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GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE

NONLINEAR SCHRÖDINGER EQUATION IN H
1

2 (R)

ZIHUA GUO AND YIFEI WU

Abstract. We prove that the derivative nonlinear Schrödinger equation is glob-

ally well-posed in H
1

2 (R) when the mass of initial data is strictly less than 4π.

1. Introduction

In this note, we study the Cauchy problem to the derivative nonlinear Schrödinger
equation (DNLS):

i∂tu+ ∂2
xu =i∂x(|u|2u), t ∈ R, x ∈ R,

u(0, x) =u0(x).
(1.1)

This equation was derived by [12, 13] for studying the propagation of the circular
polarised nonlinear Alfvén waves in plasma, and has been extensively studied since
then. It is well-known that (1.1) is completely integrable (see [9, 8, 17]), and thus
has infinite number of conservation laws. In particular, in this paper we will use the
following three conservation laws: if u is a H1-solution of (1.1) then

MD(u) :=

∫

R

|u|2dx = MD(u0),

ED(u) :=

∫

R

|ux|2 +
3

2
|u|2 Im(uūx) +

1

2
|u|6dx = ED(u0),

PD(u) :=

∫

R

Im(ūux)−
1

2
|u|4dx = PD(u0).

Equation (1.1) has been extensively studied. On the well-posedness, Hayashi
and Ozawa [5, 6, 7, 14] proved local well-posedness in H1(R), and moreover global
well-posedness for initial data in H1 satisfying

∫

R

|u0(x)|2dx < 2π. (1.2)

The condition above appears naturally in the sharp Galiardo-Nirenberg inequality
to ensure an apriori estimate of H1-norm by mass and energy conservation. Later,
Local well-posedness in Hs for s ≥ 1/2 was obtained by Takaoka [15], and this result
is sharp in the sense that the solution map fails to be uniformly continuous in a ball
of Hs if s < 1/2. Low regularity global well-posedness was also studied, for example,
global well-posedness in Hs(R) under (1.2) was obtained in [16, 2, 3] for s > 1/2,
and finally in [11] for s = 1/2. On the long-time behavior and modified scattering
theory, see [4] and references therein.
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A natural question is whether blowup occurs for (1.1). To the authors’ knowledge,
this problem is still open. See [10] for a numerical blowup analysis on a class of
DNLS. Recently, the second author [19] showed the global well-posedness in H1

under a weaker condition ∫

R

|u0(x)|2dx < 4π, (1.3)

improving his previous result [18]. This result shows a striking difference between
DNLS and other mass critical equations like focusing generalized KdV and quin-
tic focusing nonlinear Schrödinger equation. The key ingredient is the use of the
momemtum conservation.
The purpose of this paper is to prove the low-regularity global well-posedness

under (1.3). The main result is

Theorem 1.1. The Cauchy problem (1.1) is global well-posed in H
1

2 (R) under (1.3).

We explain the ideas of the proof of the theorem. Inspired by [19], we derive
directly an apriori estimate using the conservation laws of mass, momentum and
energy as well as the sharp Gagliardo-Nirenberg inequality, and thus provide a sim-
plified proof of the result of [19]. We do not prove by contradiction and can get
a clear bound of H1-norm. Then we combine it with the I-method to prove the
theorem.

2. Apriori estimate

To prove the theorem, it suffices to control the H1/2-norm of the solution. For
convenience, we use the following gauge transformation. If u is a solution to (1.1)
with u0 ∈ H1/2, let

v(t, x) := e−
3

4
i
∫ x
−∞

|u(t,y)|2 dyu(t, x). (2.1)

Then v solves

i∂tv + ∂2
xv =

i

2
|v|2vx −

i

2
v2v̄x −

3

16
|v|4v (2.2)

with initial data v(0, x) = v0(x) := e−
3

4
i
∫ x
−∞

|u0|2 dyu0. It’s easy to see the map u → v
is a bijection in H1/2. Indeed, by fractional Leibniz rule we get

‖D1/2v‖2 .‖D1/2u‖2 + ‖uD1/2[e−
3

4
i
∫ x
−∞

|u(t,y)|2 dy]‖2
.‖D1/2u‖2 + ‖u‖4‖∂x[e−

3

4
i
∫ x
−∞

|u(t,y)|2 dy]‖4/3 . C(‖u‖H1/2).

From now on, we only consider the equation (2.2) and we need to control the H1/2-
norm of v.
Under the gauge transformation, the conservation laws reduce to: for solution v

of (2.2) then

M(v(t)) :=‖v(t)‖2L2
x
= M(v0), (mass) (2.3)

P (v(t)) :=Im

∫

R

v̄(t)vx(t) dx+
1

4

∫

R

|v(t)|4 dx = P (v0), (momentum) (2.4)

E(v(t)) :=‖vx(t)‖2L2
x
− 1

16
‖v(t)‖6L6

x
= E(v0). (energy) (2.5)
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We denote ‖·‖p = ‖·‖Lp
x
for 1 ≤ p ≤ ∞. By the sharp Galiardo-Nirenberg inequality

‖f‖66 ≤
4

π2
‖f‖42‖fx‖22, (2.6)

then we get

E(v) ≥ ‖vx‖22(1−
1

4π2
‖v‖42).

Thus under the condition (1.2) we can get the apriori bound on ‖v‖H1.
However, as observed in [19] the momentum conservation for (2.2) played a signif-

icant role. Inspired by [19] we derive directly a-priori estimate using the momentum
and the following sharp GN inequality (see [1]):

‖f‖6 ≤CGN‖f‖8/94 ‖fx‖1/92 , (2.7)

where CGN = 3
1

6 (2π)−
1

9 .

Lemma 2.1. If v ∈ H1(R) and v 6= 0, then

P (v) ≥1

4
‖v‖44(1−

1

2
√
π
‖v‖2)−

4
√
πE(v)‖v‖2
‖v‖44

. (2.8)

Proof. Let u = eiαxv(t, x) with α > 0 being determined later. Then

|ux|2 = |vx|2 + α2|v|2 + 2α Im vxv̄,

and thus ∫
Im vxv̄dx = −E(v)

2α
− αM(v)

2
+

E(u)

2α
.

Now by the sharp GN inequality we have

E(u) =‖ux‖22 −
1

16
‖u‖66

≥C−18
GN ‖u‖186 ‖u‖−16

4 − 1

16
‖u‖66

=(C−18
GN ‖v‖126 ‖v‖−16

4 − 1

16
)‖v‖66.

Thus,

P (v) ≥−
[
1

16
− C−18

GN ‖v‖126 ‖v‖−16
4

]‖v‖66
2α

+
‖v‖44
4

− α‖v‖22
2

− E(v)

2α

≥− f(‖v‖66‖v‖−8
4 )

‖v‖84
2α

+
‖v‖44
4

− α‖v‖22
2

− E(v)

2α

where f(x) = ( 1
16

− C−18
GN x2)x. By calculus we know

max
x

f(x) = f(
C9

GN

4
√
3
) =

C9
GN

96
√
3
=

1

64π
.

Therefore

P (v) ≥− ‖v‖84
128πα

+
‖v‖44
4

− α‖v‖22
2

− E(v)

2α

Take α = 1
8
√
π
‖v‖44‖v‖−1

2 , then P (v) ≥ 1
4
‖v‖44(1− 1

2
√
π
‖v‖2)− E(v)

2α
. �
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Lemma 2.2. If v ∈ H1(R), v 6= 0 and ‖v‖22 < 4π, then

‖vx‖2L2 ≤ 2E(v) +
P (v)2 + 2

√
π|E(v)|‖v‖2

(1− 1
2
√
π
‖v‖2)2

. (2.9)

Proof. Let x = ‖v‖44. Then (2.8) gives a estimate of the form

c ≥ ax− b

x
. (2.10)

with a = 1
4
(1− 1

2
√
π
‖v‖2), b = 4

√
π|E(v)|‖v‖2, c = |P (v)|. (2.10) implies

(ax2 − cx− b) ≤ 0.

Since a > 0, thus we get

x2 ≤
(c+

√
c2 + 4ab

2a

)2

≤ c2 + 2ab

a2
.

Thus we obtain

‖v‖84 ≤ 16(1− 1

2
√
π
‖v‖2)−2

(
P (v)2 + 2(1− 1

2
√
π
‖v‖2)

√
π|E(v)|‖v‖2

)
. (2.11)

Then by (2.7) and mean value inequality we have

‖vx‖2L2 ≤ 2E(v) + 2−4‖v‖8L4. (2.12)

Therefore by (2.11) we prove the lemma. �

With this lemma, we can get that if v is a H1-solution of (2.2) satisfying (1.3),
then ‖vx‖2 ≤ C. Therefore, global well-posedness of (2.2) in H1 under (1.3) follows
immediately.

3. Proof of the main theorem

In this section we prove Theorem 1.1 using the I-method as the previous works
[3, 11]. The main difference is that we need to use the momentum conservation.
First we recall the definition of I-operator. Let N ≫ 1 be fixed, and the Fourier

multiplier operator IN be defined as

ÎNf(ξ) = mN(ξ)f̂(ξ). (3.1)

Here mN (ξ) is a smooth, radially decreasing function satisfying 0 < mN(ξ) ≤ 1 and

mN(ξ) =

{
1, |ξ| ≤ N,

N
1

2 |ξ|− 1

2 , |ξ| > 2N.
(3.2)

For simplicity we denote IN by I and mN by m if there is no confusion. IN maps
H

1

2 to H1, moreover, we have the following estimates,

‖f‖
H

1
2
. ‖INf‖H1 . N

1

2‖f‖
H

1
2
, (3.3)

where the implicit constants are indenpendent on N .
Next we use the rescaling. For v0 ∈ H1/2, let v be the solution to (2.2). For λ > 0,

let

vλ = λ− 1

2v(
x

λ
,
t

λ2
) and v0,λ = λ− 1

2 v0(
x

λ
).
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Then vλ is a solution of (2.2) with the initial data vλ(0) = v0,λ(x). Meanwhile, vλ
exists on [0, T ] if and only if v exists on [0, λ−2T ]. We have

‖Iv0,λ‖2 ≤ ‖v0,λ‖2 = ‖v0‖2 (3.4)

and

‖∂xIv0,λ‖2 . N1/2λ−1/2‖v0‖Ḣ1/2 . (3.5)

Thus choosing
λ ∼ N,

we can make

‖∂xIv0,λ‖2 ≤ ε0 ≪ 1 (3.6)

where ε0 will be determined later.
We recall a variant local well-posedness obtained in [11].

Lemma 3.1. The Cauchy problem (2.2) is locally well-posed for the initial data v0
satisfying Iv0 ∈ H1(R). Moreover, the solution exists on the interval [0, δ] with the

lifetime

δ ∼ ‖Iv0‖−µ
H1 (3.7)

for some µ > 0, where the implicit constant is independent of N . Furthermore, the

solution satisfies the estimate

‖Iv‖L∞((0,δ);H1) ≤ 2‖Iv0‖H1 . (3.8)

By the above lemma, we need to control the growth of ‖Ivλ(t)‖H1 . By mass
conservation we have ‖Ivλ(t)‖L2

x
≤ ‖vλ‖L2

x
≤ C. It suffices to control ‖∂xIvλ‖2.

We will use (2.9) since ‖Ivλ‖22 ≤ ‖vλ‖22 = ‖v0‖22 < 4π. We define the modified
momentum and energy as follows

PI(vλ) := P (Ivλ), EI(vλ) := E(Ivλ). (3.9)

Then by (3.6), Hölder’s and Sobolev’s inequalities, we have

PI(v0,λ) . 1; EI(v0,λ) . 1

Moreover,

P (v0,λ) =
1

λ
P (v0) ∼ N−1P (v0).

If N → ∞, IN tends to the identity operator. Thus PI(vλ) and EI(vλ) increases
slowly in t if N is large enough. Indeed, in the previous works the growth of EI(vλ)
was already studied. Collecting the results obtained in [11] (see Section 7), we have

Lemma 3.2. Suppose that for T > 0

sup
t∈[0,T ]

‖Ivλ‖H1 . 1, (3.10)

then the modified energy EI(vλ) obeys the following estimate: there exists C, α > 0
such that for any t ∈ [0, T ] and any ε > 0

|EI(vλ(t))| ≤‖∂xIv0,λ‖2L2 + CN−α sup
τ∈[0,t]

(
‖Ivλ(τ)‖4H1 + ‖Ivλ(τ)‖6H1

)

+ CtN− 5

2
+ǫ sup

τ∈[0,t]

(
‖Ivλ(τ)‖6H1 + ‖Ivλ(τ)‖10H1

)
. (3.11)

On the modified momentum we have the following estimate. Indeed, since the
momentum lies in the regularity of H1/2, we can estimate it in a simple way.
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Lemma 3.3. We have
∣∣PI(vλ)− P (vλ)

∣∣ . N−1
(
‖Ivλ‖2H1 + ‖Ivλ‖4H1

)

Proof. By the definition of momentum, we need to bound
∣∣∣ Im

∫

R

(Iv̄λ∂xIvλ − v̄λ∂xvλ) dx
∣∣∣+

∣∣∣
∫

|Ivλ|4 dx−
∫

|vλ|4 dx
∣∣∣ := I + II.

For the first term I, since

Im

∫

R

(
Iv̄λ∂xIvλ − v̄λ∂xvλ

)
dx = Im

∫

R

(
I∂xvλ − ∂xvλ

)(
Iv̄λ + v̄λ

)
dx,

and P≤N

(
I∂xvλ − ∂xvλ

)
= 0, then we get

I .
∥∥I∂xvλ − ∂xvλ

∥∥
Ḣ− 1

2

(∥∥P≥NIv̄λ
∥∥
Ḣ

1
2
+
∥∥P≥N v̄λ

∥∥
Ḣ

1
2

)
.

By the definition of I-operator, we have
∥∥I∂xvλ − ∂xvλ

∥∥
Ḣ− 1

2
+
∥∥P≥NIv̄λ

∥∥
Ḣ

1
2
+
∥∥P≥N v̄λ

∥∥
Ḣ

1
2
. N− 1

2‖Ivλ‖H1,

and thus
I . N−1‖Ivλ‖2H1.

For the second term II, we have∫
|Ivλ|4 dx−

∫
|vλ|4 dx =

∫ (
Ivλ − vλ

)
P≥N(v

3
λ) dx+ similar terms. (3.12)

Using the Hölder inequality, the Sobolev’s embedding, and the fractional Leibniz
inequalities, we get

∣∣∣
∫ (

Ivλ − vλ
)
P≥N(v

3
λ) dx

∣∣∣ .‖Ivλ − vλ‖6
∥∥P≥N(v

3
λ)
∥∥

6

5

.‖Ivλ − vλ‖H 1
2
N− 1

2

∥∥〈∇〉 1

2 (v3λ)
∥∥

6

5

.N−1‖Ivλ‖H1

∥∥〈∇〉 1

2vλ
∥∥
2
‖vλ‖26

.N−1‖Ivλ‖H1‖vλ‖3
H

1
2

.N−1‖Ivλ‖4H1 .

The similar terms in (3.12) can be handled in the same way. Thus we prove the
lemma. �

By Lemma 3.2 and the mass conservation law ‖vλ‖2 ≤ C we have under the
assumption (3.10)

EI(vλ(t)) ≤‖∂xIv0,λ‖2L2 + CN−α sup
τ∈[0,t]

(
‖∂xIvλ(τ)‖42 + ‖∂xIvλ(τ)‖62 + 1

)

+ CtN− 5

2
+ǫ sup

τ∈[0,t]

(
‖∂xIvλ(τ)‖62 + ‖∂xIvλ(τ)‖102 + 1

)
. (3.13)

Note that (3.6). We will prove by continuity argument that for T ≤ T0 := N
5

2
−2ǫ,

sup
t∈[0,T ]

‖∂xIvλ(t)‖2 ≤ 4γ0ε0, (3.14)

where γ0 =

√
1 +

√
π‖v0‖2

(1− 1

2
√

π
‖v0‖2)2 . We choose ε0 ≪ 1 such that 100γ0ε0 < 1.
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Assuming (3.14), we get that the solution vλ exists on [0, T0]. Hence, v exists on
[0, λ−2T0]. Note that

λ−2T0 ∼ N−2N
5

2
−2ǫ = N

1

2
−2ǫ.

Therefore,we get that v exists till arbitrarily large T by choosing sufficient large N ,
and thus completes the proof of Theorem 1.1.
It remains to prove (3.14). We may assume sup

t∈[0,T ]

‖∂xIvλ(t)‖2 ≤ 3ε0 ≪ 1. Then

the estimate (3.13) gives

|EI(vλ(t))| ≤ ε20 + CN−ǫ, t ≤ T. (3.15)

On the other hand, by Lemma 3.3 we have

|PI(vλ(t))|2 ≤2|PI(vλ(t))− P (vλ(t))|2 + 2|P (vλ(t))|2 ≤ CN−2. (3.16)

By (2.9), we have

∥∥∂xIvλ(t)
∥∥2

L2
≤2E(Ivλ(t)) +

P (Ivλ(t))
2 + 2

√
π|E(Ivλ)|‖v0‖2

(1− 1
2
√
π
‖v0‖2)2

≤2γ2
0(ε

2
0 + CN−ǫ) + CN−2(1− 1

2
√
π
‖v0‖2)−2.

Choosing N sufficiently large, we obtain (3.14) as desired.
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