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Abstract. This article is concerned with the regularized estima-

tion methodology for generalized pth-order integer-valued autoregressive

(GINAR(p)) process, especially when the regression coefficients are sparse.

Under some mild regularity conditions, we show that the regularized esti-

mators perform as well as if the correct submodel was known. The oracle

properties of the estimators are established. Extensive Monte Carlo sim-

ulation studies demonstrate that the proposed procedure works well. To

illustrate its usefulness, an application to a real data about epileptic pa-

tient is also provided.
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1 Introduction

In recent years, there has been a growing interest in modelling integer-valued time se-

ries data, which often occur in many fields, such as the daily number of affected cases in

epidemics, the daily number of transaction in stock market and the number of bases of DNA

sequences, etc. Due to the particular structure of count time series, the traditional autore-

gressive process does not work. To model this kind of count data, one possible approach

is based on the operator of Steutel and van Harn (1979), which established the foundation

of thinning-based method. For example, Al-Osh and Alzaid (1987) proposed the first-order

integer-valued autoregressive (INAR(1)) process; Drost, et al. (2009) considered the semi-

parametric efficient estimation for INAR(p) models; Zhang, et al. (2010) proposed a series of

integer-valued autoregressive processes based on signed generalized power series thinning op-

erator; Fokianos (2010) considered the penalized estimation for integer autoregressive models
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using the ridge penalty; McCabe, et al. (2011) proposed an approach to forecasting count

time series data; Pedeli, et al. (2015) used saddlepoint techniques to estimate the parame-

ters of interest in high-order integer-valued autoregressive processes. Recently, Scotto, et al.

(2015) reviewed some developments for the thinning-based count time series models.

The motivation of this work is that in some applications, most of the coefficients in the

integer-valued autoregressive process are likely to be zero when the order p is large. For

example, the daily epileptic seizure counts of an epileptic patient before treatment, which

was also studied by Latour (1998). Thus, it is reasonable to describe this kind of data via a

count time series model where many regression coefficients are exactly zero. However, some

of the traditional estimation methods (e.g. CLS) do not lead to sparse estimators, and it

is difficult to identify the structure of GINAR(p) process. The research topic of this article

is different from such literatures that focus on the count time series data with plenty of

zeros (Barreto-Souza, 2015). We are interested in the integer-valued autoregressive process

with sparse dependence structure, and the count time series itself may not be zero-inflated.

Also we do not need to require the marginal distribution of the count data in the proposed

approach. To the best of our knowledge, very limited research has been done on the sparse

estimation of count time series. Our key idea is to estimate the sparse regression coefficients

with the help of penalty functions. Note that the simple LASSO penalty (Tibshirani, 1996)

leads to biased estimator and does not possess the oracle properties (Fan and Li, 2001), so

we only consider the SCAD (Fan and Li, 2001), adaptive LASSO (Zou, 2006), MCP (Zhang,

2010) and SELO (Dicker, et al., 2013) in our approach. Here we point out that Fokianos

(2010)’s method does not possess the oracle properties (Fan and Li, 2001) and can not

obtain sparse estimators, which result in the main differences with our proposed estimation

procedure.

The rest of the paper is organized as follows. In Section 2, we introduce the notation

and definition of the GINAR(p) process, also some statistical properties are provided. In

Section 3, we describe the regularized estimation procedure for the parameters of interest

and establish the oracle properties. Some simulation studies together with an application

are given in Section 4. Conclusion remarks are presented in Section 5. All proof details are

relegated to the Appendix.

2 Notation and model properties

In the literature, one of the main approaches for modelling count time series is based

on the Binomial thinning operator “◦” (Steutel and van Harn, 1979) with α ◦X =
∑X

i=1Bi,

where α > 0, X is an non-negative integer-valued random variable, {Bi} are independent
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and identically distributed Bernoulli random variables with success probability α ∈ (0, 1).

Afterwards, Latour (1998) extended it to the generalized thinning operator “ ◦G ” and pro-

posed a pth-order generalized integer-valued autoregressive (GINAR(p)) process. First let

us recall the definition of this process as follows.

Definition 1. An integer-valued stochastic process {Xt} is said to be a GINAR(p)

process if it satisfies the following difference equation

Xt =

p∑
i=1

αi ◦G Xt−i + ϵt, (2.1)

where

(i) the generalized thinning operator ◦G is defined as

αi ◦G Xt−i =

Xt−i∑
j=1

W
(i)
j ,

given αi ≥ 0, {W (i)
j } is some non-negative integer-valued random variable sequence with

mean αi and variance βi, i = 1, · · · , p;
(ii) {ϵt} is an i.i.d. integer-valued random variables sequence with mean µϵ and variance σ2

ϵ ;

(iii) the {ϵt} are uncorrelated with Xt−i for i ≥ 1 and all counting series {W (i)
j } in (2.1) are

independent, ϵt is independent of X0.

The commonly used thinning operators ◦G include Binomial, Geometric, Poisson, depen-

dent Bernoulli (Ristić, et al., 2013) and ρ-binomial (Borges, et al. 2016). If 0 <
∑p

i=1 αi < 1,

then there exists a unique strictly stationary and ergodic Xt that satisfies (2.1) (Zhang, et

al., 2010). Let θ0 = (µ0
ϵ , α

0
p, · · · , α0

1)
′ = (θ′10, θ

′
20)

′ be the true value for the parameters of

interest in (2.1). Without loss of generality, it is assumed that θ10 and θ20 denote the nonzero

and zero components of θ0, respectively. Let Yt = (1, Xt−p, · · · , Xt−1)
′ and define

Θ = lim
n→∞

n−1

n∑
t=1

YtY
′
t . (2.2)

Denote

Γ = (σij)(p+1)×(p+1), σij = σji, 1 ≤ i ≤ j ≤ p+ 1, (2.3)
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where

σ11 = E

(
Xp −

p∑
k=1

α0
kXp−k − µ0

ϵ

)2

,

σii = E

(
Xp −

p∑
k=1

α0
kXp−k − µ0

ϵ

)2

X2
t−(p+2−i), 2 ≤ i ≤ p+ 1,

σi1 = E

(
Xp −

p∑
k=1

α0
kXp−k − µ0

ϵ

)2

Xt−(p+2−i), 2 ≤ i ≤ p+ 1,

σij = E

(
Xp −

p∑
k=1

α0
kXp−k − µ0

ϵ

)2

Xt−(p+2−i)Xt−(p+2−j), 2 ≤ i < j ≤ p+ 1.

To prove the asymptotic properties of the regularized estimator in the next section, we

will need the following lemma.

Lemma 1. Suppose that the regularity conditions (C.1) and (C.2) in the Appendix

hold. Then as n → ∞, we have

1√
n
Bn(θ0)

D−→ N(0,Γ),

where
D−→ denotes convergence in distribution, Bn(θ0) =

∑n
t=1(Xt −

∑p
i=1 α

0
iXt−i − µϵ)Yt,

and Γ is defined in (2.3).

3 Inference procedures

In this section, we will focus on the estimation for sparse regression coefficients in the

GINAR(p) process. Our basic idea is to employ the penalty functions to shrink certain

coefficients to be exactly zero. Note that E(Xt|Xt−i, 1 ≤ i ≤ p) =
∑p

i=1 αiXt−i + µϵ, we

can denote S(θ) = 1
2

∑n
t=1(Xt −

∑p
i=1 αiXt−i − µϵ)

2 as the conditional least squares (CLS)

criterion function. Motivated by Fan and Li (2001), we propose the penalized estimating

function L (θ) = S(θ) + n
∑p+1

i=1 Pλ(|θi|), where Pλ(·) is a penalty function. The regularized

estimator for θ is defined as

θ̂ = argmin
θ

L (θ), (3.1)

where Pλ(·) is one of the following four penalty functions:

(P.1) The Adaptive LASSO, Pλ(|θ|) = λω|θ|, where λ > 0 is the tuning parameter, and

ω is a data-dependent weight (Zou, 2006).
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(P.2) Fan and Li (2001) proposed the SCAD penalty function defined as

Ṗλ(|θ|) = λsgn(θ)

{
I(|θ| ≤ λ) +

max(τλ− |θ|, 0)
(τ − 1)λ

I(|θ| > λ)

}
,

where λ > 0 is the tuning parameter, and τ > 0 is the shape parameter; Pλ(0) = 0 with Ṗ (·)
denotes the first derivative of P (·).

(P.3) Zhang (2010) proposed the following MCP penalty,

Pλ(|θ|) = λ

{
|θ| − |θ|2

2τλ

}
I(0 ≤ |θ| < τλ) +

λ2τ

2
I(|θ| ≥ τλ),

where λ > 0 is the tuning parameter, and τ > 0 is the shape parameter.

(P.4) Dicker, et al. (2013) gave the SELO penalty function defined as

Pλ(|θ|) =
λ

log(2)
log

(
|θ|

|θ|+ τ
+ 1

)
,

where λ > 0 is the tuning parameter, and τ > 0 is the shape parameter.

We note that for the class of models under consideration θ ≥ 0, hence sgn(θ) can be

omitted and |θ| = θ. Define b = (Ṗλn(θ
0
1), · · · , Ṗλn(θ

0
s))

′, Σ = diag{P̈λn(θ
0
1), · · · , P̈λn(θ

0
s)}, as

well as an = max1≤i≤p+1{Ṗλn(θ
0
i ), θ

0
i ̸= 0} and bn = max1≤i≤p+1{P̈λn(θ

0
i ), θ

0
i ̸= 0}, where s

denotes the number of components in θ10. Here and below, we use P̈ (·) to denote the second

derivative of P (·) and λn to emphasize λ’s dependence on the sample size n.

Theorem 1. Suppose that (C.1) - (C.4) in the Appendix hold. Then there exists a local

minimizer of L (θ), θ̂, such that ||θ̂ − θ0|| = Op(n
−1/2 + an), where θ̂ is defined in (3.1).

The theorem above gives the existence of θ̂ and says that θ̂ is
√
n-consistent. To establish

the asymptotic normality of θ̂, we need the following lemma.

Lemma 2. Suppose that the regularity conditions (C.1) - (C.4) given in the Appendix

hold. Then with probability tending to 1, for any given θ1 satisfying ∥θ1 − θ10∥ = Op(n
−1/2)

and any constant σ > 0, we have

L

{(
θ1

0

)}
= min

∥θ2∥≤σn−1/2
L

{(
θ1

θ2

)}
.

The following results establish the oracle properties of the regularized estimators for the

parameters of interest in GINAR(p) process, where the technical method follows from Fan

and Li (2001).

Theorem 2. Assume that the regularity conditions (C.1) - (C.4) given in the Appendix

hold. Then with probability tending to 1, the
√
n-consistent estimate in Theorem 1 satisfies:
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(i) Sparsity: θ̂2 = 0;

(ii) Asymptotic normality:
√
n(Θs + Σ){(θ̂1 − θ10) + (Θs + Σ)−1b} D−→ N(0,Γs), (3.2)

where
D−→ stands for convergence in distribution, Θs and Γs denote the upper-left s × s

submatrix of Θ and Γ, which are defined in (2.2) and (2.3), respectively.

The asymptotic covariance matrix of θ̂1 can be consistently estimated by the sample

version of Θs, Σ and Γs, respectively. Note that the regularized estimator θ̂ is unbiased and

sparse, while the traditional CLS estimator is dense. To obtain the regularized estimator θ̂,

it is required to choose the tuning parameter λ and the shape parameter τ . For given λ and

τ , following Fan and Li (2001), we propose to apply the Newton-Raphson algorithm, which

is a commonly used approach in the literature of penalty-based methods. Let θ̃ be some

initial value of θ that is assumed to be very close to the solution of the estimating equation

Q(θ) = ∂L (θ)/∂θ = 0 (e.g. the CLS estimator). The penalty function Pλ(·) can be irregular

at the origin and may not has a second derivative at the origin. To address this problem, we

use the technique of linear function approximation. For each j, if θ̃j is not close to zero, we

can use Ṗλ(θj) ≈ {Ṗλ(θ
(0)
j )/θ

(0)
j }θj, and otherwise, we set θ̂j = 0. Thus, if θ is close to θ̃, we

get that Q(θ) ≈ Q(θ̃) + Q̇(θ̃)(θ − θ̃), which suggests that Q(θ) can be locally approximated

by Q(θ̃) + nΘ(θ − θ̃) + nΣλ(θ̃)(θ − θ̃). Here Σλ(θ) = diag{Ṗλ(θ1)/θ1, · · · , Ṗλ(θp+1)/θp+1}.
Thus for given λ and τ , the estimate can be obtained through the iteration θ(k+1) = θ(k) −
{nΘ+ nΣλ(θ

(k))}−1Q(θ(k)) until ∥θ(k+1) − θ(k)∥ ≤ 10−4, k = 0, 1, 2, · · · .
Denote θ̂λ,τ as the estimate given by the above algorithm for given λ and τ (the adaptive

LASSO only has λ). The parameters λ and τ can be obtained by minimizing the BIC statistic

BIC(λ, τ) = log

(∑n
t=1 Ut(θ̂λ,τ )

2

n− ŝλ,τ

)
+

log(n)

n
ŝλ,τ , (3.3)

where Ut(θ) = Xt −
∑p

i=1 αiXt−i − µϵ, ŝλ,τ is the number of the non-zero components of θ̂λ,τ

and n− ŝλ,τ is used to account for the degrees lost to estimation (Wang, et al. 2007). Then

(λ̂, τ̂) = argminλ,τ BIC(λ, τ), and the proposed regularized estimator is θ̂ = θ̂λ̂,τ̂ .

4 Numerical studies

4.1 Simulation

In this part, we will conduct simulation to assess the finite-sample performance of the

proposed procedure. We pay our attention to five kinds of AR(7)-type processes, which are

defined as follows.

6



Model I (Binomial thinning): Xt =
∑7

i=1 αi ◦G Xt−i + ϵt, where the probability mass

function of the “counting series”{W (i)
j } is P (W

(i)
j = x) = αx

i (1 − αi)
1−x, x = 0, 1, and

α1 = 0.45, α2 = · · · = α6 = 0, α7 = 0.40; {ϵt} is generated from the Poisson distribution

with mean µϵ = 0.15.

Model II (Geometric thinning): Xt =
∑7

i=1 αi ◦G Xt−i + ϵt, where the probability mass

function of the “counting series”{W (i)
j } is P (W

(i)
j = x) =

αx
i

(1+αi)1+x , x = 0, 1, 2, · · · , and
α1 = 0.45, α2 = · · · = α6 = 0, α7 = 0.40; {ϵt} is generated from the Poisson distribution

with mean µϵ = 0.15.

Model III (Poisson thinning): Xt =
∑7

i=1 αi ◦G Xt−i + ϵt, where the probability mass

function of the “counting series”{W (i)
j } is P (W

(i)
j = x) =

αx
i

x!
e−αi , x = 0, 1, 2, · · · . and

α1 = 0.45, α2 = · · · = α6 = 0, α7 = 0.40; {ϵt} is generated from the Poisson distribution

with mean µϵ = 0.15.

Model IV (Dependent Bernoulli thinning): Xt =
∑7

i=1 αi ◦G Xt−i + ϵt, where the

“counting series”W
(i)
j = (1 − V

(i)
j )D

(i)
j + V

(i)
j Z(i) (Ristić, et al., 2013) with {D(i)

j }j∈N is

a sequence of i.i.d. Bernoulli(αi) variables, αi ∈ [0, 1); {V (i)
j }j∈N is a sequence of i.i.d.

Bernoulli(γi) variables, γi ∈ [0, 1); Z(i) is a random variable with Bernoulli(αi) distribution.

Here α1 = 0.4, α2 = · · · = α6 = 0, α7 = 0.35; γ1 = 0.4, γ2 = · · · = γ6 = 0, γ7 = 0.45; {ϵt} is

generated from the Poisson distribution with mean µϵ = 0.15.

Model V (ρ-Binomial thinning ): Xt =
∑7

i=1 αρ,i ◦G Xt−i + ϵt, where the probability

mass function of the “counting series”{W (i)
j } is P (W

(i)
j = 0) = 1 − αi; P (W

(i)
j = x) =

αi(
ρi

1+ρi
)x−1( 1

1+ρi
), x = 1, 2, · · · (Borges, et al. 2016). Here α1 = 0.30, α2 = · · · = α6 = 0,

α7 = 0.35; ρ1 = 0.12, ρ2 = · · · = ρ6 = 0, ρ7 = 0.15; {ϵt} is generated from the Poisson

distribution with mean µϵ = 0.15.

We generate time series data from the above five models with the help of MATLAB

software. Let Ω = {1, 7, 8} denote the index of nonzero elements in θ0. Then we use the

traditional CLS and the regularized method to estimate the parameters of interest, where

the penalty functions include adaptive LASSO (denoted as ALASSO), SCAD, MCP and

SELO. The weights for ALASSO are defined as wj = 1/|θ̃j|, j = 1, · · · , p + 1, where θ̃ is

the traditional CLS for θ. We use a data-driven procedure to choose the tuning parameter

λ and the shape parameter τ . This requires the computation of solution surface over a

two-dimensional grid of (λ, τ). As suggested by one referee, we define the grid values in

[λmin, λmax] × [τmin, τmax] to be λmax = λ1 ≥ λ2 ≥ · · · ≥ λM = λmin and τmin = τ1 ≤ τ2 ≤
· · · ≤ τK = τmax. The number of grid points M = 50 and K = 5, respectively. In our

implementation, we choose some λmax > 0 (e.g. λmax = 1.2) which ensures that θ̂ = 0

and set λmin = ϵλmax for some ϵ > 0 (e.g. ϵ = 0.001) with λk = λmax(λmin/λmax)
k−1/M−1

for k = 1, · · · , M . We try and compare a small range of possible values for the shape
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parameter: τ ∈ {2.5, 3, 3.7, 4.5, 5} for the SCAD; τ ∈ {1, 1.5, 2, 2.5, 3} for the MCP; τ ∈
{0.001, 0.005, 0.01, 0.05, 0.1} for the SELO. To ensure the convergence of the algorithm, we

use the solution from the previous position as a warm start. Finally, we choose the optimal

(λ, τ) by minimizing the BIC criterion in (3.3). In Figure 1, we report the optimal value of

λ in Model I and other cases are omitted here. All the results are based on 1000 replications

with sample sizes n = 500, 1000 and 2000, respectively.

Tables 1-5 report the estimated bias (Bias) given by the average of the proposed esti-

mate of θ minus the true value, the sample standard error (SSE) of the proposed estimate,

the average of the estimated standard error (ESE) in Theorem 2. Because the traditional

CLS estimates of the zero parameters (α̂2 − α̂6) may be negative, so we adjust the CLS

with negative estimates as zeros. From the results we can see that the standard error esti-

mates corresponding to non-zero entries in θ0 agreed well with the empirical standard error.

However, the standard error estimators corresponding to zero entries of θ0 appeared to un-

derestimate the true variability of the regularized estimators. Similar phenomena were also

observed in Table 2 of Dicker, et al. (2013).

The variable selection results are reported in Tables 6 - 10, which include the estimated

average model size Ω̂ = {j; θ̂j ̸= 0} (MS), the rate that the true model was selected I{Ω̂ = Ω}
(CMR), the false positive rate |Ω̂\Ω|/|Ω̂| (F+), and the false negative rate |Ω\Ω̂|/(p− |Ω̂|)
(F−). Although all methods tend to overestimate the true model with respect to the model

size, the SELO-based method seems to have the highest selection of the correct model and

the smallest model size, which are in line with the performances of false positive rate and

false negative rate.

4.2 Application

In this section, we apply the proposed methodology to the daily epileptic seizure counts

analyzed by Latour (1998). For the analysis, let {Xt} represents the daily number of seizures

of an epileptic patient before treatment, t = 1, · · · , 120. The data are available from Latour

(1998) and are presented in Figure 2. The plots of autocorrelation function (ACF) and

partial autocorrelation function (PACF) are given in Figures 3 and 4, respectively. It is easy

to see that we may describe the count time series {Xt} using the GINAR(14) process.

We use the regularized method in Section 3 with four different penalty functions to esti-

mate the parameters of interest. The selection process of (λ, τ) is similar to those described

in Section 4.1. The estimators, standard errors (SE) and their optimal values of λ and τ are

reported in Table 11, which suggest that Xt = α6 ◦G Xt−6 + α14 ◦G Xt−14 + ϵt is the fitted

model. Note that the SEs of CLS are much larger than those of the regularized estimators,
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which indicate that the proposed approach provides an improvement over the traditional

CLS estimator. Moreover, the fitted values are defined as X̂t = ⟨
∑14

i=1 α̂iXt−i + µ̂ϵ⟩, where
⟨·⟩ denotes the rounding operator to the nearest integer (Kachour and Yao, 2009). Figure

2 reports the fitted count values with the SELO estimators (Other cases are similar and

omitted here).

To check the model adequacy, we also study the relevant properties of the fitted model

and compare with the corresponding empirical ones (mean, ACF and PACF) in Tables 12

and 13, where the theoretical mean of Xt is µ = µϵ/(1−
∑p

i=1 αi). Also the ACF and PACF

of the residual for the fitted model with SELO procedure are reported in Figures 5 and 6,

respectively (Other cases are similar, so we omit those figures). From these results we can

see that the GINAR (14) process is suitable to model the daily epileptic seizure number of

this patient. This conclusion is in line with Latour (1998), which suggests that the proposed

method is acceptable in practice.

5 Conclusion and remarks

In this article, we used the penalized approach to estimate the parameters of interest in

the GINAR(p) process. We have derived the oracle properties and illustrated the usefulness

of the proposed estimation methodology via some simulation studies and a real data example.

There exist some topics for future study. As one referee suggested, we can penalize

the likelihood function for the GINAR(p) process, instead of using the conditional least

squares function in (3.1). However, the likelihood function is very complicated especially for

high-order integer-valued autoregressive processes. A possible way is to use the saddlepoint

approximation technique for the likelihood (Pedeli, et al. 2015). This is an important

and challenging problem that deserves further careful study, but is beyond the scope of

the current paper. Furthermore, the proposed approach can be extended to other kinds of

integer-valued time series data (Zhang, et al., 2010; Scotto, et al., 2014).
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6 Appendix

For the proofs, we need the following regularity conditions:

(C.1) {Xt} is a strictly stationary and ergodic process.

(C.2) E(|Xt|4) < ∞.

(C.3) an = O(n−1/2).

(C.4) bn = o(1).

Here (C.1) and (C.2) are used for the asymptotic properties of θ̂ (Zhang, et al., 2010).

(C.3) is to ensure that the estimators are
√
n-consistent. We use (C.4) to make sure that the

influence of penalty function does not exceed that of CLS criterion function on the resulting

estimator.

Proof of Lemma 1. Define

Mn1 =
n∑

t=1

(
Xt −

p∑
i=1

α0
iXt−i − µ0

ϵ

)
,

Mni =
n∑

t=1

(
Xt −

p∑
i=1

α0
iXt−i − µ0

ϵ

)
Xt−(p+2−i), 2 ≤ i ≤ p+ 1.

Let Fn = σ(X0, X1, · · · , Xn). Then it is easy to derive that

E(Mn1|Fn−1) = E

(
M(n−1)1 +Xn −

p∑
i=1

α0
iXn−i − µ0

ϵ |Fn−1

)

= M(n−1)1 + E

(
Xn −

p∑
i=1

α0
iXn−i − µ0

ϵ |Fn−1

)
= M(n−1)1,

so {Mn1,Fn, n ≥ 1} is a martingale. Using E|Xt|4 < ∞, the strict stationarity of {Xt} and

the ergodic theorem, we have

1

n

n∑
t=1

(
Xt −

p∑
i=1

α0
iXt−i − µ0

ϵ

)2

a.s.−→ σ11.

Then, by Corollary 3.2 in Hall and Heyde(1980),

1√
n
Mn1

D−→ N(0, σ11).

Similarly, we can prove that {Mni,Fn, n ≥ 1} is a martingale, and for i = 2, · · · , p+ 1,

1√
n
Mni

D−→ N(0, σii).
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Also, for any c = (c1, · · · , cp+1)
′ ∈ Rp+1 \ (0, · · · , 0),

1√
n
c′

 Mn1

...

Mn(p+1)

 =
1√
n

n∑
t=1

(c1 + c2Xt−p + · · ·+ cp+1Xt−1)(Xt −
p∑

i=1

α0
iXt−i − µ0

ϵ)

D−→ N

(
0, E(c1 + c2X0 + · · ·+ cp+1Xp−1)

2(Xp −
p∑

i=1

α0
iXp−i − µ0

ϵ)
2

)
.

Thus, by the Cramer-Wold device, we can obtain the desired results. This ends the proof.

�

Proof of Lemma 2. To prove the lemma, it suffices to show that with probability tending

to 1 as n → ∞, for given θ1 satisfying ∥θ1−θ10∥ = Op(n
−1/2) and for some small ϵn = σn−1/2

and j = s+ 1, · · · , p+ 1,

∂L (θ)

∂θj
> 0, for 0 < θj < ϵn,

∂L (θ)

∂θj
< 0, for − ϵn < θj < 0. (6.1)

Let Ut(θ) = Xt −
∑p

i=1 αiXt−i − µϵ and Yt = (1, Xt−p, · · · , Xt−1)
′. Then, by the Taylor’s

expansion, we can derive that

∂L (θ)

∂θj
= −

n∑
t=1

Ut(θ)Xt−(p+2−j) + nṖλn(θj)

= I1 + I2 + nṖλn(θj),

where I1 = −
∑n

t=1 Ut(θ0)Xt−(p+2−j), and I2 =
∑n

t=1 Xt−(p+2−j)Y
′
t (θ− θ0). Similar to Lemma

1, applying the martingale central limit theorem, we obtain that I1 = Op(n
1/2). By the

strict stationarity and the law of large numbers, together with θ − θ0 = Op(n
−1/2), we get

that I2 = Op(n
1/2). Thus, ∂L (θ)

∂θj
= nλn{Op(n

−1/2/λn) + λ−1
n Ṗλn(θj). Since n−1/2/λn = o(1)

and λ−1
n Ṗλn(θj) > 0, the sign of ∂L (θ)

∂θj
is completely determined by that of θj. Hence, (6.1)

follows. This completes the proof. �

Proof of Theorem 1. Let αn = n−1/2 + an. To prove the theorem, we need to show that

for any given ϵ > 0, there exists a constant C such that

P
{

L (θ0) < inf
∥u∥=C

L (θ0 + αnu)
}
≥ 1− ϵ. (6.2)

Then, there exists a local minima in the ball {θ0 + αnu : ∥u∥ ≤ C} with probability at least

1− ϵ. Thus, there exists a local minimizer θ̂ such that ∥θ̂ − θ0∥ = Op(αn).

11



Define Dn(u) = L (θ0 + αnu)− L (β0), using pλn(0) = 0, we get that

Dn(u) ≥ S(θ0 + αnu)− S(θ0) + n

s∑
j=1

{
Pλn(θ

0
j + αnuj)− Pλn(θ

0
j )
}
,

where s is the number of components of θ10. By the Taylor expansion, we have

Dn(u) ≥ −αnB
′(θ0)u+

1

2
u′A(θ0)unα

2
n{1 + op(1)} (6.3)

+
s∑

j=1

[
nαnṖλn(θ

0
j )uj + nα2

nP̈λn(θ
0
j )u

2
j{1 + o(1)}

]
.

It follows from Lemma 1 that n−1/2B(θ0) = Op(1). Then the first term on the right-hand

side of (6.3) is on the order Op(n
1/2αn) = Op(nα

2
n). Furthermore, the second term dominates

the first term uniformly in ∥u∥ = C, where C is sufficiently large. Note that the third term

of (6.3) is bounded by

√
snαnan∥u∥+ nα2

n max
1≤j≤p+1

{P̈λn(θ
0
j ), θ

0
j ̸= 0}∥u∥2. (6.4)

It is easy to see that (6.4) is also dominated by the second term of (6.3). Thus, by choosing

a sufficiently large C, we conclude that (6.2) holds. This completes the proof. �

Proof of Theorem 2. Part (i) directly follows from Lemma 1. For part (ii), let Q(θ) =

∂L (θ)/∂θ. It can be easily shown that there exists a θ̂1 in Theorem 1 that is a
√
n-

consistent local minimizer of L {(θ′1, 0)′}, which satisfies the equation Q{(θ̂′1, 0)′} = 0. Let

Y s
t = (1, Xt−p, · · · , Xt−p−s+1)

′. Since θ̂1 is a consistent estimator, by the Taylor expansion,

we get

Qs(θ̂1) = −
n∑

t=1

Ut(θ̂)Y
s
t + n(Ṗλn(θ̂11), · · · , Ṗλn(θ̂1s))

′

= −
n∑

t=1

Ut(θ0)Y
s
t +

n∑
t=1

Y s
t Y

s′

t × (θ̂1 − θ10)

+n[b+ {diag{P̈λn(θ10), · · · , P̈λn(θs0)}+ op(1)} × (θ̂1 − θ10)],

which yields that

√
n(Θs + Σ){(θ̂1 − θ10) + (Θs + Σ)−1b} =

1√
n

n∑
t=1

Ut(θ0)Y
s
t + op(1).

Similar to the proof of Lemma 1, by the Slutsky’s theorem and the martingale central

limit theorem, the desired results are obtained. This completes the proof. �
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Table 1.

Bias, (SSE) and [ESE] of the parameters in Model I.

Sample size Method α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 µ̂ϵ

n = 500 CLS -0.0099 0.0178 0.0199 0.0173 0.0193 0.0184 -0.0119 0.0319

(0.0522) (0.0288) (0.0292) (0.0272) (0.0285) (0.0301) (0.0502) (0.0600)

[0.0517] [0.0528] [0.0512] [0.0508] [0.0513] [0.0528] [0.0516] [0.0587]

ALASSO -0.0106 0.0104 0.0084 0.0075 0.0089 0.0114 -0.0135 0.0018

(0.0515) (0.0254) (0.0205) (0.0201) (0.0222) (0.0271) (0.0521) (0.0681)

[0.0385] [0.0027] [0.0020] [0.0019] [0.0021] [0.0033] [0.0381] [0.0312]

SCAD -0.0022 0.0054 0.0045 0.0035 0.0039 0.0057 -0.0055 0.0147

(0.0555) (0.0251) (0.0194) (0.0203) (0.0157) (0.0239) (0.0534) (0.0788)

[0.0406] [0.0027] [0.0019] [0.0019] [0.0017] [0.0029] [0.0402] [0.0302]

MCP -0.0001 0.0057 0.0045 0.0040 0.0047 0.0065 -0.0037 0.0187

(0.0561) (0.0191) (0.0166) (0.0161) (0.0162) (0.0215) (0.0528) (0.0775)

[0.0396] [0.0018] [0.0012] [0.0011] [0.0013] [0.0022] [0.0392] [0.0302]

SELO -0.0041 0.0046 0.0039 0.0040 0.0041 0.0051 -0.0048 0.0155

(0.0520) (0.0195) (0.0170) (0.0171) (0.0167) (0.0208) (0.0517) (0.0621)

[0.0403] [0.0012] [0.0010] [0.0009] [0.0009] [0.0014] [0.0398] [0.0314]

n = 1000 CLS -0.0033 0.0130 0.0143 0.0132 0.0130 0.0145 -0.0085 0.0156

(0.0349) (0.0198) (0.0211) (0.0201) (0.0202) (0.0217) (0.0368) (0.0394)

[0.0363] [0.0370] [0.0360] [0.0356] [0.0360] [0.0370] [0.0361] [0.0400]

ALASSO -0.0046 0.0057 0.0055 0.0062 0.0051 0.0068 -0.0071 -0.0039

(0.0347) (0.0150) (0.0141) (0.0152) (0.0128) (0.0163) (0.0366) (0.0477)

[0.0289] [0.0019] [0.0015] [0.0016] [0.0016] [0.0021] [0.0287] [0.0246]

SCAD 0.0003 0.0029 0.0024 0.0024 0.0018 0.0032 -0.0038 0.0080

(0.0377) (0.0140) (0.0114) (0.0099) (0.0088) (0.0134) (0.0375) (0.0534)

[0.0295] [0.0016] [0.0010] [0.0011] [0.0007] [0.0016] [0.0293] [0.0240]

MCP 0.0014 0.0030 0.0026 0.0031 0.0022 0.0032 -0.0019 0.0066

(0.0373) (0.0116) (0.0100) (0.0117) (0.0090) (0.0125) (0.0380) (0.0519)

[0.0290] [0.0011] [0.0009] [0.0009] [0.0008] [0.0013] [0.0289] [0.0236]

SELO -0.0004 0.0024 0.0021 0.0020 0.0015 0.0030 -0.0009 0.0020

(0.0357) (0.0111) (0.0101) (0.0096) (0.0080) (0.0127) (0.0362) (0.0417)

[0.0295] [0.0007] [0.0007] [0.0007] [0.0005] [0.0010] [0.0294] [0.0251]

n = 2000 CLS -0.0023 0.0097 0.0097 0.0096 0.0094 0.0102 -0.0039 0.0081

(0.0259) (0.0145) (0.0145) (0.0149) (0.0145) (0.0153) (0.0257) (0.0276)

[0.0256] [0.0261] [0.0253] [0.0250] [0.0253] [0.0261] [0.0256] [0.0280]

ALASSO -0.0019 0.0046 0.0037 0.0039 0.0034 0.0048 -0.0055 -0.0054

(0.0253) (0.0113) (0.0097) (0.0103) (0.0089) (0.0123) (0.0250) (0.0338)

[0.0208] [0.0013] [0.0010] [0.0009] [0.0009] [0.0014] [0.0207] [0.0188]

SCAD 0.0014 0.0017 0.0015 0.0016 0.0012 0.0021 -0.0034 0.0059

(0.0262) (0.0098) (0.0072) (0.0076) (0.0071) (0.0103) (0.0263) (0.0332)

[0.0213] [0.0012] [0.0008] [0.0006] [0.0008] [0.0013] [0.0211] [0.0189]

MCP 0.0016 0.0025 0.0018 0.0016 0.0016 0.0028 -0.0029 0.0049

(0.0261) (0.0085) (0.0070) (0.0068) (0.0063) (0.0101) (0.0270) (0.0348)

[0.0211] [0.0010] [0.0007] [0.0007] [0.0007] [0.0011] [0.0208] [0.0188]

SELO 0.0008 0.0015 0.0011 0.0014 0.0011 0.0020 -0.0021 0.0004

(0.0255) (0.0076) (0.0060) (0.0071) (0.0063) (0.0092) (0.0261) (0.0297)

[0.0213] [0.0005] [0.0003] [0.0005] [0.0003] [0.0006] [0.0212] [0.0196]
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Table 2.

Bias, (SSE) and [ESE] of the parameters in Model II.

Sample size Method α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 µ̂ϵ

n = 500 CLS -0.0142 0.0214 0.0208 0.0187 0.0192 0.0216 -0.0221 0.0418

(0.0678) (0.0351) (0.0335) (0.0299) (0.0311) (0.0329) (0.0656) (0.0644)

[0.0671] [0.0621] [0.0571] [0.0550] [0.0557] [0.0599] [0.0649] [0.0660]

ALASSO -0.0202 0.0113 0.0086 0.0080 0.0089 0.0106 -0.0240 0.0098

(0.0677) (0.0268) (0.0239) (0.0229) (0.0235) (0.0273) (0.0648) (0.0749)

[0.0518] [0.0044] [0.0028] [0.0023] [0.0024] [0.0036] [0.0500] [0.0339]

SCAD -0.0139 0.0074 0.0060 0.0065 0.0051 0.0069 -0.0193 0.0105

(0.0714) (0.0272) (0.0233) (0.0241) (0.0223) (0.0279) (0.0657) (0.0850)

[0.0541] [0.0058] [0.0042] [0.0037] [0.0039] [0.0052] [0.0525] [0.0322]

MCP -0.0129 0.0078 0.0054 0.0050 0.0049 0.0069 -0.0185 0.0255

(0.0704) (0.0227) (0.0196) (0.0200) (0.0184) (0.0236) (0.0668) (0.0843)

[0.0535] [0.0033] [0.0022] [0.0019] [0.0017] [0.0027] [0.0518] [0.0321]

SELO -0.0122 0.0057 0.0050 0.0048 0.0040 0.0064 -0.0146 0.0246

(0.0680) (0.0210) (0.0223) (0.0221) (0.0176) (0.0257) (0.0657) (0.0636)

[0.0535] [0.0021] [0.0014] [0.0012] [0.0011] [0.0019] [0.0519] [0.0354]

n = 1000 CLS -0.0106 0.0166 0.0158 0.0143 0.0153 0.0157 -0.0104 0.0238

(0.0486) (0.0249) (0.0239) (0.0229) (0.0238) (0.0246) (0.0443) (0.0440)

[0.0486] [0.0450] [0.0409] [0.0394] [0.0399] [0.0430] [0.0466] [0.0464]

ALASSO -0.0110 0.0084 0.0059 0.0060 0.0053 0.0080 -0.0133 0.0034

(0.0485) (0.0212) (0.0157) (0.0160) (0.0144) (0.0193) (0.0461) (0.0559)

[0.0388] [0.0034] [0.0021] [0.0019] [0.0016] [0.0030] [0.0373] [0.0277]

SCAD -0.0075 0.0049 0.0043 0.0037 0.0031 0.0045 -0.0116 0.0085

(0.0509) (0.0224) (0.0169) (0.0151) (0.0167) (0.0176) (0.0480) (0.0626)

[0.0402] [0.0038] [0.0027] [0.0023] [0.0023] [0.0032] [0.0387] [0.0261]

MCP -0.0066 0.0061 0.0033 0.0033 0.0032 0.0045 -0.0111 0.0196

(0.0503) (0.0199) (0.0127) (0.0129) (0.0126) (0.0157) (0.0484) (0.0580)

[0.0400] [0.0023] [0.0014] [0.0012] [0.0011] [0.0019] [0.0384] [0.0266]

SELO -0.0054 0.0048 0.0024 0.0020 0.0022 0.0041 -0.0066 0.0102

(0.0491) (0.0180) (0.0117) (0.0117) (0.0116 ) (0.0154) (0.0468) (0.0483)

[0.0403] [0.0019] [0.0009] [0.0007] [0.0007] [0.0014] [0.0388] [0.0297]

n = 2000 CLS -0.0054 0.0122 0.0121 0.0099 0.0108 0.0107 -0.0063 0.0129

(0.0352) (0.0186) (0.0178) (0.0150) (0.0165) (0.0173) (0.0327) (0.0310)

[0.0347] [0.0322] [0.0294] [0.0282] [0.0285] [0.0305] [0.0334] [0.0329]

ALASSO -0.0055 0.0055 0.0044 0.0040 0.0039 0.0052 -0.0071 -0.0029

(0.0339) (0.0135) (0.0108) (0.0107) (0.0102) (0.0133) (0.0321) (0.0403)

[0.0287] [0.0022] [0.0015] [0.0014] [0.0013] [0.0019] [0.0278] [0.0220]

SCAD -0.0030 0.0025 0.0029 0.0019 0.0015 0.0037 -0.0067 0.0058

(0.0355) (0.0156) (0.0109) (0.0098) (0.0098) (0.0134) (0.0324) (0.0426)

[0.0295] [0.0024] [0.0017] [0.0014] [0.0014] [0.0022] [0.0285] [0.0215]

MCP -0.0029 0.0034 0.0026 0.0020 0.0020 0.0034 -0.0056 0.0100

(0.0352) (0.0112) (0.0093) (0.0076) (0.0076) (0.0115) (0.0322) (0.0398)

[0.0296] [0.0017] [0.0012] [0.0009] [0.0009] [0.0015] [0.0286] [0.0223]

SELO -0.0020 0.0028 0.0017 0.0012 0.0011 0.0029 -0.0025 0.0013

(0.0339) (0.0115) (0.0081) (0.0065) (0.0067) (0.0112) (0.0322) (0.0341)

[0.0295] [0.0011] [0.0007] [0.0004] [0.0004] [0.0011] [0.0287] [0.0234]
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Table 3.

Bias, (SSE) and [ESE] of the parameters in Model III.

Sample size Method α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 µ̂ϵ

n = 500 CLS -0.0092 0.0206 0.0202 0.0181 0.0203 0.0216 -0.0210 0.0366

(0.0616) (0.0330) (0.0321) (0.0294) (0.0312) (0.0324) (0.0574) (0.0634)

[0.0599] [0.0579] [0.0546] [0.0532] [0.0539] [0.0567] [0.0585] [0.0621]

ALASSO -0.0153 0.0107 0.0078 0.0073 0.0080 0.0117 -0.0206 0.0048

(0.0606) (0.0262) (0.0199) (0.0200) (0.0203) (0.0282) (0.0593) (0.0695)

[0.0463] [0.0037] [0.0024] [0.0020] [0.0021] [0.0038] [0.0449] [0.0323]

SCAD -0.0073 0.0068 0.0045 0.0048 0.0050 0.0065 -0.0146 0.0132

(0.0647) (0.0243) (0.0191) (0.0212) (0.0177) (0.0230) (0.0606) (0.0847)

[0.0483] [0.0035] [0.0024] [0.0025] [0.0023] [0.0032] [0.0469] [0.0308]

MCP -0.0049 0.0059 0.0049 0.0044 0.0044 0.0076 -0.0137 0.0227

(0.0648) (0.0223) (0.0179) (0.0161) (0.0163) (0.0238) (0.0614) (0.0819)

[0.0480] [0.0021] [0.0019] [0.0014] [0.0015] [0.0030] [0.0466] [0.0316]

SELO -0.0071 0.0061 0.0041 0.0031 0.0039 0.0059 -0.0098 0.0203

(0.0621) (0.0223) (0.0175) (0.0152) (0.0174) (0.0219) (0.0592) (0.0613)

[0.0484] [0.0019] [0.0013] [0.0009] [0.0011] [0.0019] [0.0470] [0.0350]

n = 1000 CLS -0.0060 0.0129 0.0148 0.0143 0.0131 0.0140 -0.0096 0.0230

(0.0428) (0.0210) (0.0222) (0.0223) (0.0205) (0.0226) (0.0422) (0.0438)

[0.0426] [0.0409] [0.0385] [0.0374] [0.0380] [0.0401] [0.0417] [0.0434]

ALASSO -0.0064 0.0069 0.0053 0.0058 0.0065 0.0072 -0.0111 -0.0015

(0.0415) (0.0172) (0.0149) (0.0158) (0.0161) (0.0177) (0.0400) (0.0525)

[0.0344] [0.0025] [0.0015] [0.0018] [0.0019] [0.0025] [0.0334] [0.0263]

SCAD -0.0028 0.0036 0.0035 0.0029 0.0037 0.0040 -0.0102 0.0090

(0.0441) (0.0166) (0.0143) (0.0119) (0.0140) (0.0162) (0.0400) (0.0580)

[0.0356] [0.0024] [0.0015] [0.0014] [0.0016] [0.0025] [0.0346] [0.0248]

MCP -0.0022 0.0042 0.0029 0.0033 0.0030 0.0041 -0.0086 0.0148

(0.0446) (0.0140) (0.0120) (0.0130) (0.0119) (0.0142) (0.0406) (0.0557)

[0.0354] [0.0017] [0.0010] [0.0010] [0.0011] [0.0018] [0.0343] [0.0256]

SELO -0.0024 0.0032 0.0024 0.0024 0.0026 0.0033 -0.0051 0.0073

(0.0423) (0.0131) (0.0123) (0.0119) (0.0114) (0.0126) (0.0402) (0.0450)

[0.0355] [0.0013] [0.0007] [0.0007] [0.0008] [0.0012] [0.0345] [0.0276]

n = 2000 CLS -0.0027 0.0109 0.0110 0.0098 0.0110 0.0100 -0.0048 0.0097

(0.0305) (0.0166) (0.0165) (0.0148) (0.0165) (0.0154) (0.0301) (0.0294)

[0.0305] [0.0293] [0.0276] [0.0268] [0.0272] [0.0287] [0.0297] [0.0309]

ALASSO -0.0046 0.0052 0.0040 0.0048 0.0041 0.0052 -0.0081 -0.0033

(0.0293) (0.0129) (0.0110) (0.0118) (0.0106) (0.0127) (0.0293) (0.0382)

[0.0250] [0.0018] [0.0014] [0.0014] [0.0012] [0.0018] [0.0244] [0.0204]

SCAD -0.0012 0.0017 0.0020 0.0026 0.0019 0.0031 -0.0067 0.0074

(0.0306) (0.0130) (0.0087) (0.0109) (0.0092) (0.0114) (0.0290) (0.0364)

[0.0258] [0.0017] [0.0012] [0.0013] [0.0012] [0.0018] [0.0252] [0.0203]

MCP -0.0019 0.0034 0.0019 0.0023 0.0021 0.0029 -0.0068 0.0096

(0.0307) (0.0119) (0.0078) (0.0086) (0.0082) (0.0101) (0.0293) (0.0378)

[0.0257] [0.0015] [0.0008] [0.0010] [0.0009] [0.0013] [0.0251] [0.0208]

SELO -0.0015 0.0028 0.0014 0.0018 0.0013 0.0017 -0.0031 0.0016

(0.0292) (0.0109) (0.0075) (0.0087) (0.0072) (0.0086) (0.0284) (0.0328)

[0.0258] [0.0011] [0.0005] [0.0007] [0.0005] [0.0006] [0.0252] [0.0216]
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Table 4.

Bias, (SSE) and [ESE] of the parameters in Model IV.

Sample size Method α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 µ̂ϵ

n = 500 CLS -0.0109 0.0191 0.0202 0.0174 0.0186 0.0187 -0.0139 0.0183

(0.0561) (0.0288) (0.0297) (0.0278) (0.0286) (0.0298) (0.0596) (0.0448)

[0.0582] [0.0530] [0.0505] [0.0498] [0.0506] [0.0535] [0.0584] [0.0459]

ALASSO -0.0105 0.0087 0.0086 0.0073 0.0076 0.0097 -0.0178 0.0030

(0.0572) (0.0226) (0.0224) (0.0187) (0.0213) (0.0246) (0.0604) (0.0509)

[0.0486] [0.0034] [0.0029] [0.0024] [0.0022] [0.0037] [0.0478] [0.0284]

SCAD -0.0032 0.0057 0.0047 0.0037 0.0046 0.0065 -0.0099 0.0134

(0.0600) (0.0212) (0.0205) (0.0142) (0.0194) (0.0238) (0.0613) (0.0562)

[0.0495] [0.0026] [0.0019] [0.0016] [0.0021] [0.0030] [0.0491] [0.0282]

MCP -0.0021 0.0048 0.0042 0.0035 0.0041 0.0056 -0.0071 0.0136

(0.0593) (0.0191) (0.0184) (0.0142) (0.0184) (0.0214) (0.0612) (0.0550)

[0.0468] [0.0017] [0.0012] [0.0010] [0.0013] [0.0022] [0.0460] [0.0250]

SELO -0.0066 0.0037 0.0036 0.0023 0.0040 0.0038 -0.0122 0.0092

(0.0585) (0.0178) (0.0174) (0.0130) (0.0182) (0.0190) (0.0632) (0.0467)

[0.0488] [0.0011] [0.0013] [0.0007] [0.0012] [0.0012] [0.0478] [0.0262]

n = 1000 CLS -0.0042 0.0126 0.0138 0.0124 0.0141 0.0134 -0.0082 0.0114

(0.0403) (0.0203) (0.0198) (0.0195) (0.0210) (0.0209) (0.0419) (0.0317)

[0.0417] [0.0375] [0.0356] [0.0349] [0.0355] [0.0379] [0.0419] [0.0325]

ALASSO -0.0045 0.0070 0.0056 0.0057 0.0054 0.0066 -0.0077 -0.0056

(0.0408) (0.0163) (0.0141) (0.0141) (0.0141) (0.0160) (0.0414) (0.0340)

[0.0361] [0.0025] [0.0018] [0.0017] [0.0016] [0.0025] [0.0361] [0.0217]

SCAD -0.0005 0.0031 0.0029 0.0020 0.0028 0.0035 -0.0035 0.0068

(0.0419) (0.0141) (0.0124) (0.0108) (0.0133) (0.0154) (0.0410) (0.0343)

[0.0356] [0.0017] [0.0010] [0.0010] [0.0012] [0.0020] [0.0358] [0.0207]

MCP -0.0010 0.0034 0.0025 0.0026 0.0024 0.0043 -0.0042 0.0068

(0.0421) (0.0132) (0.0107) (0.0114) (0.0114) (0.0148) (0.0415) (0.0341)

[0.0337] [0.0012] [0.0007] [0.0007] [0.0007] [0.0016] [0.0335] [0.0181]

SELO -0.0027 0.0025 0.0018 0.0016 0.0019 0.0025 -0.0051 0.0011

(0.0416) (0.0116) (0.0094) (0.0094) (0.0111) (0.0123) (0.0423) (0.0325)

[0.0359] [0.0008] [0.0005] [0.0005] [0.0007] [0.0009] [0.0358] [0.0204]

n = 2000 CLS -0.0030 0.0105 0.0087 0.0095 0.0093 0.0100 -0.0052 0.0069

(0.0307) (0.0154) (0.0139) (0.0142) (0.0147) (0.0152) (0.0299) (0.0223)

[0.0294] [0.0265] [0.0250] [0.0246] [0.0251] [0.0268] [0.0297] [0.0231]

ALASSO -0.0031 0.0047 0.0046 0.0036 0.0042 0.0058 -0.0046 -0.0034

(0.0289) (0.0108) (0.0107) (0.0092) (0.0099) (0.0133) (0.0291) (0.0231)

[0.0262] [0.0016] [0.0012] [0.0010] [0.0013] [0.0020] [0.0263] [0.0168]

SCAD -0.0018 0.0021 0.0021 0.0010 0.0014 0.0034 -0.0034 0.0063

(0.0292) (0.0102) (0.0095) (0.0069) (0.0080) (0.0136) (0.0292) (0.0229)

[0.0252] [0.0014] [0.0008] [0.0006] [0.0007] [0.0016] [0.0252] [0.0150]

MCP -0.0028 0.0029 0.0015 0.0012 0.0019 0.0035 -0.0034 0.0061

(0.0292) (0.0097) (0.0071) (0.0063) (0.0079) (0.0120) (0.0284) (0.0225)

[0.0235] [0.0010] [0.0004] [0.0003] [0.0005] [0.0011] [0.0233] [0.0130]

SELO -0.0029 0.0015 0.0009 0.0009 0.0012 0.0027 -0.0039 0.0026

(0.0294) (0.0073) (0.0062) (0.0058) (0.0069) (0.0112) (0.0292) (0.0222)

[0.0262] [0.0005] [0.0003] [0.0003] [0.0004] [0.0010] [0.0263] [0.0162]
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Table 5.

Bias, (SSE) and [ESE] of the parameters in Model V.

Sample size Method α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 µ̂ϵ

n = 500 CLS -0.0094 0.0175 0.0188 0.0168 0.0168 0.0170 -0.0180 0.0221

(0.0582) (0.0271) (0.0287) (0.0261) (0.0255) (0.0271) (0.0565) (0.0469)

[0.0572] [0.0513] [0.0478] [0.0464] [0.0473] [0.0509] [0.0587] [0.0466]

ALASSO -0.0140 0.0093 0.0076 0.0071 0.0079 0.0097 -0.0178 0.0060

(0.0606) (0.0221) (0.0194) (0.0186) (0.0213) (0.0250) (0.0600) (0.0510)

[0.0478] [0.0040] [0.0030] [0.0026] [0.0029] [0.0039] [0.0500] [ 0.0283]

SCAD -0.0064 0.0059 0.0049 0.0044 0.0054 0.0071 -0.0096 0.0137

(0.0613) (0.0235) (0.0200) (0.0181) (0.0217) (0.0255) (0.0604) (0.0578)

[0.0493] [0.0031] [0.0023] [0.0020] [0.0022] [0.0037] [0.0514] [0.0283]

MCP -0.0056 0.0052 0.0037 0.0027 0.0052 0.0062 -0.0095 0.0137

(0.0628) (0.0199) (0.0165) (0.0127) (0.0213) (0.0227) (0.0617) (0.0575)

[0.0468] [0.0019] [0.0011] [0.0009] [0.0016] [0.0023] [0.0493] [0.0244]

SELO -0.0090 0.0040 0.0027 0.0026 0.0036 0.0046 -0.0118 0.0082

(0.0616) (0.0183) (0.0159) (0.0136) (0.0189) (0.0202) (0.0611) (0.0453)

[0.0489] [0.0014] [0.0009] [0.0010] [0.0012] [0.0016] [0.0513] [0.0266]

n = 1000 CLS -0.0048 0.0130 0.0123 0.0126 0.0138 0.0126 -0.0091 0.0113

(0.0408) (0.0204) (0.0198) (0.0195) (0.0202) (0.0206) (0.0405) (0.0316)

[0.0411] [0.0362] [0.0336] [0.0328] [0.0334] [0.0361] [0.0420] [0.0326]

ALASSO -0.0062 0.0058 0.0052 0.0049 0.0051 0.0073 -0.0077 -0.0008

(0.0403) (0.0154) (0.0137) (0.0129) (0.0138) (0.0169) (0.0414) (0.0357)

[0.0357] [0.0023] [0.0018] [0.0019] [0.0015] [0.0026] [0.0371] [0.0216]

SCAD -0.0031 0.0036 0.0027 0.0023 0.0019 0.0040 -0.0039 0.0097

(0.0406) (0.0143) (0.0121) (0.0110) (0.0098) (0.0143) (0.0416) (0.0367)

[0.0355] [0.0018] [0.0010] [0.0013] [0.0010] [0.0019] [0.0368] [0.0207]

MCP -0.0027 0.0028 0.0022 0.0024 0.0018 0.0036 -0.0039 0.0092

(0.0409) (0.0118) (0.0116) (0.0104) (0.0085) (0.0134) (0.0416) (0.0364)

[0.0335] [0.0011] [0.0006] [0.0009] [0.0005] [0.0014] [0.0351] [0.0181]

SELO -0.0039 0.0023 0.0018 0.0015 0.0014 0.0029 -0.0042 0.0018

(0.0420) (0.0114) (0.0101) (0.0091) (0.0088) (0.0130) (0.0417) (0.0337)

[0.0359] [0.0008] [0.0007] [0.0006] [0.0004] [0.0010] [0.0375] [0.0205]

n = 2000 CLS -0.0034 0.0099 0.0089 0.0095 0.0098 0.0097 -0.0048 0.0050

(0.0296) (0.0147) (0.0137) (0.0137) (0.0145) (0.0148) (0.0306) (0.0227)

[0.0293] [0.0256] [0.0237] [0.0232] [0.0237] [0.0257] [0.0299] [0.0230]

ALASSO -0.0019 0.0039 0.0038 0.0041 0.0034 0.0040 -0.0032 -0.0035

(0.0297) (0.0103) (0.0097) (0.0101) (0.0088) (0.0101) (0.0325) (0.0237)

[0.0262] [0.0014] [0.0012] [0.0011] [0.0011] [0.0015] [0.0273] [0.0165]

SCAD -0.0009 0.0017 0.0022 0.0018 0.0013 0.0016 -0.0019 0.0058

(0.0298) (0.0095) (0.0095) (0.0081) (0.0069) (0.0083) (0.0323) (0.0238)

[0.0250] [0.0010] [0.0008] [0.0007] [0.0006] [0.0008] [0.0261] [0.0147]

MCP -0.0015 0.0018 0.0021 0.0018 0.0015 0.0016 -0.0026 0.0056

(0.0299) (0.0082) (0.0090) (0.0080) (0.0072) (0.0074) (0.0323) (0.0233)

[0.0233] 0.0007] [0.0007] [0.0004] [0.0005] [0.0006] [0.0245] [0.0128]

SELO -0.0018 0.0015 0.0014 0.0013 0.0013 0.0011 -0.0027 0.0014

(0.0305) (0.0082) (0.0078) (0.0073) (0.0070) (0.0065) (0.0326) (0.0222)

[0.0260] [0.0005] [0.0006] [0.0004] [0.0004] [0.0004] [0.0271] [0.0157]
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Table 6.

Simulation results for model selection in Model I.

Sample size Method MS CMR F+ F−
n = 500 ALASSO 3.8770 0.2140 0.2359 0.0246

SCAD 3.4540 0.4990 0.1413 0.0242

MCP 3.3560 0.4610 0.1416 0.0348

SELO 3.1610 0.6120 0.0946 0.0343

n = 1000 ALASSO 3.8920 0.2660 0.2134 0.0060

SCAD 3.4190 0.5810 0.1087 0.0055

MCP 3.3860 0.5670 0.1108 0.0100

SELO 3.2420 0.7030 0.0729 0.0079

n = 2000 ALASSO 3.8190 0.3250 0.1911 0.0009

SCAD 3.3820 0.6540 0.0916 0.0004

MCP 3.4180 0.5900 0.1051 0.0013

SELO 3.2180 0.7790 0.0560 0.0011
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Table 7.

Simulation results for model selection in Model II.

Sample size Method MS CMR F+ F−
n = 500 ALASSO 3.8000 0.2430 0.2239 0.0279

SCAD 3.7370 0.4000 0.1852 0.0200

MCP 3.4180 0.4690 0.1499 0.0344

SELO 3.1350 0.5680 0.1059 0.0462

n = 1000 ALASSO 3.8520 0.2550 0.2166 0.0144

SCAD 3.6730 0.4520 0.1595 0.0066

MCP 3.4270 0.5150 0.1309 0.0189

SELO 3.2240 0.6520 0.0856 0.0192

n = 2000 ALASSO 3.8320 0.2890 0.1985 0.0030

SCAD 3.5770 0.5120 0.1342 0.0011

MCP 3.4800 0.5280 0.1217 0.0030

SELO 3.2590 0.7210 0.0698 0.0038
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Table 8.

Simulation results for model selection in Model III.

Sample size Method MS CMR F+ F−
n = 500 ALASSO 3.8240 0.2410 0.2264 0.0263

SCAD 3.5400 0.4510 0.1570 0.0217

MCP 3.3700 0.4660 0.1431 0.0350

SELO 3.1670 0.5720 0.1027 0.0388

n = 1000 ALASSO 3.8220 0.2730 0.2078 0.0121

SCAD 3.5310 0.5060 0.1329 0.0057

MCP 3.3920 0.5310 0.1202 0.0153

SELO 3.2390 0.6600 0.0833 0.0153

n = 2000 ALASSO 3.8580 0.2940 0.2009 0.0016

SCAD 3.4880 0.5840 0.1136 0.0006

MCP 3.4480 0.5720 0.1114 0.0012

SELO 3.2580 0.7470 0.0647 0.0006
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Table 9.

Simulation results for model selection in Model IV.

Sample size Method MS CMR F+ F−
n = 500 ALASSO 3.9090 0.2600 0.2158 0.0056

SCAD 3.4710 0.5500 0.1210 0.0059

MCP 3.3360 0.6020 0.1009 0.0118

SELO 3.2030 0.7350 0.0657 0.0095

n = 1000 ALASSO 3.9250 0.2610 0.2130 0.0009

SCAD 3.3980 0.6300 0.0973 0.0014

MCP 3.3850 0.6230 0.0971 0.0016

SELO 3.2150 0.7860 0.0544 0.0006

n = 2000 ALASSO 3.9300 0.2900 0.2098 0

SCAD 3.3990 0.6520 0.0938 0

MCP 3.3730 0.6520 0.0909 0.0002

SELO 3.2070 0.7950 0.0515 0
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Table 10.

Simulation results for model selection in Model V.

Sample size Method MS CMR F+ F−
n = 500 ALASSO 3.9010 0.2730 0.2126 0.0058

SCAD 3.4930 0.5300 0.1296 0.0092

MCP 3.3450 0.6040 0.1007 0.0104

SELO 3.2070 0.7400 0.0640 0.0081

n = 1000 ALASSO 3.8760 0.3000 0.2024 0.0014

SCAD 3.4130 0.6280 0.0993 0.0004

MCP 3.3360 0.6710 0.0845 0.0012

SELO 3.2160 0.7840 0.0543 0.0004

n = 2000 ALASSO 3.8130 0.3380 0.1877 0

SCAD 3.3100 0.7100 0.0753 0

MCP 3.3020 0.7160 0.0737 0

SELO 3.1840 0.8190 0.0457 0
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Table 11.

Estimated regression coefficients and standard errors(SE)‡.

Method ALASSO SCAD MCP SELO CLS

α̂1 0 0 0 0 0.0135

(SE) (−) (−) (−) (−) (0.1089)

α̂2 0 0 0 0 0

(SE) (−) (−) (−) (−) (0.0989)

α̂3 0 0 0 0 0.0141

(SE) (−) (−) (−) (−) (0.0983)

α̂4 0 0 0 0 0

(SE) (−) (−) (−) (−) (0.0985)

α̂5 0 0 0 0 0.0099

(SE) (−) (−) (−) (−) (0.1177)

α̂6 0.2509 0.2600 0.2757 0.2570 0.2508

(SE) (0.1218) (0.1277) (0.0949) (0.1255) (0.1467)

α̂7 0 0 0 0 0

(SE) (−) (−) (−) (−) (0.0908)

α̂8 0 0 0 0 0.0279

(SE) (−) (−) (−) (−) (0.0995)

α̂9 0 0 0 0 0

(SE) (−) (−) (−) (−) (0.0897)

α̂10 0 0 0 0 0.0308

(SE) (−) (−) (−) (−) (0.1043)

α̂11 0 0 0 0 0.0065

(SE) (−) (−) (−) (−) (0.1015)

α̂12 0 0 0 0 0.0603

(SE) (−) (−) (−) (−) (0.0938)

α̂13 0 0 0 0 0.0095

(SE) (−) (−) (−) (−) (0.0965)

α̂14 0.2369 0.2487 0.1292 0.2439 0.2495

(SE) (0.0900) (0.0971) (0.0364) (0.0945) (0.1217)

µ̂ϵ 0.4108 0.4540 0.5140 0.4490 0.4327

(SE) (0.0928) (0.0981) (0.0861) (0.0965) (0.2298)

λ 0.0029 0.0337 0.2668 0.0062 −
τ − 3 1.5 0.1 −

‡ The CLS estimates were adjusted by the procedure in Section 4.1.
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Table 12.

The ACF and mean of the fitted GINAR model.

Lag observation ALASSO SCAD MCP SELO CLS

1 0.0184 0 0 0 0 0.0395

2 0.0400 0.0181 0.0209 0.0110 0.0198 0.0730

3 0.0162 0 0 0 0 0.0406

4 -0.0141 0.0051 0.0062 0.0032 0.0058 0.0559

5 0.0206 0 0 0 0 0.0369

6 0.2955 0.2669 0.2785 0.2807 0.2745 0.3076

7 -0.0368 0 0 0 0 0.0312

8 0.1082 0.0678 0.0747 0.0393 0.0721 0.1305

9 -0.0682 0 0 0 0 0.0318

10 0.0216 0.0025 0.0031 0.0013 0.0029 0.0671

11 0.0173 0 0 0 0 0.0371

12 0.1136 0.0712 0.0776 0.0788 0.0754 0.1613

13 -0.0173 0 0 0 0 0.0367

14 0.2511 0.2539 0.2681 0.1400 0.2624 0.2989

15 0.0649 0 0 0 0 0.0303

16 0.0281 0.0049 0.0060 0.0017 0.0056 0.0534

17 -0.0249 0 0 0 0 0.0326

18 -0.0325 0 0.0217 0.0221 0.0208 0.0806

µ̂ 0.6667 0.8020 0.9240 0.8637 0.8996 1.3224
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Table 13.

The PACF of the fitted GINAR model.

Lag observation ALASSO SCAD MCP SELO CLS

1 0.0184 0 0 0 0 0.0395

2 0.0397 0.0181 0.0209 0.0110 0.0198 0.0715

3 0.0148 0 0 0 0 0.0354

4 -0.0162 0.0048 0.0057 0.0030 0.0054 0.0484

5 0.0199 0 0 0 0 0.0283

6 0.2965 0.2668 0.2784 0.2807 0.2744 0.3002

7 -0.0513 0 0 0 0 0.0075

8 0.0926 0.0629 0.0689 0.0362 0.0666 0.0986

9 -0.0852 0 0 0 0 0.0047

10 0.0376 0 0 0 0 0.0344

11 0.0029 0 0 0 0 0.0121

12 0.0387 0 0 0 0 0.0645

13 -0.0063 0 0 0 0 0.0137

14 0.2157 0.2369 0.2487 0.1292 0.2439 0.2495

15 0.1123 0 0 0 0 0

16 -0.0097 0 0 0 0 0

17 -0.0388 0 0 0 0 0

18 -0.0877 0 0 0 0 0
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Figure 1. The optimal value of λ in the SELO procedure with n = 2000 (Model I).
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Figure 2. Daily epileptic seizure counts of the patient before treatment.
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Figure 3. ACF plot of the daily epileptic seizure counts.
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Figure 4. PACF plot of the daily epileptic seizure counts.
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Figure 5. ACF plot of the residuals with the fitted model (SELO).
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Figure 6. PACF plot of the residuals with the fitted model (SELO).
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