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Abstract. This paper is concerned with dynamic bifurcation from infinity and multiplicity of stationary solu-4
tions for nonlinear evolution equations near resonance. First, we prove some new global continuation5
results and establish a general theorem on dynamic bifurcation from infinity in the framework of6
local semiflows on metric spaces. Then, by applying these abstract results, we derive more precise7
descriptions on the dynamic bifurcation from infinity of evolution equations in Banach spaces. Fi-8
nally, we focus our attention on the parabolic equation ut − ∆u = λu + f(x, u) associated with9
the Dirichlet boundary condition, where f satisfies appropriate Landesman-Laser type condition.10
A detailed discussion on the dynamical behavior and the multiplicity of stationary solutions of the11
equation near resonance will be presented.12
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1. Introduction. This paper is concerned with the nonlinear evolution equation15

(1)
du

dt
+Au = λu+ f(u, λ)16

on a Banach space X, where A is a sectorial operator on X with compact resolvent, λ ∈ R is17

the bifurcation parameter, and f(u, λ) is a locally Lipschitz continuous mapping from Xα×R18

(0 ≤ α < 1) to X which is sublinear as ||u||α → ∞ uniformly on bounded λ-intervals.19

We are basically interested in the dynamic bifurcation from infinity of the equation and its20

applications.21

This topic can be traced back to the work of Rabinowitz [30], in which the author studied22

the bifurcation from infinity of stationary solutions of the equation in a general setting of23

operator equations of the following form:24

(2) u = λLu+K(u, λ),25

where L is a compact operator, λ ∈ R, and K(u, λ) = o(||u||) as ||u|| → ∞ uniformly on26

bounded λ-intervals. It was shown that if µ−1 is a real eigenvalue of L of odd multiplicity,27

then (∞, µ) is a bifurcation point. Furthermore, there is a continuum of solutions of (2)28

which goes to infinity as λ→ µ. This result was partially extended by Toland [38], Dias and29

Hernandez [10] and Schmitt and Wang [36] to potential operator equations to cover the case of30

even multiplicity. The interested reader is referred to [1, 2, 5, 6, 13, 16, 22, 23, 27, 28, 31, 33],31
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etc. for concrete examples on the bifurcation from infinity and multiplicity near resonance for32

differential equations under various boundary conditions.33

For a nonlinear system as in (1), stationary solutions may be far from being adequate34

for understanding its dynamics. This is because that the dynamics of the system is usually35

determined not only by its stationary solutions, but also by all other bounded full ones. In36

fact, it is often the case that a system may have no stationary solutions. It is therefore of37

great importance to develop appropriate theories to analyze the bifurcation of bounded full38

solutions. A fundamental one in this line is the well-known Hopf’s bifurcation theory, which39

was first developed in the very early work of Poincaré [29] around 1892. Actually it forms the40

central part of the classical dynamic bifurcation theory. The Hopf’s bifurcation theory focuses41

on the case when there are exactly a pair of conjugate eigenvalues of the linearized equation42

crossing the imaginary axis, and was fully developed in the 20-th century. One can find a vast43

body of literature on how to determine Hopf bifurcations for nonlinear systems arising from44

applications. To deal with the general case, some other dynamic bifurcation theories need to45

be developed, and the Conley index theory, attractor theory and so on allow us to take a step;46

see e.g. [12, 18, 21, 34, 39, 40], etc.47

Very recently, Li and Wang [18] established some new local and global bifurcation results48

in terms of invariant sets via the Conley index theory, completely extending the well-known49

Rabinowitz’s global bifurcation theorem to the dynamic bifurcation of nonlinear evolution50

equations without requiring the “crossing odd-multiplicity” condition. Inspired by this work51

and some other ones mentioned above, in this paper we consider the dynamic bifurcation52

from infinity of (1). This problem was actually addressed in Ward [40]. The author first53

established a global continuation theorem (see Remark 3.2). Then he proved the following54

interesting result: For any real numbers c < d such that the interval [c, d] contains exactly55

one number µ ∈ Reσ(A) with c < µ < d, there exists a continuum C ⊂ Xα × [c, d] meeting56

Xα × {c, d} such that57

(1) for λ 6= c, d, C [λ] consists of bounded full solutions, where

C [λ] = {x : (x, λ) ∈ C };

(2) there is a sequence λn → µ such that C [λn] is unbounded as λn → µ.58

(See [40, Theorem 3.2].) Note that the continuum C in the above result may contain either59

all the connected branches of bounded full solutions of the equation meeting Xα × {c}, or all60

the connected branches of bounded full solutions meeting Xα × {d}, according to which side61

C will meet. Here, by using the techniques in [18] we will prove some new continuation results62

and establish an abstract theorem on bifurcation from infinity in terms of local semiflows on63

metric spaces. Then based on these theoretical results, we give some more precise descriptions64

on the dynamic bifurcation from infinity for (1).65

As an example, we consider the parabolic equation66

(3) ut −∆u = λu+ f(x, u), x ∈ Ω67

associated with the homogeneous Dirichlet boundary condition, where Ω is a bounded domain68

in Rn, and f is a bounded function satisfying the following Landesman-Laser type condition:69
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70

(4) lim inf
s→+∞

f(x, s) ≥ f > 0, lim sup
s→−∞

f(x, s) ≤ −f < 071

uniformly for x ∈ Ω (where f and f are independent of x). First, we give a detailed discussion
on the dynamic bifurcation from infinity of the equation near any eigenvalue µk of the operator
−∆ (in H1

0 (Ω)). Specifically, we prove that there exists δ > 0 such that for each λ ∈ Λ− =
[µk− δ, µk), the maximal compact invariant set Sλ of the equation has a Morse decomposition
M = {M∞λ , M1

λ} with M1
λ being uniformly bounded on Λ− while

lim
λ→µ−k

min
v∈M∞λ

||v|| =∞.

Besides, there is at least one connecting trajectory γ betweenM∞λ and M1
λ . More interestingly,

it will be shown that each of the following two sets

K 1 =
⋃
λ∈Λ−

(M1
λ × {λ}), K ∞ =

⋃
λ∈Λ−

(M∞λ × {λ})

contains a connected component Γ with

Γ[λ] := {u : (u, λ) ∈ Γ} 6= ∅, ∀λ ∈ Λ−.

The bifurcation and multiplicity of elliptic equations near resonance is always an inter-72

esting topic and has attracted much attention in the past decades. As a byproduct of our73

dynamical argument, we can naturally derive some bifurcation and multiplicity results on the74

stationary problem:75

(5)

{
−∆u = λu+ f(x, u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
76

This problem was first studied by Mawhin and Schmitt [22], where the authors considered the77

case when λ crosses an eigenvalue of odd multiplicity. Later Schmitt and Wang [36] developed78

a theory on bifurcation from infinity for potential operators, through which they extended79

the results in [22] to the case when λ crosses any eigenvalue µk. More specifically, under80

an abstract Landesman-Laser type condition on the Nemitski operator f̃ : H1
0 (Ω) → L2(Ω)81

corresponding to the function f(x, s), the authors proved the following result and its “dual”82

version: there exists δ > 0 such that for each λ ∈ (µk, µk + δ] the equation (5) has at least83

two solutions with one of which approaching∞ as λ→ µk, and for each λ ∈ [µk− δ, µk] it has84

at least one. (Some further development and extensions can be found in [4, 6, 9, 11, 27, 37],85

etc.) As an application of our dynamical bifurcation results, we show that the “dual” version86

of the above result holds true under the hypothesis (4). Moreover, there exists an open dense87

subset D of R such that for λ ∈ Λ− ∩ D, where Λ− = [µk − δ, µk), the problem has at least88

three distinct solutions.89

Special attention will also be paid to the case where f(x, s) = o(|s|) as |s| → 0 uniformly90

for x ∈ Ω, in which we can say a little more on the multiplicity of nontrivial solutions of (5).91

Such a case was studied in Chiappinelli, Mawhin and Nugari [6], where the authors considered92
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the multiplicity of solutions of the problem near the first eigenvalue µ1. Under appropriate93

Landesman-Laser type conditions, it was proved, among other things, that the problem has94

at least two distinct nontrivial solutions as λ → µ+
1 . (We mention that the nonlinearity95

in [6] was allowed to be unbounded.) Here we present some more precise information on96

the multiplicity of solutions for the problem near any eigenvalue µk under the condition (4).97

Roughly speaking, we show that (5) has at least two distinct nontrivial solutions for λ ∈ Λ−,98

provided δ is sufficiently small. Furthermore, there is always a one-sided neighborhood Λ199

of µk such that the problem has at least three distinct nontrivial stationary solutions for100

λ ∈ Λ1 \ {µk}.101

It is worth mentioning that “dual ” versions of all our results on (3) and (5) mentioned102

above hold true if, instead of (4), we assume103

(6) lim sup
s→+∞

f(x, s) ≤ −f < 0, lim inf
s→−∞

f(x, s) ≥ f > 0104

uniformly for x ∈ Ω.105

This work is organized as follows. In section 2 we make some preliminaries. In section 3 we106

first prove some new global continuation results by utilizing the theory of Conley index. Then107

we apply these results to establish a general dynamical bifurcation theorem from infinity for108

infinite dynamical systems. In section 4 we use the abstract results to prove some bifurcation109

theorems from infinity for nonlinear evolution equations. Finally in section 5, we discuss the110

dynamic bifurcation from infinity and multiplicity of stationary solutions for the parabolic111

equation mentioned above.112

2. Preliminaries. In this section we make some preliminaries.113

2.1. Basic topological notions and results. Let X be a complete metric space with metric114

d(·, ·).115

Let A and B be nonempty subsets of X. The distance d(A,B) between A and B is defined
as

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

and the Hausdorff semi-distance and Hausdorff distance of A and B are defined, respectively,
as

dH(A,B) = sup
x∈A

d(x,B), δH(A,B) = max {dH(A,B), dH(B,A)} .

The closure, interior and boundary of A in X are denoted, respectively, by A, intA and116

∂A. Sometimes we also write A, intA and ∂A as A
X

, intX A and ∂XA, respectively, to117

emphasize in which space these operations are taken.118

The ε-neighborhood of A, denoted by B(A, ε) or BX(A, ε), is defined to be the set {y ∈119

X : d(y,A) < ε}.120

A subset U of X is called a neighborhood of A, if A ⊂ intU .121

Lemma 2.1. [30] Let X be a compact metric space, and let A and B be two disjoint closed122

subsets of X. Then either there exists a subcontinuum C of X such that123

A ∩ C 6= ∅ 6= B ∩ C,124125
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or X = XA ∪XB, where XA and XB are disjoint compact subsets of X containing A and B,126

respectively.127

Lemma 2.2. ([3, pp. 41]), Let X be a compact metric space. Denote C(X) the family of128

compact subsets of X which is equipped with the Hausdorff metric δH(·, ·). Then C(X) is a129

compact metric space.130

2.2. Wedge/smash product of pointed spaces. Let (X,x0) and (Y, y0) be two pointed
spaces. The wedge product (X,x0) ∨ (Y, y0) and smash product (X,x0) ∧ (Y, y0) are defined,
respectively, as follows:

(X,x0) ∨ (Y, y0) = (W, (x0, y0)) , (X,x0) ∧ (Y, y0) = ((X × Y )/W, [W]) ,

where W = X × {y0} ∪ {x0} × Y .131

Denote [(X,x0)] the homotopy type of a pointed space (X,x0). Since the operations “∨ ”132

and “∧ ” preserve homotopy equivalence relations, they can be naturally extended to the133

homotopy types of pointed spaces.134

Let 0 be the homotopy type of the one-point space ({p}, p). Denote Σm (m ≥ 0) the
homotopy type of a pointed m-dimensional sphere. Then

[(X,x0)] ∨ 0 = [(X,x0)], and Σm ∧ Σn = Σm+n (∀m,n ≥ 0).

2.3. Local semiflows on metric spaces. For completeness and the reader’s convenience,135

let us first collect some fundamental notions and facts on local semiflows.136

2.3.1. Local semiflows. Let X be a complete metric space.137

A local semiflow Φ on X is a continuous mapping from an open set D(Φ) ⊂ R+×X to X138

that enjoys the following properties:139

(1) for each x ∈ X, there exists 0 < Tx ≤ ∞, called the escape time of Φ(t, x), such that

(t, x) ∈ D(Φ)⇐⇒ t ∈ [0, Tx);

(2) Φ(0, ·) = idX , and
Φ(t+ s, x) = Φ(t,Φ(s, x))

for all x ∈ X and t, s ∈ R+ with t+ s ≤ Tx .140

Let Φ be a given local semiflow on X. For simplicity, we usually rewrite Φ(t, x) as Φ(t)x.141

Let I ⊂ R be an interval. A trajectory (or solution) of Φ on I is a continuous mapping
γ : I → X such that

γ(t) = Φ(t− s)γ(s), ∀t, s ∈ I, t ≥ s.

A trajectory γ on R is called a full trajectory.142

The orbit of a trajectory γ on I is the set

orb(γ) = {γ(t) : t ∈ I}.

The orbit of a full trajectory is simply called a full orbit.143

The ω-limit set ω(γ) and ω∗-limit set of a full trajectory γ are defined as

ω(γ) = {y ∈ X : there exists tn →∞ such that γ(tn)→ y},
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ω∗(γ) = {y ∈ X : there exists tn → −∞ such that γ(tn)→ y}.

Given U ⊂ X, denote K∞(Φ, U) the union of all bounded full orbits in U . In the case
where U = X, we will simply write

K∞(Φ, X) = K∞(Φ).

Let N ⊂ X. We say that Φ does not explode in N , if

Φ([0, Tx))x ⊂ N =⇒ Tx =∞.

Definition 2.1. [32] N ⊂ X is said to be admissible, if for any sequences xn ∈ N and144

tn →∞ with Φ([0, tn])xn ⊂ N for all n, the sequence Φ(tn)xn has a convergent subsequence.145

N is said to be strongly admissible, if in addition, Φ does not explode in N .146

Definition 2.2. Φ is said to be asymptotically compact on X, if each bounded set B ⊂ X is147

strongly admissible.148

Let S ⊂ X. S is said to be positively invariant (resp. invariant), if Φ(t)S ⊂ S (resp.149

Φ(t)S = S) for all t ≥ 0.150

A compact invariant set A ⊂ X is called an attractor of Φ, if it attracts a neighborhood151

U of itself, namely, limt→+∞ dH (Φ(t)U,A) = 0.152

Let S be a compact invariant set of Φ. An ordered collection M = {M1, · · · ,Ml} of153

disjointed compact invariant subsets of S is called a Morse decomposition of S, if for any full154

trajectory γ contained in S \
(⋃

1≤k≤lMk

)
, there exist i and j with i < j such that155

(1) ω∗(γ) ⊂Mj , ω(γ) ⊂Mi.156

Remark 2.1. A full trajectory satisfying (1) will be referred to as a connecting trajectory157

between Mi and Mj.158

Remark 2.2. One may use equivalent definitions of Morse decompositions; see e.g. [32,159

Chap. III].160

2.4. Conley index. In this subsection we briefly recall the definition of Conley index. The161

interested reader is referred to [7, 25] and [32], etc. for details.162

Let Φ be a local semiflow on X. Since X may be an infinite dimensional space, we always163

assume Φ is asymptotically compact, hence each bounded subset of X is strongly admissible.164

A compact invariant set S of Φ is said to be isolated, if there is a neighborhood N of165

S such that S is the maximal compact invariant set in N . Correspondingly, N is called an166

isolating neighborhood of S.167

Remark 2.3. Note that we do not require an isolating neighborhood to be bounded, although168

the bounded ones are always of particular interest.169

An important example for isolating neighborhoods is the so called isolating block, which170

plays a crucial role in the computation of Conley index.171

Let B ⊂ X be a bounded closed set. x ∈ ∂B is called a strict egress (resp. strict ingress,172

bounce-off) point of B, if for every trajectory γ : [−τ, s] → X with γ(0) = x, where τ ≥ 0,173

s > 0, the following properties hold:174
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(1) there exists 0 < ε < s such that

γ(t) 6∈ B (resp. γ(t) ∈ intB, resp. γ(t) 6∈ B), ∀ t ∈ (0, ε);

(2) if τ > 0, then there exists 0 < δ < τ such that

γ(t) ∈ intB (resp. γ(t) 6∈ B, resp. γ(t) 6∈ B), ∀ t ∈ (−δ, 0).

Denote Be (resp. Bi, Bb) the set of all strict egress (resp. ingress, bounce-off) points of the175

closed set B, and set B− = Be ∪Bb.176

B is called an isolating block [32], if B− is closed and ∂B = Bi ∪B−.177

Let N,E be two closed subsets of X. E is called an exit set of N , if (1) E is N-positively
invariant, that is, for any x ∈ E and t ≥ 0,

Φ([0, t])x ⊂ N =⇒ Φ([0, t])x ⊂ E;

and (2) for any x ∈ N, if Φ(t1)x 6∈ N for some t1 > 0, then there exists t0 ∈ [0, t1] such that178

Φ(t0) ∈ E.179

Let S be a compact isolated invariant set. A pair of bounded closed subsets (N,E) is180

called an index pair of S, if (1) N \E is an isolating neighborhood of S; and (2) E is an exit181

set of N . We infer from [32] that if B is a bounded isolating block, then (B,B−) is an index182

pair of the maximal compact invariant set S = K∞(Φ, B) in B.183

Definition 2.3. The homotopy Conley index of S, denoted by h(Φ, S), is defined to be the184

homotopy type [(N/E, [E])] of the pointed space (N/E, [E]) for any index pair (N,E) of S.185

Remark 2.4. For convenience, if U is an isolating neighborhood of a compact invariant set
S (U need not to be bounded), we also write

h(Φ, U) = h(Φ, S),

hoping that this will not cause any confusion.186

Example 2.1. As an example (and also for later use), let us compute the Conley index of an187

asymptotically stable equilibrium e (e is an attractor of Φ).188

Let L(x) be a Lyapunov function of e defined on an open neighborhood U of e which is189

strictly decreasing along each trajectory of Φ in U outside e (see e.g. [15, pp. 226] for the190

construction of such a function). We may assume L(e) = 0 (hence L(x) > 0 for x ∈ U \ {e}).191

Take a δ > 0 sufficiently small so that B = {x : L(x) ≤ δ} ⊂ U and is a closed neighborhood192

of e. Then one easily sees that B is an isolating block with B− = ∅.193

We claim that B is contractible. Indeed, set

H(s, x) =

{
Φ(s/(1− s))x, x ∈ B, s ∈ [0, 1);

x, x ∈ B, s = 1.

Then H is a strong deformation retraction.194

Now by the definition of Conley index, we have

h(Φ, {e}) = [(B/B−, [B−])] = Σ0.
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Let S be a compact isolated invariant set of Φ. Denote H∗ and H∗ the singular homology195

and cohomology theories with coefficient group Z, respectively. Applying H∗ and H∗ to196

h(Φ, S) one immediately obtains the homology and cohomology Conley indices of S.197

The Poincaré polynomial of S, denoted by p(t, S), is the formal polynomial

p(t, S) =
∞∑
q=0

βq t
q

with βq = rankHq(h(Φ, S)). If S has a Morse decomposition M = {M1, · · · ,Ml}, then the
following Morse equation

p(t,M1) + · · ·+ p(t,Ml) = p(t, S) + (1 + t)Q(t)

holds for some formal polynomial Q(t) =
∑∞

q=0 dq t
q with dq ∈ Z+.198

Let us also recall briefly the basic continuation property of the Conley index.199

Let Φλ (λ ∈ Λ) be a family of semiflows on X, where Λ is a metric space. We say that
Φλ depends on λ continuously, if Φλ(t)x is defined at the point (t, x, λ), then for any sequence
(tn, xn, λn) converging to (t, x, λ), Φλn(tn)xn is defined as well for all n sufficiently large,
furthermore,

Φλn(tn)xn → Φλ(t)x as n→∞.
Suppose Φλ depends on λ continuously. Define

Π(t)(x, λ) = (Φλ(t)x, λ), (x, λ) ∈X = X × Λ.

Then Π is a local semiflow on the product space X , which will be called the skew-product200

flow of the family Φλ (λ ∈ Λ).201

We say that Φλ (λ ∈ Λ) is λ-locally uniformly asymptotically compact (λ-l.u.a.c. in short),202

if its skew-product flow Π is asymptotically compact.203

Remark 2.5. It is trivial to see that if Φλ (λ ∈ Λ) is λ-l.u.a.c., then Λ is necessarily locally204

compact.205

For convenience, given K ⊂X and λ ∈ Λ, we will write

K[λ] = {x : (x, λ) ∈X }.

K[λ] is called the λ-section of K. The following continuation result is actually a particular206

case of [32, Chap. I, Theorem 12.2].207

Theorem 2.1. Let Φλ (λ ∈ Λ) be a family of semiflows on X, where Λ is a connected208

compact metric space. Suppose Φλ depends on λ continuously and is λ-l.u.a.c.209

Let K be a compact isolated invariant set of the skew-product flow Π of Φλ (λ ∈ Λ). Then

h(Φλ,K[λ]) ≡ const., λ ∈ Λ.

Proof. Take a bounded closed isolating neighborhood U of K in X . Then for each λ ∈ Λ,210

the λ-section Uλ of U is an isolating neighborhood of K[λ]. By the compactness of K one211

can easily verify that K[λ] is upper semicontinuous in λ. Consequently Uλ is also an isolating212

neighborhood of K[λ′] for λ′ near λ. The conclusion then directly follows from [32, Chap. I,213

Theorem 12.2.].214

This manuscript is for review purposes only.



DYNAMIC BIFURCATION FROM INFINITY OF NONLINEAR EVOLUTION EQUATIONS 9

Remark 2.6. We emphasize that in the above theorem, we allow K[λ′] = ∅ for some λ′ ∈ Λ.215

Note also that when such a case occurs, one necessarily has h(Φλ,K[λ]) = 0 for all λ ∈ Λ.216

2.5. Sectorial operators. For the readers’ convenience, we finally recall some basic notions217

concerning sectorial operators.218

LetX be a Banach space. A closed and densely defined linear operator A : D(A) ⊂ X → X
is called a sectorial operator, if there exist real numbers φ ∈ (0, π/2), a ∈ R and M ≥ 1 such
that the sector

Sa,φ = {λ : φ ≤ |arg(λ− a)| ≤ π, λ 6= a}

is contained in the resolvent set of A, moreover,

‖(λI −A)−1‖ ≤M/|λ− a|

for all λ ∈ Sa,φ, where I denotes the identity on X.219

Let A be a sectorial operator in X. Denote σ(A) the spectral of A. If minz∈σ(A) Re z > 0,

then A generates an analytic semigroup T (t) = e−At with

||T (t)|| ≤ Ce−βt, t ≥ 0

for some C, β > 0. This allows us to define the fractional powers of A as follows: for each
α > 0,

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−Atdt,

where Γ(s) =
∫∞

0 ts−1e−tdt is the Gamma function, and let Aα be the inverse of A−α with220

D(Aα) = R(A−α); see Henry [14, Chap. I] for details. We also assign A0 = I.221

Note that in general we may not have minz∈σ(A) Re z > 0. However, one can always find
a real number a such that minz∈σ(A1) Re z > 0, where A1 = A+ aI. Hence we can define the
fractional powers of A1 as above. For each α ≥ 0, denote Xα = D(Aα1 ). We equip Xα with
the norm ‖ · ‖α defined as

‖u‖α = ‖Aα1u‖, u ∈ Xα.

Then Xα is a Banach space, which is called the fractional power of X. It is well known that222

the definition of Xα is independent of the choice of the number a, and different choices of a223

give equivalent norms on Xα [14, Chap. I].224

3. Continuation Theorems and Bifurcation from Infinity of Local Semiflows. In this225

section, we establish some abstract continuation theorems on invariant sets and prove a general226

result on bifurcation from infinity in the framework of local semiflows by using Conley index.227

Let X be a complete metric space with metric d(·, ·), and set

X = X × R, X± = X × R±.

X is equipped with the metric defined by

%((u1, λ1), (u2, λ2)) = d(u1, u2) + |λ1 − λ2|, (u1, λ1), (u2, λ2) ∈X .
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3.1. Global continuation theorem. Let Φλ (λ ∈ R) be a family of local semiflows on X.228

Henceforth we always assume that Φλ depends on λ continuously and is λ-l.u.a.c.229

Given Λ ⊂ R and U ⊂ X, denote230

(1) K (Λ, U) =
⋃
λ∈Λ (K∞(Φλ, U)× {λ}).231

For simplicity, we will write
K (Λ, X) = K (Λ).

232

Remark 3.1. By the λ-l.u.a.c. property of Φλ (λ ∈ R) and the invariance property of233

K (Λ, U), one can easily verify that if Λ and U are bounded then K (Λ, U) is compact.234

Theorem 3.1. Let S be a compact isolated invariant set of Φ0, and U an isolating neigh-235

borhood of S. Denote F± the family of components of K (R±) meeting S × {0}.236

Suppose h(Φ0, S) 6= 0. Then there is a Γ ∈ F± such that either Γ[0] \ U 6= ∅, or Γ is237

unbounded in the space X±.238

Proof. We only consider the case of F+. The argument for that of F− is parallel.239

We argue by contradiction and suppose the assertion in the theorem was false. Then each240

Γ ∈ F+ would be bounded in X+. Furthermore, Γ[0] ⊂ U (hence Γ[0] ⊂ S).241

Denote C (S) the family of all components of S. For each Z ∈ C (S), there is a (unique)242

ΓZ ∈ F+ such that Z ⊂ ΓZ [0] (note that ΓZ [0] may not be connected). It can be easily seen243

that for any Z1, Z2 ∈ C (S), one has244

(2) either ΓZ1 = ΓZ2 , or ΓZ1 ∩ ΓZ2 = ∅.245

Let Z ∈ C (S). Pick a number δ with 0 < δ < d(Z, ∂U), and let Vδ = BX+ (ΓZ , δ) be the
δ-neighborhood of ΓZ in X+. Set

K = Vδ ∩K (R+), Kδ = ∂+Vδ ∩K (R+),

where ∂+V = ∂X+V denotes the boundary of V in X+ for any V ⊂ X+. Then by the
boundedness of Vδ and Remark 3.1 we easily deduce that both K and Kδ are compact. Because
Γ is a component of K (R+) and ΓZ ∩Kδ = ∅, by virtue of Lemma 2.1 there exist two disjoint
closed subsets K1,K2 of K with K = K1 ∪ K2 such that

ΓZ ⊂ K1, Kδ ⊂ K2 .

Note that K1 is contained in the interior of Vδ in X+.246

Take a number δZ > 0 with

δZ <
1

4
min{%(K1,K2), %(K1, ∂+Vδ)}.

Let VZ = BX+(K1, 2δZ). Then by the choice of δZ we have247

(3) BX+(∂+VZ , δZ) ∩K (R+) = ∅.248
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Let λ1 = max{λ : VZ [λ] 6= ∅}. Thanks to Theorem 2.1, one deduces that249

(4) h(Φλ,VZ [λ]) ≡ const., λ ∈ [0, λ1).250

But K∞(Φλ, VZ [λ]) = ∅ if λ is close to λ1; see Fig. 3.1.251

U

1252

Fig. 3.1: VZ is an isolating neighborhood.253

By (4) it follows that
h(Φλ,VZ [λ]) = 0, λ ∈ [0, λ1).

In particular, we have254

(5) h(Φ0,ΩZ) = 0, where ΩZ = VZ [0].255

Note that ΩZ ⊂ U . We also infer from (3) that256

(6) BX(∂ΩZ , δZ) ∩ S = ∅.257

(Here ∂ΩZ is the boundary of ΩZ in X.) As S is the maximal compact invariant set of Φ0 in258

U , (6) implies that ΩZ is an isolating neighborhood of Φ0.259

Since S is compact, there exist a finite number of components Z1, · · · , Zl of S such that
S ⊂

⋃l
i=1 ΩZi . Let W1 = ΩZ1 , and

Wk = ΩZk \ (ΩZ1 ∪ · · · ∪ ΩZk−1
), k = 2, · · ·, l.

Then Wk
′s are disjoint open sets in X, and260

(7) ∂Wk ⊂
⋃k
i=1 ∂ΩZi .261

As S
⋂(⋃l

i=1 ∂ΩZi

)
= ∅ (see (6)), one finds that

S ⊂
(⋃l

i=1 ΩZi

)
\
(⋃l

i=1 ∂ΩZi

)
=
⋃l
i=1Wi.

Set Sk = S ∩Wk. We observe that if w ∈ Sk, then by (6),

d(w, ∂ΩZi) ≥ δZi ≥ min
1≤i≤l

δZi > 0, 1 ≤ i ≤ l.
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Thus by (7) it holds that262

(8) d(Sk, ∂Wk) > 0,263

which implies that Sk is compact. We also infer from (8) that Wk is an isolating neighborhood264

of Sk (with respect to Φ0). We claim that265

(9) h(Φ0, Sk) = 0.266

Indeed, let Mk = K∞(Φ0,ΩZk) \ Sk. Then Mk ⊂ ΩZk \Wk. Therefore by (8) we deduce that

d(Sk,Mk) > 0,

from which one can easily see that Mk is compact. (5) then asserts that

0 = h(Φ0,ΩZk) = h (Φ0,K∞(Φ0,ΩZk))

= h(Φ0, Sk ∪Mk) = h(Φ0, Sk) ∨ h(Φ0,Mk).

By the basic knowledge in the theory of Conley index (see e.g. [32, pp. 52]) one immediately267

concludes the validity of (9).268

Now since Sk are disjoint isolated invariant sets of Φ0 and S =
⋃

1≤k≤l Sk, we have

h(Φ0, S) = h(Φ0, S1) ∨ · · · ∨ h(Φ0, Sl) = 0,

which leads to a contradiction.269

Remark 3.2. In [40], Ward gave a continuation theorem asserting that S± =
⋃

Γ∈F±
Γ270

either meets (X \ U)× {0}, or is unbounded. Theorem 3.1 significantly improves this result.271

Theorem 3.2. Let S be an isolated invariant set of Φ0 with h(Φ0, S) 6= 0, and U an isolating272

neighborhood of S. Let 0 < d ≤ ∞, and denote Λ either the interval [0, d) or the one (−d, 0].273

Denote F the family of components of K (Λ, U) meeting S × {0}.274

Then there exists Γ ∈ F such that one of the alternatives below holds:275

(1) Γ is unbounded; see Fig. 3.2.276

(2) Γ meeting ∂U × Λ; see Fig. 3.3.277

(3) Γ[λ] 6= ∅ for all λ ∈ Λ; see Fig. 3.4.278

U

d

U

U

d

U

279

Fig. 3.2 Fig. 3.3280
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U

d

U

dc

K2

c
d

281

Fig. 3.4 Fig. 3.5: K∞(Φc) ⊂ U [c]282

Proof. The proof can be easily obtained by slightly modifying the one of Theorem 3.1.283

We omit the details.284

3.2. An abstract theorem on bifurcation from infinity. We now establish a new abstract285

theorem on dynamic bifurcation from infinity.286

Let Φλ (λ ∈ R) be as in subsection 3.1.287

Theorem 3.3. Let Λ = [c, d] be a compact interval. Suppose both K∞(Φc) and K∞(Φd) are288

compact, furthermore,289

(10) h (Φc, K∞(Φc)) 6= h (Φd, K∞(Φd)) .290

Then the set K (Λ, X) has an unbounded component Γ meeting X × {c, d}.291

Proof. Denote T the family of connected components of K (Λ, X), and let

Tc = {Γ ∈ T : Γ[c] 6= ∅}, Td = {Γ ∈ T : Γ[d] 6= ∅}.

In the following we prove that if every Γ ∈ Tc is bounded, then there is a Γ ∈ Td such that Γ292

is unbounded.293

Let H = X × [c, d]. Denote ∂HV the boundary of V in H for any V ⊂ H.294

Let Γ ∈ Tc . Since Γ is bounded, as in Remark 3.1 one easily deduces by the λ-l.u.a.c.
property of Φλ that Γ is compact. Take a number ε > 0, and let

Vε = BH(Γ, ε) := {(x, λ) ∈ H : %((x, λ),Γ) < ε}

be the ε-neighborhood of Γ in H. Set

C = Vε ∩K (Λ, X), Cε = ∂HVε ∩ C.

By Remark 3.1 we see that both C and Cε are compact. Since Γ does not intersect any other
component of C, by Lemma 2.1 there exist two disjoint closed subsets C1 and C2 of C with
C = C1 ∪ C2 such that

Γ ⊂ C1, Cε ⊂ C2.

Clearly C1 is contained in the interior of Vε in H.295

Pick a number εΓ > 0 with

εΓ <
1

4
min{%(C1, C2), %(C1, ∂HVε)}.
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14 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

Let UΓ = BH(C1, 2εΓ) be the 2εΓ-neighborhood of C1 in H. Then by the choice of εΓ we see296

that UΓ ⊂ Vε, and moreover,297

(11) BH(∂HUΓ, εΓ) ∩K (Λ, X) = ∅.298

Now we observe that U = {UΓ[c]}Γ∈Tc forms an open covering of K∞(Φc) in X. Thus there
exist Γ1, · · · ,Γn ∈ Tc such that

K∞(Φc) ⊂
⋃

1≤i≤n UΓi [c].

Let U =
⋃

1≤i≤n UΓi . We infer from (11) that U is an isolating neighborhood of the skew-299

product flow Π of {Φλ}λ∈Λ in H with K∞(Φc) ⊂ U [c]; see Fig. 3.5. Therefore by Theorem 2.1300

one concludes that301

(12) h (Φc, K∞(Φc)) = h (Φc, U [c]) = h (Φd, U [d]) = h (Φd, K1) ,302

where K1 = K∞ (Φd, U [d]).303

For any component Γ of K (Λ, X), by (11) we have Γ∩∂HUΓi = ∅ for all 1 ≤ i ≤ n. Hence
one finds that

either Γ ⊂ U , or Γ ∩ U = ∅.

Consequently, for any component C of K∞(Φd), we have

either C ⊂ U [d], or C ∩ U [d] = ∅.

Thus we deduce that K∞(Φd) = K1 ∪K2, where

K2 =
⋃
{C : C is a component of K∞(Φd) with C ∩ U [d] = ∅}.

As K1 is isolated with U [d] being an isolating neighborhood, it is trivial to check that K2 is304

isolated as well. Thereby305

(13) h (Φd, K∞(Φd)) = h (Φd, K1) ∨ h (Φd, K2) .306

This, along with (10) and (12), yields that

h (Φd, K2) 6= 0.

Now by virtue of Theorem 3.1, one immediately concludes that there is a Γ ∈ Td with307

Γ[d] ⊂ K2 such that Γ is unbounded; see Fig. 3.5.308

3.3. Two examples. In this subsection we give two simple illustrating examples by con-309

sidering ODE systems, which may help the reader have a better understanding to the abstract310

results given above.311

Example 3.1. Consider the planar system312

(14)

{
ẋ = x− λx(x2 + y2), x = x(t) ∈ R,
ẏ = y − λy(x2 + y2), y = y(t) ∈ R,

313
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where λ is the bifurcation parameter.314

Denote Φλ the semiflow onX = R2 generated by the system. Multiplying the first equation315

in (14) by x and the second one by y, summing the results we obtain that316

(15)
d

dt
r2 = 2r2(1− λr2),317

where r2 = x2 + y2. Let λ ≤ 0. Then by (15) we have318

(16)
d

dt
r2 = 2r2(1− λr2) ≥ 2r2,319

by which we deduce that K∞(Φλ) = {(0, 0)} and is a repeller of the system. Let B = B(2),
where B(r) denotes the ball in X centered at (0, 0) with radius r. By (16) it is clear that B
is an isolating block of K∞(Φλ) with B− = ∂B(2). Hence

h(Φλ,K∞(Φλ)) = [(B/B−, [B−])] = Σ2.

Now assume λ > 0. By (15) we find that320

(17)
d

dt
r2 ≤ −r2

321

as long as r(t) ≥
√

2/λ, from which it can be easily seen that the system is dissipative with
K∞(Φλ) being the global attractor. Let λ = 1. Then we infer from (17) that B = B(2) is an
isolating block of K∞(Φ1) with B− = ∅. Since B is contractible, one has

h(Φ1,K∞(Φ1)) = [(B/B−, [B−])] = Σ0.

Let Λ = [−1, 1]. Then h(Φ−1,K∞(Φ−1)) 6= h(Φ1,K∞(Φ1)). By Theorem 3.3 one immedi-322

ately concludes that the set K (Λ, X) has an unbounded component Γ meeting X × {±1}.323

One can also discuss the bifurcation phenomena of the system by choosing appropriate324

isolating neighborhoods of the system and applying Theorem 3.2. For instance, take U =325

X \ B
(

1
2

)
. Then for λ ∈ [0, 1], we have by (15) that326

(18)
d

dt
r2 = 2r2(1− λr2) > 0, if (x(t), y(t)) ∈ ∂U,327

from which one easily deduces that328

(19) K∞(Φλ, U) ∩ ∂U = ∅, ∀λ ∈ [0, 1].329

Since K∞(Φλ, U) ⊂ K∞(Φλ) and hence is compact for all λ, by (19) we find that U is an330

isolating neighborhood of Φλ for each λ ∈ [0, 1].331

Set S = K∞(Φ1, U). We infer from the above argument that S ⊂ B := B(2) \ B
(

1
2

)
;

furthermore, B is an isolating block of S with B− = ∅. We have

h (Φ1, S) = [(B/∅, [∅])] = [(B ∪ {q}, q)] 6= 0,
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where q is an element with q 6∈ B. By virtue of Theorem 3.2 one concludes that K ((0, 1], U)332

has a component ΓU meeting S ×{1} such that one of the alternatives (1)-(3) in the theorem333

holds true. We claim that ΓU is unbounded. To see this, we first observe that K∞(Φ0, U) = ∅.334

Now we argue by contradiction and suppose the contrary. Then one can easily verify that335

ΓU [λ] ⊂ K∞(Φλ, U) for all λ ∈ (0, 1]. It follows by (19) that the second alternative (2) in336

Theorem 3.2 does not occur. Thus we necessarily have ΓU [λ] 6= ∅ for all λ ∈ (0, 1]. But this337

and the boundedness of ΓU then imply that ΓU [0] 6= ∅, which leads to a contradiction and338

proves our claim.339

Now let us give a simple observation that justifies our theoretical results obtained above.
By (15) we see that the circle

Cλ : r = rλ := 1/
√
λ

is a closed orbit of the system for each λ > 0, which depends on λ continuously. Clearly340

rλ →∞ as λ→ 0.341

It is also worth mentioning that the bifurcating branches Γ and ΓU given above may be342

different. In fact, it is easy to check that for λ ∈ (0, 1], ΓU [λ] consists of exactly the closed343

orbit Cλ, whereas Γ[λ] may contain Cλ and the equilibrium (0, 0) and also the connecting344

orbits between them.345

Example 3.2. Consider the following non-autonomous scalar equation346

(20) ẋ = −(λ+ h(t))x+ e−x
2

347

on R, where h ∈ C(R) is a T -periodic function (T > 0). To have a better understanding of348

the dynamics of the equation, as usual we embed the equation into a cocycle system below:349

(21) ẋ = −(λ+ p(t))x+ e−x
2
, p ∈ H,350

where H = {h(τ + ·) : τ ∈ R}, which is equipped with the topology of uniform convergence351

on [0, T ] (and hence on R). It is a basic knowledge that due to the periodicity of h, H is352

homeomorphic to the unit circle (or, one-dimensional sphere) S1.353

Let X = R×H, and denote φλ(t, p)x0 the unique solution of (21) with x(0) = x0. Set

Φλ(t)(x, p) = (φλ(t, p)x, θtp) , (x, p) ∈ X,

where θt is the translation group on H,

(θtp)(·) = p(t+ ·), ∀ p ∈ H, t ∈ R.

Then Φλ is a flow on X, called the skew-product flow of (21).354

For the sake of simplicity, we may assume maxR |h(t)| ≤ 1. Let Λ = [−2, 2]. For λ = −2,355

multiplying the equation (21) by x we find that356

(22)
1
2
d
dtx

2 = (2− p(t))x2 + xe−x
2

≥ x2 − |x| = |x|(|x| − 1),
357
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from which it is clear that for any solution x(t) of (21), if |x(t0)| > 1 for some t0 ∈ R then
|x(t)| > 1 for all t ≥ t0; moreover, |x(t)| → ∞ as t→ +∞. It follows that

K∞(Φ−2) ⊂ [−1, 1]×H.

Let B1 = [−2, 2]×H. Making use of (22) it is trivial to check that B1 is an isolating block of
K∞(Φ−2) with B−1 = {±2} ×H. Thus

h (Φ−2,K∞(Φ−2)) = [(B1/B
−
1 , [B

−
1 ])].

Since B1 is pass-connected, one can easily verify that the quotient space B1/B
−
1 is pass-358

connected as well. Hence359

(23) H0 (h (Φ−2,K∞(Φ−2))) = H0

(
(B1/B

−
1 , [B

−
1 ])
)

= 0.360

Now we consider the case where λ = 2. A fully analogous argument as above applies to
show that K∞(Φ2) ⊂ [−1, 1]×H with B2 = [−2, 2]×H being an isolating block with B−2 = ∅.
(K∞(Φ2) is actually the global attractor of Φ2.) Thus we have

h (Φ2,K∞(Φ2)) = [(B2/∅, [∅])] = [(([−2, 2]×H)/∅, [∅])]
= [(S1/∅, [∅])] = [(S1 ∪ {q}, q)],

where q is an element with q 6∈ S1. Therefore361

(24) H0 (h (Φ2,K∞(Φ2))) = H0

(
(S1 ∪ {q}, q)

)
= Z.362

(23) and (24) indicate that h (Φ−2,K∞(Φ−2)) 6= h (Φ2,K∞(Φ2)). Applying Theorem 3.3363

one immediately concludes that the system Φλ undergoes a dynamic bifurcation from infinity364

as λ varies in the interval Λ, although we know little about where and how this bifurcation365

occurs.366

4. Bifurcation from Infinity of Nonlinear Evolution Equations. In this section we use our367

general results in section 3 to discuss the bifurcation phenomena from infinity of the nonlinear368

evolution equation369

(1)
du

dt
+Au− λu− f(u, λ) = 0370

on a Banach space X, where A is a sectorial operator on X with compact resolvent, λ ∈ R,371

and f(u, λ) is a locally Lipschitz continuous mapping from Xα ×R to X for some 0 ≤ α < 1.372

Our main goal is to present some more precise descriptions on the dynamic bifurcation from373

infinity.374

Denote ‖ · ‖ and ‖ · ‖α the norms of X and Xα, respectively.375
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4.1. Existence of unbounded bifurcating branch. It is well known (see e.g. [14, Theorem376

3.3.3]) that the Cauchy problem of (1) is well-posed in Xα, that is, for any u0 ∈ Xα, there377

exist T > 0 and a (unique) continuous function u : [0, T ) → Xα with u(0) = u0, called378

the strong solution of the problem, such that u(t) ∈ D(A) and d
dtu(t) exists for t ∈ (0, T ),379

moreover, the differential equation (1) is satisfied on (0, T ).380

Denote Φλ the local semiflow generated by the equation. By the continuity property of381

f in λ, one can easily verify that Φλ depends on λ continuously. Also, by very standard382

argument (see e.g. [32, Chap. I, Theorem 4.4]), it can be shown that the family Φλ (λ ∈ R) is383

λ-l.u.a.c.384

We always assume f satisfies the following sublinear condition:385

(A) lim‖u‖α→∞ ‖f(u, λ)‖/‖u‖α = 0 uniformly on compact λ-intervals.386

Hence Φλ is actually a global semiflow on Xα for each λ.387

Definition 4.1. We say that (1) bifurcates from infinity at λ = µ (or, (∞, µ) is a bifurcation
point), if for any ε > 0, there exist λ ∈ R with |λ−µ| < ε and a bounded full solution uλ = uλ(t)
of (1) such that

‖uλ‖∞ > 1/ε,

where ‖uλ‖∞ = supt∈R ||uλ(t)||α.388

Denote σ(A) the spectral of A, and write

Reσ(A) = {Re z : z ∈ σ(A)}.

389

Theorem 4.1. Let µ ∈ Reσ(A). Then (∞, µ) is a bifurcation point of (1). Specifically, for390

any c, d ∈ R with c < µ < d and Reσ(A)∩ [c, d] = {µ}, the set K ([c, d]) (see (1) in section 3391

for the definition) has a component Γ meeting Xα×{c, d} such that for some sequence λn → µ,392

393

(2) sup{‖x‖α : x ∈ Γ[λn]} → ∞ as n→∞.394

Proof. Let us begin with the following linear equation395

(3)
du

dt
+Au− λu = 0.396

Let c, d be the numbers given in the theorem. Then if λ = c, d, the set {0} is an isolated397

invariant set for the semiflow φλ in Xα generated by (3). By [32] (see Chap. I, Corollary 11.2)398

there exist two nonnegative integers p and q with q − p > 0 such that399

(4) h(φc, {0}) = Σp, h(φd, {0}) = Σq.400

(q−p is actually the total algebraic multiplicity of all the eigenvalues z of the operator A with401

Re z = µ.)402

Now consider the nonlinear equation403

(5)
du

dt
+Au− λu− νf(u, λ) = 0,404
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where ν ∈ [0, 1] is the homotopy parameter. By appropriately modifying the argument in the
proof of [32, Chap. II, Theorem 5.1] (see also the proof of [40, Theorem 3.2]), it can be shown
that for any ε > 0 with

c < µ− ε < µ+ ε < d,

there exists Rε > 0 such that for any bounded full solution u = u(t) of (5) with λ ∈ [c, µ −405

ε] ∪ [µ+ ε, d] and ν ∈ [0, 1], we have406

(6) ‖u‖∞ < Rε.407

Denote φνλ the semiflow generated by (5). By virtue of the continuation property of Conley408

index, we conclude that409

(7)
h (Φλ,K∞(Φλ)) = h

(
φ1
λ,K∞(φ1

λ)
)

= h
(
φ0
λ,K∞(φ0

λ)
)

= h(φλ, {0}) = Σp
410

for λ ∈ [c, µ− ε], and411

(8)
h (Φλ,K∞(Φλ)) = h

(
φ1
λ,K∞(φ1

λ)
)

= h
(
φ0
λ,K∞(φ0

λ)
)

= h(φλ, {0}) = Σq
412

for λ ∈ [µ + ε, d]. Thanks to Theorem 3.3, one immediately concludes that K ([c, d]) has an
unbounded connected component Γ meeting Xα×{c, d}. On the other hand, (6) implies that
for any ε > 0,

Γ[λ] ⊂ BXα(Rε), ∀λ ∈ [c, µ− ε] ∪ [µ+ ε, d],

where BXα(Rε) denotes the ball in Xα centered at 0 with radius Rε. Thus there exists a413

sequence λn → µ such that (2) holds true.414

Remark 4.1. In Theorem 4.1 one should distinguish two cases of the bifurcation. One is415

that K∞(Φµ) is unbounded. When this occurs we say that (1) undergoes a vertical bifurcation416

from infinity at λ = µ. The other is that K∞(Φµ) is bounded, in which case we deduce that417

there is a sequence λn → µ (λn 6= µ for all n) such that Γ[λn] is unbounded, where Γ is the418

connected bifurcating branch given in the theorem. Note that both cases may occur. This can419

be seen from the following two simple examples.420

Example 4.1. Consider the linear equation421

(9) u̇+ u = λu, u = u(t) ∈ R,422

where λ ∈ R is the bifurcation parameter. Then we can see that µ = 1 is a bifurcation value,423

at which each constant function u(t) = c (c ∈ R) is a bounded full solution of the equation.424

Hence the equation undergoes a vertical bifurcation from infinity at λ = 1.425

It is also interesting to note that for each λ 6= 1, the equation has no bounded full solutions426

other than the trivial one.427

Example 4.2. Consider the non-homogenous equation428

(10) u̇+ u = λu+ 1, u ∈ R,429

This manuscript is for review purposes only.



20 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

where λ ∈ R is the bifurcation parameter. Again µ = 1 is a bifurcation value, at which each430

solution of (10) is given by u = t+ c (c ∈ R). Clearly K∞(Φµ) = ∅.431

On the other hand, if we let [c, d] = [0, 2], then by Theorem 4.1 we see that K ([0, 2])
has an unbounded connected component Γ in the space R × [0, 2] with Γ ∩ (R × {0, 2}) 6= ∅.
Actually, for λ 6= 1, the unique bounded full solution of the equation is the stationary one
uλ(t) = (1− λ)−1. Hence

Γ = {(uλ, λ) : 0 ≤ λ < 1}

is a component of K ([0, 2]) fulfilling all the requirements in the theorem.432

4.2. Further results on dynamic bifurcation from infinity. We infer from Theorem 4.1433

that there is a sequence λn → µ such that for each λ = λn, (1) has a bounded full solution434

un = un(t) with ‖un‖∞ → ∞. In what follows we give another result on the bifurcation of435

the equation from infinity, which seems to be more precise in some aspects.436

Theorem 4.2. Assume f satisfies the sublinear condition (A) in Theorem 4.1. Let µ ∈437

Reσ(A). Then one of the following alternatives holds.438

(1) There is a sequence un of bounded full solutions of (1) at λ = µ such that limn→∞ ‖un‖∞ =439

∞.440

(2) There is a one-sided neighborhood Λ1 of µ such that for each λ ∈ Λ1 \ {µ}, (1) has two441

distinct bounded full solutions uλ and vλ such that442

(11) lim
λ→µ
‖uλ‖∞ =∞,443

whereas ‖vλ‖∞ remains bounded on the λ-interval Λ1.444

(3) There is a two-sided neighborhood Λ of µ such that for each λ ∈ Λ \ {µ}, the equation (1)445

has a bounded full solution uλ satisfying (11).446

Proof. If (1) holds true then we are done. Thus we assume the contrary, and hence Sµ is447

a bounded set, where (and below) Sλ = K∞(Φλ).448

Take two numbers c, d ∈ R as in Theorem 4.1. Since the number ε in (7) and (8) is449

arbitrary, we infer from (7) and (8) that450

(12) h(Φλ, Sλ) = Σp (λ ∈ [c, µ) ), h(Φλ, Sλ) = Σq (λ ∈ (µ, d])451

for some nonnegative integers p and q with p < q.452

Pick a bounded closed isolating neighborhood U of Sµ. Choose a δ > 0 sufficiently small453

so that U is an isolating neighborhood of Φλ for all λ ∈ Λ = [µ− δ, µ+ δ]. Then454

(13) h (Φλ, U) ≡ const.455

Two possibilities may occur.456

Case 1) h(Φµ, Sµ) 6= 0. In such a case we show that the second assertion (2) holds true.457

It is obvious that

either h(Φµ, Sµ) 6= Σp, or h(Φµ, Sµ) 6= Σq.
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Let us first consider the case where h(Φµ, Sµ) 6= Σp. By (12) we have458

(14) h(Φλ, Sλ) 6= h(Φµ, Sµ), λ ∈ [c, µ).459

We claim that460

(15) Sλ \ U 6= ∅, ∀λ ∈ Λ− := [µ− δ, µ).461

Indeed, if Sλ ⊂ U for some λ ∈ Λ−, then by (12) and (13) one finds that

h (Φµ, Sµ) = h (Φµ, U) = h (Φλ, U) = h (Φλ, Sλ) = Σp,

which leads to a contradiction.462

For each λ ∈ Λ−, pick an xλ ∈ Sλ \ U . Let uλ be a full trajectory of Φλ contained in Sλ463

with uλ(0) = xλ. We show that uλ fulfills (11).464

Suppose the contrary. Then there would exist a sequence λn → µ (λn 6= µ) such that465

the sequence un = uλn is uniformly bounded on R. By very standard argument it can be466

shown that un has a subsequence converging to a bounded full trajectory u0 of Φµ uniformly467

on any compact interval of R. u0 is necessarily contained in Sµ. On the other hand, since468

un(0) = xλn 6∈ U , we deduce that u0(0) 6∈ intU . This leads to a contradiction.469

Now assume that h(Φµ, Sµ) 6= Σq. Then by a fully analogous argument as above, one470

concludes that for each λ ∈ Λ+ = (µ, µ + δ], the equation has a bounded full solution uλ471

satisfying (11).472

Since h(Φµ, Sµ) 6= 0, by (13) we have

h (Φλ, U) = h (Φµ, U) = h(Φµ, Sµ) 6= 0, λ ∈ Λ.

It follows that K∞(Φλ, U) 6= ∅. For each λ ∈ Λ, pick a full solution vλ in K∞(Φλ, U). Then473

||vλ||∞ remains bounded on Λ.474

Case 2) h(Φµ, Sµ) = 0. In this case, we have

Σp 6= h(Φµ, Sµ) 6= Σq.

The same argument as in Case 1) applies to show that for each λ ∈ Λ− ∪ Λ+, the equation475

has a bounded full solution uλ satisfying (11). Hence the assertion (3) holds.476

5. Dynamic Bifurcation and Multiplicity for Parabolic Equations. In this section we477

consider the following boundary value problem:478

(1)

{
ut −∆u = λu+ f(x, u), x ∈ Ω;

u(x, t) = 0, x ∈ ∂Ω,
479

where Ω is a bounded domain in Rn, λ ∈ R, and f ∈ C1(Ω× R).480

Let H = L2(Ω) and V = H1
0 (Ω). By (·, ·) and | · | we denote the usual inner product and

norm on H, respectively. The norm ‖ · ‖ on V is defined by

‖u‖ =
(∫

Ω |∇u|
2dx
)1/2

, u ∈ V.
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Denote A the operator −∆ associated with the homogenous Dirichlet boundary condition. A
is a sectorial operator and has a compact resolvent. Denote

0 < µ1 < µ2 < · · · < µk < · · ·

the eigenvalues of A.481

We may convert (1) into an abstract equation on V :482

(2) ut +Au = λu+ f̃(u), u = u(t) ∈ V,483

where f̃(u) is the Nemitski operator from V to H given by

f̃(u)(x) = f(x, u(x)), u ∈ V.

If we assume that484

(3) f(x, s) = o(|s|) as |s| → ∞485

uniformly with respect to x ∈ Ω, then one can trivially verify that the Nemitski operator f̃486

in (2) satisfies the sublinear condition (A) in section 4. Thus applying the abstract results in487

section 4, one can immediately obtain some interesting information on the bifurcation of the488

equation. For instance, we have489

Theorem 5.1. Let µk be an eigenvalue of A. Then one of the following alternatives holds.490

(1) There is a sequence un of bounded full solutions of (2) at λ = µk such that

lim
n→∞

‖un‖∞ =∞.

(2) There is a one-sided neighborhood Λ1 of µk such that for λ ∈ Λ1 \ {µk}, the equation (2)491

has at least two distinct bounded full solutions uλ and vλ such that492

(4) lim
λ→µk

‖uλ‖∞ =∞,493

whereas ‖vλ‖ remains bounded on Λ1.494

(3) There is a two-sided neighborhood Λ of µk such that for each λ ∈ Λ\{µk}, (2) has at least495

one bounded full solution uλ satisfying (4).496

In this present work, we are basically interested in a particular but very important case,497

namely, the case where f satisfies the Landesman-Laser type condition (4) in section 1. We will498

give some precise descriptions on the bifurcation of the equation and discuss the multiplicity499

of stationary solutions of the equation.500

Henceforth we always assume501

(H) f satisfies the Landesman-Laser type condition (4) in section 1.502

Denote Φλ the semiflow associated with (2), namely, for each u0 ∈ Xα,

u(t) = Φλ(t)u0

is the solution of the equation on R+ with initial value u(0) = u0.503
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5.1. Preliminaries. Let us begin with a fundamental result on f .504

Given a function w on Ω, we use w± to denote the positive and negative parts of w,
respectively,

w± = max{±w(x), 0}, x ∈ Ω.

Then w = w+ − w−. We have505

Lemma 5.1. For any R, ε > 0, there exists s0 > 0 such that∫
Ω
f(x, v + sw)wdx ≥

∫
Ω

(fw+ + fw−)dx− ε

for all s ≥ s0, v ∈ BH(R) and w ∈ BH(1), where BH(r) denotes the ball in H centered at 0506

with radius r.507

Proof. This is a slightly modified version of [17, Lemma 6.7]. Here we give the details of508

the proof for completeness and the reader’s convenience.509

Let

I =

∫
Ω
f(x, v + sw)wdx−

∫
Ω

(fw+ + fw−)dx.

Since w = w+ − w−, we can rewrite I as I+ − I−, where

I+ =

∫
Ω

(f(x, v + sw)− f)w+dx, I− =

∫
Ω

(f(x, v + sw) + f)w−dx.

In what follows, let us estimate I+ for v ∈ BH(R) and w ∈ BH(1).510

We observe that

R2 ≥
∫

Ω
|v|2dx ≥

∫
{|v|≥σ}

|v|2dx ≥ σ2|{|v| ≥ σ}|,

from which it can be easily seen that |{|v| ≥ σ}| → 0 as σ → +∞ uniformly with respect to511

v ∈ BH(R). (Here and below |E| denotes the Lebesgue measure for any measurable subset E512

of Rn.) Therefore there exists σ > 0 such that513

(5) |{|v| ≥ σ}|1/2 < δ := ε/8‖f‖(|Ω|+ 1), v ∈ BH(R),514

where ‖f‖ = supx∈Ω, s∈R |f(x, s)|.515

For each v ∈ BH(R) and w ∈ BH(1), let

D = Dv,w := {|v| < σ} ∩ {w+ > δ}.

Then Ω = D ∪ {|v| ≥ σ} ∪ {w+ ≤ δ}. Hence

I+ ≥
∫
D(f(x, v + sw)− f)w+dx−

∫
{|v|≥σ} |f(x, v + sw)− f |w+dx

−
∫
{w+≤δ} |f(x, v + sw)− f |w+dx

≥
∫
D(f(x, v + sw)− f)w+dx− 2‖f‖

(∫
{|v|≥σ}w+dx+

∫
{w+≤δ}w+dx

)
.
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Note that ∫
{|v|≥σ}w+dx ≤

(∫
{|v|≥σ}w

2
+dx

)1/2
|{|v| ≥ σ}|1/2

≤ (by (5)) ≤ |w|δ ≤ δ.
It is obvious that ∫

{w+≤δ}
w+dx ≤ |Ω|δ.

Thereby516

(6)
I+ ≥

∫
D(f(x, v + sw)− f)w+dx− 2‖f‖(|Ω|+ 1)δ

=
∫
D(f(x, v + sw)− f)w+dx− ε

4 .
517

Since z+ sη → +∞ (as s→ +∞) uniformly for z ∈ [−σ, σ] and η ≥ δ, there exists s1 > 0
(independent of v and w) such that if s > s1 then

f(x, z + sη)− f ≥ − ε

4|Ω|1/2
, ∀z ∈ [−σ, σ], η ≥ δ.

Now suppose that s > s1. Then by the definition of D, we have (note that w = w+ on D)∫
D(f(x, v + sw)− f)w+dx ≥ − ε

4|Ω|1/2
∫
D w+dx

≥ − ε
4|Ω|1/2 |D|

1/2(
∫
D |w|

2dx)1/2 ≥ − ε
4 .

Thus by (6) we see that

I+ ≥
∫
D

(f(x, v + sw)− f)w+dx−
ε

4
> −ε

2
.

Similarly it can be shown that there exists s2 > 0 (independent of v and w) such that518

I− <
ε
2 , provided s > s2.519

Set s0 = max{s1, s2}. Then if s > s0, we have

I ≥ I+ − I− > −
ε

2
− ε

2
= −ε

for all v ∈ BH(R) and w ∈ BH(1). This completes the proof of the lemma.520

Now we prove some basic facts concerning the dynamical behavior of the equation (2).521

Let L = A−µk, where µk is an eigenvalue of A. The space H can be decomposed into the
orthogonal direct sum of its subspaces H−, H0 and H+ corresponding to the negative, zero and
positive eigenvalues of L, respectively. Note that both H− and H0 are of finite-dimensional.
Denote P σ (σ ∈ {0,±}) the projection from H to Hσ. Set

V σ = V ∩Hσ, σ ∈ {0,±}.

By the finite dimensionality of H− and H0, one finds that V − and V 0 coincide with H− and
H0, respectively. We also have

V = V − ⊕ V 0 ⊕ V +.
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Lemma 5.2. Assume λ ≤ µk + η, where η = (µk+1 − µk)/2. Then there exists ρ0 > 0
(independent of λ) such that for any solution u = u(t) of (2) on R+,

‖u+(t)‖2 ≤ ‖u+
0 ‖

2 e−ηt + ρ2
0(1− e−ηt), ∀ t ≥ 0.

Here u+ = P+u.522

Proof. Taking the inner product of the equation with Au+ in H, it yields

1
2
d
dt‖u

+‖2 + |Au+|2 = λ‖u+‖2 + (Au+, f̃(u))

≤ λ‖u+‖2 + ε|Au+|2 + Cε

for any ε > 0, where Cε is a positive constant depending only upon ε and the upper bound of523

|f̃(s)|. Hence524

(7)
1

2

d

dt
‖u+‖2 + (1− ε)|Au+|2 ≤ λ‖u+‖2 + Cε.525

Note that |Au+|2 ≥ µk+1‖u+‖2. Therefore by (7) we have526

(8)
1

2

d

dt
‖u+‖2 ≤ − ((1− ε)µk+1 − λ) ‖u+‖2 + Cε.527

Fix an ε > 0 sufficiently small so that (1− ε)µk+1 > µk + 3
2η. Then for λ ≤ µk + η, one has

(1− ε)µk+1 − λ >
(
µk +

3

2
η

)
− (µk + η) = η/2.

Now the conclusion follows from (8) and the classical Gronwall Lemma.528

Denote

Ξρ = {v ∈ V : ‖P+v‖ ≤ ρ}, ρ > 0.

As a direct consequence of Lemma 5.2, we have529

Corollary 5.1. Assume λ ≤ µk + η. Then

K∞(Φλ) ⊂ Ξρ0 .

Furthermore, Ξρ is positively invariant under Φλ for any ρ > ρ0.530

Set W = V − ⊕ V 0, and let

PW = P− + P 0

be the projection from V to W . Given 0 ≤ a < b ≤ ∞ and ρ > 0, denote531

(9) Ξρ[a, b] = {u ∈ Ξρ : a ≤ |PWu| ≤ b}.532

Lemma 5.3. Let η and ρ0 be as in Lemma 5.2, and ρ > ρ0. Then there exist R0, c0 > 0533

such that the following assertions hold.534
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(1) If λ ∈ [µk, µk + η], then for any solution u(t) of the equation (2) in Ξρ[R0,∞], we have535

(10)
d

dt
|w(t)|2 ≥ c0|w(t)|,536

where w(t) = PWu(t).537

(2) For any R > R0, there exists 0 < θ ≤ η such that if λ ∈ [µk − θ, µk), then (10) holds true538

for any solution u(t) of (2) in Ξρ[R0, R].539

Proof. Let λ ∈ [µk − η, µk + η], and u = u(t) a solution of (2) in Ξρ. Taking the inner540

product of (2) with w = PWu in H, it yields541

(11)
1

2

d

dt
|w|2 + ‖w‖2 = λ|w|2 + (f̃(u), w).542

Because ‖w‖2 ≤ µk|w|2, by (11) we have543

(12)
1

2

d

dt
|w|2 ≥ (λ− µk)|w|2 + (f̃(u), w).544

Let us first estimate the last term in (12).545

As the norm ‖ · ‖L1(Ω) of L1(Ω) and that of H = L2(Ω) are equivalent on W , one easily546

sees that547

(13) min{‖v‖L1(Ω) : v ∈W, |v| = 1} := m > 0.548

Pick a number δ > 0 with δ ≤ min{f, f}. By virtue of Lemma 5.1 there exists s0 > 0549

(depending only upon ρ) such that if s ≥ s0, then550

(14) (f̃(h+ sv), v) =

∫
Ω
f(x, h+ sv)v dx ≥

∫
Ω

(
fv+ + fv−

)
dx− 1

2
mδ551

for all h ∈ BH(ρ) and v ∈ BH(1).552

Now we rewrite

w = sv, where s = |w|.

Then |v| = 1. Suppose s ≥ s0. Noticing that ||u+|| ≤ ρ, by (14) one finds that

(f̃(u), w) = s(f(x, u+ + sv), v) ≥ s
(∫

Ω

(
fv+ + fv−

)
dx− 1

2
mδ

)
.

Observing that ∫
Ω

(
fv+ + fv−

)
dx− 1

2mδ

≥ δ
∫

Ω |v|dx−
1
2mδ ≥ (by (13)) ≥ 1

2mδ,

we conclude that553

(15) (f̃(u), w) ≥ 1

2
mδs =

1

2
mδ|w|.554
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Now we combine (15) and (12) together to obtain that555

(16)
d

dt
|w(t)|2 ≥ 2 (λ− µk) |w|2 +mδ|w(t)|556

as long as |w(t)| ≥ s0.557

Set R0 = s0, c0 = mδ/2. Assume λ ∈ [µk, µk + η]. Then λ − µk ≥ 0, and we infer from
(16) that

d

dt
|w(t)|2 ≥ mδ|w(t)| > c0|w(t)|

at any point t where |w(t)| ≥ R0. Hence the assertion (1) holds.558

Now assume λ < µk. Let R > R0. Choose a θ > 0 with θR2 < mδs0/4. Then if
λ ∈ [µk − θ, µk), for any solution u(t) of (2) in Ξρ[R0, R], by (16) we conclude that

d
dt |w(t)|2 ≥ −2|λ− µk|R2 +mδ|w(t)|

≥ c0|w(t)|+
(
c0|w(t)| − 2θR2

)
≥ c0|w(t)|+

(
c0s0 − 2θR2

)
≥ c0|w(t)|,

which justifies the second assertion (2).559

5.2. Dynamic bifurcation from infinity. We are now ready to discuss the bifurcation of560

the equation (2) near λ = µk.561

Let Φλ be the semiflow generated by (2). First, as a consequence of Lemma 5.3 we have562

the following basic fact.563

Proposition 5.1. Assume the hypothesis (H). Then K∞(Φλ) is uniformly bounded in V for564

λ ∈ [µk, µk + η], and565

(17) h (Φµk ,K∞(Φµk)) = h (Φλ,K∞(Φλ)) = Σp+r,566

where p is the sum of the multiplicities of the eigenvalues µi (0 ≤ i ≤ k − 1) of A, and r the567

multiplicity of µk.568

Proof. Let η and ρ0 be the numbers given in Lemma 5.2. Fix a number ρ > ρ0. Then569

there exist R0, c0 > 0 such that the first assertion (1) in Lemma 5.3 holds true, by which one570

easily deduces that571

(18) K∞(Φλ) ⊂ Ξρ[0, R0], ∀λ ∈ [µk, µk + η].572

On the other hand, as in (12) in section 4 it can be shown that573

(19) h(Φλ,K∞(Φλ)) =

{
Σp+r, λ ∈ (µk, µk+1);

Σp, λ ∈ (µk−1, µk).
574

By (18) and the continuation property of Conley index we immediately conclude that575

h (Φµk ,K∞(Φµk)) = Σp+r.576
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Now we state and prove the main result in this subsection on the dynamic bifurcation577

from infinity of the equation near each eigenvalue µk.578

Theorem 5.2. Assume the hypothesis (H). Then Sλ := K∞(Φλ) is nonvoid for all λ ∈ R,579

and there exists δ > 0 such that the following assertions hold.580

(1) For each λ ∈ Λ− := [µk − δ, µk), Sλ has a Morse decomposition M = {M∞λ , M1
λ}.581

Furthermore, there is at least one connecting trajectory γ between M1
λ and M∞λ .582

(2) M1
λ remains uniformly bounded on Λ−, whereas583

(20) lim
λ→µ−k

min
v∈M∞λ

||v|| =∞.584

(3) Each of the sets K 1 and K ∞ has a component Γ with Γ[λ] 6= ∅ for all λ ∈ Λ−, where

K 1 =
⋃
λ∈Λ−

(M1
λ × {λ}), K ∞ =

⋃
λ∈Λ−

(M∞λ × {λ}).

Proof. (i) We infer from the proof of Theorem 4.1 (see (6) in section 4) and Proposition 5.1585

that Sλ is a compact subset of V for all λ ∈ R. Since the Conley index of Sλ is nontrivial (see586

(17) and (19)), one concludes that Sλ 6= ∅.587

(ii) Corollary 5.1 asserts that

Sλ ⊂ Ξρ0 , ∀λ ≤ µk + η,

where ρ0 is the number in Lemma 5.2. Fix a ρ > ρ0, and let R0 and c0 be the numbers given588

by Lemma 5.3. Pick a bounded isolating neighborhood N1 of Sµk with589

(21) Ξρ[0, R0] ⊂ N1.590

Then one can restrict δ > 0 sufficiently small so that N1 is also an isolating neighborhood of591

Φλ for all λ ∈ Λ := [µk − δ, µk + δ]. Hence592

(22) h(Φλ,M
1
λ) ≡ const., λ ∈ Λ,593

where M1
λ = K∞(Φλ, N1). Further by Proposition 5.1 we deduce that594

(23) h(Φλ,M
1
λ) = h(Φµk ,M

1
µk

) = h(Φµk , Sµk) = Σp+r, λ ∈ Λ.595

It is clear that M1
λ ⊂ Sλ ⊂ Ξρ. Therefore596

(24) M1
λ ⊂ N1 ∩ Ξρ := Ñ1, λ ∈ Λ.597

Because Ñ1 is bounded, one can find a number R1 > 0 such that598

(25) Ñ1 ⊂ Ξρ[0, R1/2].599

By Lemma 5.3 (2), there exists θ1 > 0 such that if λ ∈ [µk − θ1, µk), then for any solution600

u(t) of (2) in Ξρ[R0, R1], one has601

(26)
d

dt
|w(t)|2 ≥ c0|w(t)| ≥ c0R0 > 0,602

This manuscript is for review purposes only.



DYNAMIC BIFURCATION FROM INFINITY OF NONLINEAR EVOLUTION EQUATIONS 29

where w(t) = PWu(t). We may assume δ ≤ θ1. Let λ ∈ Λ− := [µk − δ, µk). Then for any603

bounded full solution u(t) of (2) in Ξρ with u(t0) ∈ Ξρ[R0, R1] for some t0, by (26) one easily604

deduces that there exists T > 0 such that605

(27) u(t) ∈ Ξρ[0, R0] (t < −T ), and u(t) ∈ Ξρ[R1,∞] (t > T ).606

Combining (24), (25) and (27) together, it yields that607

(28) M1
λ ⊂ Ξρ[0, R0], ∀λ ∈ Λ−.608

As M1
λ is the maximal compact invariant set of Φλ in N1, (21) and (28) imply that M1

λ is the609

maximal compact invariant set in Ξρ[0, R0].610

Set

M∞λ = K∞ (Φλ, Ξρ[R1,∞]) .

Then M∞λ ⊂ K∞(Φλ) = Sλ. We prove that M = {M∞λ ,M1
λ} forms a Morse decomposition611

of Sλ. For this purpose, let us first show that if u = u(t) is a full solution in Sλ \ (M1
λ ∪M∞λ ),612

then613

(29) ω∗(u) ⊂M1
λ , ω(u) ⊂M∞λ .614

Indeed, let u be such a solution. Then since Sλ ⊂ Ξρ and M1
λ and M∞λ are the maximal615

compact invariant sets in Ξρ[0, R0] and Ξρ[R1,∞], respectively, there exists t0 ∈ R such that616

u(t0) ∈ Ξρ[R0, R1]. Hence (29) directly follows from (27).617

Now we check that M∞λ 6= ∅. Thus M is a Morse decomposition of Sλ. Suppose the
contrary. Then by (29) we find that Sλ = M1

λ . Hence

h(Φλ,M
1
λ) = h(Φλ, Sλ) = (by (19)) = Σp,

which contradicts (23).618

To complete the proof of (1), there remains to check the existence of a connecting trajectory619

between M1
λ and M∞λ . To this end, we consider the Morse equation of M:620

(30) p(t,M1
λ) + p(t,M∞λ ) = p(t, Sλ) + (1 + t)Q(t).621

Recalling that h(Φλ,M
1
λ) = Σp+r and h(Φλ, Sλ) = Σp, we have

p(t,M1
λ) = tp+r, p(t, Sλ) = tp.

Thus (30) reads622

(31) tp+r + p(t,M∞λ ) = tp + (1 + t)Q(t),623

which implies that Q(t) 6= 0. By the basic knowledge in the Morse theory of invariant sets (see624

[32, Chap. III, Theorem 3.5]), one immediately concludes that there is at least one connecting625

trajectory between M1
λ and M∞λ .626

This manuscript is for review purposes only.



30 CHUNQIU LI, DESHENG LI, AND ZHIJUN ZHANG

We also infer from (31) that p(t,M∞λ ) 6= 0. Consequently627

(32) h(Φλ,M
∞
λ ) 6= 0, ∀λ ∈ Λ−.628

(iii) Clearly M1
λ remains uniformly bounded on Λ.629

For any R > R1, by Lemma 5.3 there exists 0 < θ < θ1 such that when λ ∈ [µk − θ, µk),630

the differential inequality (26) holds true for any solution u(t) of (2) in Ξρ[R0, 2R]. Using this631

basic fact, it can be easily seen that if λ ∈ [µk− θ, µk), any bounded full solution in Ξρ[R1,∞]632

is necessarily contained in Ξρ[R,∞]. Hence633

(33) M∞λ ⊂ Ξρ[R,∞],634

which implies what we desired in (20) and completes the proof of (2).635

(iv) Finally, let us verify the validity of (3).636

Let U = Ξρ[R1,∞]. Then ∂U = C1 ∪ C2, where

C1 = {v : ‖v+‖ = ρ, |w| ≥ R1}, C2 = {v : ‖v+‖ ≤ ρ, |w| = R1}.

Here v+ = P+v, and w = PW v. Let λ ∈ Λ−. By the choice of ρ and Lemma 5.2, we see that
M∞λ ∩ C1 = ∅. Fix an R > R1. Then we infer from the above argument in (iii) that one can
restrict δ > 0 to be sufficiently small so that (33) holds. Consequently M∞λ ∩ C2 = ∅. Thus

M∞λ ∩ ∂U = ∅,

namely, U is an isolating neighborhood of M∞λ .637

Because h (Φµk−δ, U) 6= 0 (by (32)), K ∞ has a connected component Γ with Γ[µk−δ] 6= ∅638

such that one of the alternatives (1)-(3) in Theorem 3.2 holds true. As Γ[λ] ⊂ intU for all639

λ ∈ Λ−, we conclude that either Γ is unbounded, or Γ[µk] 6= ∅. Because Γ[λ] is uniformly640

bounded on [µk − δ, µk − ε] for any ε ∈ (0, δ), in any case we deduce that Γ[λ] 6= ∅ for all641

λ ∈ Λ−.642

The argument for K 1 is similar. We omit the details.643

5.3. Bifurcation and multiplicity of stationary solutions. We now turn to the static
bifurcation and multiplicity of stationary solutions of (2). Since the equation has a natural
Lyapunov function J(u) defined by

J(u) =
1

2
(‖u‖2 − λ|u|2)−

∫
Ω
F (x, u)dx, u ∈ V,

where F (x, s) =
∫ s

0 f(x, t)dt, this problem can be treated in the framework of dynamical644

systems.645

Theorem 5.3. Assume the hypothesis (H). Let δ > 0 be the same as in Theorem 5.2. Then646

(1) Φλ has at least one equilibrium eλ for all λ ∈ R;647

(2) there exists δ > 0 such that Φλ has at least two distinct equilibria e∞λ and ecλ for each648

λ ∈ Λ− = [µk − δ, µk), and649

(34) lim
λ→µ−k

‖e∞λ ‖ =∞,650
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whereas ecλ remains bounded on Λ−; and651

(3) there is an open dense subset D of R such that for each λ ∈ Λ− ∩D, Φλ has at least three652

distinct equilibria.653

Proof. (1) Since each nonempty compact invariant set contains at least one stationary654

solution, the conclusion (1) directly follows from Theorem 5.2.655

(2) Let N1 be the isolating neighborhood of Sµk given in the proof of Theorem 5.2, and656

let M = {M∞λ , M1
λ} be the Morse decomposition of Sλ for λ ∈ Λ−. Then M1

λ ⊂ N1. By (25)657

we have658

(35) N1 ∩ Ξρ = Ñ1 ⊂ Ξρ[0, R1/2], λ ∈ Λ−.659

As M∞λ ⊂ Ξρ[R1,∞], by (35) we find that M∞λ ∩ N1 = ∅. Pick two stationary solutions eλ660

and e∞λ from M1
λ and M∞λ , respectively. Then eλ and e∞λ fulfill the requirements in (2).661

(3) By slightly modifying the proof of [35, Theorem 2.1], it can be shown that there is662

an open dense subset D of R such that all the equilibria of Φλ are hyperbolic if λ ∈ D. Now663

assume λ ∈ Λ− ∩ D. We show that there is another equilibrium z∞λ ∈ M∞λ with z∞λ 6= e∞λ .664

Consequently Φλ has at least three distinct equilibria.665

We argue by contradiction and suppose M∞λ consists of exactly one hyperbolic stationary
solution e∞λ . Then p(t,M∞λ ) = tm for some m ≥ 0. Accordingly the Morse equation (30)
reads

tp+r + tm = tp + (1 + t)Q(t).

But this is impossible for any formal polynomial Q(t) with coefficients in Z+, as the sum of666

the coefficients of the left-hand side does not equal that of the right-hand side.667

The proof of the theorem is finished.668

Remark 5.1. We infer from the above argument that for each λ ∈ Λ− ∩D, Φλ has at least669

two distinct equilibria outside the domain N1.670

Finally, we pay some special attention to the particular case where671

(F) f(x, s) = o(|s|) as |s| → 0 uniformly for x ∈ Ω.672

We prove some new multiplicity results on stationary solutions for the equation (2) near each673

eigenvalue µk. The main results are summarized in the following theorem.674

Theorem 5.4. Assume f satisfies the hypotheses (H) and (F). Denote W c
loc(0) the local675

center manifold of Φµk at the trivial equilibrium 0, and let φ be the restriction of Φµk on676

W c
loc(0). Suppose 0 is an isolated equilibrium of Φµk . Then there exists δ > 0 such that one677

of the following assertions holds:678

(1) 0 is an attractor of φ. In this case, the system Φλ has at least two distinct nontrivial679

equilibria ecλ and e∞λ for λ ∈ Λ− = [µk − δ, µk), whereas it has at least three distinct ones e1
λ,680

e2
λ and ecλ for λ ∈ Λ+ = (µk, µk + δ].681

(2) 0 is a repeller of φ (i.e., an attractor of the inverse flow φ−1). In this case, Φλ has at682

least three distinct nontrivial equilibria e1
λ, e2

λ and e∞λ for each λ ∈ Λ−.683
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(3) 0 is neither an attractor nor a repeller of φ. When this occurs, Φλ has at least three684

nontrivial equilibria e1
λ, ecλ and e∞λ for λ ∈ Λ−, whereas it has at least two distinct ones e1

λ685

and ecλ for λ ∈ Λ+.686

Furthermore, we have687

(36) lim
λ→µk

‖e∞λ ‖ =∞, lim
λ→µk

‖eiλ‖ = 0 (i = 1, 2),688

and689

(37) 0 < lim inf
λ→µk

‖ecλ‖ ≤ lim sup
λ→µk

‖ecλ‖ <∞.690

c

1

2

1

2

c

1

691

Fig. 5.1 Fig. 5.2 Fig. 5.3692

Proof. In the following argument, we always assume that δ > 0 is sufficiently small so that693

the conclusions in Theorem 5.2 and Theorem 5.3 are valid.694

(1) The case where 0 is an attractor of φ.695

Let N1 be the isolating neighborhood of Sµk in the proof of Theorem 5.3. Then by696

Theorem 5.3, for each λ ∈ Λ− the system Φλ always has an equilibrium e∞λ outside N1697

satisfying the first equation in (36).698

Pick a number β > 0 and an isolating neighborhood N0 of 0 with

N0 ⊂ BV (β) ⊂ N1.

We may restrict δ so that both N0 and N1 are isolating neighborhoods of Φλ for all λ ∈ Λ :=
[µk − δ, µk + δ]. Let

Ki
λ = K∞(Φλ, Ni), i = 0, 1.

Then for each i,699

(38) h(Φλ,K
i
λ) ≡ const., λ ∈ Λ.700

It is trivial to check that701

(39) dH
(
K0
λ, {0}

)
→ 0 as λ→ µk.702
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It can be assumed that N0 is sufficiently small so that the product formula of Conley index
given in [32, Chap. II, Theorem 3.1] holds true, hence

h(Φµk , {0}) = Σp ∧ h(φ, {0}).

We infer from Example 2.1 that h(φ, {0}) = Σ0. Therefore

h(Φµk , {0}) = Σp ∧ Σ0 = Σp.

It then follows by (38) that703

(40) h(Φλ,K
0
λ) = h(Φµk ,K

0
µk

) = h(Φµk , {0}) = Σp, λ ∈ Λ.704

By (38) and Proposition 5.1 we also deduce that705

(41) h(Φλ,K
1
λ) = h(Φµk ,K

1
µk

) = h(Φµk , Sµk) = Σp+r, λ ∈ Λ.706

Thus we see that K1
λ 6= K0

λ. As K0
λ is the maximal invariant set in N0, one concludes that707

(42) K1
λ \N0 6= ∅, λ ∈ Λ.708

For each λ ∈ Λ, pick a vλ ∈ K1
λ \N0. Let uλ(t) be a bounded full trajectory of Φλ in K1

λ709

with uλ(0) = vλ. We claim that if δ is small enough then710

(43) either ω(uλ) \N0 6= ∅, or ω∗(uλ) \N0 6= ∅.711

Indeed, if this was false, there would exist a sequence λn → µk (as n → ∞) such that both712

ω(un) and ω∗(un) are contained in N0 and hence in K0
λn

, where un = uλn . Thus by (39) we713

deduce that714

(44) lim
n→∞

max
v∈ω(un)

|J(v)| = 0 = lim
n→∞

max
v∈ω∗(un)

|J(v)|.715

Set
Γn = orb(un) = orb(un) ∪ ω(un) ∪ ω∗(un).

Then
min
v∈Γn

J(v) = min
v∈ω(un)

J(v), max
v∈Γn

J(v) = max
v∈ω∗(un)

J(v).

It follows by (44) that716

(45) max
v∈Γn

|J(v)| → 0 as n→∞.717

On the other hand, since Γn ⊂ K1
λn
⊂ N1 and Φλ is λ-l.u.a.c., it is easy to verify that718 ⋃

λn∈Λ Γn is precompact. Hence by Lemma 2.2 it can be assumed that Γn converges to a719

nonempty compact invariant set K of Φµk (in the sense of Hausdorff distance). Noticing that720

Γn ∩K0
λn
6= ∅, by (39) we find that 0 ∈ K. Because each Γn is connected, K is connected as721

well. (45) implies that J(v) ≡ 0 on K. Thereby each point in K is an equilibrium of Φµk . As722

(46) un(0) ∈ Γn \N0723
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for all n, we deduce that K \intN0 6= ∅. Further by the connectedness of K one concludes that724

K ∩ ∂V 6= ∅ for any small neighborhood V of 0, which leads to a contradiction and completes725

the proof of our claim.726

In view of (43), for each λ ∈ Λ we can pick an equilibrium ecλ of Φλ with727

(47) ecλ ∈ (ω(uλ) ∪ ω∗(uλ)) \N0 ⊂ N1 \N0.728

Hence if λ ∈ Λ−, the system Φλ has at least two distinct nontrivial equilibria ecλ and e∞λ .729

We infer from the attractor bifurcation theory (see e.g. Ma and Wang [20, Theorem 4.3],730

[19, Theorem 6.1] or Li and Wang [18, Theorem 4.2]) that K0
λ contains at least two distinct731

equilibrium points e1
λ and e2

λ for λ ∈ Λ+, provided δ is sufficiently small. By (47) one concludes732

that Φλ has at least three distinct nontrivial equilibria for λ ∈ Λ+.733

(2) 0 is a repeller of φ. In this case, as in (1), by applying the attractor bifurcation theory734

we deduce that K0
λ contains at least two distinct equilibria e1

λ and e2
λ for λ ∈ Λ−. Since Φλ735

has a nontrivial equilibrium e∞λ outside N1 for each λ ∈ Λ−, it has at least three distinct ones736

for λ ∈ Λ−.737

(3) Finally, let us consider the case where 0 is neither an attractor nor a repeller of φ.738

By Li and Wang [18, Theorem 4.4] we deduce that the system bifurcates at each side of µk a739

nonempty compact invariant set Mλ ⊂ N0 with 0 6∈Mλ and740

(48) dH (Mλ, {0})→ 0 as λ→ µk.741

Mλ contains at least one nontrivial equilibrium e1
λ.742

We show that743

(49) h(Φµk , {0}) 6= Σp+r,744

which fact will yield another equilibrium ecλ ∈ N1 \N0 at both sides of µk.745

Consider the local center-unstable manifold W cu
loc(0) of Φµk at 0. Denote ψ the restriction746

of Φµk on W cu
loc(0). Then747

(50) h(Φµk , {0}) = h(ψ, {0}).748

Thus to prove (49), it suffices to check that749

(51) H∗(h(ψ, {0})) 6= H∗(Σ
p+r).750

We argue by contradiction and suppose the contrary. Then

Hp+r(h(ψ, {0})) = Hp+r(Σ
p+r) = Z.

Therefore by the Poincaré-Lefschetz duality theory of the Conley index (see McCord [24,
Theorem 2.1] and Mrozek and Srzednicki [26, pp. 164]),

H0(h(ψ−1, {0})) = Hp+r(h(ψ, {0})) = Z.
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On the other hand, pick a pass-connected isolating block B ⊂W cu
loc(0) of S0 = {0} with respect

to the inverse flow ψ−1. (Such an isolating block is always available due to [8, Theorem 1.5].)
Since S0 is not an attractor of ψ−1 (note that S0 is not an attractor of φ−1 on W c

loc(0)), we
necessarily have

B− 6= ∅.

Thus by the basic knowledge in the theory of algebraic topology, one easily deduces that
H0(B,B−) = 0. Consequently

H0(h(ψ−1, {0})) = H0(B,B−) = 0,

which leads to a contradiction and justifies the validity of (49).751

Recall that (see (41))

h(Φλ,K
1
λ) = Σp+r, λ ∈ Λ = [µk − δ, µk + δ].

Noticing that

h(Φλ,K
0
λ) = h(Φµk ,K

0
µk

) = h(Φµk , {0}) 6= Σp+r, ∀λ ∈ Λ,

we conclude that K1
λ 6= K0

λ. As K0
λ is the maximal invariant set in N0, one finds that

K1
λ \N0 6= ∅, λ ∈ Λ.

We are now in a quite similar situation as in (42). Repeating the same argument below752

(42), it can be easily shown that the system has an equilibrium ecλ in N1 \N0.753

In conclusion, there are at least two distinct nontrivial equilibria in N1 for λ ∈ Λ \ {µk}.754

Because Φλ has an equilibrium e∞λ outside N1 for λ ∈ Λ−, the system has at least three755

distinct nontrivial equilibria as λ ∈ Λ−. This completes the proof of (3).756

The second equation in (36) follows from (39) and (48). (37) is a direct consequence of757

the choice that ecλ ∈ N1 \N0.758

Remark 5.2. It is interesting to note that there is always a one-sided neighborhood Λ1 of759

µk such that the equation has at least three distinct nontrivial stationary solutions for λ ∈ Λ1.760

Remark 5.3. Dual versions of all the results in this section hold true if, instead of (H), we761

assume that (6) in section 1 is fulfilled.762
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