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1 Introduction

In 1990 Ohnita (cf. [13]) gave a series of homogeneous minimal 2-spheres {¢,, o } of constant
curvature in quaternionic projective spaces HP", and conjectured that {¢, } exhaust all
proper minimal isometric immersions of S? in HP". Recently, we get a classification
theorem of linearly full unramified conformal minimal immersions of constant curvature
from S? to HP? (cf. [8]), which verifies that in the case n = 2, {¢no} exhaust all
linearly full unramified minimal isometric immersions of constant curvature from S? to
HP2. In [10], we determine all conformal minimal immersions of 2-spheres in HP" with
parallel second fundamental form (implies that it is of constant curvature). In this paper,
we determine all homogeneous (stronger than the condition of unramified with constant
curvature) minimal 2-spheres in HP" (see Theorem 5.5) and solve completely Ohnita’s
conjecture for n odd. Indeed, in this case, we find homogeneous minimal 2-spheres not
in the series {¢no}. When n is even, the series {¢, o} gives all homogeneous minimal
2-spheres but it is unknown if there are any proper non-homogeneous minimal isometric
immersions.

In this paper we mainly combine the methods of harmonic sequences and moving
frames to study homogeneous harmonic maps from S? to HP".

Our arrangement is as follows.

In the second section of this paper, firstly we give the definition of quaternionic pro-
jective space HP™ as the totally geodesic submanifold in G(2,2n + 2), then we give some
fundamental results concerning G(k, N') from the viewpoint of harmonic sequences by mov-
ing frames, at last we give some brief description of Veronese sequence and the rigidity
theorem in CPY. In the third section, we simply introduce homogeneous harmonic maps
from S? to G(k, N) and give an important property. In the fourth section, we determine
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all reducible harmonic maps of constant curvature from S? to HP™, which represent the
homogeneous ones completely. In the last section, we determine all irreducible homoge-
neous harmonic maps from S? to HP" by mathematical induction. Finally we obtain the
classification Theorem 5.5.

2 Preliminaries

For any N =1,2,..., let (,) denote the standard Hermitian inner product on CV defined
by (z,w) = 21wy + ... + zywWy where z = (z1,...,25) ,w = (wy,...,wy)" € CV and
~ denotes complex conjugation. Let H denote the division ring of quaternions. Let j be
a unit quaternion with j2 = —1. Then we have an identification of C? with H given by
making (a,b) € C? correspond to a + bj € H; let n € {1,2,---}, we have a corresponding
identification of C2"*2 with H"*!. For any a4+ bj € H, the left multiplication by j is given
by j(a + bj) = —b+ aj; the conjugation is given by a + bj = @ — bj; the positive definite
inner product is given by (z,y)y = Re(zy) for any z,y € H.

Let J : C?n*t2 — C?7*2 be the conjugate linear map given by left multiplication by j,
ie.

J(Zl, 29, ..y 2041, Z2n+2)T = (—22, 21y ey — 22042, 22n+1)T.
Then J? = —id where id denotes the identity map on C?"*2. In fact, for any v € C?>"*2,
Ju = Jn+1’l_),
. 0 -1 0 -1
WhereJnH:dmg{(l 0)"”’<1 0)}
n+1

Let G(2,2n+2) denote the Grassmann manifold of all complex 2-dimensional subspaces
of C?"*+2 with its standard Kihler structure. The quaternionic projective spaces HP" is
the set of all one-dimensional quaternionic subspaces of H**!. Throughout the above we
shall regard HP™ as the totally geodesic submanifold of G(2,2n + 2) given by

HP" = {V € G(2,2n+2) : IV = V}.

Let Sp(n+ 1) = {g € GL(n+ 1;H), g*g = I,+1} be the symplectic isometry group of
HP"™. The explicit description is that the following diagram commutes:

Sp(n+1) LN U(2n+ 2)
ml ml
HP"  —25 G(2,2n+2)

where i1, 49 are inclusions and 71, w2 are projections, and i1(g) = E, for 1 <a,b<n+1
Pyl = 45, ER =B
E3 =By, E5 =4,
where A = (AY), B = (Bf) € M,,11(C), g= A+ Bj € Sp(n +1);
77-1(9) =g- [(1>O7 T 70)T] € Hpn,



T
150307"' aO .
mo(E)=F - (071707'” ’0> € G(2,2n + 2);
21, % z z T
. . —_ AT 1, <25 "y <2n+1y <2n+2
) 21+ %229, v, 2 +z = _ — — .
2([( 1 2] 2n+1 on+27) ]) [<_22’ Z1, o0, — Zonio, 22n+1> ]

Here we consider G(2,2n + 2) as the set of all Hermitian orthogonal projections from
C?7*2 onto 2-dimensional complex subspaces, i.e.,

G(2,2n +2) = {p € Man12(C)|¢p® = ¢, 0" = p, trp = 2} .

Let 7 : G(2,2n + 2) — U(2n + 2) be the Cartan imbedding, which is defined by 7(¢) =
20 — I € U(2n + 2). We take the bi-invariant metric dsQU(Qm_Q) = ttrww* on U(2n + 2),
then the metric on G(2,2n + 2) induced by 7 is given by

1
2
ds¢(2,0n+2) = gtfd@d%

where w is the Maurer-Cartan form of U(2n + 2).
Then the metric induced by io is twice as much as the standard metric of constant Q-
sectional curvature 4 on HP™.
Thus we regard the harmonic map from S? to HP" as the one from S? to G(2,2n +2).
For any g € Sp(n + 1), the action of g on HP" induces an action of E on CP?"+!,
where E € U(2n + 2) which commutes with J. Then

Spin+1)={Ee€U(@2n+2), EoJ=JoE}={EcU(@2n+2), BEJynE" = J,11}.

In the following, we deal with the symplectic isometry of HP™ through the corresponding
symplectic isometry of CP?"+1,

Next, we simply introduce harmonic maps and harmonic sequences in G(k, N) (cf. [4],
[5]) and calculate some corresponding geometric quantities.

Let M be a simply connected domain in the unit sphere S? and let (2,%) be complex
coordinates on M. We take the metric ds?w = dzdz on M. Denote

o = 0
0=—, 0=—.
0z’ 0z
We consider the complex Grassmann manifold G(k, V) as the set of Hermitian orthog-
onal projections from CV onto a k-dimensional subspace in CV. Then ¢ : S? — G(k, N) is

a Hermitian orthogonal projection onto a k-dimensional subbundle ¢ of the trivial bundle

CN = M x CN given by setting the fibre of ¢ at x, ¢, equal to ¢(x) for all x € M.
For any two orthogonal subbundles ¢, of CV, define vector bundle morphisms over any
coordinate chart, A;W,A;;w Lo — ﬁ called the &'~ and &”-second fundamental forms of
¢in ¢ @Y by Ay ,(v) = my(Ov), A ,(v) = my(Ov) for v € C*°(¢) . Here m, denotes
orthogonal projection onto ¥ and C*°(¢) denotes the vector space of smooth sections of
¢. Although these morphisms are only defined on coordinate charts, all the constructions
we will do involve their images which are globally defined independent of choice of local
coordinate. In particular Ay = A;j’ $ L,Ag = Aiz; 5L Are called the second fundamental

forms of ¢ in CcN.



Let ¢ : S — G(k,N) be a smooth harmonic map. Then from ¢ two harmonic
sequences (cf. [4]) are derived as follows:

p=¢, 3¢ 3. “i‘ﬁgaﬁs..., (2.1)
" A A Al
?:?(]Aﬂéflﬁ"' ¢7_O‘>+1?7a£f‘...7 (22)

where Qa = IimAﬁba_1 and Q_a = IﬂAg_a+l are harmonic subbundles of CV (i.e., represent
harmonic maps) respectively, « = 1,2, ---.
We assume that ¢ is a linearly full harmonic map from S? to G(k, N), here linearly full
means that ¢ can not be contained in any proper trivial subbundle C™ of CV (m < N).
We know that several consecutive harmonic maps in (2.1) are not mutually orthogonal
generally. So it is meaningful to define the isotropy order of ¢ (cf. [4], §3A) to be the
greatest integer r such that g L Qj Vi, j € Z with 0 < |i — j| < r; if r = oo, then ¢ is said
to be strongly isotropic. Now we consider a special harmonic sequence.

Suppose that ¢ : S — G(k, N) is a linearly full harmonic map having isotropy order
at least 2. Then ¢ belongs to the following harmonic sequence:

" " " !
A6 ap A agor A4, A A A, Avpy—1

0 g g g =B e g, —00, (23)

L —ap AR

0

where for o = —ag +1,---, 5y — 1, ?a—l’?a’ga—l—l

Denote k,, = rank Qa (= —agp, -+, 0o)-

are mutually orthogonal.

For the harmonic sequence (2.3) we choose the unit vectors {---,e_q,ey,---} of CV
such that ey,--- ey, locally span subbundle @, erototho1+1, " €hotrthar+ka 10-
cally span subbundle 9, (o =1,---,00); e_1, -+ ,e_i_, locally span subbundle Y
€k y——koi1—1s" " s €—k_j—koyy—k, lOCally span subbundle ¢ (o= -2, , —ag). Let
Wo = (e1,--- ,ex,) be an (N X ko)-matrix, Wy = (€kgtthy 1415 s Chotrtha 1+ke) DE
an (N X kq)-matrix for « = 1,--- ;a9 and let W_; = (e_1,--- ,e_r_,) be an (N x k_;)-
matrix, Wo = (€—p_j——kai1—1r" " s€—k_i——kas1—ko) D€ an (N x ky)-matrix for o =
—2,---,—ag. Since 904—1’901’901—1—1 are mutually orthogonal, we can extend

{Wa—1, Wa, Wyt1} into the local unitary frame with respect to ¢o. Then we have
Go = W W2, (2.4)

W Wy = L sk WiWagr =0, WiWa_y =0. (2.5)

By (2.5), a straightforward computation shows

aWa = WaJrIQoz + Wa\I"a, (2 6)
Wy = —Wa 10, | — WoUr, '
where Q4 is a (kq41 X kq)-matrix and Uy, is a (ko X kq)-matrix for « = —ag+1,---, Bo—1.

It is very evident that integrability conditions for (2.6) are
00 = V) 100 — Q%

OV + 0T, = U + V5T, — Qu 1 Q| — T U7



From (2.6) we have A;sa(Wa) = Wa11Qq and AgaH(WaH) = —W,Q}, which implies

2
4y, (W)
AP = supd LW, € ¢ withW, # 0
| [e% p |W ‘2 @ —Q @
tr(Ay (Wa))(A4,, (Wa))* .
= sup{ AT :We € ?aWIthWa #£0
= tr(Q.05)
= ‘Aga+1

2 2
Set Lo = tr(Q2.8) = ‘A’%‘ = ‘A;ﬁa+1 . Then the metric induced by ¢, is given by

ds? = (La—1 + Lo)dzdz. (2.7)
The Laplacian A, and the curvature K, of ds? are given by
4 _ 2 _
Nog=——""—"0300, Ky=———""—"00log(La-1+ Lq). 2.
Lafl + La 00 Lafl + La 00 Og( o ) ( 8)

Especially, let v : S — CP" be a linearly full harmonic map. Eells and Wood’s result
ct. shows that the following sequence in 1s uniquely determined by
f. [6]) sh hat the followi in CP" i iquely d ined b
A Al Al A’ Al A’
0%0%()1\7)_%...1_;%:%(1\’)_3...Lfy%\f)_%o’ (2.9)

for some i =0,1,---, N, and here Af, A’ denote A;(N), A;}(N) respectively (j =0,--- , N).
0 j
Let féN) be a holomorphic section of y(()N), ie. gféN) =0, and let fi(N) be a local section

of yiN ) such that
A =M o)

fori=1,---,N. Then we have some formulas as follows (cf. [3]):
afz‘(N) = fi(J]er) + dlog ’fi(N)‘Zfi(N)a i=0,---,N—1, (2.10)
ot =M =1 N, (2.11)
091og | N2 = 1) — ), (2.12)
99log ™ = 1) — o™ M) i — 0. N -1, (2.13)
where 1) = |f02/1 iR for i =0, N, and 1D = 1V = 0,
For convenience, we denote L(.N) = yl(.N) fort=0,1,---,N.

In the following, we give a definition of the unramified harmonic map as follows:

Definition 2.1 If det(2,8)dz"e+1dz"e+1 £ 0 everywhere on S? in (2.3) for some a =
—ag+1,--, 80— 1, we say that ¢o : S? — G(ka, N) is unramified. If
det(Q0%)dzFar1dzher1 £ 0 everywhere on S? in (2.3) for each a = —ag +1,--+, By — 1,
we say that the harmonic sequence (2.3) is totally unramified. In this case we also say
that each map ¢q in (2.3) is totally unramified.



Here dzFet+1dzho+t = % (dzka+1 ® dzFet1 4 dzhet1 @ dzka“) and the quantity
det(Q,2)dz*e+1dz"+1 is independent of choice of local coordinate. In the case k = 1,
the above definition is in accordance with that in §3 of [3].

Now recall ([4], §3A) that a harmonic map ¢ : S? — G(k,N) in (2.1) (resp. (2.2))
is said to be &'-irreducible (vesp. 0"-irreducible) if rank ¢=rank ¢ (resp. rank ¢=rank
¢ ) and 0'-reducible (resp. 0"-reducible) otherwise. We assume that ¢, in (2.3) is 0'-
irreducible, then | det Q,|?dzF>dz" is a well-defined invariant and has only isolated zeros
on S2. Under this condition, it can be checked that (cf. [11])

001og|det Qu|* = La—1 — 2La + Lat1, (2.14)

which is in accordance with (2.13) in the case k = 1. Furthermore if ¢, is &'-irreducible
and unramified, then | det ,|2dz¥=dz*> is a well-defined invariant and has no zeros on S2.
It follows from (2.14) that (cf. [11])

a1 — 204 + 6a+1 = —2k,, (2.15)
where §, = r\l/fl f52 Lodz Ndz.

At last, we review the rigidity theorem of conformal minimal immersions with constant
curvature from S? to CPY.
The Veronese sequence. Let fi(N) = (fi0, - ,fLN)T for each i = 0,--- ,N. Let f;, be
given for i,p =0,1,--- , N as follows

1! NY . P N —p\, _
ip = ————— p— —1)* k. 2.1
o=ty () 2 ) (e (210
Such a map QSEN) = fi(N)} : §2 — CPV is a conformal minimal immersion with constant

(N)

i

tm%m TN =it
2 (@ +1)(N —i)

curvature m and constant Kéahler angle ;" given by

Such a harmonic sequence qSéN), e ,(255\],\7) : 82 — CPV is called the Veronese sequence.
We always denote it by VO(N), e ,VJSN) 182 —» CPN.

Bolton et al proved that (cf. [3]) if ¢ is a linearly full conformal minimal 2-sphere of
constant curvature immersed in CPY, then, up to a holomorphic isometry of CPY, 1 is

an element of the Veronese sequence (i.e. a Veronese surface).

3 Homogeneous harmonic maps from S? to G(k, N)

An immersion ¢ : S? — G(k, N) is said to be homogeneous, if for any two points p, q € S?
there exists an isometry o of S? and a holomorphic isometry u of G(k,N) such that
o(p) = q and the following diagram communicates

S22 Gk, N)

d gl

S?2 —% 5 G(k,N),

6



ie.,
poog=uodp. (3.1)

Here we can identify o (resp. u) with an element of SU(2) (resp. U(N))(cf. [7]). All such

u form a subgroup G of U(N) and G acts transitively on ¢(S2). It’s known that such

2-spheres in G(k, N) have constant curvature, but they are non-minimal in general. Let

the complex coordinate z on S? ~ CP! be given by two complex variables zy and z1, i.e.
al

z = [(20,21)T] = [(1, %)T] (for computation convenience z = Z!) and let

SU(2) = {g = (Z ‘f) ca,b € C,laf® + |b)? = 1} . (3.2)

Then o is given by B
0(2) = g*z = [(@z0 + bz1, — bzo +az1)T). (3.3)

Especially, if ¢ is harmonic and satisfies (3.1) then it is called a homogeneous harmonic
map from S? to G(k,N). In the following we give a property of homogeneous harmonic
map.

Lemma 3.1 Let ¢ : S? — G(k,N) be a homogeneous harmonic map that belongs to
the harmonic sequence (2.3), then for each o = —ayp,---, By the harmonic map ¢o :
8?2 — G(ka, N) is homogeneous. This time the harmonic sequence (2.3) is said to be a
homogeneous harmonic sequence.

Proof: Since ¢g in (2.3) is homogeneous, it follows from (3.1) that

$o 00 =uo dp. (3.4)
Set 90 = span{ey,--- , ek, }, where eg,--- ,eg, are unit orthogonal vectors of CN. Then
from ¢, = A;ﬁo@o) we get ¢, = span{vgy+1,°* , Vko+ky }, for each @ = 1, ko, vpy4i 18
given by
ko
Vi = O€; — Z (Oej, es) e, (3.5)
s=1

since there may exist some ¢ such that vy,1; = 0, we exclude all zero vectors, so here
k1 < ko.
Set uw € U(N). By (3.5) a straightforward computation shows

ko ko
O(ue;) — Z (O(ue;), es) es = (Que; + ude;) — Z (Oue; + ude;, e5) es
s=1 s=1
ko (3.6)
=u | de; — Z (Oe;, es) es
s=1
- uvk0+i7
which implies
po(uo o)) =uo Ay (¢)) =uod,. (3.7)



On the other hand, from (3.3) ¢g 0 0 = ¢p(w), where w = _;:BZZ Since %‘i‘) = %‘fg %1;’,
then

Aibo (90 © U) = iﬁo (90) 00 = ?1 0a. (38)
It follows from (3.4),(3.7) and (3.8) that

¢ 00=uod (3.9)

which verifies that ¢ is homogeneous.
The other cases of ¢, are similar to the above. Thus we get the conclusion.
O

In the case k = 1, Veronese sequence is the standard homogeneous harmonic sequence
in CPN=1 (cf. [2]). In the case k = 2, if ¢ is a homogeneous harmonic map from S? to
HP"™, then w is an element of Sp(n+ 1) C U(2n+2) in (3.1).

4 Reducible homogeneous harmonic maps from S? to HP"

Let ¢ : S? — HP" be a linearly full harmonic map of isotropy order r. If ¢ has finite
isotropy order, then r = 2s for 1 < s < n by ([1], Proposition 3.2 and Lemma 3.10); if ¢
is strongly isotropic, then 7 = co. If ¢g : S? — HP" is a reducible linearly full harmonic
map, then by ([1], Proposition 3.7) we know that ¢ is a quaternionic mixed pair or a
quaternionic Frenet pair.

Definition 4.1 ([1]) (1) A map ¢ : M — HP" is called a quaternionic mized pair if
¢ = f®If where f: M — CP?*"*! is holomorphic and G'(f) L Jf. Here G'(f) = ImA’.

(2) Amap ¢ : M — HP™ is called a quaternionic Frenet pair if = G~ ()@ G (h)
for some integer v, with 1 < r < n + 1 and holomorphic map h : M — CPZ"*1 with
G?=V(h) = Jh. Here GO(h) =h, GD(h) = G (G (h)).

In the following we discuss the these two types in the case of constant curvature.
If ¢g is a linearly full quaternionic Frenet pair, then

(;5 _ f (2n+1) @f 21’L+1 7 (41)

where f§ (2n+1) .. fg%fll) : 82 — CP?"*! is a harmonic sequence with the linearly full

totally J-isotropic map f (2n+1)
Firstly we recall ([1], §3) that a full holomorphic map I (ntl) . 62 _y op2ntl gatisfying

f gi’fll) =J L()Q"H) is said to be totally J-isotropic; this generates a harmonic sequence

0 f (@nt1) Ao, An f(2n+1) A, f 2n+1 At Aay fész Aongs
+
From the harmonic sequence, féf;ﬂ?l =J fi(Q"H) for all ¢ so that:
2n+1 2n+1
R (4.2)

oo



and set JféQnH) = T2n+1f(2n+1) , then

2n+1
Y (2n+1) (2n+1)
‘7—2n+1’ (2n+1),5° ij = T2n+1—jf2n+17j7 (4-3)
’f2n+1 ‘
. ‘ (2n+1)|2
where Top 11— = (=1) 241 ‘f(zz’jifl) g for each 7 =0,---,2n + 1.

2n+1—j
Obviously ¢¢ belongs to the foljlowing harmonic sequence (cf. [4])

Al Al Ai{7 A’ A
0 &8 g M ponin Bo g Doy plongn) Bog oy pians Ui (g

Then we give the following proposition without proof:

Proposition 4.2 ([9], Proposition 3.1) Let ¢ : S> — HP"™ be a linearly full quater-
nionic Frenet pair of constant curvature Kg. Denote the isotropy order of ¢g by r. Then

Ky = ﬁ’ r =00, and up to a symplectic isometry of HP",

_ 2n+1 (2n+1)
9 = UVt e UV
for some U € Gopya = {U ceU2n+2), UW, 1 UT = J,11

whereWnH:antidiag{((l] _(1)>,...,<(1) _(1) )}

n+1

Remark 4.3 Since both V"™ and fofl) are Veronese surfaces in CP*" 1. It is easy
to check that such ¢o is SU(2)-equivalent, so ¢g is homogeneous. Thus all linearly full
homogeneous quaternionic Frenet pairs are given by Proposition /J.2.

If ¢g is a linearly full quaternionic mixed pair, then
o, = LM e Jfim, (4.5)

where f : 82— CP™ C CP? " (n <m < 2n+ 1) is holomorphic and f )1 JL(]m)
Obv10usly gbo belongs to the following harmonic sequence

" " . A A" A’ Al A;ni Al
&Jii;n) i(_l)...@,]ﬁm)ﬁ%_d’o)ﬂm)%... _>1i£21)$0’ (4.6)
where A’ represents A” 27m foreachi=1,--- ,m.

So the induced metric by ¢q is given by
ds? = 21 dzdz, (4.7)

where l((]m)dsz is the induced metric by the map L()m)

Then we prove



Proposition 4.4 Let ¢g : S? — HP™ be a linearly full homogeneous quaternionic mized
pair. Denote the isotropy order and Gaussian curvature of ¢g by r and Ko respectively.
Then up to a symplectic isometry of HP™, ¢g belongs to one of the following minimal
immersions.

(1) ¢po = UZ(()%H) D UK%TEI) for some U € Gapto, where Ky = 5=~
(2) ¢o = VI with Ko = 2, r = oo;

(3) n:2t+1 (t > O) and ¢0 - |:(¢0,07"' 7¢0,n)T:|7 forql :07 7t7 q2 :t+17 .z
0,415 P0,g» aTE given by

— n q —1)1 ) n =N—q1 5 — 1 —|)\2 n q2
¢O,q1 <q1>z +( ) n—q z Js ¢0,q2 ‘ ‘ % z27,

where \ is a complex parameter satisfying 0 < |\|> <1 and Ky = %, r=n-—1.

Proof: Let ¢q : S> — HP" be a linearly full quaternionic mixed pair. Since ¢q is homoge-
neous, we know that there exists a matrix u € Sp(n + 1) C SU(2n + 2) such that

wo ™ = ™ o g, (4.8)

By (4.7) we get that Ky = % and up to a holomorphic isometry of C P+ L()m)
is a Veronese surface. We can choose a complex coordinate z on C = S%\ {pt} so that
fém) =U Vo(m), where U € U(2n+2) and Vo(m) has the standard expression given in (2.16)
(adding zeros to Vo(m) such that Vo(m) € C?"*2). A straightforward computation shows

Dm+1 *

Vi™ 0 0(z0, 1) = < 0 ) Va™ (20, 1), (4.9)

*

where

(T) m—1 U\ ik i -
Dppy1 = (dij)ogm'gm, dij = (m) ( 1 ) (J _ k>a *b (=b) Jtkgi=k, (4.10)
J

Then we have

T (m) m+1 2> (m)
RRTIA A o= (F D2 v 21). 4.11
ut Vo (ZO Zl) ( 0 Dy 0 (ZO Zl) ( )

By differentiating with respect to zp in the above formula, the matrices U uU and

(Dgﬂ g2> have the same effect on all derivatives of Vo(m) (20, 21). Generally, Vo(m) (20, 21)
4

is not full in C?"*+2, so the two above matrixes are not identical. But the matrix Tl is
still the type of the following matrix, i.e.

—=T . Dm+1 *
U uwU = < 0 *> . (4.12)
Since U € U(2n+2) and u € Sp(n+1) C SU(2n + 2), we get
771 _ Dm+1 )
U uwU = ( 0 C2n+1m> , (4.13)

10



where Dy, 41 € U(m+ 1) and Copy1-m € U(2n+ 1 —m).
Set UTJn_HU = W. Then
Wl =—w, W*W =1, (4.14)

where I is the identity matrix.
Since u € Sp(n+ 1), from (4.13) we have

D1 0 ) = T <Dm+1 ) >
— | W =W . 4.15
< 0 G 0 Conirm (4.15)
= Wi W, : .
Set W = <W; W;z> with Wi1 = (Wki)o<p 1<pm- Then (4.10) and (4.15) yield

wy = 0, k—i—l#m

Case [. r is finite. It follows from the harmonic sequence (4.6) that m > r + 1. Thus
for each 1 < a < 7, we have i&m) 1J L(]m), which are equivalent to the following equations

T T___
. (Vogm%(m) u’ Jn+1U> =0 tr (vcsm)VO(m) W) =0, a=1,---,r (4.17)

hold.
T
Set Vogm)VO( m) <V11 O) with V11 = (U”)O<Z]<m, then

3 M=\ itjth—ask
vy = 1+zz 1/ Z >< k: )z z". (4.18)

Since r is finite, we know wq,, # 0. From (4.16) and (4.18), we get
T T__
tr (Vﬁﬁ)l%(m) W) =0, tr <v,gm>1/0(m) W) £0, (4.19)

which implies that ﬁsl)l is perpendicular to J L()m), but L(;”) is not perpendicular to J L()m)
by (4.17).

Hence we have

m=r-+1. (4.20)
Let r = 2s. It follows from (4.16) that
Wi = wmoWsy1. (4.21)
Then the corresponding W is given by
= [(WwmoWsi1 W12>
W = m , 4.22
< Wa1 Waa (422)
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where Wy; is a (2n 4+ 1 —m) x (m + 1)-matrix.
Define a set
Gw £ {UeU@2n+2), UWU" = J,1}.

For a given W, the following can be easily checked
(i) V Ae Sp(n+1), U € Gw, we have that AU € Gy;
(i) VU,VeGy, FA=UV* € Sp(n+1) s.t. U =AV.
In the following, in order to get the explicit expression of ¢, we discuss W respectively
by the two cases that n is an even or odd.
Case I.1. n is an even, i.e. n =2t (t > 0).
In this case, since m > n, i.e. m+1 > 2n + 1 — m, then from (4.14) and (4.22) we

know Wy, = O, i.e.
_ (Ws1 O
W = < 0 ng) , (4.23)

where Wap € U(2n + 1 —m).
Now we claim that m = 2n + 1 (s = n). Otherwise if m < 2n + 1, then s < n and for
any given W, we can choose proper U € Gy such that J UVO(m) = —UV#Lm), then up to
Sp(n+ 1),

¢, = UV @ UV,

Obviously ¢g has image in HP? , so it is not linearly full. It contradicts our assumption
that ¢ is linearly full.

Furthermore we get Ky = ﬁ, W = Wpy1 and Gy = Gapto. Then the proof of
Proposition 4.2(see ([9], Proposition 3.1)) gives that up to Sp(n + 1),

9, = UVE" Y @ UVTLEY,

where U € Gopta.
Obviously it belongs to the case (1) with Ky = %ﬂ, r = 2n.

Case 1.2. nis anodd, ie. n=2t+1 (¢t >0).

In this case, if m > n, then by the same discussion as Case [.1. we conclude that
m = 2n + 1 and up to Sp(n + 1), the corresponding ¢y belongs to the case (1) with
Ky = %—H’ r=2n.
If m = n, then the corresponding Wa; in (4.22) is a (n+1) x (n+ 1)-matrix. If |w,g|> = 0,
then Wy1 = O, which implies f,(nm) 1J f(gm), SO ¢q is strongly isotropic. It contradicts our
assumption that the isotropy order  is finite. If |w,g|? = 1, then the corresponding ¢y is
not linearly full.

12



Now We assume 0 < |wyg|? < 1. Denote w,o by A. Then we get the type of W =
Ul J,1U € U(2n + 2) as follows:

0 0 0 0 (=)™ W1 42 Tre W1 2n42
0 0 0 (=™ 'x 0 W2 n+2 S W22n42
0 0 . 0 0
A 0 0 0 0 Wptlnt2 0 Wpgl 2n42
—Wint2 —W2pt2  cc —Wppt2  —Wpilpg2 0 Tt Wpa22n42
_w1,2n+2 _w272n+2 o _wn,2n+2 _wn+1,2n+2 _wn+2,2n+2 o 0
(4.24)
where 0 < [A]2 < 1.
—T . .
From WU = U7TJ,1, the corresponding U = [e1, €2, , €2n11, €2n+2]T satisfy
€2¢ ZWéga_l, a=1,--- ,n+1, (4.25)
where e; are unit column vectors in C2712,
Generally, suppose {e1, €2, -, €24-3, €20—2 = Weaq_3} (o > 2) are mutually orthogo-
nal, we choose a unit column vector esq—1 € C2**+2 such that {e1,€9, - ,€20-3,€20-2, €201}

are mutually orthogonal. Set esy, = Wean_1, then
(€20, €20-1) = a1 WTesa1 = —tr(en—165, W) =0,
and for any 2 < 8 < a,
T T T T -
(€20, €28-3) = €30 1 W' €253 = —€5q_1Weap_3 = —€34_1€28-2 = — (€2a—1, €23-2) =0,

(€20; €28-2) = ega_1WTW§2,373 = 65(1_152,873 = (e2a—1, €23-3) = 0.

Thus {e1,e2, -, €20-3, €20—2, €201, €24} are mutually orthogonal.
Without loss of generality, in this case for p =0, --- , ¢ we choose
T
€2pt+1 = 07 7O>1707"' ,0 ) (426)
——
P

then the corresponding eg,42 is given by

T
€2p+2 = Wézp-‘rl = 07 o 70) (_1)p)\) O) e 707 —Wp41mn+2," " —Wp+1,2n+2 . (427)
n—p
Observing (4.26) and (4.27) we find {ey, ea, -+, e€2:4+1, €242} are mutually orthogonal.
Next for g =t + 1,--- ,n we successively choose
B B T
g AWnt1—qn+2 g AWnt1—q2n+2

eagi1 = | 0,---,0,4/1—|N2,0,---,0,(—1)r e Dtments o (_qyn—q o ntlogants

o+ A (PR (e

! (4.28)
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then the corresponding eaq42 is given by
T

€2¢q+2 = 0, ce ,O, * . (4.29)

From (4.26)-(4.29) we obtain the type of the corresponding U, furthermore we have

ot (G G

(4.30)
where p=0,--- ,tandg=¢t+1,---,n
So the corresponding ¢g belongs to the case (3) with Ko =2, r=n — 1.
Case II. r = oo. In this case, it follows from ([9] Proposmon 3.2) that up to
Sp(n +1),
do = UV & IUV

with Ko = % for some U € Gapqo.
For convenience, we choose

10 0 0 0 0 0
0 0 0 0 0 0 (-1)°
01 0 0 0 0 0
00 --- 0 0 0 (=Dt 0

uv=1. . . ) . . . ) ) € Gan2.
00 0o 0 (-1t 0 0
0 0 1 0 0 0 0
0 0 0 (—1)" 0 0 0

A straightforward calculation shows

UVE)n = |:(17O>\/§Z>Oa"' 7zn7O)T:| )

IOV = [(0,1,0,v2z,-+ 0,27
which implies

bo = [(1, V22, ,z”)T} . 5% 5 CP" < HP".

Hence, in this case, up to Sp(n+1), ¢ is the composition of Vo(n) with the totally geodesic
inclusion of CP™ in HP"™ and belongs to the case (2) with Ky = %, r = 00.
In summary we get the conclusion. |

Remark 4.5 We conjecture that all linearly full quaternionic mized pairs of constant
curvature are given by Proposition 4.4.
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5 Irreducible homogeneous harmonic maps from S? to HP"

Now, we consider the irreducible harmonic maps ¢ : S? — HP" of isotropy order r. In
the following we consider the two cases of finite isotropy order or strongly isotropic.

At first we consider the case of finite isotropy order, i.e. r =2s (s = 1,---,n —1).
Here we exclude the case of s = n, as if r = 2n then the corresponding ¢ is reducible by
([1], Lemma 3.10). We state the following lemma by ([1], Theorem 4.7):

Lemma 5.1 ([1]) Let ¢ : S? — HP™ be an irreducible harmonic map of finite isotropy
order v, where r = 2s (s = 1,--- ,n — 1). Then there is a unique sequence of harmonic
maps ¢ : S? — G(2,2n+2) (i =0,1,---,2) wherel =1,--- ,n — s such that

(i) ¢° = f((Jm) &> Jfém) for some holomorphic map f((Jm) 15?2 5 CP CCPH (n<m<
2n+1) satisfying i]()m) € Ji(()m) forl <p < 20+42s but L(?m) e Ji(()m) forp=204+2s+1,
that is, ¢° is a quaternionic mized pair of isotropy order 21 + 2s;

(ii) ¢* =

(iii) for k = 0,1,--- ,1 — 1, ¢***1 is obtained from $>* by forward replacement of some
holomorphic subbundle of ¢** not equal to the image of the first & -return map of ¢2*.
Then the inverse of this transformation is given by ([1],Proposition 4.6(a)) and is given
by backward replacement of the image of the first 0" -return map;

(iv) for k = 0,1,---,1 — 1, ¢***2 is obtained from ¢***1 by backward replacement of
éé N szﬂ where ﬁk s the unique holomorphic subbundle of 92’”1 not equal to the
image of the first &' -return map of ¢***T1 such that Ifm(A;S%+1 \Bk) L JIB,. In fact, it is
the operation in ([1],Proposition 4.5(b)) with BJ‘ qb%H equal to the antiholomorphic
subbundle B in ([1],Proposition 4.5(b)). Then the inverse of this transformation is
given by ([1],Proposition 4.5(a)) and is given by forward replacement of the image of
the first & -return map.

Furthermore,
(v) for k=0,1,--- l — 1 »*k . 82 5 HP" is a quaternionic harmonic map;
(vi) for k=0,1,--- ,1—1, **1: 82 & G(2,2n + 2) satisfies G (¢2F+1) = Jp2h+1;

(vii) fori=0,1,-- ,2l, the isotropy order of ¢' is 21 4+ 2s — i.

Let ¢ : S? — HP™ be a linearly full irreducible homogeneous harmonic map of finite
isotropy order. By Lemma 5.1 we know the construction of harmonic maps is reversible.
Then for i = 0,1,---,2l — 1 the corresponding harmonic map ¢’ is obtained by the direct
sum of two line bundles of the harmonic maps in the harmonic sequence of ¢**!. They are
all homogeneous. Moreover each harmonic map in the harmonic sequence generated by ¢’
is also homogeneous by Lemma 3.1. In the following we use Lemma 5.1 to determine all
irreducible homogeneous harmonic maps ¢ of finite isotropy order.

In (i) of Lemma 5.1 ¢° belongs to the harmonic sequence as follows:

A A . A A ;n— i
0 &2m g fim ‘i(—”...ﬂJﬁ ¢° fm>—> st pm A (5.)
Whereqbo—f @Jf . In fact we find m = 2n+1 (21 +2s = 2n) or m = n =
2t4+1 (2l+2s=n—-1) by Proposition 4.4. At this time the isotropy order of @0 i 1s m —1.

By (iii) of Lemma 5.1 and (5.1), there exists a local section Vj = xofo + Jfo such
that V, is an antiholomorphic subbundle of @0, and ¢! is obtained from ¢° by forward
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replacement of Vi, i.e.
o' =Vy@ £, (5.2)

where zg is a smooth function on S? expect at some isolated points, and here V denotes
the line bundle generated by Vj.

Since V, is an antiholomorphic subbundle of #°, then we get 740 (0Vo) € V, which implies
the equation B

0o + 200 log ]féQnH)\z =0 (5.3)
holds.
Then ¢! with isotropy order m — 2 belongs to the harmonic sequence as follows:
" A A’ A/
A// — A/ 1 1 l A:n7 ’
()(i".]ig:?) Jé—”---&.]ié””ﬁ%ﬂqﬁ f(m ..._>1i£;n)‘440?
(5.4)

where gbl = qul and gi)l d)l
Since d)o is homogeneous it has constant curvature. Next we compute the geometric
quantities of QSO to determine its explicit expression. We choose the following orthogonal
unit vectors in C?+2
Wo I W A £ 33"
= 7,62 = —F=,3 = 757,64 = — <, = ———,€_1 = —7 <, (5.5)
VoI ™= ™" IVl ™) ™) 15"

and extend them into the local unitary frame with respect to ¢}.
Set Wo = (e1,e2), W1 = (es, ea), Wa = (e5), W_1 = (e—1), then by (2.6) we get

0
Qo = co=(0 ) o = e |, 5.6

950 — T 0 log | ™) (2 (m)
where Ao = PRI g = to = i with |%|2=(|:vo|2+1)\f(§m)l2-

A straightforward computation shows

1
detQ[2dz2dz? = ———— 1M 1™M d2?dz? 5.7
N A o0
Lo = Moo + pofig + tolo, (5.8)
Li=L_=1". (5.9)

We claim that T ‘2 )2 has no zeros on S2. Otherwise if z = 2y is a zero point of

m, then rank Qo|,—,, = 1 by (5.6), which implies that ¢§ is not homogeneous. It’s
a contradiction.
So |detQ|?dz?dz? # 0 everywhere on S2. It follows from (2.15) that

01— 260 + 61 = —4, (510)
where 0, = r\lﬁ f52 LodzZ ANdz (a=—1,0,1).

Since all harmonic maps in the harmonic sequence (5.4) have constant curvature, then
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we can choose a complex coordinate z on C = S2?\ {pt} so that the induced metric
ds?5 = (Lo + L_1)dzdz by ¢} is given by
0

ds>

and from ([3], §3) we get

m) _ G+ D)m—1)  m) _ . S S
L = At27 6, ' =(@+1)(m—1i), i=0,---,m—1 (5.12)
It follows from (5.9) and (5.12) that
01
= . 1
YT 1+ 22)2 (5.13)

Analyzing (5.11) and (5.13) we find for i = —1,0, 1,

0i

Using (5.7),(5.9),(5.10),(5.12),(5.14) and (2.14), we obtain
d0log(|zo* 4+ 1) = 0. (5.15)

It follows from (5.7) that |zg|> + 1 is globally defined on C and has a positive constant
limit ¢; as z — oo. Thus from (5.15)

lzol? = ¢1 — 1. (5.16)
In view of (5.3) we have J(Zo| fém) |?) = 0, which implies

hiz) _ _ hz)

To = = 1
RV 17
where h(z) is a holomorphic function on C.
It follows from (5.16) and (5.17) that
\h(2)|? = (e1 — 1)1 + 22)*™. (5.18)

Now we claim that ¢; = 1. Otherwise if ¢; # 1, then the holomorphic function h(z)
includes the factor such as (1 + 2%), which is impossible. So xg = 0 and

o' =Jfm @ fim). (5.19)

By (iv) of Lemma 5.1, (5.4) and (5.19), there exists a local section V' = ylfl(m) +Jf0m)
such that ﬁj‘ N Ql =V is an antiholomorphic subbundle of Ql, and ¢? is obtained from ¢!
by backward replacement of V, i.e.

P =XaJX, (5.20)
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where X = W f1( J fo and y; is a smooth function on S? expect at some
1

|f(m) |2
isolated points.

By the properties of the harmonic sequence (5.4) we know T(pl)L (0V) = JX, which implies
y1 = 0 by a straightforward computation. So

2 _ f(m) (m)
o"=f"M eI (5.21)
Then ¢? with isotropy order m — 3 belongs to the harmonic sequence as follows:

A// A// A/ A/
A A ¢% 2 2 2 Al Al
0&..%&‘]&;”)Q@Q_Iﬁégﬁgfgigm)ﬁ...ﬂo’ (5.22)

where ¢? = ¢%, ¢* = Jf™ & ™ and ¢* = J¢?.

1
Now we prove

Proposition 5.2 Let ¢ : S? — HP™ be a linearly full irreducible homogeneous harmonic
map of finite isotropy order r with constant curvature K. Then up to a symplectic isometry
of HP", ¢ is one of the following:

(1) For somep=1,--- . n—1, ¢ = UK]()%H) ® UKQHH) with some U € Gopy2, where

) 2n+1—p
K = sponriopgangas 7= 20— 2p;
(2)n=2t+1(t > 0) and for somep = 1,---,t =1, ¢ = [(¢po,- " ,¢p7n)T}, for

G =0, t,@a=1t+1,---,n, Opg, Ppg. are given by

P = Qﬁ%x*ﬁg?9<mf?(ﬁMW%+@wmﬂf*wﬂ*ﬁ,
bpgo = V1 — A]Z\/@Zqz—p Zk:(_l)k <pQ_2 k) (n 7{(&) (z2)F,

wherle )\2is a complex parameter satisfying 0 < |[A\? < 1 and K = m,
n—1-—2p.

T =

Proof: In Lemma 5.1 we add the condition of homogeneous. For any 0 < k < mT_?’ we
prove

2%k+1 _ 7 p(m) 2k+2 _
P =TI @ £, 6 = 1 @ I (5.23)
hold by induction on k. If K = 0 then
o =If o £, ¢ = 1 e I (524)
hold by (5.19) and (5.21).
Assume now that the assertion is correct for 0,--- ,k — 1. Consider the case of k (k <

mT_?’) By induction hypotheses we have
¢ = eI, (5.25)

Then ¢2* with isotropy order m —1—2k (> 4) belongs to the harmonic sequence as follows:

A% A¢2k 2%k A; 2%k A% 2%k A¢1 A;ﬁk—l 2%k A;Sk 2k+1
0™ ... — o7 %qﬁ — ¢ — o — by f2k+1 . #O (5.26)
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where ¢ = ¢°F, for a =1, , k, ¢°F = I @ f,m and ¢** = J¢>*.

By (iii) of Lemma 5.1 and (5.26), there exists a local section VZ* = mkflgm) + Jfkm)
such that ng is an antiholomorphic subbundle of qb%, and ¢?*1 is obtained from ¢?* by
forward replacement of (V2¥)4+ N ?2]“ JV3F e,

¢2k+1 V2k Z%kv (527)

where V¥ = 7T(¢2k)i<8Jng>, ie. V=7 ll,(;nl.]fkm1 + fk+1, x) is a smooth function on
S? expect at some isolated points, and here ng denotes a line bundle consists of Vzk’ .
Since V2* is an antiholomorphic subbundle of ¢, then we get T g2k (0VEF) € V3F| which
implies the equation B

Oz, + 1,0 log |fk(/,m)|2 =0 (5.28)
holds.

In fact ¢?**! with isotropy order m — 2 — 2k (> 3) belongs to the harmonic sequence as
follows:

AL AT ok Ao 2%+1 A0} 2k+1 Ab Aot 2k+1 A
0<_"'<_?—1 — 9 491 _>"'49k+1 f2k+2 4(0’29)
5
where ¢2]€+1 — J¢2k+1 ¢2k+1 — ¢2k+1’ and fOI' a = ¢(2)Z_+11 — WQ/{: Va-i,-la

PP = Jqs?’fl with W2F = (V2I) - N>, V2| = e (av k), but VIk | = f% oy
Since $?**! is homogeneous, it has constant curvature, moreover all the harmonic maps
in the harmonic sequence (5.29) are homogeneous and have constant curvature. Next we
compute the geometric quantities of the corresponding harmonic maps to determine their
explicit expressions. We choose the following unit vectors in C2"+2

o JVIQk - JVO2k: - VOQk V2k
€1 = V2F , €2 = |V02k|7€3 = ‘V2k|764 ‘V2k|
2k V2
_ (07
€20+3 = [W2R] » €204+4 = |V2k l,for a=1,--k, (5.30)
S
€2k+5 = (mJS .
|fok41

Set W, = (62a+1, 62a+2), fora=0,1,--- ,k+ 1, and Wito = €2py5, W_1 = JWhs.

Since for each a = 0,1,---,k the harmonic map ¢2**! is irreducible and the isotropy
order > 3, then Wy_1, Wy, W1 are orthogonal and it is suitable to extend them into the
local unitary frame with respect to ¢2**1. By (2.6) we get

Aot
2k+1 __ 0 0
Q" = (0 m) , (5.31)

Jou P £ PH AT
\V02k||V12k|
DU P and [V = PR 7P+ AP

A straightforward computation shows

= = (m) 2
by = 0T —Zr0log |f, | with ‘VO2I<:|2 _ (|$k|2 +

where \g = pp = — ENEES]

|detQ2F 1 2d22d7% = 2427 dz2dz?, (5.32)
0 ’xk’2 + 1
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L2 = 2R (5.33)

2k+1 _ 7(m)
LT = lopiq- (5.34)
For each o = 0,1,--- ,k the harmonic map ¢2**! is irreducible and homogeneous, so

|detQq|?dz2dz? # 0 everywhere on S2. Tt follows from (2.15) that

2k+1 2k+1 | s2k+1
G2RHL _op2htl 4 g2kl — 4 (5.35)
where §26+1 = 2n\1ﬁ Joo L2 dz N dz (= 0,1, , k).
Since all the harmonic maps in the harmonic sequence (5.29) have constant curvature, then
we can choose a complex coordinate z on C = 2\ {pt} such that for a = 0,1,--- ;k+1

the induced metric dszzk+1 = (Likjll + L2+ dzdz by ¢2F+! is given by

5(2114_451 4 §2k+1

dsiikﬂ = ﬁdzdz, (5.36)
and from ([3], §3) we get
zgm>zw, 5™ = (i+1)(m—i), i=0,-- ,m—L (5.37)
It follows from (5.34) and (5.37) that
52k+1
72k+1 — _ Oktl (5.38)

BT (14 22)2
Analyzing (5.35), (5.36) and (5.38) we find for « = —1,0,1,--- , k,
R (5.39)
@ (1+ 2%)?
Using (5.32),(5.33),(5.35),(5.37), (5.39)and (2.14), we obtain

k(m —k+1)|zg? + (k+ 1)(m — k)
\xk\z—i—l

90 log =0. (5.40)

k(m—k+1)|zg )2 +(k+1)(m—k)
[zk[?+1
c1 as z — 0o. Thus from (5.40)

k(m —k+1)|xg? + (k+ 1)(m — k)

Since is globally defined on C and has a positive constant limit

P = . (5.41)
It follows from k(m — k + 1) # (k+ 1)(m — k) that
i |* = ¢, (5.42)
where c is a constant.
In view of (5.28) we have 5(5k|fl£m)\2) = 0, which implies
o= 1el) () (5.43)

R (14 zz)m—2k’
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where hg(z) is a holomorphic function on C.
It follows from (5.42) and (5.43) that

|hi(2)]2 = c(1 4 27)?m 2k, (5.44)

Now we claim that ¢ = 0. Otherwise if ¢ # 0, then the holomorphic function hg(z) includes
the factor such as (1 + 2z%), which is impossible. So z;, = 0 and

92k+1 _ ,]L(c ka (5.45)

By (iv) of Lemma 5.1, (5.29) and (5.45), there exists a local section V2F+1 = yk+1féﬂ+

J fk such that BL N (b%“ V21 ig an antiholomorphic subbundle of ¢2k+1 and ¢2k+2
is obtained from ¢?*! by backward replacement of V2**1 i.e.

?21434—2 — X2k+1 D JXQIG—&-I’ (546)

where X2Ft1 =

|f(m)‘2fk+1 ‘;(’“ﬂf)l‘QJfkm) and g1 is a smooth function on S? expect at
some isolated points.
By the properties of the harmonic sequence (5.29) we know mg2x+1y1 (QV2hH1y = J x2k+L

which implies yx4+1 = 0 by a straightforward computation. So

2k+2 __
¢*H2 = fm) & g pim), (5.47)

and the isotropy order of ¢?**2 is m — 3 — 2k (> 2).
Hence it verifies (5.23) by (5.45) and (5.47).
In fact in the harmonic sequence (5.1), #° only belongs to the case (1) or (3) of
Proposition 4.4 by Proposition 4.4. Thus the conclusion follows from (5.23).
g

At last we consider the case of strongly isotropic. Let ¢ : 2 — HP™ be a linearly full
irreducible strongly isotropic harmonic map, then ¢ must belong the following harmonic
sequence:

Ago A;;O—(a—l) AN A;O 1 A:bo A:"O 1

O—-- ¢ &= <—<;50 gb# S5 el 0

(5.48)
where for 5 =1,---, ?[15 = JQ% and for g =1,--- ,q, rank@% =2 forf=a+1,---,
rank Qg =0or 1.

We give a corresponding Lemma as follows.

Lemma 5.3 Let ¢ : S? — HP™ be a linearly full irreducible strongly isotropic harmonic
map, then from ¢ by 2a.— 1 steps of proper forward or backward replacements, we get the
harmonic map ¢**~! : 82 — G(2,2n + 2), which is strongly isotropic and belongs to the
following harmonic sequence:

A A Al
A" A ¢2_0¢*1 _ ¢2a—1 _ ¢20/ 1 Al A;n— Al
0¢lm ... e gpim) (2L g2e—l 0 g2a—l B0, p(m) Dsy - pm) Zmy )
<s -1 20 Ls Im

(5.49)
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where 201 = ¢! ¢2a L= 32t with f™ 3 0 §2 5 CP™ C CP2H and A,
denotes A”fm) (i=0,--- ,m).
Furthermore, let B be the holomorphic line subbundle of ¢2°‘ L defined by KerA¢2a 1. Let

&% be obtained from ¢**~1 by backward replacement of o = ﬁL <Z>2o‘ L Then ¢ is
quaternionic. Moreover, $** is a quaternionic mized pair or a quaternionic Frenet pair.

Proof: In the harmonic sequence (5.48), if rank Qg =1 let 7 be the holomorphic line
subbundle of qﬁo defined by KerA’ b0

of 1 N Qg belongs to the following harmonic sequences

then ¢l | obtained from ¢2 by backward replacement

A%y A;ﬁl( Lo A AL A A
0<_...<_‘“Q1_a e <_09(1)4 ﬂQQ(lx_l —ost ¢1 ... —0, (5.50)

where for g = 1"”’91—6 :Jgg_l and for 6 =0,--- ,a— 1, rank?éz% for B=a,- -,
rank @; =1.

Reusing the above methods we will get the wanted harmonic sequence (5.49) from (5.50)
by 2a — 2 steps of backward replacements.

If rank ¢7 | = 0, let  be any holomorphic line subbundle of ¢, then ¢) = v & Jv,
using ([1], Lemma 4.1) we get a new harmonic sequence which is just (5.50). Similarly we
can get (5.49).

The rest follows from ([8], Lemma 3.3). O

Let ¢ : S — HP" be an irreducible strongly isotropic homogeneous harmonic map,
then from Lemma 5.3 we know the corresponding harmonic map ¢ is also homogeneous
and strongly isotropic. Through Proposition 4.2 and 4.4 we get ¢>“ is given by

?204 _ f (2n+1) f(2n+1 or ?2cx — ién) @Jién)’ (551)

where £ = UV and £ = UV™ with U € Gapo.
In the following we discuss the above two cases respectively to prove the following
Proposition.

Proposition 5.4 Let ¢ : S?> — HP" be a linearly full irreducible strongly isotropic homo-
geneous harmonic map with constant curvature K. Then up to a symplectic isometry of
HP", for somep=1,---, [%], ¢ 1s given by

0=V}
with K = W Here [%] denotes the mazimal integer which is not more than 3.
Proof: Case 1. 920‘ S (2n+1) @ £2n+1) - Obviously ¢2* belongs to the harmonic sequence

“n+1
(4.4). In (5.49) we choose a local section V = :cnf,?"“ + fn%Jr1 such that

(2n+1)
Pt =V fAr, (5.52)
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where z,, is a smooth function on S? expect at some isolated points and z,, # 0.
This time ¢?*~! belongs to the harmonic sequence as follows:

A Al 1 A

0 & . 2 ponty BT ooy WL geant ATT pansn D g (553
where 2 = J¢** " and ¢2* " = ¢
Since Ad)ga (p? ) = fﬁ:‘;‘l) then we get by (5.52)
Tga—yL (AV) = fOIFD, (5.54)
which is equivalent to the equation
Oy — 22 + 2,01og 12"+ =0, (5.55)

hold. From (5.53) we choose a local unitary frame with respect to ¢5® ' in C*"*2 as

follows:

(2n+1) (2n+1)
IV o Dnia \% St
€1 = ‘ |7 (2n+1) =P €4 = (2n+1)
i | [foio | 5.56
(2n+1) f(2n+1) ( . )
1
€200—1 = (2n+1) 9 €20y — (;;H_lo)z fOI" o = 3, e ,n “l— 1
‘ n+a | | n+1l— a‘

Set Wy = (e1,e2), Wi = (e3,e4), Wa = (e5), W_1 = (eg), then by (2.6) we get

0
Ao to P
Qo = < , M =(0 =), Q= s (5.57)
n+1 — ?
po 0 £ (=t Tesa
o *l(2n+1)Tn+1|f,,(LG+1)|2 = l(2n+1)T |f<2n+1)|2 l(2n+ )7 ‘f(2n+1)|
_ n—'n +1 __ _ nlJn — n—1 n+21/n42
where )\0 = VP2 , to = 7 (2n+1)||v| y MO = V]

n+2
with |V[2 = (|Jzn|? + 1) £ D12 and 7 (i = n,n + 1,n + 2) is given by (4.3).
A straightforward computation shows

23,2322 \%\4 (2n+1);(2n+1) ; 2
|detQ|“dz*dz* = - ]2+l(2n+1)) Lyyr lpq dz dz?, (5.58)
Ly=L, =12, (5.59)

Since ¢p® ! is irreducible and homogeneous, so |detQ|?dz?dz? # 0 everywhere on S2. Tt
follows from (2.15) that
0_1— 20+ 61 = —4, (5.60)

where §; = ﬁ f52 Lidz Ndz (i =—-1,0,1).
Since all the harmonic maps in the harmonic sequence (5.53) have constant curvature,

then we can choose a complex coordinate z on C = S2\ {pt} such that the induced metric
dszza,l = (L_1 + Ly)dzdz by d)20‘ Lis given by
0

= LT Gz, (5.61)



and from ([3], §3) we get

@) _ [+ 1)@2n+1-1) 5@t _

l
t (1+22)2 B

(i+1)@2n+1—1i), i=0,---,2n. (5.62)

It follows from (5.59) and (5.62) that
0_1

Li= e (5.63)
Analyzing (5.61) and (5.63) we find for i = —1,0, 1,
L= (1—1—52'2')2 (5.64)
Using (5.58),(5.59),(5.60),(5.62),(5.64) and (2.14), we obtain
5 |zn|?
00 log [W] =0. (5.65)

|zn |
‘ﬂtn‘2+l£12n+l)

Thus from (5.65)

Since is globally defined on C and has a positive constant limit ¢; as z — co.

ks
o (5.60)
It follows from (5.62) and (5.66) that
c
e (5.67)

where c is a constant.
In view of (5.55) and (5.67) we have ¢ = 0. Then x,, = 0, which contradicts the fact that
xn 7 0. So this case doesn’t occur.

Case II. ¢*® = f(()”) o J L()"). It follows from the proof of Proposition 5.2 that for

k=1,---.,n —71, 920‘_2’“ is given by
o = g I, (5.68)

where f,gn) =U Vk(n) with U € Gapq2 and the corresponding constant curvature K =
2

2k(n—k)+n"
Hence we get the conclusion.

|

By Proposition 4.2, 4.4, 5.2 and 5.4, we obtain a classification of homogeneous minimal
2-spheres in quaternionic projective space HP" as follows:

Theorem 5.5 Let ¢ : S? — HP™ be a linearly full homogeneous harmonic map of isotropy
order r with constant curvature K. Then up to a symplectic isometry of HP™, ¢ is one of
the following:
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(1) For somep=0,1,--- ,n, ¢ is given by

¢ =0V g UuvED U € Gongs

. _ 2 _ _ 2 _ _ .
with K = ST T—p) 2T and r =2n —2p <K = amr T 400 when p = n),
(2) For somep=20,1,---, [%}, ¢ is given by
o=V
. _ 2 _ .
’w’Lth K = W andT = +OO,

(3) n =2t+1 (t > 0) and for some p = 0,1,--- ,t =1, & = |(¢po,- - ’¢p7n)T}, for
g1 =0, t,@2=t+1,--- 0, Opg, Ppg. are given by

n q1 n—qi k—p=k N p—k=n—q—k ;
— E ’ —1)* q1+k—p 1)1 tP) P q1
¢pﬂ1 <q1) - ( ) <p o k> < k > <’Z < + ( ) z z .7) I

b = VTR ()2 D0 (2, ()

where \ is a complex parameter satisfying 0 < [A\? < 1 and K =
n—1—2p.

2

Wnp)tn’ |

Remark 5.6 (a) The case (1) is just the series of SU(2)-equivariant minimal 2-spheres
in HP™ given by ([13], Proposition 7.1).
(b) The case (2) is contained in totally geodesic submanifold CP™ C HP™. In this

case, since there exists a Sp(n) matrixz which transforms K;,n) into Kfln,)p, then Zén) and

zg”_)p are congruent in HP™ (but they are not congruent in CP™). So here we omit the
cases of p > [%]
(c) The case (3) is not totally geodesic and exists only when n is odd. In this case, for

somep=t,---,2t (=n—1), ¢ is given by
— ¢(n) (n)
¢ ip @Jip ,

where fi(,n) = UVp(n) and U is given by (4.26)-(4.29).

A straightforward computation shows that these ¢ are homogeneous but non-minimal in
HP™. So we obtain the conclusion that a homogeneous 2-sphere in HP™ may be non-
mainimal.

Theorem 5.5 gives all homogeneous minimal 2-spheres in HP" and shows that they
contain those given by ([13], Proposition 7.1.), even more than those in the case of n is
odd. Of course a natural problem that how to decide all homogeneous (non-minimal)
2-sphere in HP" deserves further consideration.
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