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Abstract. Panel count data occur in many clinical and observational stud-

ies and in some situations the observation process is informative. In this

article, we propose a new joint model for the analysis of panel count data

with time-dependent covariates and possibly in the presence of informative

observation process via two latent variables. For the inference on the pro-

posed model, a class of estimating equations is developed and the resulting

estimators are shown to be consistent and asymptotically normal. In addi-

tion, a lack-of-fit test is provided for assessing the adequacy of the model.

The finite-sample behavior of the proposed methods is examined through

Monte Carlo simulation studies which suggest that the proposed approach

works well for practical situations. Also an illustrative example is provided.

Keywords. Estimating equation; Informative observation process; Joint

modeling; Model checking; Panel count data.

1 Introduction

Panel count data usually occur in longitudinal follow-up studies on recurrent events in which

study subjects can be observed only at discrete time points rather than continuously. Such

data frequently occur in medical periodic follow-up studies, reliability experiments, AIDS

2Corresponding author. zhx math@163.com (H. Zhang)
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clinical trials, animal tumorgenicity experiments, and sociological studies (Kalbfleisch and

Lawless, 1985; Thall and Lachin, 1988). For the analysis of panel count data, most previous

research has been done under the assumption that the recurrent event process and the

observation process are completely independent or given covariates. For example, Sun and

Kalbfleisch (1995) and Wellner and Zhang (2000) studied nonparametric estimation of the

mean function of the underlying counting process arising from panel counts; Sun and Fang

(2003), Zhang (2006) and Balakrishnan and Zhao (2009) presented nonparametric tests for

the problem of nonparametric comparison of the mean function of counting processes with

panel count data. Sun and Wei (2000) and Zhang (2002) investigated regression analysis

of panel count data, the former developed some estimating equation-based methods, while

the latter proposed a pseudolikelihood approach. Tong et al. (2009) and Zhang, et al.

(2013a) studied the variable selection and estimation of panel count data. He et al. (2008)

investigated regression analysis of multivariate panel count data.

In many applications, the independence assumption between the recurrent event process

and the observation process may not be true. For example, in the bladder cancer study,

the occurrence of bladder tumors of a patient and the clinical visit times may be related

as discussed in He et al. (2009), Huang et al. (2006), Wellner and Zhang (2007), Liang et

al. (2009), Lu et al. (2009) and Sun et al. (2007b), among others. It is well known that

when the assumption of non-informative observation times is violated, the methods relying

on such an assumption may yield biased results. However, there exists limited research

on the analysis of panel count data for the situations where the recurrent event process

may be correlated with the observation process given covariates, that is, the observation

times may be informative. For example, Huang et al. (2006) studied nonparametric and

semiparametric models that allow observation times to be correlated with the recurrent

event process through a frailty variable. Sun et al. (2007) investigated semiparametric

models for the observation process and the recurrent event process, where both processes

may be correlated through a latent variable or frailty. He et al. (2009) proposed some

2



shared frailty models and developed the estimating equations for estimation of regression

parameters. More results on related topics can be found on the monograph Sun and Zhao

(2013).

Recently, Buzkova (2010) considered panel count data regression with the observation

time process are predicted by time-varying factors such as the outcome observed at the last

visit. Zhao, et al. (2013) proposed a general and robust estimation approach for regression

analysis of panel count data with related observation times. Zhang et al. (2013b) studied

a joint model for multivariate panel count data with informative observation times. Here

we note that all the proposed method cannot deal with the situation where recurrent event

process and informative observation times depend on time-dependent covariates. Thus,

there is clearly a need for an analysis method that can directly model panel count data with

informative observation times and time-dependent covariates. In this paper, we consider

situations in which both the recurrent event data and the observation times depend on

time-dependent covariates and propose a new joint model using two latent variables. The

proposed joint models are flexible because no parametric assumptions on the distributions

of the latent variables are required and the dependence structure of two latent variables is

left completely unspecified.

The remainder of the paper is organized as follows. In Section 2, we introduce some

notation and describe the proposed models that will be used throughout the paper. In Sec-

tion 3, an estimating equation approach is developed for the estimation of the regression

parameters. Also the asymptotic properties of resulting estimators are established. Sec-

tion 4 presents a model checking procedure. Section 5 reports some simulation results for

assessing the finite sample properties of the proposed estimates. In Section 6, we illustrate

our method by applying it to the bladder tumor study. We conclude this article with a

discussion section.
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2 Statistical Models

Consider a recurrent event study, let Ni(t) denotes the number of occurrences event of

interest before or at time t for subject i, i = 1, · · · , n, 0 ≤ t ≤ τ , where τ is a known

constant representing study length. Suppose that for each subject, there exists a d × 1

vector of time-varying covariates denoted by Xi(t). Given Xi(t), two unobserved positive

random variables Z1i, Z2i, the mean function of Ni(t) has the form

E{Ni(t)|Xi(t), Z1i, Z2i} = µ0(t)h(Z1i) exp{β′Xi(t)}, (1)

which means that Ni(t) is related to (Z1i, Z2i) through Z1i. Here µ0(·) is a completely

unknown continuous baseline mean function, h(·) is a completely unspecified positive link

function and β is a d × 1 vector of unknown regression parameters. For the identifiability

of the model (1), we assume that E{h(Z1i)|Xi(t)} is a fixed constant, i = 1, · · · , n.

For subject i, we suppose that Ni(·) is observed only at finite time points Ti1 < · · · <

TiKi
, where Ki denotes the potential number of observation times, i = 1, · · · , n. Let Ci

be the censoring time, define H̃i(t) = Hi{min(t, Ci)}, where Hi(t) =
∑Ki

j=1 I(Tij ≤ t),

i = 1, · · · , n. Then H̃i(t) is a point process characterizing the ith subject’s observation

process and jumps only at the observation times. It is easy to see that ∆i(t)dHi(t) = dH̃i(t),

where ∆i(t) = I(Ci ≥ t).

For the observation process, we assume that given Xi(t) and (Z1i, Z2i), Hi(t) follows

the following marginal model:

E{dHi(t)|Xi(t), Z1i, Z2i} = Z2i exp{γ′Xi(t)}dΛ0(t), (2)

which means that Hi(t) is related to (Z1i, Z2i) through Z2i. Here Λ0(t) =
∫ t

0
λ0(s)ds is

a completely unknown non-decreasing function, γ denotes the vector of d × 1 regression

parameters. For identifiability reasons of model (2), we assume that E(Z2i|Xi(t)) = 1,

i = 1, · · · , n. In the following, it is assumed that E{h(Z1)Z2|X(t)} = E{h(Z1)Z2}, the

censoring time C is independent of (Z1, Z2) given X(t), and conditional on {X(·), Z1, Z2}.

N(·), H(·) and C are mutually independent.
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3 Inference Procedures

In this section, we will consider the estimation procedure for the regression parameters β

and γ. Let β0 and γ0 denote the true value of β and γ, respectively. Define

A0(t) =

∫ t

0

E{h(Z1)Z2}µ0(u)dΛ0(u),

and

Mi(t; β, γ,A) =

∫ t

0

[Ni(u)∆i(u)dHi(u)−∆i(u) exp{(β + γ)′Xi(t)}dA(u)]. (3)

Note that under models (1) and (2), we have

E{dMi(t; β0, γ0,A0)|Xi(t), Z1i, Z2i, Ci} = ∆i(t)h(Z1i)Z2i exp{(β0 + γ0)
′Xi(t)}µ0(t)dΛ0(t)

−∆i(t) exp{(β0 + γ0)
′Xi(t)}dA0(t).

Then, since E{h(Z1)Z2|X(t)} = E{h(Z1)Z2} and C is independent of (Z1, Z2) given X(t),

we get E{Mi(t; β0, γ0,A0)} = 0. That is, the Mi(t; β0, γ0,A0)’s are zero-mean stochastic

process. Thus, for given β and γ, a reasonable estimator for A0(t) is the solution to

n∑
i=1

Mi(t; β, γ,A) = 0, 0 ≤ t ≤ τ.

Denote this estimator by Â(t; β, γ), which can be expressed by

Â(t; β, γ) =
n∑

i=1

∫ t

0

Ni(u)∆i(u)dHi(u)
n∑

j=1

∆j(u) exp{(β + γ)′Xj(u)}
.

In view of (3), for a given γ, to estimate β0, by applying the generalized estimating

approach (Liang and Zeger, 1986), we propose the following estimating function for β0,

U(β; γ) =
1

n

n∑
i=1

∫ τ

0

W (t){Xi(t)− X̄(t; β, γ)}[Ni(t)∆i(t)dHi(t)

− exp{(β + γ)′Xi(t)}∆i(t)dÂ(t; β, γ)}], (4)
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where W (t) is a possibly data-dependent weight function,

X̄(t; β, γ) =

n∑
i=1

∆i(t)Xi(t) exp{(β + γ)′Xi(t)}
n∑

j=1

∆j(t) exp{(β + γ)′Xj(t)}
.

Of course, in reality, γ is unknown. It is easy to see that model (2) implies

E{dHi(t)|Xi(t)} = exp{γ′Xi(t)}dΛ0(t). (5)

Then by following the approach proposed by Lin et al. (2000) for the proportional rate

model, γ can be consistently estimated by the following estimating equation:

1

n

n∑
i=1

∫ τ

0

{Xi(t)− X̄∗(t; γ)}∆i(t)dHi(t) = 0, (6)

where

X̄∗(t; γ) =

n∑
i=1

∆i(t) exp{γ′Xi(t)}Xi(t)

n∑
j=1

∆j(t) exp{γ′Xj(t)}
.

Let γ̂ denote the solution to the above estimating equation (6). Given γ̂, we can estimate

β0 by solving the equation U(β; γ̂) = 0. The asymptotic normality of β̂ is established in

the following theorem, with the proof given in the Appendix.

Theorem 1. Under the regularity conditions (C1)-(C4) stated in the Appendix, then

as n → ∞, we have

√
n(β̂ − β0)

D−→ N(0, A−1ΣA−1),

where
D−→ denotes convergence in distribution, A and Σ are defined in the Appendix.

Define

S(k)(t; γ) =
1

n

n∑
i=1

∆i(t) exp{γ′Xi(t)}Xi(t)
⊗k, k = 0, 1, 2,

Λ̂0(t) =
1

n

n∑
i=1

∫ t

0

∆i(u)dHi(u)

S(0)(u; γ̂)
,

M̂i(t) = Hi(t ∧ Ci)−
∫ t

0

∆i(u) exp{γ̂′Xi(u)}dΛ̂0(u),
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where a ∧ b = min(a, b). Then the covariance matrix in the above theorem can be consis-

tently estimated by Â−1Σ̂Â−1, where Σ̂ = n−1
∑n

i=1 ξ̂
⊗2
i ,

ξ̂i =

∫ τ

0

W (t){Xi(t)− X̄(t; β̂, γ̂)}[Ni(t)∆i(t)dHi(t)− exp{(β̂ + γ̂)′Xi(t)}∆i(t)dÂ(t)]− ÂQ̂−1η̂i,

η̂i =

∫ τ

0

{Xi(t)− X̄(t; γ̂)}dM̂i(t),

Â =
1

n

n∑
i=1

∫ τ

0

W (t){Xi(t)− X̄(t; β̂, γ̂)}⊗2∆i(t) exp{(β̂ + γ̂)′Xi(t)}dÂ(t),

and

Q̂ =
1

n

n∑
i=1

∫ τ

0

[
S(2)(t; γ̂)

S(0)(t; γ̂)
− X̄∗(t; γ̂)⊗2

]
∆i(t)dHi(t).

4 Model checking

In this section, we will consider the checking of the adequacy of models (1) and (2). Moti-

vated by Lin et al. (2000), we consider the statistic:

Φ(t) = n−1/2

n∑
i=1

∫ t

0

g(Xi(u))dM̂i(u),

where g is a known bounded function, M̂i(t) = Mi(t; β̂, γ̂, Â(·; β̂, γ̂)). To derive the distri-

bution of Φ(t), define

S(u; β̂, γ̂) =
1

n

n∑
j=1

g(Xj(u))∆j(u) exp{(β̂ + γ̂)′Xj(u)},

S0(u; β̂, γ̂) =
1

n

n∑
j=1

∆j(u) exp{(β̂ + γ̂)′Xj(u)},

and

B(t; β̂, γ̂) =
1

n

n∑
i=1

∫ t

0

[
g(Xi(u))−

S(u; β̂, γ̂)

S0(u; β̂, γ̂)

]
∆i(u)Xi(u) exp{(β̂ + γ̂)′Xi(u)}dÂ(u).
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We will show in the Appendix that the null distribution of Φ(t) can be approximated

by the zero-mean Gaussian process

Φ̃(t) = n−1/2

n∑
i=1

∫ t

0

[
g(Xi(u))−

S(u; β̂, γ̂)

S0(u; β̂, γ̂)

]
dM̂i(u)−B(t; β̂, γ̂)′Â−1n−1/2

n∑
i=1

ξ̂i

−B(t; β̂, γ̂)′Q̂−1n−1/2

n∑
i=1

η̂i + op(1). (7)

Following the resampling approach presented in Lin et al. (2000), let (G1, · · · , Gn) be

independent standard normal variables independent of the data. Then we can show that

the null distribution of Φ(t) can be approximated by the zero-mean Gaussian process,

Φ̂(t) = n−1/2

n∑
i=1

∫ t

0

[
g(Xi(u))−

S(u; β̂, γ̂)

S0(u; β̂, γ̂)

]
dM̂i(u)Gi −B(t; β̂, γ̂)′Â−1n−1/2

n∑
i=1

ξ̂iGi

−B(t; β̂, γ̂)′Q̂−1n−1/2

n∑
i=1

η̂iGi.

We note that Φ(t) is expected to fluctuate randomly around 0 under model (1), thus we can

construct a lack-of-fit test based on the supremum statistic sup0≤t≤τ |Φ(t)|, where the p-

value can be obtained by comparing the observed value of sup0≤t≤τ |Φ(t)| to a large number

of realizations from sup0≤t≤τ |Φ̂(t)|.

5 A simulation study

In this section, an extensive simulation studies was conducted to evaluate the performance

of the proposed inference procedure in Section 4 with the focus on estimation of β. In

the study, we assumed the time-dependent covariate Xi(t) was taken as Xi log(t) with

Xi generated form a uniform distribution on (0, 1). The censoring time Ci was taken as

min(C∗
i , τ) with C∗

i following the uniform distribution over (10, 20) and τ = 15. We

generated the latent variable Z2i from a uniform distribution on (0.5, 1.5). For given Z2i,

we generated the latent variable Z1i by Z1i = Zα
2i with α = 0.5, 0 and −0.5. Here, when

α > 0, a subject with more frequent observations would have a higher occurrence rate
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of the recurrent event and the two processes are positively correlated; when α = 0, the

two processes have no correlation given the covariates; when α < 0, a subject with more

frequent observations would have a lower occurrence rate of the recurrent event and the

two processes are negatively correlated.

For the observation process, we assumed that the observation times Hi follows a non-

homogeneous Poisson process with the marginal (2), where γ0 = 1 and Λ0(t) = t
10
. Let

mi(t) = Z2i exp{γ′
0Xi(t)}Λ0(t), then given Z2i, Xi(t) and Ci, the observation times {Ti,j}

for the ith subject over [0, Ci] can be generated by the thinning algorithm (Ross, 2006):

Step 1: t = 0, j = 0 and Ti,j = 0.

Step 2: Generate a random number u from uniform (0,1) distribution.

Step 3: t = t− 1
mi(Ci)

log(u).

Step 4: Generate a random number v from uniform (0,1) distribution.

Step 5: If v ≤ mi(t)
mi(Ci)

, set j = j + 1 and Ti,j = t.

Step 6: Go to Step 2.

To generate Ni(Tik)’s, for given Ti,j, we assume that

Ni(Ti,j) = Ni(Ti,1) + {Ni(Ti,2)−Ni(Ti,1)}+ · · ·+ {Ni(Ti,j)−Ni(Ti,j−1)},

where Ti,0 = 0, Ni(t)−Ni(s) follows the Poisson distribution with mean

Z1i[µ0(t) exp{βXi(t)} − µ0(s) exp{βXi(s)}]

with µ0(t) = t. All the results reported here are based on 500 Monte Carlo replications

using MATLAB software.

In Table 1, we presented the simulation results obtained on the estimation of β with

the sample size n = 100 or 200. It includes the estimated bias (BIAS) given by the average

of the proposed estimates of minus the true value, the sample standard error (SSE) of the

proposed estimates, the mean of the estimated standard error (ESE), and the empirical 95%

coverage probabilities (CP). It can be seen from the table that the point estimates seem

to be unbiased and that SEE and SSE are quite close to each other, indicating that the
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proposed variance estimation seems to work well. Figure 1 reports the quantile plot for the

estimate for β with α = 0.5, β = 1, n = 200. Similar quantile plots were obtained for other

setups. Also the results indicate that the normal approximation seems to be appropriate

and as expected, the results became better overall as the sample size n increased.

6 An illustrative example

In this section, we apply the proposed methods to the bladder cancer data, which have been

discussed earlier and analysed by Sun et al. (2005), Huang et al. (2006), Sun et al. (2007)

and Liang et al. (2009), among others. The data set includes 85 bladder cancer patients, 47

in the placebo group and 38 in the thiotepa treatment group. For each patient, the observed

information includes the clinical visit or observation times in a month and the number of

bladder tumours that occurred between clinical visits. The longest observation time is 53

months. In addition, two baseline covariates were measured, namely, the number of initial

tumours that the patients had before entering the study and the size of the largest initial

tumour. One of the main objectives of the study was to assess the effect of the thiotepa

treatment on bladder tumour recurrence. The size of the largest initial tumour has been

shown to have no effect on the recurrence rate (Sun and Wei, 2000; Zhang, 2002). Therefore,

in the current study, we focus on the effects of thiotepa treatment and the number of initial

tumours on the recurrence rate of bladder tumour while allowing for a possible correlation

between the tumour recurrence and the clinical visit process.

For the analysis, we define Xi = (Xi1, Xi2)
′ with Xi1 = 1 if subject i was in the

thiotepa treatment group and 0 otherwise and Xi2 denoting the number of initial tumors

of the ith patient. The application of the estimation procedure proposed in the previous

sections gave β̂ = (−1.4496, 0.2399)′ with the estimated standard errors of 0.3538 and

0.0614, respectively. They indicate that the thiotepa treatment had a significant effect in

reducing the occurrence rate of the bladder tumor and the occurrence rate was significantly

positively related to the number of initial tumors. It can be seen that the conclusion
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obtained here is similar to Zhao, et al. (2013).

To check the goodness-of-fit of the models (1) and (2), we used the omnibus test proce-

dure given in Section 4. Since the two covariates are time-invariant, we used the following

supremum test statistic sup0≤t≤τ,x1,x2
|Φ(t, x1, x2)|, where

Φ(t, x1, x2) = n−1/2

n∑
i=1

I(Xi1 ≤ x1, Xi2 ≤ x2)M̂i(t),

where the event I(Xi1 ≤ x1, Xi2 ≤ x2) means that each component of Xi1 and Xi2 is no

larger than the corresponding component of x1 and x2. We obtained the p-value of 0.368

based on 1000 realizations. This suggests that these models seem to be appropriate for the

bladder cancer data considered here.

7 Concluding remarks

In this paper, we have considered regression analysis of panel count data with time-

dependent covariates and possibly in the presence of informative observation process via

two latent variables. A key advantage of the proposed approach over existing methods

for panel count data is that the proposed joint models are flexible because no parametric

assumptions on the distributions of the latent variables are required and the dependence

structure of two latent variables is left completely unspecified. For estimation of regres-

sion parameters, we have developed an estimating equation approach that yields consistent

and asymptotically normal parameter estimates. The simulation results suggest that the

proposed inference procedures perform well and an illustrative example is also presented.

There exist several directions for future research. In the proposed methodology, we as-

sumed that the censoring times Ci are independent of covariates. However, this assumption

may be relaxed. To generalize the proposed methodology to the situation where Ci may

depend on covariates, one approach is to specify a regression model such as the proportional

hazards model. Another interesting topic is that we can generalized the proposed procedure
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to the time-varying coefficient model,

E{Ni(t)|Xi(t), Z1i(t), Z2i(t)} = µ0(t)h{Z1i(t)} exp{β(t)′Xi(t)}, (8)

where β(t), Z1i(t) and Z2i(t) are defined as before except being time-dependent. Moreover,

we may study the inference for the above (8) with terminal event(Sun, et al. 2012).

Acknowledgments

The authors would like to thank a referee for the valuable comments, which greatly improved

the paper. The work of Haixiang Zhang is partially supported by the National Natural Sci-

ence Foundation of China (No. 11301212) and China Postdoctoral Science Foundation (No.

2014M550861). The work of Liuquan Sun is partially supported by the National Natural

Science Foundation of China Grants (No. 11231010, 11171330 and 11021161) and Key Lab-

oratory of RCSDS, CAS (No.2008DP173182). The work of Dehui Wang is partly supported

by National Natural Science Foundation of China (11271155), Specialized Research Fund

for the Doctoral Program of Higher Education (20110061110003), Scientific Research Fund

of Jilin University (201100011) and Jilin Province Natural Science Foundation (20101596).

Appendix

In this section, we need the following regularity conditions:

(C1) P (C ≥ τ) > 0, and H(τ) is bounded by a constant.

(C2) X(t) has bounded variation on [0, τ ].

(C3) The weight function W (t) has bounded variation and converges to a deterministic

function w(t) in probability uniformly in t ∈ [0, τ ].

(C4) A is nonsingular, where

A = E

[∫ τ

0

{Xi(t)− x̄(t)}⊗2∆i(t) exp{(β0 + γ0)
′Xi(t)}dA0(t)

]
,
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and x̄(t) is the limit of X̄(t; β0, γ0).

Proof of Theorem 1. Following the arguments similar to those given in Appendix

A.2 of Lin and Ying (2001), we have

n1/2U(β0; γ0) = n−1/2

n∑
i=1

∫ τ

0

w(t){Xi(t)− x̄(t)}[Ni(t)∆i(t)dHi(t)

− exp{(β0 + γ0)
′Xi(t)}△i(t)dA0(t)] + op(1), (9)

which is a sum of n independent zero-mean random vectors plus an asymptotically negligible

term.

It is easy to see that −∂Û(β0; γ)/γ|γ=γ0 converges in probability to A. Furthermore, it

follows from Lin et al. (2000) that

n1/2(γ̂ − γ0) = Q−1n−1/2

n∑
i=1

ηi + op(1), (10)

where

ηi =

∫ τ

0

{Xi(t)− x̄∗(t)}dMi(t),

Q = E

[∫ τ

0

{Xi(t)− x̄∗(t)}⊗2∆i(t) exp{γ′
0Xi(t)}dΛ0(t)

]
,

x̄∗(t) is the limit of X̄∗(t; γ0), and

Mi(t) = Hi(t ∧ Ci)−
∫ t

0

∆i(u) exp{γ′
0Xi(u)}dΛ0(u).

Then by the Taylor series expansion of U(β0; γ̂) at U(β0; γ0) and the consistency of γ̂, we

have

n1/2U(β0; γ̂) = n1/2U(β0; γ0)− An1/2(γ̂ − γ0) + op(1). (11)

Let

ξi =

∫ τ

0

w(t){Xi(t)− x̄(t)}[Ni(t)∆i(t)dHi(t)− exp{(β0 + γ0)
′Xi(t)}∆i(t)dA0(t)]− AQ−1ηi.(12)
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Thus, it follows form (9), (11) and (12) that

n1/2U(β0; γ̂) = n−1/2

n∑
i=1

ξi.

By the multivariate central theorem, we know that n1/2U(β0; γ̂) converges in distribution

to a zero-mean normal random vector with covariance matrix Σ = E(ξ⊗2
i ). Moreover, we

note that −∂U(β0; γ̂)/∂β also converges in probability to A. Then by the Taylor series

expansion of Û(β̂; γ̂) at U(β0; γ̂), we have

n1/2(β̂ − β0) = A−1n1/2U(β0; γ̂) + op(1). (13)

Thus, n1/2(β̂ − β0) is asymptotically zero-mean normal with covariance matrix A−1ΣA−1.

�
Proof of asymptotic properties of Φ(t). In the following, let s(t), s0(t), b(t) be the

limits of S(t; β0, γ0), S0(t; β0, γ0), B(t; β0, γ0), respectively. It then follows from Lemma A.1

of Lin and Ying (2001) and the functional version of the Taylor expansion that

Φ(t) = n−1/2

n∑
i=1

∫ t

0

[
g(Xi(u))−

s(u)

s0(u)

]
dMi(t)− b(t)′n1/2(β̂ − β0)− b(t)′n1/2(γ̂ − γ0) + op(1).

Then from (10) and (13) that Φ(t) can be written as

Φ(t) = n−1/2

n∑
i=1

∫ t

0

[
g(Xi(u))−

s(u)

s0(u)

]
dMi(t)− b(t)′A−1n−1/2

n∑
i=1

ξi

−b(t)′Q−1n−1/2

n∑
i=1

ηi.

Thus, it follows from the multivariate central theorem that Φ(t) converges to a finite-

dimensional zero-mean Gaussian process. Because any bounded variance function can be

written as the difference of two increasing functions, the first term of Φ(t) is tight. Since

b(t) is deterministic function and ξi and ηi do not involve t, thus the second and third terms

of Φ(t) are tight. Thus, Φ(t) is tight and converges weakly to a zero-mean Gaussian process

that can be approximated by the zero-mean Gaussian process Φ̃(t) given by (7). �
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Table 1. Simulation results on the estimation of β.

α = −0.5

β 1 0 −1 1 0 −1

n=100 n=200

BIAS 0.0049 0.0053 −0.0034 −0.0039 0.0047 −0.0007

SSE 0.1176 0.0793 0.1454 0.0789 0.0543 0.1016

ESE 0.1085 0.0725 0.1379 0.0769 0.0526 0.0988

CP 0.934 0.926 0.932 0.954 0.936 0.940

α = 0

β 1 0 −1 1 0 −1

n=100 n=200

BIAS −0.0039 0.0017 0.0021 −0.0000 −0.0004 −0.0001

SSE 0.1119 0.0739 0.1422 0.0826 0.0521 0.0961

ESE 0.1092 0.0675 0.1345 0.0797 0.0488 0.0975

CP 0.946 0.930 0.932 0.950 0.932 0.956

α = 0.5

β 1 0 −1 1 0 −1

n=100 n=200

BIAS −0.0059 −0.0025 −0.0002 −0.0065 −0.0051 −0.0002

SSE 0.1378 0.0771 0.1395 0.0923 0.0528 0.0985

ESE 0.1221 0.0709 0.1396 0.0894 0.0514 0.0976

CP 0.920 0.928 0.938 0.952 0.948 0.950
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Figure 1. Q-Q plot of standardized estimates for β,

where α = 0.5, β = 1, n = 200.
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