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Abstract. We study the stability theory of solitary wave solutions for a type of
the derivative nonlinear Schrödinger equation

i∂tu + ∂2
xu + i|u|2∂xu + b|u|4u = 0.

The equation has a two-parameter family of solitary wave solutions of the form

eiω0t+i
ω1
2 (x−ω1t)− i

4

∫ x−ω1t
−∞ |ϕω(η)|2dηϕω(x− ω1t).

The stability theory in the frequency region of |ω1| < 2
√
ω0 was studied previously.

In this paper, we prove the instability of the solitary wave solutions in the endpoint
case ω1 = 2

√
ω0, in which the elliptic equation of ϕω is “zero mass”.

1. Introduction

In this paper, we study the stability theory of solitary wave solutions for the
derivative nonlinear Schrödinger equation:

i∂tu+ ∂2xu+ i|u|2∂xu+ b|u|4u = 0, t ∈ R, x ∈ R, (1.1)

where b > 0. It describes an Alfvén wave and appears in plasma physics, nonlinear
optics, and so on (see [16, 17]). When b = 0, by a suitable gauge transformation,
(1.1) is transformed to the standard derivative nonlinear Schrödinger equation:

i∂tu+ ∂2xu+ i∂x(|u|2u) = 0. (1.2)

It was proved in [9, 10, 11, 19] that the Cauchy problem for (1.1) or (1.2) is locally
well-posed in the energy space H1(R). See also [5, 22, 23, 20, 21, 1] for some of the
previous or extended results. Furthermore, it was proved in [25] that (1.2) is globally
well-posed in the energy space H1(R) when the initial data satisfies ‖u0‖L2 < 2

√
π.

See [3, 4, 7, 8, 11, 15, 19, 24] for the related results. See also [13, 14] for the stability
results on the generalized derivative nonlinear Schrödinger equation.

The solution u(t) of (1.1) satisfies three conservation laws

E(u(t)) = E(u0), P (u(t)) = P (u0),M(u(t)) = M(u0)

Key words and phrases. derivative NLS, orbital instability, solitary wave solutions.
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for all t ∈ [0, Tmax), where

E(u(t)) =
1

2
‖∂xu‖2L2 −

1

4
(i|u|2∂xu, u)L2 − b

6
‖u‖6L6 ,

P (u(t)) =
1

2
(i∂xu, u)L2 ,

M(u(t)) =
1

2
‖u‖2L2 .

It is known (see for examples [6, 2, 25]) that (1.2) has a two-parameter family of
solitary wave solutions of the form:

ũω(t, x) = eiω0t+i
ω1
2
(x−ω1t)− 3

4
i
∫ x−ω1t
−∞ |ϕ̃ω(η)|2dηϕ̃ω(x− ω1t),

where ω = (ω0, ω1) ∈ Ω := {(ω0, ω1) ∈ R+ × R : ω2
1 ≤ 4ω0}, and ϕ̃ω is the solution of

−∂2xϕ+ (ω0 −
ω2
1

4
)ϕ+

ω1

2
|ϕ|2ϕ− 3

16
|ϕ|4ϕ = 0.

In [2], Colin and Ohta proved that ũω(t, x) is stable when ω2
1 < 4ω0. See also [6]

for the case when ω1 < 0 and ω2
1 < 4ω0. The stability theory on the endpoint case

ω2
1 = 4ω0 remains open.

When b > 0, (1.1) has a two-parameter family of solitary wave solutions of the
form:

uω(t, x) = eiω0t+i
ω1
2
(x−ω1t)− i

4

∫ x−ω1t
−∞ |ϕω(η)|2dηϕω(x− ω1t), (1.3)

where ω ∈ Ω, γ = 1 + 16
3
b, and ϕω is the solution of

−∂2xϕ+ (ω0 −
ω2
1

4
)ϕ+

ω1

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0. (1.4)

In [18], Ohta showed that there exists κ ∈ (0, 1) such that uω(t, x) is stable when
−2
√
ω0 < ω1 < 2κ

√
ω0, and unstable when 2κ

√
ω0 < ω1 < 2

√
ω0. After this work,

the stability theory on the endpoint cases ω1 = 2κ
√
ω0 and ω2

1 = 4ω0 remain open.
In particular, the case ω2

1 = 4ω0 is the “zero mass” case in (1.4).

In this paper, we settle the stability theory for (1.1) on the endpoint case ω1 =
2
√
ω0. We put ω1 = c > 0, ω0 = c2/4, and denote the solitary wave solutions (1.3)

for this case as follows:

Rc(t, x) = ei
c2

4
tφc(x− ct),

where c > 0, and

φc(x) = ei
c
2
x− i

4

∫ x
−∞ |ϕc(η)|2dηϕc(x). (1.5)

We note that φc(x) is a solution of

− ∂2xφ+
c2

4
φ+ ci∂xφ− i|φ|2∂xφ− b|φ|4φ = 0, (1.6)

and ϕc(x) is a solution of

−∂2xϕ+
c

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0, γ = 1 +

16

3
b.
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From Wu [25], the equation −Wxx + 1
2
W 3 − 3

16
W 5 = 0 has a unique (up to some

symmetries) positive solution W (x) = 2(x2 + 1)−
1
2 . According to this, we have

ϕc(x) = γ−
1
4 l

1
2W (lx), (1.7)

where l = cγ−
1
2 .

For θ = (θ0, θ1) ∈ R2 and u ∈ H1(R), we define

T (θ)u = eiθ0u(x− θ1), θ = (θ0, θ1) ∈ R2.

Especially, the solitary wave solutionRc(t, x) can be written asRc(t, x) = T (θ(t))φc(x)

for θ(t) = ( c
2

4
t, ct).

For ε > 0, we define

Uε(φc) = {u ∈ H1(R) : inf
θ∈R2
‖u− T (θ)φc‖H1 < ε}.

Definition 1. We say that the solitary wave solution Rc(t, x) of (1.1) is stable if
for any ε > 0 there exists δ > 0 such that if u0 ∈ Uδ(φc), then the solution u(t) of
(1.1) with u(0) = u0 exists for all t > 0, and u(t) ∈ Uε(φc) for all t > 0. Otherwise,
Rc(t, x) is said to be unstable.

Now we state the main result of this paper. In order to avoid the tedious calcu-
lation, we only consider the case when b is close to 0, in which the equation (1.1) can
be regarded as the approximate form of (1.2).

Theorem 1. Let b ∈ (0, b0) for some small b0 > 0, then the solitary wave solution
Rc(t, x) of (1.1) is unstable.

This paper is organized as follows. In Section 2, we give the definitions of some im-
portant functionals and some useful lemmas. In Section 3, we construct the negative
direction. In Section 4, we prove the Theorem 1.

2. Preliminaries

2.1. Notations. We use X . Y to denote an estimate of the form X ≤ CY for some
constant C > 0. Similarly, we will write X ∼ Y to mean X . Y and Y . X. And
we denote 〈x〉 =

√
1 + x2.

For u, v ∈ L2(R) = L2(R,C), we define

(u, v)L2 = Re

∫
R
u(x)v(x) dx

and regard L2(R) as a real Hilbert space.

For a function f(x), its Lq-norm ‖f‖Lq =
(∫

R
|f(x)|qdx

) 1
q

and its H1-norm

‖f‖H1 = (‖f‖2L2 + ‖∂xf‖2L2)
1
2 .
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From the definitions of E, P and M , we have

E ′(u) =− ∂2xu− i|u|2∂xu− b|u|4u, (2.1)

P ′(u) =i∂xu, (2.2)

M ′(u) =u. (2.3)

Now we define

Sc(u) = E(u) + cP (u) +
c2

4
M(u)

=
1

2
‖∂xu‖2L2 −

1

4
(i|u|2∂xu, u)L2 − b

6
‖u‖6L6 +

c

2
(i∂xu, u)L2 +

c2

8
‖u‖2L2 ,

Kc(u) = ‖∂xu‖2L2 − (i|u|2∂xu, u)L2 − b‖u‖6L6 + c(i∂xu, u)L2 +
c2

4
‖u‖2L2 .

Then we have

S ′c(u) = E ′(u) + cP ′(u) +
c2

4
M ′(u)

= −∂2xu− i|u|2∂xu− b|u|4u+ ci∂xu+
c2

4
u, (2.4)

K ′c(u) = −2∂2xu− 4i|u|2∂xu− 6b|u|4u+ 2ci∂xu+
c2

2
u. (2.5)

Moreover, (1.6) is equivalent to S ′c(φ) = 0, and

Kc(u) = 〈S ′c(u), u〉.
Hence for the solution φc to (1.6), we have Kc(φc) = 0. We also need the following
elementary formulas on these two functionals.

Lemma 1. S ′′c (φc) is self-adjoint, that is, for any f, g ∈ H1(R),

〈S ′′c (φc)f, g〉 = 〈S ′′c (φc)g, f〉. (2.6)

Moreover,

S ′′c (φc)φc = −2i|φc|2∂xφc − 4b|φc|4φc,
S ′′c (φc)i∂xφc = 4biφ3

cφc∂xφc − 2φc|∂xφc|2,
K ′c(φc) = −2i|φc|2∂xφc − 4b|φc|4φc,

Proof. First, noting that

∂t∂sSc(φc + sg + tf) = ∂s∂tSc(φc + sg + tf),

then taking t = s = 0 above, we get (2.6). Moreover, by (2.4), we have

S ′′c (φc)f =− ∂2xf + ci∂xf +
c2

4
f

− i|φc|2∂xf − 2i∂xφcRe
(
φcf
)
− b(3|φc|4f + 2φ3

cφcf). (2.7)

Then the rest formulas follow from the formula above, (2.5) and a direct computation.
�
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2.2. Useful Lemmas. From (1.5), (1.7) and a direct computation, we have

Lemma 2. Let b > 0 and γ = 1 + 16
3
b. Then we have

P (φc) = −cπ(γ − 1)γ−
3
2 ,

M(φc) = 2πγ−
1
2 ,

∂cP (φc) = −π(γ − 1)γ−
3
2 ,

∂cM(φc) = 0.

Next, we consider the following minimization problem:

µ(c) = inf{Sc(u) : u ∈ H1(R) \ {0}, Kc(u) = 0}. (2.8)

Let Mc be the set of all minimizations for (2.8), i.e.

Mc = {φ ∈ H1(R) \ {0} : Sc(φ) = µ(c), Kc(φ) = 0}.
Let Gc be the set of all critical points of Sc, so

Gc = {φ ∈ H1(R) \ {0} : S ′c(φ) = 0}.
Now we give a lemma about the relation of two sets, which was proved in Lemma 3
of [12].

Lemma 3. Gc = {T (θ)φc : θ ∈ R2}, and Mc = Gc. In particular, if v ∈ H1(R)
satisfies Kc(v) = 0 and v 6= 0, then Sc(φc) ≤ Sc(v).

Lemma 4. Let b > 0. Then 〈S ′′c (φc)φc, φc〉 < 0.

Proof. We write the function

(0,∞) 3 λ 7→ Sc(λφc) =
λ2

2
Lc(φc)−

λ4

4
(i|φc|2∂xφc, φc)L2 − λ6

6
b‖φc‖6L6 ,

here

Lc(u) = ‖∂xu‖2L2 +
c2

4
‖u‖2L2 + c(i∂xu, u)L2 .

Note that Lc(u) ≥ 0 for any u ∈ H1(R). Then

d

dλ
Sc(λφc) = λLc(φc)− λ3(i|φc|2∂xφc, φc)L2 − λ5b‖φc‖6L6 .

When λ = 1,

d

dλ
Sc(λφc) = Lc(φc)− (i|φc|2∂xφc, φc)L2 − b‖φc‖6L6

= Kc(φc) = 0;

when 0 < λ < 1,

d

dλ
Sc(λφc) = λLc(φc)− λ3(i|φc|2∂xφc, φc)L2 − λ5b‖φc‖6L6

> λ3Lc(φc)− λ3(i|φc|2∂xφc, φc)L2 − λ3b‖φc‖6L6

= λ3Kc(φc) = 0;
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when λ > 1, similarly, we have

d

dλ
Sc(λφc) < λ3Kc(φc) = 0.

Hence Sc(λφc) has a strictly local maximum at λ = 1, so

0 ≥ d2

dλ2
Sc(λφc) |λ=1= 〈S ′′c (φc)φc, φc〉.

According to the expression of φc, we have d2

dλ2
Sc(λφc) 6= 0. Therefore we complete

the proof of the lemma. �

3. Negative direction and modulation

Denote γ0 = 1 + 16
3
b0. For R > 0, let χR(x) = χ( x

R
), where χ is a smooth cutoff

function such that χ(x) = 1 when |x| ≤ 1; χ(x) = 0 when |x| ≥ 2. The localization
technique is employed here, because ∂cφc does not belong to L2(R), as will be seen in
the proof of the following lemma, which is the key to construct the negative direction.

Lemma 5. Suppose f ∈ H1(R) satisfies

(i) |〈S ′′c (φc)f, f〉| . 1,

(ii) for some positive constants c0, c1, C0, C1,

c0 ≤ |〈P ′(φc), f〉| ≤ C0, c1 ≤ |〈M ′(φc), f〉| ≤ C1.

Then there exist µ = µ(γ), ν = ν(γ) and R = R(γ) such that for the function
ψ = φc + µχR∂cφc + νf ∈ H1(R), the following properties hold:

(1) 〈P ′(φc), ψ〉 = 〈M ′(φc), ψ〉 = 0,

(2) µ(γ)→∞ as γ → 1; |ν(γ)| . 1 for any γ ∈ (1, γ0],

(3) 〈S ′′c (φc)ψ, ψ〉 < 0 for any γ ∈ (1, γ0].

Proof. (1) It is sufficient to find µ, ν such that{
〈P ′(φc), φc + µχR∂cφc + νf〉 = 0,

〈M ′(φc), φc + µχR∂cφc + νf〉 = 0.

By (2.2), (2.3) and Lemma 2, we have
2P (φc) +

1

2
µ∂cIm

∫
χR∂xφcφc dx+ ν〈P ′(φc), f〉 = 0,

2M(φc) +
1

2
µ∂c

∫
χR|φc|2 dx+ ν〈M ′(φc), f〉 = 0.
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From the definitions (1.5) and (1.7), and a cumbersome but direct computation (see
Appendix A.1 and A.2), we have

∂cIm

∫
χR∂xφcφc dx =2∂cP (φc) + γ−

1
2

∫ [
χ
( x
lR

)
− 1− x

lR
χ′
( x
lR

)](1

2
W 2 − 1

4
γ−1W 4

)
dx

=2∂cP (φc) +O(
1

R
), (3.1)

∂c

∫
χR|φc|2 dx =− c−1γ−

1
2

∫
x

lR
χ′
( x
lR

)
W 2 dx

=O(
1

R
). (3.2)

Making use of (3.1) and (3.2), and choosing R =
[
c0(γ−1)

]−1
for some suitable small

constant c0 > 0, then under the assumption (ii), we can solve µ, ν by
µ =

−B
∂cP (φc) +O(R−1)

∼ Bγ
3
2

π(γ − 1)
,

ν =
−‖φc‖2L2 +O(|µ|R−1)

〈M ′(φc), f〉
∼
−‖φc‖2L2

〈M ′(φc), f〉
,

where we denote

B = 2P (φc)−
‖φc‖2L2

〈M ′(φc), f〉
〈P ′(φc), f〉.

(2) First we claim that under the assumption (ii), there exist some positive con-
stants c2, C2 such that

c2 ≤ |B| ≤ C2. (3.3)

Indeed, from Lemma 2, we have

B = −2cπ(γ − 1)γ−
3
2 − 4πγ−

1
2
〈P ′(φc), f〉
〈M ′(φc), f〉

.

Note that the first term tends to 0 when γ → 1, the second term is upper controlled
by 4πγ−

1
2C0c

−1
1 and lower controlled by 4πγ−

1
2 c0C

−1
1 . Hence we have (3.3).

Employing (3.3), we have

µ ∼ Bγ
3
2

π(γ − 1)
→∞ as γ → 1. (3.4)

Also, from assumption (ii), we have

|ν| ≤ 4πγ−
1
2 c−11 .

(3) Differentiating S ′c(φc) = 0 with respect to c, we have

S ′′c (φc)∂cφc = −P ′(φc)−
c

2
M ′(φc).

Then from (1), for ψ = φc + µχR∂cφc + νf we have

〈S ′′c (φc)∂cφc, ψ〉 = 0. (3.5)
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By using Lemma 2, we can get

〈S ′′c (φc)∂cφc, ∂cφc〉 = −∂cP (φc)−
c

2
∂cM(φc)

= π(γ − 1)γ−
3
2 > 0. (3.6)

Further,

〈S ′′c (φc)ψ, f〉 = 〈S ′′c (φc)(φc + µχR∂cφc + νf), f〉
= 〈S ′′c (φc)φc, f〉+ µ〈S ′′c (φc)χR∂cφc, f〉+ ν〈S ′′c (φc)f, f〉. (3.7)

Now by (2.6) and according to the selection of ψ, we expand

〈S ′′c (φc)φc, φc〉 =〈S ′′c (φc)(ψ − µχR∂cφc − νf), ψ − µχR∂cφc − νf〉
=〈S ′′c (φc)ψ, ψ〉 − 2µ〈S ′′c (φc)χR∂cφc, ψ〉 − 2ν〈S ′′c (φc)ψ, f〉

+ µ2〈S ′′c (φc)χR∂cφc, χR∂cφc〉+ 2µν〈S ′′c (φc)χR∂cφc, f〉
+ ν2〈S ′′c (φc)f, f〉. (3.8)

First, from (3.7) we reduce (3.8) to

〈S ′′c (φc)ψ, ψ〉 − 2µ〈S ′′c (φc)χR∂cφc, ψ〉 − 2ν〈S ′′c (φc)φc, f〉
+ µ2〈S ′′c (φc)χR∂cφc, χR∂cφc〉 − 2µν〈S ′′c (φc)χR∂cφc, f〉 − 2ν2〈S ′′c (φc)f, f〉

+ 2µν〈S ′′c (φc)χR∂cφc, f〉+ ν2〈S ′′c (φc)f, f〉.

Merging the same terms we lastly write 〈S ′′c (φc)φc, φc〉 as

〈S ′′c (φc)ψ, ψ〉 − 2µ〈S ′′c (φc)χR∂cφc, ψ〉 − 2ν〈S ′′c (φc)φc, f〉
− ν2〈S ′′c (φc)f, f〉+ µ2〈S ′′c (φc)χR∂cφc, χR∂cφc〉. (3.9)

Now we estimate the terms from the second to the fifth in (3.9). First, we claim that

|〈S ′′c (φc)χR∂cφc, ψ〉| . c0. (3.10)

To prove (3.10), we use (3.5) and obtain that

〈S ′′c (φc)χR∂cφc, ψ〉 =− 〈S ′′c (φc)(1− χR)∂cφc, ψ〉. (3.11)

We need the following estimate.

Lemma 6. Let R > 0. Then

|S ′′c (φc)(1− χR)∂cφc (x)| .
(
1− χR

2
(x)
)
〈x〉−2.

Proof. From (1.5), we have

∂cφc = ei
c
2
x− i

4

∫ x
−∞ |ϕc(η)|2dη

( i
2
xϕc −

i

2
ϕc

∫ x

−∞
ϕc∂cϕc dη + ∂cϕc

)
. (3.12)

From the definition (1.7), we have

|xϕc| . 1, ϕc . 〈x〉−1, |∂xϕc| . 〈x〉−2, and |∂xxϕc| . 〈x〉−3, (3.13)

and further

∂cϕc . 〈x〉−1, and |∂x∂cϕc| . 〈x〉−2. (3.14)
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Using (3.12) and (3.13), we get

|∂cφc| . 1, and |∂x∂cφc| . 〈x〉−1. (3.15)

(The proof of (3.13)–(3.15) can be found in Appendix A.3). Moreover, from the
following identity for suitable function f ,

∂2xf − ci∂xf −
c2

4
f = e

c
2
ix∂2x

(
e−

c
2
ixf
)
,

and (2.7), we can write S ′′c (φc)(1− χR)∂cφc as

− e
c
2
ix∂xx

[
e−

i
4

∫ x
−∞ |ϕc(η)|2dη(1− χR)

( i
2
xϕc −

i

2
ϕc

∫ x

−∞
ϕc∂cϕc dη + ∂cϕc

)]
− (1− χR)

[
i|φc|2∂x∂cφc + 2i∂xφcRe

(
φc∂cφc

)
+ b(3|φc|4∂cφc + 2φ3

cφc ∂cφc)
]
.

Now using (3.13)–(3.15), we find that every term in the expression above can be
controlled by 〈x〉−2. Thus, we obtain that

|S ′′c (φc)(1− χR)∂cφc (x)| . 〈x〉−2.
Since the support of S ′′c (φc)(1−χR)∂cφc is included in [R,+∞), we prove the lemma.

�

Now we obtain from (3.11) that

|〈S ′′c (φc)χR∂cφc, ψ〉| . ‖S ′′c (φc)(1− χR)∂cφc‖L1‖ψ‖L∞ .

Note that ‖ψ‖L∞ . |µ| and recall that R =
[
c0(γ − 1)

]−1
, then by Lemma 6, we get

|〈S ′′c (φc)χR∂cφc, ψ〉| . |µ|R−1 . c0.

This proves (3.10). From Lemma 1 and the boundedness of ν, we have

|2ν〈S ′′c (φc)φc, f〉| . ‖φc‖3H1‖f‖L2 . ‖f‖L2 . (3.16)

This gives the estimate of the third term in (3.9). From the assumption (i) and the
conclusion (2), we know that

|ν2〈S ′′c (φc)f, f〉| . 1. (3.17)

This gives the estimate of the fourth term in (3.9). From (3.3), (3.4) and (3.6), we
find that

µ2〈S ′′c (φc)∂cφc, ∂cφc〉 ∼ |µ| ∼
1

γ − 1
.

Further, by Lemma 6 and argued similarly as (3.10), we have

µ2|〈S ′′c (φc)χR∂cφc, (1− χR)∂cφc〉| . c0|µ|,
and

µ2|〈S ′′c (φc)∂cφc, (1− χR)∂cφc〉| . c0|µ|.
Therefore, by choosing c0 small enough, we have the estimate of the fifth term in
(3.9) as follows,

µ2〈S ′′c (φc)χR∂cφc, χR∂cφc〉 ∼ |µ|. (3.18)

Note that |µ| → +∞, when γ → 1. Hence, combining with the estimates (3.10),
(3.16), (3.17) and (3.18), and choosing γ0 suitably close to 1, the second, the third,
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and the fourth terms in (3.9) are dominated by the fifth term. Therefore, we obtain
from (3.9) that

〈S ′′c (φc)φc, φc〉 > 〈S ′′c (φc)ψ, ψ〉.
Together with Lemma 4, we get that for any γ ∈ (1, γ0],

〈S ′′c (φc)ψ, ψ〉 < 〈S ′′c (φc)φc, φc〉 < 0.

This finishes the proof of Lemma 5. �

Remark 1. Note that f = |φc|2φc verifies the assumptions in Lemma 5.

Corollary 1. There exists a constant β0 > 0 such that

Sc(φc + βψ) < Sc(φc),

for all β ∈ (−β0, 0) ∪ (0, β0).

Proof. By Taylor’s expansion, for β ∈ R, we have

Sc(φc + βψ) = Sc(φc) + β〈S ′c(φc), ψ〉+ β2

∫ 1

0

(1− s)〈S ′′c (φc + sβψ)ψ, ψ〉ds

= Sc(φc) + β2

∫ 1

0

(1− s)〈S ′′c (φc + sβψ)ψ, ψ〉ds.

Since 〈S ′′c (φc)ψ, ψ〉 < 0, by the continuity of β 7→ 〈S ′′c (φc + βψ)ψ, ψ〉, there exists a
constant β0 > 0, such that

〈S ′′c (φc + βψ)ψ, ψ〉 ≤ 1

2
〈S ′′c (φc)ψ, ψ〉 < 0, for any β ∈ (−β0, 0) ∪ (0, β0).

Thus, for any β ∈ (−β0, 0) ∪ (0, β0), we have

Sc(φc + βψ) ≤ Sc(φc) +
β2

4
〈S ′′c (φc)ψ, ψ〉 < Sc(φc).

�

We denote T = R/2πZ. Then we can get the following proposition.

Proposition 1. There exist a constant ε0 > 0 and a C1-function θ = (θ0, θ1) :
Uε0(φc)→ T× R such that θ(φc) = 0, and

(1) 〈iu, T (θ)φc〉 = 0, 〈−∂xu, T (θ)φc〉 = 0,

(2) θ(T (ξ)u) = θ(u) + ξ for any u ∈ Uε0(φc) and θ0 ∈ T× R,
(3) ‖∂uθj(u)‖H1(R) ≤ C for any u ∈ Uε0(φc), j = 0, 1.

Proof. (1) We define the function

F (u, θ) = (F0(u, θ), F1(u, θ)),

where

F0(u, θ) = 〈iu, T (θ)φc〉, F1(u, θ) = 〈−∂xu, T (θ)φc〉.
Then F0(φc, 0) = 〈iφc, φc〉 = 0 and F1(φc, 0) = 〈−∂xφc, φc〉 = 0, that is,

F (φc, 0) = (0, 0).
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According to the definition of F (u, θ), we have

∂θ0F0(u, θ) = 〈iu, iT (θ)φc〉, ∂θ1F0(u, θ) = 〈iu,−∂xT (θ)φc〉, (3.19)

∂θ0F1(u, θ) = 〈−∂xu, iT (θ)φc〉, ∂θ1F1(u, θ) = 〈−∂xu,−∂xT (θ)φc〉. (3.20)

We denote

∂θF (u, θ) =

(
∂θ0F0(u, θ) ∂θ1F0(u, θ)
∂θ0F1(u, θ) ∂θ1F1(u, θ)

)
.

Since

∂θ0F0(φc, 0) = 〈iφc, iφc〉 = ‖φc‖2L2 = 4πγ−
1
2 ,

∂θ1F0(φc, 0) = 〈iφc,−∂xφc〉 = Im

∫
R
φc∂xφcdx = −2πcγ−

3
2 (γ − 1),

∂θ0F1(φc, 0) = 〈−∂xφc, iφc〉 = Im

∫
R
φc∂xφcdx = −2πcγ−

3
2 (γ − 1),

∂θ1F1(φc, 0) = 〈−∂xφc,−∂xφc〉 = ‖∂xφc‖2L2 =
3

2
πc2γ−

5
2 − 3

2
πc2γ−

3
2 + πc2γ−

1
2 ,

the Jacobian

|∂θF (φc, 0)| = ‖φc‖2L2 ‖∂xφc‖2L2 − (Im

∫
R
φc∂xφcdx)2 = 2π2c2γ−3(γ + 1) > 0. (3.21)

Therefore by implicit function theorem, there exist a ε0 > 0 and a unique C1-function

θ(u) = (θ0(u), θ1(u)) : Uε0(φc)→ T× R, and θ(φc) = 0,

such that for any u ∈ Uε0(φc),
F (u, θ(u)) = 0,

that is
〈iu, T (θ)φc〉 = 0, 〈−∂xu, T (θ)φc〉 = 0.

(2) In particular, let ũ = T (ξ)u, for (1), θũ = θ(u) + ξ satisfies (1) for ũ. Then by
the uniqueness, we have θ(T (ξ)u) = θ(u) + ξ.

(3) From (3.21) and the continuity, ∂θF (u, θ) is invertible for any u ∈ Uε0(φc),
and

∂θF
−1(u, θ) =

1

|∂θF (u, θ)|

(
∂θ1F1(u, θ) −∂θ1F0(u, θ)
−∂θ0F1(u, θ) ∂θ0F0(u, θ)

)
.

Differentiating F (u, θ(u)) = 0 with u, then

∂uθ = −∂θF−1(u, θ) · F T
u (u, θ),

where F T
u (u, θ) = (−iT (θ)φc, ∂xT (θ)φc)

T .
Then by a simple calculation, we can get

∂uθ0(u) =
1

|∂θF (u, θ)|
(∂θ1F1(u, θ) iT (θ)φc + ∂θ1F0(u, θ) ∂xT (θ)φc),

∂uθ1(u) = − 1

|∂θF (u, θ)|
(∂θ0F1(u, θ) iT (θ)φc + ∂θ0F0(u, θ) ∂xT (θ)φc).

From (3.19), (3.20), (3.21) and the continuity, we see that

‖∂uθj(u)‖H1(R) ≤ C for any u ∈ Uε0(φc), j = 0 , 1.

Then we complete the proof of the proposition. �
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4. proof of Theorem 1

For u ∈ Uε0(φc), we define

A(u) = (iu, T (θ(u))ψ)L2 ,

q(u) = T (θ(u))ψ + i(u, T (θ(u))ψ)∂uθ0(u) + i(iu,−∂xT (θ(u))ψ)∂uθ1(u).

Then we have

A′(u) = −iT (θ(u))ψ + (u, T (θ(u))ψ)∂uθ0(u) + (iu,−∂xT (θ(u))ψ)∂uθ1(u) = −iq(u).

Lemma 7. For u ∈ Uε0(φc),

(1) A(T (ξ)u) = A(u) for all ξ ∈ T× R,

(2) q(u) is continuous from Uε0(φc) to H1(R) and q(φc) = ψ,

(3) 〈q(u), P ′(u)〉 = 〈q(u),M ′(u)〉 = 0.

Proof. (1) By Proposition 1 (2), we have

A(T (ξ)u) = (iT (ξ)u, T (θ(T (ξ)u))ψ)L2 = (iT (ξ)u, T (ξ)T (θ(u))ψ)L2 = A(u).

(2) By Lemma 5 (1),

q(φc) = ψ + (φc, ψ)i∂uθ0(φc) + (iφc,−∂xψ)i∂uθ1(φc)

= ψ + (φc, ψ)i∂uθ0(φc) + (i∂xφc, ψ)i∂uθ1(φc)

= ψ.

Moreover, from the definition we know that q(u) is continuous from Uε0(φc) to H1(R).

(3) Differentiating A(T (ξ)u) = A(u) with ξj, j = 0, 1, we have

0 = ∂ξ0A(T (ξ)u)|ξ=0 = 〈A′(T (ξ)u), iT (ξ)u〉|ξ=0 = 〈A′(u), iu〉 = 〈−q(u), u〉,
0 = ∂ξ1A(T (ξ)u)|ξ=0 = 〈A′(T (ξ)u),−∂xT (ξ)u〉|ξ=0 = 〈A′(u),−∂xu〉 = 〈−q(u), i∂xu〉.

That is,

〈q(u), P ′(u)〉 = 〈q(u),M ′(u)〉 = 0.

�

Now, we prove Theorem 1.

Proof. Let b ∈ (0, b0). Let β0 and ε0 be the positive constants given in Corollary 1
and Proposition 1, respectively. Let uβ(0) = φc + βψ and let uβ(t) be the solution of
(1.1) with the initial data uβ(0). Suppose Rc(t, x) is stable. Then for any fixed ε0 > 0,
there exists a small positive constant β′0 < β0, such that for any β ∈ (−β′0, 0)∪ (0, β′0),
uβ(t) ∈ Uε0(φc) for any t > 0.

Now we consider the quantity A(uβ(t)). By Lemma 5 (3) and (2.4), we have

∂tA(uβ(t)) = 〈A′(uβ), ∂tuβ〉 = 〈iA′(uβ), i∂tuβ〉 = 〈q(uβ), E ′(uβ)〉

= 〈q(uβ), E ′(uβ) + cP ′(uβ) +
c2

4
M ′(uβ)〉 = 〈q(uβ), S ′c(uβ)〉.
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So, we get that

λ∂tA(uβ(t)) = Sc(uβ+λq(uβ))−Sc(uβ)−λ2
∫ 1

0

(1−s)〈S ′′c (φc+sλq(uβ))q(uβ), q(uβ)〉ds.

Now we claim that

〈K ′c(φc), ψ〉 6= 0. (4.1)

To show this, we need the following lemma.

Lemma 8. If v ∈ H1(R) satisfies 〈K ′c(φc), v〉 = 0, then 〈S ′′c (φc)v, v〉 ≥ 0.

Proof. See Lemma 4 in [18] for the proof. �

By Lemma 5 (3) and Lemma 8, we have (4.1). Then applying the implicit func-
tional theorem, we can find a λ(uβ) ∈ (−λ0, λ0)\{0}, such that for any uβ ∈ Uε0(φc),

Kc(uβ + λ(uβ)q(uβ)) = 0.

Then by Lemma 3, we have

Sc(uβ + λ(uβ)q(uβ)) ≥ Sc(φc).

Without loss of generality, we assume λ(u) > 0. By the conservation laws, we have
Sc(uβ(t)) = Sc(uβ(0)) = Sc(φc + βψ). Then

Sc(uβ + λ(uβ)q(uβ))− Sc(uβ)− λ2
∫ 1

0

(1− s)〈S ′′c (φc + sλq(uβ))q(uβ), q(uβ)〉ds

≥ Sc(φc)− Sc(φc + βψ)− λ2

4
〈S ′′c (φc)ψ, ψ〉

≥ Sc(φc)− Sc(φc + βψ) > 0.

Hence

λ(uβ)∂tA(uβ(t)) ≥ Sc(φc)− Sc(φc + βψ).

From Corollary 1, Sc(φc)− Sc(φc + βψ) > 0. Hence,

∂tA(uβ(t)) ≥ 1

λ(uβ)
(Sc(φc)− Sc(φc + βψ)) ≥ 1

λ0
(Sc(φc)− Sc(φc + βψ)) > 0.

Therefore, we get that ∂tA(uβ(t))→ +∞ as t→∞. On the other hand,

|∂tA(uβ(t))| ≤ ‖uβ‖L2‖ψ‖L2 ≤ C for any t > 0.

This is a contradiction. This finishes the proof of Theorem 1. �
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Appendix A: Some element estimates

A.1. Proof of (3.1). From (1.5), (1.7), and changing of variables,

∂cIm

∫
χR∂xφcφc dx =∂cIm

∫
χR

( c
2
iϕc −

1

4
iϕ3

c + ∂xϕc

)
ϕc dx

=∂c

∫
χR

( c
2
ϕ2
c −

1

4
ϕ4
c

)
dx

=∂c

∫
χR

[ c
2
γ−

1
2 lW 2(lx)− 1

4
γ−1l2W 4(lx)

]
dx

=∂c

∫
χR

[1

2
l2W 2(lx)− 1

4
γ−1l2W 4(lx)

]
dx

=∂c

(
l

∫
χ
( x
lR

)[1

2
W 2 − 1

4
γ−1W 4

]
dx

)
=γ−

1
2

∫
χ
( x
lR

)[1

2
W 2 − 1

4
γ−1W 4

]
dx

− l
∫

x

clR
χ′
( x
lR

)[1

2
W 2 − 1

4
γ−1W 4

]
dx

=γ−
1
2

(1

2
‖W‖2L2 −

1

4
γ−1‖W‖4L4

)
+ γ−

1
2

∫ (
χ
( x
lR

)
− 1− x

lR
χ′
( x
lR

)[1

2
W 2 − 1

4
γ−1W 4

]
dx

=2∂cP (φc) + γ−
1
2

∫ [
χ
( x
lR

)
− 1− x

lR
χ′
( x
lR

)](1

2
W 2 − 1

4
γ−1W 4

)
dx

=2∂cP (φc) +O(
1

R
);

A.2. Proof of (3.2). Arguing as above,

∂c

∫
χR|φc|2 dx =∂c

∫
χR |ϕc|2 dx

=γ−
1
2∂c

(
l

∫
χRW

2(lx) dx
)

=γ−
1
2∂c

∫
χ
( x
lR

)
W 2 dx

=− c−1γ−
1
2

∫
x

lR
χ′
( x
lR

)
W 2 dx

=O(
1

R
).

A.3. Proof of (3.13)–(3.15). Recall that ϕc(x) = γ−
1
4 l

1
2W (lx), l = cγ−

1
2 . So we

have ϕc . 〈x〉−1 and |xϕc| . 1, here and in the following, the implicit constants are
only dependent on c, γ. Moreover,

∂xϕc(x) = γ−
1
4 l

3
2W ′(lx), ∂xxϕc(x) = γ−

1
4 l

5
2W ′′(lx).
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Since |W ′| . 〈x〉−2, |W ′′| . 〈x〉−3, we have

|∂xϕc| . 〈x〉−2, and |∂xxϕc| . 〈x〉−3.

Now we consider the estimates on ∂cϕc. By direct computations,

∂cϕc(x) =
1

2
γ−

3
4 l−

1
2W (lx) +

1

2
γ−

3
4 l

1
2xW ′(lx),

and

∂x∂cϕc(x) = γ−
3
4 l

1
2W ′(lx) +

1

2
γ−

3
4 l

3
2xW ′′(lx).

Since W . 〈x〉−1, |xW ′| . 〈x〉−1, |xW ′′| . 〈x〉−2, we have

|∂cϕc| . 〈x〉−1, |∂x∂cϕc| . 〈x〉−2.
This proves (3.14).

Last, we give the estimates on φc. By (3.12),

|∂cφc| . |xϕc|+ ϕc

∫ x

−∞
ϕc|∂cϕc| dη + |∂cϕc|

. 1 + 〈x〉−1
∫ x

−∞
〈η〉−2 dη + 〈x〉−1

. 1.

Further,

∂x∂cφc =(
c

2
i− 1

4
iϕ2

c) ∂cφc + ei
c
2
x− i

4

∫ x
−∞ |ϕc(η)|2dη

( i
2
ϕc +

i

2
x∂xϕc

− i

2
∂xϕc

∫ x

−∞
ϕc∂cϕc dη −

i

2
ϕ2
c∂cϕc + ∂x∂cϕc

)
.

Similarly, using (3.13) and (3.14), we have

|∂x∂cφc| . |
c

2
+ ϕ2

c ||∂cφc|+ |ϕc|+ |x∂xϕc|+ |∂xϕc|
∫ x

−∞
ϕc|∂cϕc| dη + ϕ2

c |∂cϕc|+ |∂x∂cϕc|

. 〈x〉−1.

This proves (3.15).
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