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Dynamic Bifurcation from Infinity of Nonlinear Evolution Equations*

Chungiu Lif, Desheng Li*, and Zhijun Zhang?

Abstract. This paper is concerned with dynamic bifurcation from infinity and multiplicity of stationary solu-
tions for nonlinear evolution equations near resonance. First, we prove some new global continuation
results and establish a general theorem on dynamic bifurcation from infinity in the framework of
local semiflows on metric spaces. Then, by applying these abstract results, we derive more precise
descriptions on the dynamic bifurcation from infinity of evolution equations in Banach spaces. Fi-
nally, we focus our attention on the parabolic equation u: — Au = Au + f(z,u) associated with
the Dirichlet boundary condition, where f satisfies appropriate Landesman-Laser type condition.
A detailed discussion on the dynamical behavior and the multiplicity of stationary solutions of the
equation near resonance will be presented.
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1. Introduction. This paper is concerned with the nonlinear evolution equation

(1) %+Au:)\u+f(u,)\)
on a Banach space X, where A is a sectorial operator on X with compact resolvent, A € R is
the bifurcation parameter, and f(u, A) is a locally Lipschitz continuous mapping from X< x R
(0 £ a < 1) to X which is sublinear as ||u|lo — oo uniformly on bounded A-intervals.
We are basically interested in the dynamic bifurcation from infinity of the equation and its
applications.

This topic can be traced back to the work of Rabinowitz [30], in which the author studied
the bifurcation from infinity of stationary solutions of the equation in a general setting of
operator equations of the following form:

(2) u=ALu+ K(u,\),

where L is a compact operator, A € R, and K(u,\) = o(||u]|) as ||u|| — oo uniformly on
bounded M-intervals. It was shown that if ;' is a real eigenvalue of L of odd multiplicity,
then (oo, ) is a bifurcation point. Furthermore, there is a continuum of solutions of (2)
which goes to infinity as A — p. This result was partially extended by Toland [38], Dias and
Hernandez [10] and Schmitt and Wang [36] to potential operator equations to cover the case of
even multiplicity. The interested reader is referred to [1, 2, 5, 6, 13, 16, 22, 23, 27, 28, 31, 33|,
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2 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

etc. for concrete examples on the bifurcation from infinity and multiplicity near resonance for
differential equations under various boundary conditions.

For a nonlinear system as in (1), stationary solutions may be far from being adequate
for understanding its dynamics. This is because that the dynamics of the system is usually
determined not only by its stationary solutions, but also by all other bounded full ones. In
fact, it is often the case that a system may have no stationary solutions. It is therefore of
great importance to develop appropriate theories to analyze the bifurcation of bounded full
solutions. A fundamental one in this line is the well-known Hopf’s bifurcation theory, which
was first developed in the very early work of Poincaré [29] around 1892. Actually it forms the
central part of the classical dynamic bifurcation theory. The Hopf’s bifurcation theory focuses
on the case when there are exactly a pair of conjugate eigenvalues of the linearized equation
crossing the imaginary axis, and was fully developed in the 20-th century. One can find a vast
body of literature on how to determine Hopf bifurcations for nonlinear systems arising from
applications. To deal with the general case, some other dynamic bifurcation theories need to
be developed, and the Conley index theory, attractor theory and so on allow us to take a step;
see e.g. [12, 18, 21, 34, 39, 40], etc.

Very recently, Li and Wang [18] established some new local and global bifurcation results
in terms of invariant sets via the Conley index theory, completely extending the well-known
Rabinowitz’s global bifurcation theorem to the dynamic bifurcation of nonlinear evolution
equations without requiring the “crossing odd-multiplicity” condition. Inspired by this work
and some other ones mentioned above, in this paper we consider the dynamic bifurcation
from infinity of (1). This problem was actually addressed in Ward [40]. The author first
established a global continuation theorem (see Remark 3.2). Then he proved the following
interesting result: For any real numbers ¢ < d such that the interval [c,d] contains exactly
one number p € Reo(A) with ¢ < p < d, there exists a continuum ¢ C X X [c,d] meeting
X x {c,d} such that

(1) for X\ # ¢,d, €[] consists of bounded full solutions, where
CN ={x: (z,)\) € ¢};

(2) there is a sequence A, — p such that €’[\,] is unbounded as \,, — p.

(See [40, Theorem 3.2].) Note that the continuum % in the above result may contain either
all the connected branches of bounded full solutions of the equation meeting X< x {c}, or all
the connected branches of bounded full solutions meeting X x {d}, according to which side
¢ will meet. Here, by using the techniques in [18] we will prove some new continuation results
and establish an abstract theorem on bifurcation from infinity in terms of local semiflows on
metric spaces. Then based on these theoretical results, we give some more precise descriptions
on the dynamic bifurcation from infinity for (1).
As an example, we consider the parabolic equation

(3) ur — Au = M+ f(z,u), r €N

associated with the homogeneous Dirichlet boundary condition, where 2 is a bounded domain
in R™, and f is a bounded function satisfying the following Landesman-Laser type condition:
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DYNAMIC BIFURCATION FROM INFINITY OF NONLINEAR EVOLUTION EQUATIONS 3

(4) liminf f(z,s) > f > 0, limsup f(z,s) < —f <0

§—r+00 $——00 -
uniformly for € Q (where f and [ are independent of ). First, we give a detailed discussion
on the dynamic bifurcation from infinity of the equation near any eigenvalue uy of the operator
—A (in H}(Q)). Specifically, we prove that there exists § > 0 such that for each A € A_ =

[k — 0, ux ), the maximal compact invariant set Sy of the equation has a Morse decomposition
M = {Ms°, M}} with M} being uniformly bounded on A_ while

lim min [[v|| = oc.
A= iy veEML®

Besides, there is at least one connecting trajectory v between M3° and M )1\ More interestingly,
it will be shown that each of the following two sets

A =Unea (M x {A}), > = Uyea_ (M x {A})

contains a connected component I' with

LA :={u: (u,\) €T} #0, VAeA_.

The bifurcation and multiplicity of elliptic equations near resonance is always an inter-
esting topic and has attracted much attention in the past decades. As a byproduct of our
dynamical argument, we can naturally derive some bifurcation and multiplicity results on the
stationary problem:

—Au=u+ f(x,u), x € €,
5) { (z,u)

u(z) =0, x € oS

This problem was first studied by Mawhin and Schmitt [22], where the authors considered the
case when A crosses an eigenvalue of odd multiplicity. Later Schmitt and Wang [36] developed
a theory on bifurcation from infinity for potential operators, through which they extended
the results in [22] to the case when A crosses any eigenvalue py. More specifically, under
an abstract Landesman-Laser type condition on the Nemitski operator f : Hg () — L?*(2)
corresponding to the function f(z,s), the authors proved the following result and its “dual”
version: there exists 6 > 0 such that for each A € (ug, ux + d] the equation (5) has at least
two solutions with one of which approaching co as A — g, and for each A € [ug — 0, x| it has
at least one. (Some further development and extensions can be found in [4, 6, 9, 11, 27, 37],
etc.) As an application of our dynamical bifurcation results, we show that the “dual” version
of the above result holds true under the hypothesis (4). Moreover, there exists an open dense
subset D of R such that for A € A_ ND, where A_ = [ur — 6, ux), the problem has at least
three distinct solutions.

Special attention will also be paid to the case where f(x,s) = o(]s|) as |s| — 0 uniformly
for € Q, in which we can say a little more on the multiplicity of nontrivial solutions of (5).
Such a case was studied in Chiappinelli, Mawhin and Nugari [6], where the authors considered
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4 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

the multiplicity of solutions of the problem near the first eigenvalue p1. Under appropriate
Landesman-Laser type conditions, it was proved, among other things, that the problem has
at least two distinct nontrivial solutions as A — uf. (We mention that the nonlinearity
in [6] was allowed to be unbounded.) Here we present some more precise information on
the multiplicity of solutions for the problem near any eigenvalue pj under the condition (4).
Roughly speaking, we show that (5) has at least two distinct nontrivial solutions for A € A_,
provided ¢ is sufficiently small. Furthermore, there is always a one-sided neighborhood A;
of pi such that the problem has at least three distinct nontrivial stationary solutions for
A€ A\ {pw}-

It is worth mentioning that “dual” versions of all our results on (3) and (5) mentioned
above hold true if, instead of (4), we assume

(6) limsup f(z,s) < —f <0, lig_inff(x, 5)>f>0

$——+00

uniformly for = € Q.

This work is organized as follows. In section 2 we make some preliminaries. In section 3 we
first prove some new global continuation results by utilizing the theory of Conley index. Then
we apply these results to establish a general dynamical bifurcation theorem from infinity for
infinite dynamical systems. In section 4 we use the abstract results to prove some bifurcation
theorems from infinity for nonlinear evolution equations. Finally in section 5, we discuss the
dynamic bifurcation from infinity and multiplicity of stationary solutions for the parabolic
equation mentioned above.

2. Preliminaries. In this section we make some preliminaries.

2.1. Basic topological notions and results. Let X be a complete metric space with metric
d(-,-).
Let A and B be nonempty subsets of X. The distance d(A, B) between A and B is defined
as
d(A, B) = inf{d(z,y): =€ A, y€ B},

and the Hausdorff semi-distance and Hausdorff distance of A and B are defined, respectively,
as
dy(A, B) =supd(x,B), 0u(A,B)=max{du(A,B),du(B,A)}.
€A
The closure, interior and boundary of A in X are denoted, respectively, by A, int A and

O0A. Sometimes we also write A, int A and 0A as ZX, intxy A and Ox A, respectively, to
emphasize in which space these operations are taken.

The e-neighborhood of A, denoted by B(A,e) or Bx(A4,¢), is defined to be the set {y €
X :d(y,A) <e}.

A subset U of X is called a neighborhood of A, if A C intU.

Lemma 2.1. [30] Let X be a compact metric space, and let A and B be two disjoint closed
subsets of X. Then either there exists a subcontinuum C of X such that

ANC#0+#BnNC,
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DYNAMIC BIFURCATION FROM INFINITY OF NONLINEAR EVOLUTION EQUATIONS 5

or X = X2 U Xpg, where X4 and Xp are disjoint compact subsets of X containing A and B,
respectively.

Lemma 2.2. ([3, pp. 41]), Let X be a compact metric space. Denote C(X) the family of
compact subsets of X which is equipped with the Hausdorff metric dy(-,-). Then C(X) is a
compact metric space.

2.2. Wedge/smash product of pointed spaces. Let (X, xzo) and (Y, ) be two pointed
spaces. The wedge product (X, o) V (Y,yo) and smash product (X, xo) A (Y, yo) are defined,
respectively, as follows:

(X,20) V (Y,90) = W, (20,%0)),  (X,20) A (Yy90) = (X x Y)/W, [WV]),

where W = X X {yo} U{zo} x Y.

Denote [(X, zg)] the homotopy type of a pointed space (X, xg). Since the operations “V”
and “A” preserve homotopy equivalence relations, they can be naturally extended to the
homotopy types of pointed spaces.

Let 0 be the homotopy type of the one-point space ({p},p). Denote ™ (m > 0) the
homotopy type of a pointed m-dimensional sphere. Then

[(X,20)] VO = [(X,70)], and ¥ AX" =X (Ym,n >0).
2.3. Local semiflows on metric spaces. For completeness and the reader’s convenience,
let us first collect some fundamental notions and facts on local semiflows.

2.3.1. Local semiflows. Let X be a complete metric space.

A local semiflow ® on X is a continuous mapping from an open set D(®) C Ry x X to X
that enjoys the following properties:

(1) for each z € X, there exists 0 < T, < oo, called the escape time of ®(t,x), such that

(t,z) € D(P) <=t € [0,Ty);
(2) ®(0,-) =idx, and
O(t+s,z) = P(t, P(s,x))

forallz € X and t,s € Ry witht+s<T,.
Let ® be a given local semiflow on X. For simplicity, we usually rewrite ®(¢,z) as ®(t)x.
Let I C R be an interval. A trajectory (or solution) of ® on I is a continuous mapping
v :I — X such that
v(t) = @(t — s)y(s), Vi, sel,t>s.

A trajectory v on R is called a full trajectory.
The orbit of a trajectory v on [ is the set

orb(y) = {~(t): teI}.

The orbit of a full trajectory is simply called a full orbit.
The w-limit set w(y) and w*-limit set of a full trajectory « are defined as

w(y) ={y € X : there exists ¢, — oo such that v(t,) — y},
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6 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

w*(y) ={y € X : there exists t,, - —oo such that v(¢,) — y}.

Given U C X, denote Koo (®,U) the union of all bounded full orbits in U. In the case
where U = X, we will simply write

Koo (P, X) = Koo (D).
Let N C X. We say that ® does not explode in N, if
®([0,7,))x C N =T, = 0.

Definition 2.1. [32] N C X is said to be admissible, if for any sequences x, € N and
ty, — 00 with ®([0,t,])x, C N for all n, the sequence ®(t,)xy has a convergent subsequence.
N is said to be strongly admissible, if in addition, ® does not explode in N.

Definition 2.2. ® is said to be asymptotically compact on X, if each bounded set B C X 1is
strongly admissible.

Let S € X. S is said to be positively invariant (resp. invariant), if ®(t)S C S (resp.
O(t)S = 9) for all t > 0.

A compact invariant set A C X is called an attractor of ®, if it attracts a neighborhood
U of itself, namely, lim;_, o di (®(t)U,.A) = 0.

Let S be a compact invariant set of ®. An ordered collection M = {My,---, M;} of
disjointed compact invariant subsets of S is called a Morse decomposition of S, if for any full

trajectory - contained in S\ <U1§k§l Mk), there exist ¢ and j with 7 < j such that
(1) w*(’y) C Mj, OJ("}/) C M;.

Remark 2.1. A full trajectory satisfying (1) will be referred to as a connecting trajectory
between M; and M;.

Remark 2.2. One may use equivalent definitions of Morse decompositions; see e.g. [32,
Chap. IIIJ.

2.4. Conley index. In this subsection we briefly recall the definition of Conley index. The
interested reader is referred to [7, 25] and [32], etc. for details.

Let @ be a local semiflow on X. Since X may be an infinite dimensional space, we always
assume ® is asymptotically compact, hence each bounded subset of X is strongly admissible.

A compact invariant set S of ® is said to be isolated, if there is a neighborhood N of
S such that S is the maximal compact invariant set in N. Correspondingly, N is called an
isolating neighborhood of S.

Remark 2.3. Note that we do not require an isolating neighborhood to be bounded, although
the bounded ones are always of particular interest.

An important example for isolating neighborhoods is the so called isolating block, which
plays a crucial role in the computation of Conley index.

Let B C X be a bounded closed set. x € B is called a strict egress (resp. strict ingress,
bounce-off) point of B, if for every trajectory « : [-7,s] — X with v(0) = x, where 7 > 0,
s > 0, the following properties hold:
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(1) there exists 0 < € < s such that

~v(t) € B (resp. 7(t) € intB, resp. v(t) € B), vVt e (0,¢);
(2) if 7 > 0, then there exists 0 < § < 7 such that

~(t) € intB (resp. (t) € B, resp. ~(t) € B), Vit e (—6,0).

Denote B¢ (resp. B, B®) the set of all strict egress (resp. ingress, bounce-off) points of the
closed set B, and set B~ = B¢ U BP.
B is called an isolating block[32], if B~ is closed and 0B = B*U B~.

Let N, E be two closed subsets of X. E is called an exit set of N, if (1) E is N-positively
invariant, that is, for any € F and ¢t > 0,

o([0,])z ¢ N = &([0,t))z C E;

and (2) for any x € N, if ®(¢;)xz & N for some ¢; > 0, then there exists ¢y € [0,t1] such that
q)(to) e FE.

Let S be a compact isolated invariant set. A pair of bounded closed subsets (N, E) is
called an index pair of S, if (1) N\ E is an isolating neighborhood of S; and (2) F is an exit
set of N. We infer from [32] that if B is a bounded isolating block, then (B, B7) is an index
pair of the maximal compact invariant set S = Ko (®, B) in B.

Definition 2.3. The homotopy Conley index of S, denoted by h(®,S), is defined to be the
homotopy type [(N/E, [E])] of the pointed space (N/E,[E]) for any indezx pair (N, E) of S.

Remark 2.4. For convenience, if U is an isolating neighborhood of a compact invariant set
S (U need not to be bounded), we also write

h(®,U) = h(®, S),

hoping that this will not cause any confusion.

Ezample 2.1. As an example (and also for later use), let us compute the Conley index of an
asymptotically stable equilibrium e (e is an attractor of ®).

Let L(x) be a Lyapunov function of e defined on an open neighborhood U of e which is
strictly decreasing along each trajectory of ® in U outside e (see e.g. [15, pp. 226] for the
construction of such a function). We may assume L(e) = 0 (hence L(z) > 0 for z € U \ {e}).
Take a 0 > 0 sufficiently small so that B = {x : L(x) < d§} C U and is a closed neighborhood
of e. Then one easily sees that B is an isolating block with B~ = ().

We claim that B is contractible. Indeed, set

P(s/(1—s))x, r e B, se|0,1);
H(S’x):{x(/( ! xiB si[l)

Then H is a strong deformation retraction.
Now by the definition of Conley index, we have

h(®,{e}) = [(B/B~,[B7])] = 2°.
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Let S be a compact isolated invariant set of ®. Denote H, and H* the singular homology
and cohomology theories with coefficient group Z, respectively. Applying H, and H* to
h(®,S) one immediately obtains the homology and cohomology Conley indices of S.

The Poincaré polynomial of S, denoted by p(t, S), is the formal polynomial

p(t,S) = Byt
q=0

with 8, = rank H,(h(®, S)). If S has a Morse decomposition M = {Mj,---, M;}, then the
following Morse equation

p(t, M) + -+ p(t, My) = p(t, 5) + (1 + 1)Q(t)
holds for some formal polynomial Q(t) = > d, t? with dy € Z.

Let us also recall briefly the basic continuation property of the Conley index.
Let @) (A € A) be a family of semiflows on X, where A is a metric space. We say that
O depends on A continuously, if ®(t)x is defined at the point (¢, z, \), then for any sequence
(tn, Tn, A\n) converging to (t,z,\), @y (t,)x, is defined as well for all n sufficiently large,
furthermore,
Dy (th)zn = Pr(t)x  as n — 0.

Suppose ®) depends on A continuously. Define
() (z, A) = (Pa(t)x, N), (r,\) € Z =X x A.

Then II is a local semiflow on the product space 2, which will be called the skew-product
flow of the family @) (A € A).

We say that @) (A € A) is A-locally uniformly asymptotically compact (A-l.u.a.c. in short),
if its skew-product flow II is asymptotically compact.

Remark 2.5. It is trivial to see that if @) (A € A) is A-l.u.a.c., then A is necessarily locally
compact.

For convenience, given K C 2 and A € A, we will write
KN ={x: (z,\) e Z}.

K[} is called the A-section of K. The following continuation result is actually a particular
case of [32, Chap.I, Theorem 12.2].

Theorem 2.1. Let @\ (A € A) be a family of semiflows on X, where A is a connected
compact metric space. Suppose @y depends on A continuously and is A-l.u.a.c.
Let K be a compact isolated invariant set of the skew-product flow Il of @ (A € A). Then

h(®y, K[\]) = const., AeA.

Proof. Take a bounded closed isolating neighborhood U of K in 2. Then for each A € A,
the A-section Uy of U is an isolating neighborhood of K[)]. By the compactness of K one
can easily verify that K[\ is upper semicontinuous in A. Consequently U is also an isolating
neighborhood of K[\] for X' near A. The conclusion then directly follows from [32, Chap.I,
Theorem 12.2.]. [ ]
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Remark 2.6. We emphasize that in the above theorem, we allow K[N] =0 for some X' € A.
Note also that when such a case occurs, one necessarily has h(®y, K[\]) =0 for all A € A.

2.5. Sectorial operators. For the readers’ convenience, we finally recall some basic notions
concerning sectorial operators.

Let X be a Banach space. A closed and densely defined linear operator A : D(A) € X — X
is called a sectorial operator, if there exist real numbers ¢ € (0,7/2), a € R and M > 1 such
that the sector

S ={N: @ <largr—a)| <7, A#a)

is contained in the resolvent set of A, moreover,
1AL = A)7H < M/|A —qf

for all A € S, 4, where I denotes the identity on X.
Let A be a sectorial operator in X. Denote o(A) the spectral of A. If min.c,4) Rez >0,

then A generates an analytic semigroup T'(t) = e~4! with
1T <Ce P, t>0

for some C, 8 > 0. This allows us to define the fractional powers of A as follows: for each
a >0,
A~ = 1 Ootafl fAtdt
N F(oz)/o ©
where I'(s) = fooo t>~le~tdt is the Gamma function, and let A% be the inverse of A~% with
D(A%) = R(A™%); see Henry [14, Chap. 1] for details. We also assign A = I.
Note that in general we may not have min,c,4) Rez > 0. However, one can always find
a real number a such that min.e,(4,)Rez > 0, where A; = A + al. Hence we can define the
fractional powers of A; as above. For each a > 0, denote X = D(A{). We equip X* with
the norm || - ||, defined as
ulla = [[ATw]l,  we X

Then X is a Banach space, which is called the fractional power of X. It is well known that
the definition of X¢ is independent of the choice of the number a, and different choices of a
give equivalent norms on X [14, Chap. IJ.

3. Continuation Theorems and Bifurcation from Infinity of Local Semiflows. In this
section, we establish some abstract continuation theorems on invariant sets and prove a general
result on bifurcation from infinity in the framework of local semiflows by using Conley index.

Let X be a complete metric space with metric d(-,-), and set

%:XXR, %i:XXRi.
Z is equipped with the metric defined by

Q((ula)‘l)a (’LLQ,)\Q)) = d(“la”?) + ’)\1 - >\2‘> (uh)‘l); (UQ, AQ) eZ.
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3.1. Global continuation theorem. Let ®) (A € R) be a family of local semiflows on X.
Henceforth we always assume that ®, depends on A continuously and is A-l.u.a.c.
Given A C R and U C X, denote

(1) H (A, U) = Usen (Koo(®r,U) X {A}).

For simplicity, we will write

H (N, X) = H(N).

Remark 3.1. By the A-lL.u.a.c. property of ®)x (A € R) and the invariance property of
A (N,U), one can easily verify that if A and U are bounded then J (A,U) is compact.

Theorem 3.1. Let S be a compact isolated invariant set of ®g, and U an isolating neigh-
borhood of S. Denote .Z the family of components of # (Ry) meeting S x {0}.

Suppose h(®o,S) # 0. Then there is a T' € Fy such that either T[0]\ U # 0, or ' is
unbounded in the space Z+.

Proof. We only consider the case of #,. The argument for that of .Z_ is parallel.
We argue by contradiction and suppose the assertion in the theorem was false. Then each
I' € %, would be bounded in 2. Furthermore, I'[0] C U (hence I'[0] C S).

Denote €'(S) the family of all components of S. For each Z € €(S), there is a (unique)
I'z € .Z4 such that Z C I'z[0] (note that I'z[0] may not be connected). It can be easily seen
that for any 7, Z, € €(S), one has

(2) either 'y, =T'z,, or 'z, NIz, = 0.

Let Z € €(S). Pick a number ¢ with 0 < 0 < d(Z,0U), and let Vs = By (I'z,9) be the
d-neighborhood of I'z in 2. Set

K=VsnA(Ry), Ks=0.VsnH(Ry),

where 94V = 09,V denotes the boundary of V in 25 for any V C 25. Then by the
boundedness of V5 and Remark 3.1 we easily deduce that both K and ICs are compact. Because
I is a component of # (R;) and 'z N K5 = 0, by virtue of Lemma 2.1 there exist two disjoint
closed subsets K1, Ko of K with K = K1 U Ky such that

F2C]C1, IC5CIC2.

Note that K; is contained in the interior of Vs in 27 .
Take a number dz > 0 with

1
0z < 1 min{o(K1, K2), o(K1,04 Vs)}.

Let Vz = By, (K1,267). Then by the choice of §7 we have

(3) Ba, (0+Vz,07) N A (Ry) = 0.
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Let Ay = max{\: Vz[)\] # 0}. Thanks to Theorem 2.1, one deduces that
(4) h(®y, Vz[A]) = const., A€ 0,Ar).

But Koo(®y, Vz[A]) = 0 if A is close to Ap; see Fig. 3.1.

0 ?11

Fig. 3.1: V7 is an isolating neighborhood.

By (4) it follows that
h(®),Vz[A) =0, A€ 0,\).

In particular, we have

(5) h(®9,Q7) =0, where Qz =Vz[0].
Note that Q7 C U. We also infer from (3) that

(6) Bx(09z,6z) NS = 0.

(Here 0€2z is the boundary of Q7 in X.) As S is the maximal compact invariant set of ®q in
U, (6) implies that Q is an isolating neighborhood of ®y.

Since S is compact, there exist a finite number of components Z1,--- , Z; of S such that
S C Ufi’:l QZZ-- Let W7 = QZ17 and

Wi =Qz \(Qz,U---UQz_,), k=21
Then W,,'s are disjoint open sets in X, and

(7) oWy c U, 09y,
As SN (Ui’:l 8921.) = () (see (6)), one finds that
Sc <Ué:1 QZi) \ (Ué:l 6QZi> = Uizt Wi

Set Sk = S N Wj. We observe that if w € Sy, then by (6),

d(w,(‘)ﬂzi) > (521, > min 5Z~L > 0, 1< <.
1<t
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Thus by (7) it holds that
(8) d(Sk, 8Wk) > 0,

which implies that Sy is compact. We also infer from (8) that W}, is an isolating neighborhood
of Sy, (with respect to ®g). We claim that

9) h(®g, ;) = 0.

Indeed, let My, = Koo(®o,Q2z,) \ Sk. Then My C Qz, \ Wi. Therefore by (8) we deduce that
d(Sk, M) > 0,

from which one can easily see that M}, is compact. (5) then asserts that

0="h(Po,0z,) =h(Po, Keo(Po,2,))
= h((I)(), Sy U Mk) = h((I)(), Sk) V h((I)(), Mk)
By the basic knowledge in the theory of Conley index (see e.g. [32, pp. 52]) one immediately

concludes the validity of (9).
Now since Sy, are disjoint isolated invariant sets of ®¢ and S = |J;<j<; Sk, we have

h((I)g, S) = h((I)o, Sl) VeV h(q)o, Sl) = 6,

which leads to a contradiction. [ |

Remark 3.2. In [40], Ward gave a continuation theorem asserting that sy = Upcz, I
either meets (X \ U) x {0}, or is unbounded. Theorem 3.1 significantly improves this result.

Theorem 3.2. Let S be an isolated invariant set of ®g with h(®g, S) # 0, and U an isolating
neighborhood of S. Let 0 < d < oo, and denote A either the interval [0,d) or the one (—d,0].
Denote .F the family of components of (A, U) meeting S x {0}.

Then there exists I' € F such that one of the alternatives below holds:

(1) T is unbounded; see Fig. 3.2.
(2) T' meeting OU x A; see Fig. 3.3.
(3) T[N £ 0 for all X € A; see Fig. 3.4.

U U

au X A au X A

Fig.3.2 Fig. 3.3
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U
Ulcl \/
TR \/r\ i uid
O
A A
d c d
Fig. 3.4 Fig.3.5: Koo(®.) C U]c]

Proof. The proof can be easily obtained by slightly modifying the one of Theorem 3.1.

We omit the details.

3.2. An abstract theorem on bifurcation from infinity. We now establish a new abstract
theorem on dynamic bifurcation from infinity.
Let @) (A € R) be as in subsection 3.1.

Theorem 3.3. Let A = [¢,d] be a compact interval. Suppose both Koo (®.) and Koo(Py) are
compact, furthermore,

(10)

h (e, Koo(®e)) # b (Dg, Koo(®y)).

Then the set # (A, X) has an unbounded component I' meeting X x {c, d}.
Proof. Denote .7 the family of connected components of J# (A, X), and let

Te={T e 7 : Il #0},

Jg={T € 7 : I'[d] # 0}.

In the following we prove that if every I' € 7. is bounded, then there is a I' € .7; such that T’

is unbounded.

Let H = X X [c,d]. Denote 04V the boundary of V in H for any V C H.

Let I' € Z.. Since I is bounded, as in Remark 3.1 one easily deduces by the A-l.u.a.c.
property of @y that I' is compact. Take a number € > 0, and let

V. =By([T,e) :={(z,\) e H: o((z,N),T) <e}

be the e-neighborhood of I' in H. Set

C=V.NKH(\X),

C. = dyV-NC.

By Remark 3.1 we see that both C and C. are compact. Since I' does not intersect any other
component of C, by Lemma 2.1 there exist two disjoint closed subsets C; and Cy of C with

C = C1 UCy such that

FCCl, CECCQ.

Clearly C; is contained in the interior of V. in H.
Pick a number ep > 0 with

1
er < Z min{Q(Cl,Cz), Q(Cl,a}tvg)}.
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Let Ur = By(C1,2er) be the 2ep-neighborhood of C; in H. Then by the choice of ep we see
that Ur C V., and moreover,

(11) By (Olr,er) N H (A, X) = 0.

Now we observe that % = {Ur[c]}reg, forms an open covering of Ko (®.) in X. Thus there
exist I't, -+, T, € Z. such that

Koo(®Pc) C Ulgign Ur, [c].

Let U = Uj<j<,Ur;. We infer from (11) that U is an isolating neighborhood of the skew-
product flow IT of {®)}rea in H with Koo (P.) C U[c]; see Fig. 3.5. Therefore by Theorem 2.1
one concludes that

(12) h(®e, Koo(®c)) = h(Pe, Ulc]) = b (Pg, U[d]) = h(Pa, K1),

where K1 = Ko (®g, U[d]).

For any component I' of # (A, X), by (11) we have I'NoyUp, = 0 for all 1 < < n. Hence
one finds that
either ' CcU, or I'NU = 0.

Consequently, for any component C' of K (®4), we have
either C C U[d], or CNU[d) = 0.
Thus we deduce that K (®4) = K1 U Ko, where
Ky ={C : C is a component of K (®4) with C NU[d] = 0}.

As K, is isolated with U[d] being an isolating neighborhood, it is trivial to check that Ky is
isolated as well. Thereby

(13) h ((I)d, Koo(q)d)) =h (‘I)d, Kl) V h ((I)d, KQ) .
This, along with (10) and (12), yields that
h ((I)da KQ) # 0.

Now by virtue of Theorem 3.1, one immediately concludes that there is a I' € 7 with
I'ld] C K3 such that I' is unbounded; see Fig. 3.5. [ |

3.3. Two examples. In this subsection we give two simple illustrating examples by con-
sidering ODE systems, which may help the reader have a better understanding to the abstract
results given above.

Example 3.1. Consider the planar system

(14) { i =1z — Mz(2? + y?), r=xz(t) € R,

y=y—y(@*+y?), y=y) eR,
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where A is the bifurcation parameter.
Denote ®) the semiflow on X = R? generated by the system. Multiplying the first equation
in (14) by x and the second one by y, summing the results we obtain that

d
(15) £r2 =2r2(1 — \r?),
where 12 = 22 + y2. Let A < 0. Then by (15) we have

d
(16) ot =21 n?) > 2,

by which we deduce that K. (®,) = {(0,0)} and is a repeller of the system. Let B = B(2),
where B(r) denotes the ball in X centered at (0,0) with radius r. By (16) it is clear that B
is an isolating block of K (®)) with B~ = 0B(2). Hence

h(®y, Koo(®2)) = [(B/B,[B7])] = 2.
Now assume A > 0. By (15) we find that

d
—r? < —p?

(17) s

as long as r(t) > /2/A, from which it can be easily seen that the system is dissipative with
K (®)) being the global attractor. Let A = 1. Then we infer from (17) that B = B(2) is an
isolating block of K (®1) with B~ = (). Since B is contractible, one has

h(@1, Koo(®1)) = [(B/B,[B7])] = £°.

Let A = [—1,1]. Then h(®_1, Koo(P_1)) # h(P1, Koo(P1)). By Theorem 3.3 one immedi-
ately concludes that the set .# (A, X) has an unbounded component I' meeting X x {£1}.

One can also discuss the bifurcation phenomena of the system by choosing appropriate
isolating neighborhoods of the system and applying Theorem 3.2. For instance, take U =
X\ B (3). Then for A € [0,1], we have by (15) that

(18) %ﬂ =2r2(1 = M%) >0, if (x(t),y(t)) € OU,

from which one easily deduces that
(19) Ko(®),U)NOU = 0, VA elo,1].

Since Koo(Py,U) C Koo(®Py) and hence is compact for all A, by (19) we find that U is an
isolating neighborhood of ®, for each A € [0,1].

Set S = Koo(®1,U). We infer from the above argument that S C B := B(2) \ B (3);
furthermore, B is an isolating block of S with B~ = (). We have

h(®1,5) = [(B/0, [0)] = (B U{a}, 9] # 0,
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16 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

where ¢ is an element with ¢ ¢ B. By virtue of Theorem 3.2 one concludes that J#°((0,1],U)
has a component 'y meeting S x {1} such that one of the alternatives (1)-(3) in the theorem
holds true. We claim that I'yy is unbounded. To see this, we first observe that Ko (®g,U) = 0.
Now we argue by contradiction and suppose the contrary. Then one can easily verify that
I'u[A] € Koo(®y,U) for all A € (0,1]. It follows by (19) that the second alternative (2) in
Theorem 3.2 does not occur. Thus we necessarily have I'yy[A\] # () for all A € (0,1]. But this
and the boundedness of T'yy then imply that I'ty[0] # (), which leads to a contradiction and
proves our claim.

Now let us give a simple observation that justifies our theoretical results obtained above.
By (15) we see that the circle

C)\: T:T)\:Zl/ﬁ

is a closed orbit of the system for each A > 0, which depends on A continuously. Clearly
ry —> oo as A — 0.

It is also worth mentioning that the bifurcating branches I' and I'yy given above may be
different. In fact, it is easy to check that for A € (0,1], I'iy[\] consists of exactly the closed
orbit C), whereas I'[A\] may contain C) and the equilibrium (0,0) and also the connecting
orbits between them.

Ezample 3.2. Consider the following non-autonomous scalar equation
(20) i=—\+h)z+e

on R, where h € C(R) is a T-periodic function (7" > 0). To have a better understanding of
the dynamics of the equation, as usual we embed the equation into a cocycle system below:

(21) i=—A+pt))z+e ™, peH,

where H = {h(7 +-) : 7 € R}, which is equipped with the topology of uniform convergence
on [0,7] (and hence on R). It is a basic knowledge that due to the periodicity of h, H is
homeomorphic to the unit circle (or, one-dimensional sphere) S?.

Let X =R x H, and denote ¢ (¢, p)zo the unique solution of (21) with z(0) = xg. Set

‘b)\(t)(l‘,p) = (¢>\(t,p)l’,9tp), (aj)p) € X)
where 6 is the translation group on H,
(Op)(-) =p(t+-), VpeH, teR

Then @) is a flow on X, called the skew-product flow of (21).
For the sake of simplicity, we may assume maxpg |h(t)| < 1. Let A = [-2,2]. For A = -2,
multiplying the equation (21) by x we find that

2
(22) %%aﬂ =(2—-p(t)z? +ze®
> z? — |z = |z|(|z] - 1),
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from which it is clear that for any solution x(t) of (21), if |z(¢g)| > 1 for some ¢ty € R then
|z(t)| > 1 for all t > to; moreover, |z(t)| — oo as t — +oo. It follows that

KOO((I),Q) C [—1,1] X H.

Let By = [—2,2] x H. Making use of (22) it is trivial to check that Bj is an isolating block of
Koo (®_2) with By = {£2} x H. Thus

h(® 2, Koo(®-2)) = [(B1/ By, [Br ])]-

Since Bj is pass-connected, one can easily verify that the quotient space Bj/B; is pass-
connected as well. Hence

(23) Ho (h (@2, Koo(P-2))) = Ho ((B1/By ,[Br])) = 0.
Now we consider the case where A = 2. A fully analogous argument as above applies to

show that K (®2) C [—1,1] x H with By = [—2,2] x H being an isolating block with By = 0.
(Koo (®P2) is actually the global attractor of ®3.) Thus we have

h (P2, Koo(®2)) = [(B2/0, [0])] = [(([=2,2] x #)/0, [0])]

0
= [(s*/0,[0)] = [(S* U {q}, )],

where ¢ is an element with ¢ & S'. Therefore

(24) Hy (h (93, Koo(®2))) = Ho ((S* U{q},q)) = Z.

(23) and (24) indicate that h (P_g, Koo(P_2)) # h (P2, Koo(P2)). Applying Theorem 3.3
one immediately concludes that the system ®, undergoes a dynamic bifurcation from infinity
as A varies in the interval A, although we know little about where and how this bifurcation
occurs.

4. Bifurcation from Infinity of Nonlinear Evolution Equations. In this section we use our
general results in section 3 to discuss the bifurcation phenomena from infinity of the nonlinear
evolution equation

(1) %—f—Au—)\u—f(u,)\):O

on a Banach space X, where A is a sectorial operator on X with compact resolvent, A € R,
and f(u,\) is a locally Lipschitz continuous mapping from X% x R to X for some 0 < a < 1.
Our main goal is to present some more precise descriptions on the dynamic bifurcation from
infinity.

Denote || - || and || - [|o the norms of X and X, respectively.
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4.1. Existence of unbounded bifurcating branch. It is well known (see e.g. [14, Theorem
3.3.3]) that the Cauchy problem of (1) is well-posed in X, that is, for any uy € X, there
exist T > 0 and a (unique) continuous function « : [0,7) — X® with u(0) = wo, called
the strong solution of the problem, such that u(t) € D(A) and Lu(t) exists for t € (0,T),
moreover, the differential equation (1) is satisfied on (0,7").

Denote @ the local semiflow generated by the equation. By the continuity property of
f in A, one can easily verify that ®, depends on A continuously. Also, by very standard
argument (see e.g. [32, Chap.I, Theorem 4.4]), it can be shown that the family ®) (A € R) is
A-lu.a.c.

We always assume f satisfies the following sublinear condition:

(A) limyy)|, oo [If(u, A)[|/[|u]|o = 0 uniformly on compact A-intervals.

Hence @) is actually a global semiflow on X for each A.

Definition 4.1. We say that (1) bifurcates from infinity at A = u (or, (00, 1) is a bifurcation
point), if for any e > 0, there exist A € R with |A—p| < € and a bounded full solution uy = u(t)
of (1) such that

[urlloo > 1/e,

where [[uxloc = supiep |[ur(t)]]a-
Denote o(A) the spectral of A, and write

Reo(A) ={Rez: z€0(4)}.

Theorem 4.1. Let u € Reo(A). Then (oo, ) is a bifurcation point of (1). Specifically, for
any ¢,d € R with ¢ < p < d and Reo(A) N e, d] = {u}, the set # ([c,d]) (see (1) in section 3
for the definition) has a component I meeting X* x{c,d} such that for some sequence A, — [,

(2) sup{||z|la : z €T[Ap]} = 00 as n— oo.

Proof. Let us begin with the following linear equation

(3) Z—Q:—G—Au—)\uzo.
Let ¢,d be the numbers given in the theorem. Then if A\ = ¢,d, the set {0} is an isolated
invariant set for the semiflow ¢y in X* generated by (3). By [32] (see Chap. I, Corollary 11.2)

there exist two nonnegative integers p and ¢ with ¢ — p > 0 such that

(4) h(¢e, {0}) = X7, h(¢q,{0}) = X9
(¢ —p is actually the total algebraic multiplicity of all the eigenvalues z of the operator A with
Rez = p.)
Now consider the nonlinear equation
d
(5) d—?+Au—)\u—uf(u,)\):0,
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where v € [0, 1] is the homotopy parameter. By appropriately modifying the argument in the
proof of [32, Chap. II, Theorem 5.1] (see also the proof of [40, Theorem 3.2]), it can be shown
that for any € > 0 with

c<p—e<pu+te<d,

there exists R, > 0 such that for any bounded full solution u = wu(t) of (5) with A\ € [e, u —
e]U[p+e,d] and v € [0, 1], we have
(6) [ufloo < Re.

Denote ¢¥ the semiflow generated by (5). By virtue of the continuation property of Conley
index, we conclude that

h(®y, Koo(Py))

o Z (6%, Ko (0}))

(63 Koo(#3)) = h(6x,{0}) = =7

for A € [¢,n — €], and

h(®x, Koo(®r)) = h (63, Koo(63))
for A € [u + €,d]. Thanks to Theorem 3.3, one immediately concludes that ¢ ([c,d]) has an

unbounded connected component I' meeting X x {¢, d}. On the other hand, (6) implies that
for any € > 0,

(8)

I'[A] € Bxa(R:), VAE [e,n—elU[u+e,d],

where Bxa(R.) denotes the ball in X* centered at 0 with radius R.. Thus there exists a
sequence )\, — u such that (2) holds true. [ ]

Remark 4.1. In Theorem 4.1 one should distinguish two cases of the bifurcation. One is
that Koo (®,,) is unbounded. When this occurs we say that (1) undergoes a vertical bifurcation
from infinity at A = p. The other is that Koo(®,) is bounded, in which case we deduce that
there is a sequence Ay, — p (An # p for all n) such that T[] is unbounded, where T' is the
connected bifurcating branch given in the theorem. Note that both cases may occur. This can
be seen from the following two simple examples.

Ezxample 4.1. Consider the linear equation
9) U+ u = \u, u=u(t) € R,

where A € R is the bifurcation parameter. Then we can see that p = 1 is a bifurcation value,
at which each constant function u(t) = ¢ (¢ € R) is a bounded full solution of the equation.
Hence the equation undergoes a vertical bifurcation from infinity at A = 1.

It is also interesting to note that for each A # 1, the equation has no bounded full solutions
other than the trivial one.

Example 4.2. Consider the non-homogenous equation

(10) U+u=Au+1, u€R,
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where A € R is the bifurcation parameter. Again = 1 is a bifurcation value, at which each
solution of (10) is given by u =t + ¢ (¢ € R). Clearly Koo(®,) = 0.

On the other hand, if we let [¢,d] = [0,2], then by Theorem 4.1 we see that £([0,2])
has an unbounded connected component I' in the space R x [0,2] with I' N (R x {0,2}) # 0.
Actually, for A # 1, the unique bounded full solution of the equation is the stationary one
ux(t) = (1 — X\)~1. Hence

I={(ux,A\): 0< A< 1}

is a component of ([0, 2]) fulfilling all the requirements in the theorem.

4.2. Further results on dynamic bifurcation from infinity. We infer from Theorem 4.1
that there is a sequence A\, — u such that for each A = A, (1) has a bounded full solution
Up = Up(t) with ||up|lec — 00. In what follows we give another result on the bifurcation of
the equation from infinity, which seems to be more precise in some aspects.

Theorem 4.2. Assume f satisfies the sublinear condition (A) in Theorem 4.1. Let p €
Reo(A). Then one of the following alternatives holds.

(1) There is a sequence u,, of bounded full solutions of (1) at A = p such that lim,,_,c ||tn||cc =
00.

(2) There is a one-sided neighborhood A1 of pu such that for each A € Ay \ {u}, (1) has two
distinct bounded full solutions uy and vy such that

(11) lim ||uy oo = o0,
A=

whereas ||vy]|co Temains bounded on the A-interval A;.

(3) There is a two-sided neighborhood A of p such that for each A € A\ {u}, the equation (1)
has a bounded full solution uy satisfying (11).

Proof. If (1) holds true then we are done. Thus we assume the contrary, and hence S, is
a bounded set, where (and below) Sy = Koo (®)).

Take two numbers ¢,d € R as in Theorem 4.1. Since the number ¢ in (7) and (8) is
arbitrary, we infer from (7) and (8) that

(12) B(@x,S0) =5 (A€ fen), (@, S2) = 27 (A € (u.d)

for some nonnegative integers p and ¢ with p < q.
Pick a bounded closed isolating neighborhood U of S,,. Choose a d > 0 sufficiently small
so that U is an isolating neighborhood of ®, for all A € A = [ — d, u + J]. Then

(13) h(®y,U) = const.

Two possibilities may occur.

Case 1) h(®,,S,) # 0. In such a case we show that the second assertion (2) holds true.
It is obvious that

either h(®,,S,) #XP, or h(®,,S,) # X9.
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Let us first consider the case where h(®,,S,) # XP. By (12) we have

(14) h(®y, Sy) # h(®y,, Sy), A€ [e, ).

We claim that

(15) SA\U #0, VAeEA_:=[u—96pn).

Indeed, if Sy C U for some A € A_, then by (12) and (13) one finds that
h(®u,Sy) =h(®,,U) =h(®y,U) =h(®y,5)) =3

which leads to a contradiction.

For each A € A_, pick an z) € Sy \ U. Let uy be a full trajectory of ®, contained in Sy
with uy(0) = zx. We show that uy fulfills (11).

Suppose the contrary. Then there would exist a sequence A, — p (A, # p) such that
the sequence u, = w), is uniformly bounded on R. By very standard argument it can be
shown that u, has a subsequence converging to a bounded full trajectory ug of ®, uniformly
on any compact interval of R. wug is necessarily contained in S,. On the other hand, since
un(0) =z, € U, we deduce that up(0) ¢ int U. This leads to a contradiction.

Now assume that h(®,,S,) # X9 Then by a fully analogous argument as above, one
concludes that for each A € Ay = (u, u + 0], the equation has a bounded full solution w)
satisfying (11).

Since h(®,, S,) # 0, by (13) we have

h(®5.U) = h(®,.U) = h(®,,5,) #0,  A€A.

It follows that Koo (®y,U) # 0. For each A € A, pick a full solution vy in Koo(®y,U). Then
[|val]oo Temains bounded on A.

Case 2) h(®,,S,) =0. In this case, we have
SP £ h(®y, 5,) £ 51

The same argument as in Case 1) applies to show that for each A\ € A_ U A4, the equation
has a bounded full solution uy satisfying (11). Hence the assertion (3) holds. [ ]

5. Dynamic Bifurcation and Multiplicity for Parabolic Equations. In this section we
consider the following boundary value problem:

) u— Au= M+ f(z,u), x€
u(z,t) =0, x € 09,
where  is a bounded domain in R”, A € R, and f € C*(Q x R).

Let H = L%*(Q) and V = H}(Q). By (,-) and | - | we denote the usual inner product and
norm on H, respectively. The norm || - || on V is defined by

1/2
lull = (f,, [VuPdz)?,  weV
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22 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

Denote A the operator —A associated with the homogenous Dirichlet boundary condition. A
is a sectorial operator and has a compact resolvent. Denote

0<N1<M2<"'<Hk<"'

the eigenvalues of A.
We may convert (1) into an abstract equation on V:

(2) w4 Au= M+ f(u), u=u(t)eV,

where f(u) is the Nemitski operator from V to H given by

fw)(z) = f(z,u(z)), uweV.
If we assume that
(3) fz,s)=o(s]) as |s| = oo

uniformly with respect to x € €, then one can trivially verify that the Nemitski operator f
in (2) satisfies the sublinear condition (A) in section 4. Thus applying the abstract results in
section 4, one can immediately obtain some interesting information on the bifurcation of the
equation. For instance, we have

Theorem 5.1. Let uy be an eigenvalue of A. Then one of the following alternatives holds.
(1) There is a sequence uy, of bounded full solutions of (2) at X\ = ux such that

lm ||up|leo = oc0.
n—oo

(2) There is a one-sided neighborhood Ay of ux such that for X € Ay \ {ux}, the equation (2)
has at least two distinct bounded full solutions uy and vy such that

(4) lim |Juy|leo = o0,
A= g

whereas ||vy|| remains bounded on Aj.

(8) There is a two-sided neighborhood A of py. such that for each A € A\ {ur}, (2) has at least
one bounded full solution uy satisfying (4).

In this present work, we are basically interested in a particular but very important case,
namely, the case where f satisfies the Landesman-Laser type condition (4) in section 1. We will
give some precise descriptions on the bifurcation of the equation and discuss the multiplicity
of stationary solutions of the equation.

Henceforth we always assume

(H) f satisfies the Landesman-Laser type condition (4) in section 1.

Denote @) the semiflow associated with (2), namely, for each ug € X<,
u(t) = @x(t)uo

is the solution of the equation on R with initial value u(0) = uo.
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5.1. Preliminaries. Let us begin with a fundamental result on f.
Given a function w on €2, we use w4 to denote the positive and negative parts of w,
respectively,
wy = max{tw(z),0}, x € Q.

Then w = w4 — w_. We have

Lemma 5.1. For any R,e > 0, there exists sg > 0 such that
/ fz,v + sw)wdr > /(fw+ + fw_)dx — ¢
Q Q -

for all s > sp, v € By(R) and w € By(1), where By (r) denotes the ball in H centered at 0
with radius .

Proof. This is a slightly modified version of [17, Lemma 6.7]. Here we give the details of
the proof for completeness and the reader’s convenience.
Let

I= /Qf(:v,v—l—sw)wdx—/ﬂ(fw+ + fw_)dx.

Since w = wy — w_, we can rewrite [ as I — I_, where

I :/(f(x,v+sw)—f)w+dx, I_ :/(f(a:,v+sw)+f)wd:v.
Q Q

In what follows, let us estimate I, for v € By(R) and w € By (1).
We observe that

R [ldr> [ Pde> el 2 o),
Q {lv|>c}

from which it can be easily seen that [{[v| > o}[ — 0 as ¢ — 400 uniformly with respect to
v € By(R). (Here and below |E| denotes the Lebesgue measure for any measurable subset E
of R™.) Therefore there exists o > 0 such that

() {lol 2 o}V <3:=¢/8fI(I21 +1),  veBu(R),

where ||f|| = Supmeﬁ7SER ‘f(xv 8)|

For each v € By (R) and w € By(1), let
D = Dy = {|v| < o} N {wy > 6}
Then @ = DU {|v| > o} U{ws < d}. Hence
L > [y(f(av+ sw) - Pwsde — [ oo 1f @0+ sw) — Fluogdo
— Jiw, <oy (@0 + sw) — fluide

> fD(f(xvv + SU}) - f)w+d:c - 2||f|| (f{‘v|20'} U)+d33' + f{w+§5} U)+d£[3> .
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24 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

Note that
5 o\ /2 1/2
Jozoy wide < (fyupsoy wid) " I{lo] = o}
< (by () < Juld <

/ wydr < Q6.
{wy <6}

It is obvious that

Thereby

(® L 2 Jplfvtsw) = Fwide =2 £ +1)3
= [ (f(z,0 + sw) — flwpde — &.

Since z + sn — +0o (as s — +00) uniformly for z € [—0o, 0] and n > 4, there exists s > 0
(independent of v and w) such that if s > s; then

3

_W’ Vz € [—0,0], n>9.

fla,z+sm) = f >
Now suppose that s > s1. Then by the definition of D, we have (note that w = w4 on D)

[p(f(z, v+ sw) — flupde > _‘HS;W Jpwida

= _4\Q€|1/2‘D|1/2(ID \w[2dx)1/2 > —9.
Thus by (6) we see that
= € €
Iy > / (f(z,v+ sw) — flupde — — > ——.
D 4 2

Similarly it can be shown that there exists s3 > 0 (independent of v and w) such that
I < 5, provided s > s.
Set s9 = max{sy, s2}. Then if s > s, we have

e €
I>I, —I_>-S-S—_
= 1y > 5 9 €
for all v € By(R) and w € By(1). This completes the proof of the lemma. [ ]

Now we prove some basic facts concerning the dynamical behavior of the equation (2).

Let L = A — uy, where iy, is an eigenvalue of A. The space H can be decomposed into the
orthogonal direct sum of its subspaces H~, H” and H+ corresponding to the negative, zero and
positive eigenvalues of L, respectively. Note that both H~ and H° are of finite-dimensional.
Denote P? (o € {0,4}) the projection from H to H°. Set

VI=VNH?,  oec{0,+}

By the finite dimensionality of H~ and H°, one finds that V'~ and V? coincide with H~ and
HY, respectively. We also have
V=V-oVievt.
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Lemma 5.2. Assume A < ux +n, where n = (ukr1 — pr)/2. Then there exists pg > 0
(independent of \) such that for any solution uw = u(t) of (2) on R4,

[u* @) < llug 7™ + p§(L =€), Vt=0.
Here u™ = Ptu.
Proof. Taking the inner product of the equation with Au™ in H, it yields
J .
sarlut P+ [Aut P = Mut|? + (Au', f(u))
< Mut||? +e|Aut)? + C-

for any € > 0, where C; is a positive constant depending only upon ¢ and the upper bound of
|f(s)|. Hence

1d
(7) 5 gl I+ (U= o) Aut 2 < Al + Ce.

Note that |Au®|? > pgi1||uT||>. Therefore by (7) we have

Ld

Sl < = (1= aprs — M) P+ Ce

(8)

Fix an € > 0 sufficiently small so that (1 — &)ugs1 > pg + %77. Then for A < pg + n, one has

(1 —&)prsr — A > (Mk + gn) — (ke +m) =mn/2.

Now the conclusion follows from (8) and the classical Gronwall Lemma. [ |

Denote
E,={veV: Pty <p}, p>0.

As a direct consequence of Lemma 5.2, we have

Corollary 5.1. Assume A < ug +n. Then
Koo (®)) C Ep.

Furthermore, 2, is positively invariant under ® for any p > po.
Set W=V~-® VY and let
Py =P~ + P

be the projection from V to W. Given 0 < a < b < oo and p > 0, denote
9) Eola, b ={ue=,: a<|Pyul <b}.

Lemma 5.3. Let n and pg be as in Lemma 5.2, and p > pg. Then there exist Ry,co > 0
such that the following assertions hold.
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26 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

(1) If X € [k, pu + ), then for any solution u(t) of the equation (2) in Z,[Ry, 00|, we have

(10) () = colw(t)],

at"
where w(t) = Pyu(t).

(2) For any R > Ry, there exists 0 < 6 < n such that if X € [ — 6, ux), then (10) holds true
for any solution u(t) of (2) in Z,[Ro, R].

Proof. Let A € [ug — 0, pi + 1], and v = u(t) a solution of (2) in =,. Taking the inner
product of (2) with w = Pyu in H, it yields

1d -
(11) 5ol + wl? = Awl? + (F(u),w).

Because ||wl|? < px|w|?, by (11) we have

(12) 5wl = (A = w)lwl® + (F(u), w).

Let us first estimate the last term in (12).
As the norm || - |[11(q) of L'(2) and that of H = L?() are equivalent on W, one easily
sees that

(13) min{|[vl| 1) : v €W, |v] =1} :=m > 0.

Pick a number 6 > 0 with § < min{f, f}. By virtue of Lemma 5.1 there exists sp > 0
(depending only upon p) such that if s > sg, then

(14) (f(h+ sv),v) :/Qf(x,h—i—sv)vdxzfﬂ(fu + fo_)dz — %mé

for all h € By(p) and v € By(1).
Now we rewrite
w = sv, where s = |w|.

Then |v| = 1. Suppose s > sg. Noticing that |[[ut]| < p, by (14) one finds that

(Fw.w) = st 4 s0)0) 2 s ([ (Fou b go-) o= gmd).

Observing that B
Jo (fv+ +iv,) dr — %mé
> 6§ [ |vldz — 3md > (by (13)) > Fmé,

we conclude that

~ 1 1
(15) (f(u),w) > imés = §m5|w\.
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Now we combine (15) and (12) together to obtain that

(16) %IW@)I2 > 2 (A — ) [w]* + mdfw(?)|

as long as |w(t)| > sg.

Set Ry = sg, co = md/2. Assume X\ € [uk, pr +n]. Then A — g > 0, and we infer from
(16) that

L (o) = mihw(t)] > colut)

at any point ¢t where |w(t)| > Ry. Hence the assertion (1) holds.
Now assume A < p. Let R > Rg. Choose a 6 > 0 with 0R? < mdsg/4. Then if
X € [ — 0, pi), for any solution u(t) of (2) in Z,[Ry, R], by (16) we conclude that

()P > ~2A\ — gl B + molu(t)
> colw(t)] + (colw(t)| — 20R?)
> colw(t)] + (coso — 20R?) > colw(t)],

which justifies the second assertion (2). |

5.2. Dynamic bifurcation from infinity. We are now ready to discuss the bifurcation of
the equation (2) near \ = .

Let @) be the semiflow generated by (2). First, as a consequence of Lemma 5.3 we have
the following basic fact.

Proposition 5.1. Assume the hypothesis (H). Then Ko (®y) is uniformly bounded in V' for
Ae [/’Lknuk + 77]7 and
(17) B (@ Koo (@) = h (D, Koo (1)) = 577
where p is the sum of the multiplicities of the eigenvalues p; (0 <i <k —1) of A, and r the
multiplicity of pg.

Proof. Let n and pg be the numbers given in Lemma 5.2. Fix a number p > pg. Then
there exist Ry, co > 0 such that the first assertion (1) in Lemma 5.3 holds true, by which one
easily deduces that

(18) Koo (®y) CEp0, Rol, VA E [k, pg + 1)
On the other hand, as in (12) in section 4 it can be shown that

YPET XN € (ps k1)

(19) h(®x, Koo (22)) = { »P A€ (Hk—1, k)

By (18) and the continuation property of Conley index we immediately conclude that
h(q),uk:Koo(cI)Mk)) = X u
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28 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

Now we state and prove the main result in this subsection on the dynamic bifurcation
from infinity of the equation near each eigenvalue py.

Theorem 5.2. Assume the hypothesis (H). Then Sy := K (®)) is nonvoid for all A € R,
and there exists 6 > 0 such that the following assertions hold.

(1) For each X € A_ := [y — &, p15), Sx has a Morse decomposition M = {M®°, M}}.
Furthermore, there is at least one connecting trajectory v between M}\ and M3°.

(2) M} remains uniformly bounded on A_, whereas

(20) lim min [[v|] = co.
A—py veEM®

(3) Each of the sets £ and > has a component T' with T[N # 0 for all A € A_, where

H = U)\eA_ (MAl X {)‘})v HF = U)\eA_ (M;\)O x {)‘})

Proof. (i) We infer from the proof of Theorem 4.1 (see (6) in section 4) and Proposition 5.1
that Sy is a compact subset of V for all A € R. Since the Conley index of Sy is nontrivial (see
(17) and (19)), one concludes that Sy # 0.

(ii) Corollary 5.1 asserts that
Sx C Ep, VA< pg+m,

where pg is the number in Lemma 5.2. Fix a p > pg, and let Ry and ¢y be the numbers given
by Lemma 5.3. Pick a bounded isolating neighborhood Np of S, with

(21) Z2,[0, Ro] C N

Then one can restrict § > 0 sufficiently small so that V7 is also an isolating neighborhood of
@) for all A € A := [y — 0, ux + 6]. Hence

(22) h(®y, M}) = const., A €A,
where M}\ = Koo(®y, N1). Further by Proposition 5.1 we deduce that
(23) h(®x, My) = h(®p,, M), ) = h(®y,, Sy, ) = ST, A€ A.
It is clear that M i C Sy C E,. Therefore
(24) MYCNiNE,:=N;, AeA
Because ]\71 is bounded, one can find a number R; > 0 such that
(25) Ny C 5,0, Ry /2].
By Lemma 5.3 (2), there exists #; > 0 such that if A\ € [pr — 61, ug), then for any solution

u(t) of (2) in Z,[Ro, R1], one has

d
[w(t)]? = eolw(t)| = coRo > 0,

(26) a
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where w(t) = Pyu(t). We may assume § < 6. Let A € A_ := [ur — d, ). Then for any
bounded full solution u(t) of (2) in E, with u(tg) € Z,[Ro, R1] for some ty, by (26) one easily
deduces that there exists T' > 0 such that

(27) u(t) € E,[0,Ro] (t < —=T), and u(t) € E,[R1,00] (t>T).
Combining (24), (25) and (27) together, it yields that
(28) M} C Z,[0, Rol, VYAeA_.

As M} is the maximal compact invariant set of ® in Ny, (21) and (28) imply that M} is the
maximal compact invariant set in =,[0, Ry].

Set
M)C\)o = Koo (q))\v Ep[Rlv OO]) .

Then M° C Koo(®)) = Sy. We prove that M = {M°, M} forms a Morse decomposition
of S). For this purpose, let us first show that if u = u(¢) is a full solution in Sy \ (M} U M5®),
then

(29) w*(u) € My,  w(u) C M5Z.

Indeed, let u be such a solution. Then since Sy C Z, and M )1\ and M3° are the maximal
compact invariant sets in Z,[0, Ro] and =,[R1, 00|, respectively, there exists ¢y € R such that
u(to) € Ep[Ro, R1]. Hence (29) directly follows from (27).

Now we check that M # (. Thus M is a Morse decomposition of Sy. Suppose the
contrary. Then by (29) we find that S\ = M. Hence

h(@x, M}) = h(®5, 8) = (by (19)) = 5,

which contradicts (23).
To complete the proof of (1), there remains to check the existence of a connecting trajectory
between M )\1 and M{°. To this end, we consider the Morse equation of M:

(30) plt, My) + p(t, M5®) = p(t, Sx) + (1 +1)Q(1).
Recalling that h(®y, M}) = ZPT" and h(®,, Sy) = ¥P, we have
p(t, My) =717, p(t,S)) = tP.
Thus (30) reads
(31) P 4 p(t, MY°) =P + (1 + £)Q(1),

which implies that Q(t) # 0. By the basic knowledge in the Morse theory of invariant sets (see
[32, Chap. III, Theorem 3.5]), one immediately concludes that there is at least one connecting
trajectory between M}\ and M3°.
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We also infer from (31) that p(t, M3°) # 0. Consequently
(32) h(®y, M) #0, VAeA_.
(iii) Clearly M} remains uniformly bounded on A.

For any R > Rj, by Lemma 5.3 there exists 0 < 6 < 6; such that when X\ € [up — 0, u),
the differential inequality (26) holds true for any solution u(t) of (2) in Z,[Ry,2R]. Using this
basic fact, it can be easily seen that if A € [j;, — 6, i), any bounded full solution in Z,[R;, 0o
is necessarily contained in =,[R, cc]. Hence

(33) MY® C Zy[R, o0,

which implies what we desired in (20) and completes the proof of (2).
(iv) Finally, let us verify the validity of (3).
Let U = Z,[R1,00]. Then oU = C1 U Cy, where

Cr={v: [vT=p, lwl >R}, Co={v: ||| <p, Jw|=Ri}.

Here v+ = PTv, and w = Pyyv. Let A € A_. By the choice of p and Lemma 5.2, we see that
M NC; =0. Fix an R > Ry. Then we infer from the above argument in (iii) that one can
restrict 0 > 0 to be sufficiently small so that (33) holds. Consequently M° N Co = (. Thus

M noUu =10,

namely, U is an isolating neighborhood of M§°.

Because h (®,, 5, U) # 0 (by (32)), £ has a connected component I" with I'[p, — 8] # 0
such that one of the alternatives (1)-(3) in Theorem 3.2 holds true. As I'[A] C int U for all
A € A_, we conclude that either I" is unbounded, or I'[u;] # 0. Because I'[\] is uniformly
bounded on [ur — 6, ug — €| for any € € (0,9), in any case we deduce that T'[\] # 0 for all
AeA_.

The argument for J#! is similar. We omit the details. |

5.3. Bifurcation and multiplicity of stationary solutions. We now turn to the static
bifurcation and multiplicity of stationary solutions of (2). Since the equation has a natural
Lyapunov function J(u) defined by

1

J(u) = 5

(ull? = Muf?) - /ﬂ Fla,u)dz, uev,

where F(z,s) = [ f(x,t)dt, this problem can be treated in the framework of dynamical
Systems.
Theorem 5.3. Assume the hypothesis (H). Let 6 > 0 be the same as in Theorem 5.2. Then

(1) @y has at least one equilibrium ey for all A\ € R;

(2) there exists 6 > 0 such that @ has at least two distinct equilibria eS° and e for each
AEA_ = [:U‘k -9, Mk); and

(34) lim (e = o,
A=y
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whereas €S remains bounded on A_; and

(8) there is an open dense subset D of R such that for each A € A_ND, ®) has at least three
distinct equilibria.

Proof. (1) Since each nonempty compact invariant set contains at least one stationary
solution, the conclusion (1) directly follows from Theorem 5.2.

(2) Let Ny be the isolating neighborhood of S, given in the proof of Theorem 5.2, and
let M = {M3°, M}} be the Morse decomposition of Sy for A € A_. Then M} C N;. By (25)
we have

(35) NiNE, =N CE,0,R1/2], AeA_.

As M C E,[Ry,00], by (35) we find that M NNy = ). Pick two stationary solutions ey
and e° from M )\1 and M3°, respectively. Then ey and e$° fulfill the requirements in (2).

(3) By slightly modifying the proof of [35, Theorem 2.1], it can be shown that there is
an open dense subset D of R such that all the equilibria of ®) are hyperbolic if A € D. Now
assume A € A_ ND. We show that there is another equilibrium 2{° € M{° with 25° # e$°.
Consequently ®, has at least three distinct equilibria.

We argue by contradiction and suppose M3° consists of exactly one hyperbolic stationary
solution e3°. Then p(t, M{°) = t™ for some m > 0. Accordingly the Morse equation (30)
reads

Pt =1 4 (1 +4)Q(1).

But this is impossible for any formal polynomial Q(¢) with coefficients in Z,, as the sum of
the coefficients of the left-hand side does not equal that of the right-hand side.
The proof of the theorem is finished. |

Remark 5.1. We infer from the above argument that for each A € A_ND, @) has at least
two distinct equilibria outside the domain Ni.

Finally, we pay some special attention to the particular case where
(F) f(z,s) =o(s]) as |s| = 0 uniformly for z € Q.

We prove some new multiplicity results on stationary solutions for the equation (2) near each
eigenvalue pg. The main results are summarized in the following theorem.

Theorem 5.4. Assume [ satisfies the hypotheses (H) and (F). Denote W _(0) the local
center manifold of ®,, at the trivial equilibrium 0, and let ¢ be the restriction of ®,, on
WE.(0). Suppose 0 is an isolated equilibrium of ®,, . Then there exists 6 > 0 such that one
of the following assertions holds:

(1) 0 is an attractor of ¢. In this case, the system ®) has at least two distinct nontrivial
equilibria e§ and e for X € A_ = [y, — 0, i), whereas it has at least three distinct ones ei,
e3 and €S for A € Ay = (ug, px, + 6).

(2) 0 is a repeller of ¢ (i.e., an attractor of the inverse flow ¢~'). In this case, ®) has at
least three distinct nontrivial equilibria ei, ei and e3° for each A € A_.
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(8) 0 is neither an attractor nor a repeller of ¢. When this occurs, ®) has at least three
nontrivial equilibria e}\, eS, and eS° for X € A_, whereas it has at least two distinct ones ei
and e for A € Aj.

Furthermore, we have

(36) Im [e]| = oo, lim |le}]| =0 (i =1,2),
A=k A= g
and
(37) 0 < liminf ||e§]] < limsup ||e5] < oo.
)\~>,uk )\‘)l‘lk
& 6 &
/’ 1 1 _—/ ;
er e, }\( (57
A A
e g e A Lk
Fig. 5.1 Fig. 5.2 Fig. 5.3

Proof. In the following argument, we always assume that § > 0 is sufficiently small so that
the conclusions in Theorem 5.2 and Theorem 5.3 are valid.

(1) The case where 0 is an attractor of ¢.

Let Ny be the isolating neighborhood of S, in the proof of Theorem 5.3. Then by
Theorem 5.3, for each A € A_ the system ®, always has an equilibrium e$® outside N;
satisfying the first equation in (36).

Pick a number 8 > 0 and an isolating neighborhood Ny of 0 with

Ny C Bv(ﬂ) C N;.

We may restrict § so that both Ny and N are isolating neighborhoods of ®, for all A € A :=
(1, = &, pur; + 9] Let ,
K = Koo(®y, V), i=0,1.

Then for each i,
(38) h(®y, Ki) = const., AeA.
It is trivial to check that

(39) di (K3, {0}) =0 as A — py.
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It can be assumed that Ny is sufficiently small so that the product formula of Conley index
given in [32, Chap. II, Theorem 3.1] holds true, hence

B(@p,, {0}) = 37 A h(6, {0}).
We infer from Example 2.1 that h(¢,{0}) = 3°. Therefore
h(®,,,{0}) = 5P A X0 = 5P
It then follows by (38) that
(40) h(®y, K3) = h(®p,, K}, ) = h(®,,, {0}) = 7, A €A
By (38) and Proposition 5.1 we also deduce that
(41) h(®y, K3) = h(®p,, K}, ) = h(®y,, Sy,) = P17, A€EA.
Thus we see that K} # K9. As K is the maximal invariant set in Ny, one concludes that
(42) K3\ No # 0, A €A

For each A € A, pick a vy € K} \ Ny. Let uy(t) be a bounded full trajectory of ®, in K}
with u)(0) = vy. We claim that if ¢ is small enough then

(43) either w(uy) \ No #0, or w*(uy)\ No # 0.

Indeed, if this was false, there would exist a sequence A, — pj (as n — o) such that both
w(uy,) and w*(uy,) are contained in Ny and hence in Kgn, where u, = uy,. Thus by (39) we
deduce that

(44) Jim. nax |[J(v)] = 0= lim x| ()]
Set -
Iy, = orb(uy,) = orb(uy,) Uw(u,) Uw® (uy).
Then
W = BT W = T

It follows by (44) that

(45) max |J(v)] = 0 asn — oo.
vely,
On the other hand, since I',, C K}\n C Ny and @) is A-l.u.a.c., it is easy to verify that
U A,en L'n 18 precompact. Hence by Lemma 2.2 it can be assumed that I',, converges to a
nonempty compact invariant set K of ®,, (in the sense of Hausdorff distance). Noticing that
r,n Kgn # 0, by (39) we find that 0 € K. Because each I';, is connected, K is connected as
well. (45) implies that J(v) = 0 on K. Thereby each point in K is an equilibrium of ®,, . As

(46) un(0) € I'y \ No
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for all n, we deduce that K \int Ny # (). Further by the connectedness of K one concludes that
K NoV # () for any small neighborhood V' of 0, which leads to a contradiction and completes
the proof of our claim.

In view of (43), for each A € A we can pick an equilibrium e§ of ®) with

(47) €S € (w(ux) Uw*(uyr)) \ No C N1\ No.

Hence if A € A_, the system ®) has at least two distinct nontrivial equilibria e§ and eS°.

We infer from the attractor bifurcation theory (see e.g. Ma and Wang [20, Theorem 4.3],
[19, Theorem 6.1] or Li and Wang [18, Theorem 4.2]) that K9 contains at least two distinct
equilibrium points e}\ and e?\ for A € A, provided ¢ is sufficiently small. By (47) one concludes
that @) has at least three distinct nontrivial equilibria for A € A4.

(2) 01is arepeller of ¢. In this case, as in (1), by applying the attractor bifurcation theory
we deduce that Kg contains at least two distinct equilibria e}\ and ei for A € A_. Since &)
has a nontrivial equilibrium e° outside Ny for each A € A_, it has at least three distinct ones
for A € A_.

(3) Finally, let us consider the case where 0 is neither an attractor nor a repeller of ¢.
By Li and Wang [18, Theorem 4.4] we deduce that the system bifurcates at each side of py a
nonempty compact invariant set My C Ng with 0 € M) and

(48) dy (M,\, {0}) —0 as A — .

M) contains at least one nontrivial equilibrium ei.
We show that

(49) h(®p,,{0}) # X777,

which fact will yield another equilibrium e§ € Ny \ Ny at both sides of py.
Consider the local center-unstable manifold W% (0) of ®,, at 0. Denote 1 the restriction
of ®,, on W(0). Then

(50) h(®@y,,{0}) = h(4,{0}).
Thus to prove (49), it suffices to check that

(51) H,(h(y,{0})) # H. (3.
We argue by contradiction and suppose the contrary. Then

Hy . (h(,{0})) = Hp4r(X"") = Z.

Therefore by the Poincaré-Lefschetz duality theory of the Conley index (see McCord [24,
Theorem 2.1] and Mrozek and Srzednicki [26, pp. 164]),

HO(h($™,{0})) = Hpir (h(8,{0})) = Z.
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On the other hand, pick a pass-connected isolating block B C W%(0) of Sy = {0} with respect
to the inverse flow 1. (Such an isolating block is always available due to [8, Theorem 1.5].)
Since Sy is not an attractor of ¢~ (note that Sy is not an attractor of =1 on W¢ _(0)), we

necessarily have

B~ #£10).
Thus by the basic knowledge in the theory of algebraic topology, one easily deduces that
H°(B, B~) = 0. Consequently

Ho(h(wilﬂ {0})) = HO(37 Bi) =0,

which leads to a contradiction and justifies the validity of (49).
Recall that (see (41))

h(®y, K}) = 2PH7 A€ A= [ — 6, px + 6.
Noticing that

h(®y, KY) = h(D,,, KO ) = h(®p,, {0}) #XPF7, VAEA,

we conclude that K/l\ #* Kf\). As Kg is the maximal invariant set in Ny, one finds that
K3\ No # 0, A €A

We are now in a quite similar situation as in (42). Repeating the same argument below
(42), it can be easily shown that the system has an equilibrium e§ in Ny \ No.

In conclusion, there are at least two distinct nontrivial equilibria in N7 for A € A\ {u}-
Because ®) has an equilibrium €$° outside Ny for A € A_, the system has at least three
distinct nontrivial equilibria as A € A_. This completes the proof of (3).

The second equation in (36) follows from (39) and (48). (37) is a direct consequence of
the choice that e§ € N1\ No. [ |

Remark 5.2. It is interesting to note that there is always a one-sided neighborhood Ay of
W such that the equation has at least three distinct nontrivial stationary solutions for A € Ay.

Remark 5.3. Dual versions of all the results in this section hold true if, instead of (H), we
assume that (6) in section 1 is fulfilled.
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