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GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE
NONLINEAR SCHRODINGER EQUATION IN H:(R)

ZIHUA GUO AND YIFEI WU

ABSTRACT. We prove that the derivative nonlinear Schrédinger equation is glob-
ally well-posed in Hz (R) when the mass of initial data is strictly less than 4.

1. INTRODUCTION

In this note, we study the Cauchy problem to the derivative nonlinear Schrédinger
equation (DNLS):
i0pu + 02u =i0, (Julu), teR, z €R,
u(0, ) =up(x).
This equation was derived by [12, 3] for studying the propagation of the circular
polarised nonlinear Alfvén waves in plasma, and has been extensively studied since
then. It is well-known that (L)) is completely integrable (see [9l 8, [17]), and thus

has infinite number of conservation laws. In particular, in this paper we will use the
following three conservation laws: if u is a H'-solution of (ILTI) then

Mp(u) ::/R luf2dz = Mp(u),

(1.1)

3 1
Ep(u) ::/ |ugc|2 + §|u|21m(uﬂx) + §|u|6dx = Ep(ug),
R

Pp(u) = /R Tm(@u,) — %|u|4da: — Pp(ug).

Equation (L) has been extensively studied. On the well-posedness, Hayashi
and Ozawa [5] 6], [7, [14] proved local well-posedness in H'(R), and moreover global
well-posedness for initial data in H! satisfying

/R|U0($)|2dx < 2m. (1.2)

The condition above appears naturally in the sharp Galiardo-Nirenberg inequality
to ensure an apriori estimate of H!-norm by mass and energy conservation. Later,
Local well-posedness in H® for s > 1/2 was obtained by Takaoka [I5], and this result
is sharp in the sense that the solution map fails to be uniformly continuous in a ball
of H*® if s < 1/2. Low regularity global well-posedness was also studied, for example,
global well-posedness in H*(R) under (2] was obtained in [16], 2, B] for s > 1/2,
and finally in [I1] for s = 1/2. On the long-time behavior and modified scattering
theory, see [4] and references therein.

2010 Mathematics Subject Classification. Primary 35Q55; Secondary 35A01.
Key words and phrases. Nonlinear Schrédinger equation with derivative, global well-posedness,
low regularity.
1


http://arxiv.org/abs/1606.07566v1

2 Z. GUO AND YIFEI WU

A natural question is whether blowup occurs for (ILT]). To the authors’ knowledge,
this problem is still open. See [I0] for a numerical blowup analysis on a class of
DNLS. Recently, the second author [I9] showed the global well-posedness in H*
under a weaker condition

/R|u0(a:)\2da: < 4, (1.3)

improving his previous result [I8]. This result shows a striking difference between
DNLS and other mass critical equations like focusing generalized KdV and quin-
tic focusing nonlinear Schrodinger equation. The key ingredient is the use of the
momemtum conservation.

The purpose of this paper is to prove the low-regularity global well-posedness
under (L3). The main result is

Theorem 1.1. The Cauchy problem (I is global well-posed in Hz (R) under (L3).

We explain the ideas of the proof of the theorem. Inspired by [19], we derive
directly an apriori estimate using the conservation laws of mass, momentum and
energy as well as the sharp Gagliardo-Nirenberg inequality, and thus provide a sim-
plified proof of the result of [I9]. We do not prove by contradiction and can get
a clear bound of H'-norm. Then we combine it with the I-method to prove the
theorem.

2. APRIORI ESTIMATE

To prove the theorem, it suffices to control the H'/?-norm of the solution. For
convenience, we use the following gauge transformation. If u is a solution to (L))
with uy € HY?, let

o(t,x) = e a Sl Py ¢ gy, (2.1)
Then v solves
: 2 i 2, Lo 3, 14
10w + 0;v = §|v| — 5Vl —|v| (2.2)

with initial data v(0,z) = vy(x) = e 11 e ol dyyy T easy to see the map u — v
is a bijection in H'/2. Indeed, by fractional Leibniz rule we get

|DY20], SDY2ul; + D! e o ty*“ym
SIDY2ull + aull|Bule 5 HF W]y < O ).

From now on, we only consider the equation ([Z.2)) and we need to control the H'/2-
norm of v.
Under the gauge transformation, the conservation laws reduce to: for solution v

of (22) then
M(v(t)) :=||v(t) HLQ = M(vp), (mass) (2.3)

—m/ vmdm—/w\%w—@@ (momentum)  (2.4)

E(v(t)) =lva()I7 — IIU( )zg = E(vo).  (energy) (2.5)
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We denote ||- ||, = |||z for 1 < p < oo. By the sharp Galiardo-Nirenberg inequality

4
1716 <=5 111311 I3, (2.6)

then we get

Bv) 2 o301 - Il

Thus under the condition ([L2) we can get the apriori bound on ||v||g1.

However, as observed in [19] the momentum conservation for (2.2) played a signif-
icant role. Inspired by [19] we derive directly a-priori estimate using the momentum
and the following sharp GN inequality (see [1]):

1£lls <Canll AN F05", (2.7)
where Cay = 36 (27) 5.
Lemma 2.1. Ifv e HY(R) and v # 0, then

Loy L AyTEW)|[vl2
P(v) 24” 151 \/—H vll2) = ||v||4 .

Proof. Let u = e"“*v(t, z) with a > 0 being determined later. Then

[ug|* = v |* + &?|v|* + 2o Im v,0,

. Elw) aM(v)  E(u)
/Imvxvd:p—— e 3 + e

Now by the sharp GN inequality we have

and thus

1
E(u) =lu.l; = gellulls
1
>Can llullg®llulls™ = 15 llulls
_ _ 1
=(Can IWlIg* v 1T = =) llvll6.
16
Thus,
[ | olg , Jlolli — allvl3 — E(v)
Plo) > — | — — C=181p112 16 6 4 2
() > — | 15— Calolizyolye | 1ohe Il _alvlly P
8 4 2 E(’U)
S o n—sy lUllz | llvlls -~ aflvl3 _
> — (gl s ¢ 1 elely Bl
where f(z) = (75 — Coy@?)z. By calculus we know
Cony_ Con _ 1
max f(z) = = = :
Therefore
P() > — ol llvlli — eloll; — Ev)
128ma 4 2 2a
Take o = gLz ool then P(v) > Hjolld(1 — sz o]l;) — Z2. .
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Lemma 2.2. Ifve HY(R), v # 0 and ||v]]3 < 47, then

ol < 25(0) 1. PO+ 2VAE@) ol (2.9
A= (= = llz)?

Proof. Let x = ||v||}. Then (2.8) gives a estimate of the form

b
> ——. 2.10
c>azr . ( )

(1- ﬁHvHQ), b= 4y/m|EW)|||v|z2, ¢ = |P(v)|. (ZI0) implies

(ax® — cx —b) < 0.

with a =

=

Since a > 0, thus we get

s _ (CH VA +4ab\2? _ * 4+ 2ab
e (ST 2030
a a

Thus we obtain

ol < 1601 — 5= lloll) 2 (P@)? +201 = o)Al E@ell).  (211)
4 \/* \/—
Then by (27) and mean value inequality we have
[vall32 < 2E(v) + 27*[0]| .. (2.12)
Therefore by ([211]) we prove the lemma. O

With this lemma, we can get that if v is a H'-solution of [2.2)) satisfying (L3),
then |lv.]|s < C. Therefore, global well-posedness of ([Z2) in H' under (L3) follows
immediately.

3. PROOF OF THE MAIN THEOREM

In this section we prove Theorem [[LT] using the I-method as the previous works
[3, 11]. The main difference is that we need to use the momentum conservation.

First we recall the definition of I-operator. Let N > 1 be fixed, and the Fourier
multiplier operator Iy be defined as

InJ(&) = mn(§)](€). (3.1)
Here my (&) is a smooth, radially decreasing function satisfying 0 < my(£) < 1 and

_ /L €] < N,
&1 ={ g 16 Sow

For simplicity we denote Iy by I and my by m if there is no confusion. Iy maps
H3 to H 1 moreover, we have the following estimates,

113 S Nl S N2IFL (3.3)

where the implicit constants are indenpendent on V.
Next we use the rescaling. For vg € H'/2, let v be the solution to (22). For A > 0,
let

(3.2)

1 r t 1 i
Uy = Afﬁv(xj ﬁ) and VoA = AiEUO(X»



GWP FOR DNLS 5

Then vy is a solution of (2.2) with the initial data v,(0) = vg(x). Meanwhile, v,
exists on [0, 7] if and only if v exists on [0, A\™2T]. We have

[Tvoxll2 < [[voallz = [voll2 (3.4)
and
10:Tvoall2 S NY2AT2 g g (3.5)
Thus choosing
A~ N,
we can make
”am[U(),)\”Q S o < 1 (36)

where £9 will be determined later.
We recall a variant local well-posedness obtained in [I1].

Lemma 3.1. The Cauchy problem (2.2)) is locally well-posed for the initial data vy
satisfying Tvy € H'(R). Moreover, the solution exists on the interval [0, 8] with the
lifetime
5~ |1 (37)
for some u > 0, where the implicit constant is independent of N. Furthermore, the
solution satisfies the estimate
”['U”Loo((oﬁ);Hl) S QHIUOHHl (38)

By the above lemma, we need to control the growth of |[[vy(t)||z:. By mass
conservation we have |[Ivy(t)||r2 < [juallrz < C. It suffices to control [|0,1vyl|2.
We will use (23) since ||[Tvy][3 < |loall3 = |lvoll3 < 47. We define the modified

momentum and energy as follows
Pi(vy) :== P(Ivy), Ej(vy) := E(Ivy). (3.9)
Then by ([B4), Holder’s and Sobolev’s inequalities, we have
Pr(von) S 15 Er(von) <1
Moreover,
P(vg ) = %P(vo) ~ N7'P(v).
If N = oo, Ix tends to the identity operator. Thus P;(vy) and E(vy) increases

slowly in ¢ if V is large enough. Indeed, in the previous works the growth of E;(v))
was already studied. Collecting the results obtained in [11] (see Section 7), we have

Lemma 3.2. Suppose that for T' > 0

sup |[Toallm <1, (3.10)
t€[0,T]

then the modified energy Ej(vy) obeys the following estimate: there exists C,a > 0
such that for any t € [0,T] and any e > 0

| Er(va(t)] <[10:Tvoall7: + ON sup ([ Toa(7)ll5 + 1 Toa(7)[151)

T7€[0,t]

+ CEN=24 sup (|[Toa(7)]|%: + [ Toa(7)][12). (3.11)

7€[0,t]

On the modified momentum we have the following estimate. Indeed, since the
momentum lies in the regularity of H'/2, we can estimate it in a simple way.
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Lemma 3.3. We have
|Pr(va) — P(un)| S N (Hoallzp + [vall3)

Proof. By the definition of momentum, we need to bound

’Im/([v,\axlv)\—wﬁwv)\) dx’ +’/|Iv,\|4dx—/|v,\|4dx’ =1+ 11
R

For the first term I, since
Im / (1020 10y = 039,01 ) dv = T / (10201 = 0205 ) (12 + 1) d,
and PgN(]giv)\ — 0,v)) = 0, then we get )
151000 = vl -y (1P Ty + | Pontin ]l ).
By the definition of I-operator, we have

0203~ -y + [ PonTonl gy + [ Peninll g < Nl

and thus
I < N7Y oy

For the second term 11, we have

/\[v)\|4 dx — / loa|* do = / (Tvy — vy) P>n(v3) dx + similar terms. (3.12)

Using the Holder inequality, the Sobolev’s embedding, and the fractional Leibniz

inequalities, we get
[ (ror = ) Poxtod) do| o = vl Pon)]

5
SITor = ol N2 [[(9)2 ()]

_ 1
SN Tl [[(V) Z0a [, loall
SN Tvallmlloall?

SN[ ol

The similar terms in (3I12) can be handled in the same way. Thus we prove the

lemma.

0

By Lemma and the mass conservation law |[v,|l < C we have under the

assumption (BI0)
Er(ua(t)) <[|0:Tvoal[72 + ONT* sup (|0 Tva(T)ll5 + [|0:Toa(T) |3 + 1)

T7€[0,t]

+ CtN =3+ sup, (0:Tox(T)[I5 + |10 Toa(T)[13° + 1).
T7€(0,t

(3.13)

Note that ([B.6). We will prove by continuity argument that for 7' < Ty := N %_25,

sup ||0:1vx(t)]]2 < 4v0c0,
t€[0,T]

where v =, /1 + % We choose ¢y < 1 such that 100vgy < 1.
(=g zllvoll2)

(3.14)
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Assuming (B.I4), we get that the solution vy exists on [0,7p]. Hence, v exists on
[0, \72T}]. Note that

ATy ~ NT2N272 = N272%

Therefore,we get that v exists till arbitrarily large T" by choosing sufficient large N,
and thus completes the proof of Theorem [L.1]
It remains to prove ([B.I4]). We may assume sup ||0,.lva(t)]]2 < 3¢9 < 1. Then

te[0,T)
the estimate ([BI3]) gives
|Er(ua(t))| <e2+CN™, t<T. (3.15)
On the other hand, by Lemma we have
| Pr(ua(t))]* 2| Pr(va(t)) — P(ox(®)* + 2| P (A1) < ON 2 (3.16)

By

29), we have

10, T (1)||2, <2E(Iux(t)) +

P(Iva(t))* + 2y E(Tva)[[|voll2
(1= 5yzllvoll2)?

1 _
|vol[2) g

<272(e2 +CN~ ) + ON"%(1 — N

Choosing N sufficiently large, we obtain ([B.14]) as desired.
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