example. The
parameters for test images of our model are « = 0.01, 8 = 0.04,
and the HOTVLI1 model are & = 0.15, 8 = 15. Row 1 and row 2
are the results of HOTVL1 and our model, respectively.

Example 4: Test of Impulsive Noise. As we claimed, our mod-
el is flexible to noises of different modalities. In this example, we
apply the impulsive noises into the checkboard image and define
G(u) = ||I —ul|1 + || Vu||1. Similarly, the minimization problem
can be solved efficiently by augmented Lagrangian method. Fig.
6 presents the results of checkboard image, which is corrupted by
20% impulsive noise. It demonstrates the advantages of our model
in dealing with different noises.

(b) r by our model (c) [ by our model

(a) Input image

Fig. 6. Denoising the checkboard image containing impulsive noise.
The parameters are « = 0.5, 8 = 0.065, v = 0.08, u = 0.5.

5. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an efficient model for Retinex prob-
lem, which was developed for images corrupted by both intensity
inhomogeneities and noises. We designed an efficient alternating
minimization algorithm, where all subproblems can be solved by the
closed-form solutions and the basic Newton method. The frame-
work can be easily applied to other Retinex models and is shown
robust with different noise models. Various numerical results were
implemented to demonstrate the advantages of our model over the
existing method including [14, 15] for Retinex applications.
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