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Abstract

Motivation: Protein fold classification is a critical step in protein structure prediction. There are two

possible ways to classify protein folds. One is through template-based fold assignment and the

other is ab-initio prediction using machine learning algorithms. Combination of both solutions to

improve the prediction accuracy was never explored before.

Results: We developed two algorithms, HH-fold and SVM-fold for protein fold classification. HH-

fold is a template-based fold assignment algorithm using the HHsearch program. SVM-fold is a

support vector machine-based ab-initio classification algorithm, in which a comprehensive set of

features are extracted from three complementary sequence profiles. These two algorithms are

then combined, resulting to the ensemble approach TA-fold. We performed a comprehensive as-

sessment for the proposed methods by comparing with ab-initio methods and template-based

threading methods on six benchmark datasets. An accuracy of 0.799 was achieved by TA-fold on

the DD dataset that consists of proteins from 27 folds. This represents improvement of 5.4–11.7%

over ab-initio methods. After updating this dataset to include more proteins in the same folds, the

accuracy increased to 0.971. In addition, TA-fold achieved >0.9 accuracy on a large dataset consist-

ing of 6451 proteins from 184 folds. Experiments on the LE dataset show that TA-fold consistently

outperforms other threading methods at the family, superfamily and fold levels. The success of TA-

fold is attributed to the combination of template-based fold assignment and ab-initio classification

using features from complementary sequence profiles that contain rich evolution information.

Availability and Implementation: http://yanglab.nankai.edu.cn/TA-fold/

Contact: yangjy@nankai.edu.cn or mhb-506@163.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The term ‘fold’ describes the overall topology of a protein’s three-

dimensional (3D) structure. For example, the well-known TIM bar-

rel fold, in the shape of a doughnut, is one of the most common

folds. It contains eight parallel b-strands forming the inner wall of

the doughnut, and eight a-helices forming the outer wall. It was esti-

mated that there are 1000–2000 folds in nature (Zhang and DeLisi,

1998), though this number may be changed with a different estima-

tion method (Liu et al., 2004). The Structural Classification of

Proteins (SCOP) database is a hierarchical classification of the
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protein domain structures at the following levels: class, fold, super-

family, family, protein and species (Fox et al., 2014). There are

1431-fold types in the latest version of SCOP (release 2.06, 2016-

07-21). Another popular resource for protein structural classifica-

tion is CATH (Class, Architecture, Topology and Homology)

(Sillitoe et al., 2015), in which the Topology level corresponds to the

fold level of SCOP.

In this work, the gold standard for protein fold classification is

taken from SCOP rather than CATH based on the following obser-

vations. First, SCOP was created largely based on manual investiga-

tion while CATH was by a combination of manual and automated

computation. Second, some CATH folds are further refined in

SCOP. For example, the 3-layer (aba) sandwich fold in CATH is

divided into at least 16 different folds in SCOP (Hadley and Jones,

1999). Third, the majority of previous studies for protein fold classi-

fication are based on SCOP (Chen and Kurgan, 2007; Damoulas

and Girolami, 2008; Ding and Dubchak, 2001; Dong et al., 2009;

Guo and Gao, 2008; Lyons et al., 2015; Rangwala and Karypis,

2005; Shamim et al., 2007; Sharma et al., 2013; Shen and Chou,

2006; Shen and Chou, 2009; Yang and Chen, 2011).

The problem of protein fold classification is a typical classifica-

tion problem, which aims to classify proteins into one of the known

folds using the amino acid sequence information. We would like to

mention that the problem of protein fold classification was also

called ‘fold recognition’ by some previous work (Dong et al., 2009;

Yang and Chen, 2011; Zakeri et al., 2014). However, the term fold

recognition (known as threading) is more commonly used in

template-based protein structure prediction, which means to match

amino acid sequence with 3D structures (Jones et al., 1992; Yang

et al., 2015). To avoid any confusion, we do not use the term fold

recognition here.

Intensive efforts have been spent on the problem of protein fold

classification. The pioneer work was done by Ding and Dubchak

(Ding and Dubchak, 2001), to classify proteins into 27 SCOP folds,

which received many follow-up studies and the accuracy was grad-

ually improved from 0.56 to >0.7 (Chen and Kurgan, 2007;

Damoulas and Girolami, 2008; Dong et al., 2009; Guo and Gao,

2008; Lyons et al., 2015; Rangwala and Karypis, 2005; Shamim

et al., 2007; Sharma et al., 2013; Shen and Chou, 2006; Shen and

Chou, 2009; Yang and Chen, 2011). These methods belong to the

machine learning-based ab-initio approach, in which there are two

key aspects, i.e. method for feature extraction and selection of ap-

propriate classification algorithms. It turns out that the most in-

formative features are those extracted from the evolutionary

information and predicted secondary structure (Chen and Kurgan,

2007; Cheung et al., 2016; Wei et al., 2015; Yang and Chen, 2011;

Zakeri et al., 2014). Regarding to classification algorithms, support

vector machines (SVMs) have been aggressively used, such as in

(Ding and Dubchak, 2001), PFRES (Chen and Kurgan, 2007), iFC2

(Chen et al., 2011), ACCFold (Dong et al., 2009) and TAXFOLD

(Yang and Chen, 2011). Other algorithms employed include neural

networks (Cheung et al., 2016; Ding and Dubchak, 2001; Huang

et al., 2003), hidden Markov models (Deschavanne and Tuffery,

2009) and ensemble classifiers (Shen and Chou, 2006; Wei et al.,

2015).

In this work, we aim to improve the accuracy of protein fold

classification through integrating template-based prediction and ma-

chine learning-based ab-initio classification. First, we develop HH-

fold for template-based fold assignment using the tool HHsearch

(Soding, 2005). Second, a machine learning-based ab-initio classifi-

cation algorithm SVM-fold is designed, in which a comprehensive

set of features are extracted from three complementary sequence

profiles that contain rich evolution information. These features are

fed into SVM to classify protein fold types. Finally, an ensemble ap-

proach TA-fold is proposed to combine the results of HH-fold and

SVM-fold. These methods are evaluated and compared with both

ab-initio and template-based methods on widely used benchmark

datasets.

2 Materials and methods

2.1 Benchmark datasets
Six benchmark datasets are used to assess and compare our method

with others: DD, RDD, EDD, TG, F184 and LE, with information

summarized in Table 1. The proteins in the DD dataset are from 27

SCOP folds and were divided into training and independent test sets

consisting of 311 and 384 proteins, respectively (Ding and

Dubchak, 2001). This dataset was found to be inconsistent with the

updated SCOP database (Chen and Kurgan, 2007; Shen and Chou,

2006; Yang and Chen, 2011), and a revised version was named

RDD (Yang and Chen, 2011). For the DD and RDD datasets, the se-

quence identity between the test and training set is <35%.

Furthermore, inclusion of more proteins in the same 27 folds of the

DD dataset results to an extended DD dataset (EDD, 3397 domains)

(Yang and Chen, 2011). The pairwise sequence identity between

proteins in the EDD dataset is <40%. The fourth one is the TG

dataset consisting of 1612 domains from 30 SCOP folds (Taguchi

and Gromiha, 2007), which has <25% pairwise sequence identity.

In order to make our method work for proteins from more folds (i.e.

not just 27-folds), the fifth dataset was constructed from the latest

version (release 2.06) of the SCOPe database (Fox et al., 2014) as

follows. First, domain sequences (using the option ‘PDB SEQRES re-

cords’) with less than 25% sequence identity were fetched. A total

of 8679 sequences from 1222 folds were obtained. Then to have

enough samples for training purpose, we filtered out those folds

with<10 sequences, resulting to 6451 sequences from 184 folds.

We name this dataset by F184 for convenience. The last dataset LE

is from the work of Lindahl and Elofsson to recognize proteins at

the SCOP family, superfamily and fold levels (Lindahl and Elofsson,

2000). This dataset is mainly used to compare our methods with

other template-based threading methods. The amino acid sequences

and profiles of proteins in these datasets are available for download

at: http://yanglab.nankai.edu.cn/TA-fold/benchmark.

2.2 HH-fold for template-based fold assignment
As shown in Figure 1, the sequence of the query protein is aligned to

the training proteins by the HHsearch program (Soding, 2005), one

of the most popular profile-profile alignment algorithms. The profile

used by HHsearch is represented in the form of a hidden Markov

model (HMM). The parameters for running the HHsearch program

are set to the default by ‘./hhsearch –i query.hhm –d train.hhm’,

Table 1. The information about the benchmark datasets

Dataset #Fold #Seq. ID.a Reference

DD 27 311/384b 0.35 (Ding and Dubchak, 2001)

RDD 27 311/380b 0.35 (Yang and Chen, 2011)

EDD 27 3397 0.4 (Yang and Chen, 2011)

TG 30 1612 0.25 (Taguchi and Gromiha, 2007)

F184 184 6451 0.25 This Article

LE 330 976 0.4 (Lindahl and Elofsson, 2000)

aMaximum pairwise sequence identity;
bnumber of sequences in the training/test set.
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where query.hhm and train.hhm are the HMMs of the query and

training proteins generated by the program HHblits (please refer to

the next section for more information about HHblits). The folds of

the top hits in the training set are then transferred to the query pro-

tein. We name this approach by HH-fold.

The ‘Prob’ column of the output returned by HHsearch measures

the probability that the query and the corresponding proteins (called

templates) in the training set share the same fold. In general, a higher

probability value indicates the templates are more homologous to

the query. Suppose there are l possible folds in the training dataset.

The likelihood li that the query protein belongs to the ith fold is esti-

mated as follows.

li ¼
Pin

j¼1 pij
PN

k¼1

Pkn

j¼1 pkj

; i ¼ 1;2; . . . ;l (1)

where pij is the probability for the jth template in the ith fold; in (kn)

is the number of templates (from the top N hits) belonging to the ith

(kth) fold. The query protein is then assigned to the fold that obtains

the maximum likelihood. The number N remains to be determined

later by experiment.

2.3 SVM-fold for machine learning-based ab-initio fold

classification
It is apparent that HH-fold relies on the availability of homologous

templates. When such condition is not satisfied, we need to refer to

ab-initio prediction algorithms that do not use templates as HH-fold

does not work anymore. As shown in Figure 1, the query sequence is

submitted to three programs, PSI-BLAST (Altschul et al., 1997),

PSIPRED (Jones, 1999) and HHblits (Remmert et al., 2012), to gen-

erate three complementary sequence profiles. These profiles are sup-

posed to contain rich evolution information of the query protein.

Then a comprehensive set of features is extracted from these profiles

to encode the query. The resulting feature vector is finally fed into

SVM to predict the query protein’s fold. We name this method by

SVM-fold. The sequence profiles and feature extraction are

described below in details. Let L denote the number of amino acids

in a protein.

Features from PSI-BLAST profile. The query sequence is

searched by the sequence-profile alignment tool PSI-BLAST

(Altschul et al., 1997) (with parameters ‘-j 3 -h 0.001’) through the

NCBI’s non-redundant sequence database, where the profile is rep-

resented in the form of a position-specific scoring matrix (PSSM) of

dimension Lx20. Similar to (Yang and Chen, 2011), each integer sij

at the ith row and the jth column of the PSSM is converted to fre-

quency using the inverse transform fij¼20.1 � sij, which is normal-

ized using the following formula:

Mij ¼ 100� fijP20
j¼1 fij

; i ¼ 1; 2; . . . ;L; j ¼ 1; 2; . . . ;20 (2)

The autocovariance (AC) transform, a statistical tool in time series

analysis, is used to extract features from the PSI-BLAST profile. It

was first applied to the analysis of biopolymer sequences in (Wold

et al., 1993). This transform was shown to be able to improve the

accuracy of protein fold classification in Dong et al. (2009) and

Yang and Chen (2011). Thus in this work, it is also applied to the

20 time series, each from one column of the normalized PSSM ma-

trix. AC is the covariance of a sequence against a time-shifted ver-

sion of itself. That is, for a time series t¼ (t1, t2, . . ., tL), its AC

transform will return

ACl ¼
1

L� l

XL�l

i¼1

ðti � �tÞðtiþl � �tÞ; l ¼ 1;2; . . . ; lmax (3)

where �t is the average over all ti, l is the lag between two positions

along the sequence, and lmax is the maximum of l. The values for

AC1, AC2, . . ., AClmax are then used as features. The value of lmax is

set to 4 based on 10-fold cross-validation on the RDD training set

(Supplementary Fig. S1). Thus, a total of 80(¼20 � 4) features are

extracted from the PSI-BLAST profile.

Features from PSIPRED profile. We use the tool PSIPRED

(Jones, 1999) to predict the three-state secondary structure (SS) pro-

file. The three states are a-helix (H), b-strand (E) and random coil

(C). This profile provides the predicted state for each residue and the

corresponding probability of folding into each state. Thus the di-

mension of the SS profile is Lx4. The first three features from

PSIPRED profile are the contents of three SS states, calculated by

PH ¼
NH

L
;PE ¼

NE

L
;PC ¼

NC

L
(4)

where NH, NE and NC are the numbers of residues in the a-helix, b-

strand and random coil states, respectively. The next three features

are the means of the probability series. In addition, the AC trans-

form is applied to the probability series with lmax being 9, deter-

mined based on the RDD training set (Supplementary Fig. S1). In

addition, the total number of amino acids in a protein is used as a

feature as well. As a result, a total of 34 (¼3þ3þ3 � 9þ1) fea-

tures are extracted from the PSIPRED profile.

Note that the values of lmax (for PSI-BLAST and PSIPRED pro-

files) were optimized on the RDD training set. For the sake of gener-

ality, they are also used for other datasets, though not necessarily

optimal. For example on the F184 dataset, the maximum accuracy

was obtained when lmax equals to 4 and 10 for PSI-BLAST and

PSIPRED profiles, respectively (Supplementary Fig. S2). However,

the difference between the accuracy with the default values (4 and 9)

is very small (0.845 versus 0.84).

Features from HHblits profile. It was demonstrated that the

alignment generated by the HMM-HMM alignment algorithm

HHblits (Remmert et al., 2012) is more accurate than the sequence-

profile alignment algorithm PSI-BLAST. In this study, the HMM

profile is generated by searching the query sequence against the

database uniprot20_2015_06 using HHblits with parameters ‘-n 3 -

Fig. 1. The architecture of HH-fold, SVM-fold and TA-fold. The left/right hand

side panel with darker/lighter background is the flowchart for HH-fold/SVM-

fold. TA-fold is a combination of HH-fold and SVM-fold. Note that the elem-

ents shown in the HMM profile are between 0 and 1, which were converted

from the original HMM profile
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maxfilt 500000 -diff inf -id 99 -cov 60’. The dimension of HMM

profile is Lx30, in which the first 20 columns represent the match

state amino acid emission frequencies, and the remaining 10 col-

umns are seven transition frequencies and three local diversities.

Similar to Ref. (Lyons et al., 2015), only the first 20 columns are

used in this study as the best performance was achieved with them.

According to the HHsuite manual, the integers in HMM are equal

to 1000 times the negative logarithm of the amino acid frequencies.

Thus each element hij in the HMM profile is converted to frequency

by taking the following conversion:

h0 ij ¼ 2�0:001�hij ; i ¼ 1; 2; � � � ;L; j ¼ 1; 2; � � � ;20 (5)

The frequency h’ij is set to 0 if hij is an asterisk *. A total of 400

(¼20x20) features are calculated to describe the relationship be-

tween neighboring residues:

Nðm; nÞ ¼
XL�1

k¼1

h0km h0ðkþ1Þn (6)

where 1�m,n�20 represent the 20 kinds of amino acids. In add-

ition, similar to the segment-based features in (Yang and Chen,

2011), the frequency profile after normalization (so that the summa-

tion of each row is one) is divided into three non-overlapping seg-

ment of equal size. For each segment, the mean of each column is

computed, resulting to a total of 60 segment-based features. In total,

460 features are extracted from the HHblits profile. We did not

apply the AC transform to the HHblits profile as incorporation of

these features did not have significant impact on the accuracy

(Supplementary Table S1), probably because they are not comple-

mentary to the already used features.

Support Vector Machine. SVM is one of the most popular ma-

chine learning algorithms. For the implementation of SVM, we use

the LIBSVM package (https://www.csie.ntu.edu.tw/�cjlin/libsvm/).

There are four basic kernel functions; that is, linear, polynomial, ra-

dial basis function (RBF) and sigmoid. Here, we choose the RBF ker-

nel because it produces higher prediction accuracy than other kernel

functions (Supplementary Table S2). It is defined as

Kðx; yÞ ¼ exp ð�ckx� yk2Þ (7)

where x and y are the feature vectors of two proteins, and c is a ker-

nel parameter. Another parameter for SVM training is the regular-

ization factor C, which controls the control the trade-off between

allowing training errors and forcing rigid margins.

The two parameters C and c in SVM are optimized numerically

based on the strategy of grid search. That is, a 2D grid with size 10

� 10 was used, where each grid point represents a combination of

values for C and c. The possible values tested for C and c were

[20, 21, . . ., 29] and [20, 2� 1, . . ., 2� 9], respectively. In addition, the

features were scaled to the range of [-1, 1] before training, using the

‘svm-scale’ program in the LIBSVM package. To avoid overfitting, a

10-fold cross-validation was applied on each dataset (for the DD

and RDD datasets, only the training set was used). Optimal param-

eters were selected such that the maximum accuracy (defined later

in the Section 3) was obtained. All programs were installed and run

in a computer cluster with 120 CPU cores, 128GB memory and

10TB disk space.

2.4 An ensemble approach TA-fold for protein fold

classification
In order to make full use of the advantages of both Template-based

fold assignment and machine learning-based Ab-initio fold

classification, an ensemble approach TA-fold is proposed here.

Figure 1 illustrates the hierarchical architecture of TA-fold, which

predicts the fold of query proteins by combining HH-fold and SVM-

fold. When there are homologous templates to the query protein,

the predictions by HH-fold are used. Otherwise, SVM-fold is

adopted. In TA-fold, the E-value in the HHsearch output is used to

decide if the templates from HH-fold are homologous enough to the

query protein or not, the cutoff of which is determined by experi-

ment subsequently.

3 Results and discussions

The performance of our proposed methods is measured by the over-

all accuracy, which is defined as the number of correctly predicted

proteins divided by the total number of proteins under investigation.

In addition, the accuracy for each fold and the optimal SVM param-

eters are presented in the Supplementary Tables S3–S7. For the DD

and RDD datasets, the accuracy reported is on the independent test

set. For the EDD, TG and F184 datasets, a 10-fold cross-validation

is applied. For the LE dataset, a 2-fold cross-validation is used.

3.1 Accuracy of HH-fold
In HH-fold, the number of the top-ranked templates, i.e. the vari-

able N remains to be determined. We select the optimal value of N

based on 10-fold cross-validation on the RDD training set. The rela-

tionship between the variable N and the overall accuracy is shown

in Figure 2, where the value of N varies between 1 and 10. The ac-

curacy is the highest (0.839) when N equals to 1 and decreases when

N gets bigger. As a result, the value of N is set to 1. At this setting,

the overall accuracy of HH-fold on the DD, RDD, EDD, TG and

F184 datasets are 0.763, 0.887, 0.966, 0.915 and 0.906,

respectively.

We want to point out that the value of N was selected to be 1 ac-

cording to experiment on the RDD training set. If we use the EDD,

TG and F184 datasets to conduct similar experiments, we end up

with the same conclusion. This is expected because the template

ranked at the top of the list has the highest confidence score (eval-

uated by the ‘Prob’ or the ‘E-value’ in the HHsearch output).

However, if we use the DD training set for optimization (this is

what we did at the very beginning of this study), we got completely

different result, i.e. the ‘optimal’ value of N was 5 (Supplementary

Fig. S3). This inconsistency may be caused by the errors in the DD

dataset, i.e. wrong extractions of domain sequences, as detailed in

1 2 3 4 5 6 7 8 9 10
0.805
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0.815

0.82

0.825
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0.835

0.84

0.845

N

O
ve
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Fig. 2. The overall accuracy of HH-fold on the RDD training set with different

numbers of top-ranked templates
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the Supporting Information A of (Yang and Chen, 2011). Therefore,

we suggest not using the DD dataset for training purpose in future

studies as the results from this dataset may be misleading.

3.2 Feature contribution and accuracy of SVM-fold
A total number of 574 features have been extracted. To investigate

their contribution to the overall prediction accuracy of SVM-fold,

they are divided into three groups: (S1) 80 PSI-BLAST-based fea-

tures; (S2) 34 PSIPRED-based features; and (S3) 460 HHblits-based

features. Figure 3 shows the performance obtained with all possible

combinations of feature groups on the five datasets.

When single-profile based features are used, the accuracy from

the PSIPRED-based features is the lowest (0.447–0.718) while that

from the HHblits-based features is the highest (0.729–0.92). The ac-

curacy from the PSI-BLAST-based features is slightly higher (�0.05)

than the PSIPRED-based features but significantly lower (>0.1)

than the HHblits-based features. This result is striking because both

PSSM and HMM represent the position-specific frequency profile

and they are of the same dimension (Lx20). A possible reason for

this difference is different methods are used to extract features.

Similar to the HHblits-based features, we extended the PSI-BASLST-

based features to the dimension of 460, and the corresponding ac-

curacy was improved marginally. Moreover, when adding them to

our final feature set, no significant improvement was observed (data

not shown). Thus for the PSI-BLAST profile, only 80 features were

kept in this study.

The accuracy is improved by the combination of different feature

groups. When combing the PSIPRED-based features with PSI-

BLAST-based features, the accuracy increases significantly by �0.1,

suggesting these two groups of features are complementary to each

other. Combination of the HHblits-based features with either the

PSI-BLAST- or PSIPRED-based features results to slight improve-

ment (0.01–0.04). The highest accuracy is achieved when all features

are used, i.e. 0.773, 0.9, 0.945, 0.865 and 0.84 for the DD, RDD,

EDD, TG and F184 datasets, respectively.

3.3 Accuracy of TA-fold
In TA-fold, we need to decide the E-value threshold of using either

HH-fold or SVM-fold. The RDD training set is used for this pur-

pose. A total of 9 thresholds (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5

and 10) were tested and the highest accuracy (0.865) was achieved

at the threshold of 0.05 (Supplementary Fig. S4). Similar to the case

of the parameter lmax, the E-value threshold 0.05 may not be opti-

mal for other datasets. However, our experiments suggest that the

accuracy does not change much when using dataset-specific E-value

thresholds. Thus for generality, this threshold is used for all datasets.

At this setting, the accuracy of TA-fold on the DD, RDD, EDD, TG

and F184 datasets are 0.799, 0.932, 0.971, 0.927 and 0.913,

respectively. This corresponds to the improvement of 2.8–8.7% and

0.5–5.1% over SVM-fold and HH-fold, respectively, suggesting that

SVM-fold and HH-fold are complementary to each other.

The statistical significance of the accuracy difference among

HH-fold, SVM-fold and TA-fold was investigated using the paired

Student’s t-tests. For each method, proteins with correctly/incor-

rectly predicted fold are labeled as 1/0. The P-values for the pairwise

comparisons are listed in Table 2. We can see that for the DD and

RDD datasets, the predictions by HH-fold and SVM-fold are essen-

tially the same as judged by the P-values (1 and 0.73). The ensemble

approach TA-fold does make statistically significant improvement

over SVM-fold and HH-fold as the P-values are smaller than 0.05.

On the large-size datasets EDD, TG and F184, HH-fold and TA-

fold predictions are much better than SVM-fold. This suggests the

advantage of template-based fold assignment over ab-initio fold

classification. The difference between TA-fold and HH-fold are not

significant on the EDD and TG datasets as witnessed by the respect-

ive P-values of 0.06 and 0.16, probably because the TA-fold predic-

tions are dominated by HH-fold for these two datasets. However,

on the largest dataset F184, TA-fold significantly outperforms

HH-fold at P-value 0.0114 (<0.05), which once again suggests that

HH-fold and SVM-fold is complementary to each other.

3.4 Comparison with machine learning-based ab-initio

methods
To demonstrate the effectiveness of the proposed methods, we com-

pare SVM-fold and TA-fold with machine learning-based ab-initio

methods on four benchmark datasets, DD, RDD, EDD and TG. The

results of F184 dataset are not available for other methods and this

dataset is not used for comparison. Many ab-initio methods have

been developed for protein fold classification. Five representative

ones were selected based on three criteria: (i) developed recently;

(ii) tested on most of the above four datasets and (iii) shown to have

competitive performance. As we do not have the per-protein predic-

tions for other methods, we are unable to perform statistical test to

estimate the significance level of the accuracy difference.

As the DD dataset was divided into training and independent

test sets, the accuracies reported were for the test set. However, for

the compared method ACCFold (Dong et al., 2009) (resp., NiRecor

(Cheung et al., 2016)), its accuracy was from a 2-fold (resp., 10-

fold) cross-validation. It was shown that the accuracy of ACCFold

would be 0.666 for the independent test set (Yang and Chen, 2011).

The accuracy of NiRecor decreased from 0.812 to 0.793 when

5-fold cross-validation was applied (Cheung et al., 2016). So it is un-

fair to compare with these two methods on the DD dataset and thus

omitted.

From Table 3, we can see that SVM-fold outperforms all com-

pared ab-initio methods by 0.6–8.2% on the four benchmark data-

sets. When we compare the ensemble approach TA-fold with the
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Fig. 3. The contribution of features to the overall accuracy of SVM-fold

Table 2. The P-values of the paired Student’s t-tests on the accur-

acy difference between the proposed methods

Dataset HH-fold

versus

SVM-fold

TA-fold

versus

SVM-fold

TA-fold

versus

HH-fold

DD 1 0.01 0.01

RDD 0.73 0.002 0.004

EDD 1.2391 � 10�4 2.6413 � 10�13 0.06

TG 1.0286 � 10�9 5.8514 � 10�20 0.16

F184 3.8401 � 10�52 1.7956 � 10�98 0.0114
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methods TAXFOLD, PFPA and HMMFold on the DD dataset, TA-

fold makes improvement of 5.4%, 8.6% and 11.7%, respectively.

For the RDD dataset, TA-fold achieved an accuracy of 0.932, which

is 26.3% and 12% higher than ACCFold and TAXFOLD, respect-

ively. For the extended DD dataset, EDD, the accuracy of all meth-

ods except ACCFold is higher than 0.9, suggesting that it is very

accurate to predict folds for proteins in the 27 SCOP folds. On the

EDD dataset, TA-fold achieves an accuracy of 0.971, 3.5% higher

than the second best method HMMFold. When the number of

SCOP folds is increased to 30 in the TG dataset, the accuracy of all

methods decreases. TA-fold is the first method to achieve>0.9 ac-

curacy on this dataset, which may be attributed mainly to the

template-based assignment algorithm HH-fold (see Table 2).

3.5 Comparison with template-based methods
As TA-fold combines template-based method with ab-initio method,

it is indispensable to compare it with template-based threading algo-

rithms. Three state-of-the-art threading methods are selected for

comparison: HHpred (Soding et al., 2005), SPARKS-X (Yang et al.,

2011) and FFAS-3D (Xu et al., 2014). A 2-fold cross-validation is

adopted to evaluate the accuracy on the LE dataset because it has

been applied to the same dataset by previous studies (Dong et al.,

2009; Lyons et al., 2015; Yang and Chen, 2011). Nevertheless, a 5-

fold cross-validation was also tested for TA-fold and similar accur-

acy was obtained (i.e. 0.822, 0.76 and 0.576 at the family, super-

family and fold levels, respectively), which suggests that there is no

overfitting with the 2-fold cross-validation. For each level (family,

superfamily or fold), the whole dataset is divided into two subsets

with the same procedure used in previous studies (Dong et al., 2009;

Lyons et al., 2015; Yang and Chen, 2011). The division at the super-

family/fold level was made in such a way that the training and test

proteins come from different families/superfamilies. In addition, for

each subset there should be at least one protein in each category so

that SVM-fold can be trained. For more details about the division,

one may refer to (Dong et al., 2009).

The test results are listed in Table 4. We can see that the accur-

acy for HH-fold is comparable to the state-of-the-art threading

methods at the family and fold levels. At the superfamily level, HH-

fold outperforms other threading methods by 11–26%. Note that

both HHpred and HH-fold use HHsearch for template identifica-

tion but with different results at the superfamily and fold levels.

This is mainly due to the fact that preprocessing was performed on

the LE dataset here.

As an ensemble approach TA-fold, it has the advantage of both

template-based method and ab-initio method. It is thus anticipated

that TA-fold outperforms other threading methods at each level of

the LE dataset. For example, TA-fold achieves an accuracy of 0.539

at the fold level, which is 19.2% higher than SPARKS-X, one of the

most popular threading methods. Though TA-fold performs well in

this test, it is necessary to point out that TA-fold does not provide

an alignment, nor cover as many folds as the other threading

methods.

3.6 Application of TA-fold to structural class prediction
As mentioned earlier, the first level of the SCOP hierarchy is struc-

tural class, in which four main classes exist: a, b, a/b and aþb.

Many methods have been proposed to predict structural class from

amino acid sequence over the past two decades (Chou and Zhang,

1995; Mizianty and Kurgan, 2009; Yang et al., 2010; Yang et al.,

2009). We applied TA-fold to the structural class prediction using

five benchmark datasets, where the native class information was

taken from the SCOP database. For each dataset, the proteins that

do not belong to any of the four classes were removed before run-

ning TA-fold.

The prediction accuracy of TA-fold is listed in Table 5. We can

see the overall accuracies for the RDD, EDD, TG and F184 datasets

are>0.95. The accuracy on DD is relatively lower probably due to

the errors in this dataset mentioned in the Section 3.1. The accuracy

Table 4. Comparison with threading methods on the LE dataset

Method Family Superfamily Fold

(555/176) (434/86) (321/38)

HHpred 0.829 0.588 0.252

FFAS-3D 0.849 0.666 0.358

SPARKS-X 0.841 0.59 0.452

HH-fold 0.845 0.74 0.421

TA-fold 0.852 0.742 0.539

The accuracies for other methods are taken from (Xu et al., 2014). The

numbers in parentheses are the number of sequences/categories. The best re-

sults are highlighted in bold type.

Table 5. The comparison of TA-fold with RKS_PPSC for structural

class prediction

Dataset Method/# Accuracy

a b a/b aþ b Overall

#Samples 61 117 143 35 356

DD RKS_PPSC 0.836 0.803 0.657 0.714 0.75

TA-fold 0.934 0.966 0.832 0.543 0.862

#Samples 60 117 142 34 353

RDD RKS_PPSC 0.867 0.88 0.859 0.853 0.867

TA-fold 1 0.974 0.986 0.686 0.955

#Samples 556 967 1311 460 3294

EDD RKS_PPSC 0.883 0.895 0.874 0.822 0.874

TA-fold 0.996 0.993 0.995 0.97 0.991

#Samples 252 478 589 185 1504

TG RKS_PPSC 0.909 0.845 0.883 0.8 0.865

TA-fold 0.976 0.983 0.992 0.876 0.972

#Samples 1185 1471 1828 1423 5907

F184 RKS_PPSC 0.915 0.829 0.851 0.73 0.829

TA-fold 0.986 0.987 0.976 0.954 0.975

Table 3. The accuracy of SVM-fold and TA-fold and other methods

for protein fold classification

Method (Reference) Dataset

DD RDD EDD TG

ACCFold (Dong et al., 2009) 0.701a 0.738c 0.859 0.664

TAXFOLD (Yang and Chen, 2011) 0.715 0.832 0.9 NA

PFPA (Wei et al., 2015) 0.736 NA 0.926 NA

HMMFold (Lyons et al., 2015) 0.758 NA 0.938 0.86

NiRecor (Cheung et al., 2016) 0.812b NA 0.917 0.846

SVM-fold (This Article) 0.773 0.9 0.945 0.865

TA-fold (This Article) 0.799 0.932 0.971 0.927

For the DD and RDD datasets, the accuracy reported is for the independent

dataset. For the EDD and TG datasets, the accuracy was obtained using 10-

fold cross-validation. The best results are highlighted in bold type.
afrom 2-fold cross-validation;
bfrom 10-fold cross-validation;
cfrom Ref. (Yang and Chen, 2011).
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for proteins in the aþb class is lower than other classes, especially

for the DD and RDD datasets probably because the number of pro-

teins in this class is relatively smaller than others. We looked into

the predictions and found that for these two datasets, some proteins

in the aþb class were wrongly predicted into the a/b class. This may

be explained by the fact that there are some overlap between the

aþb and a/b proteins because both classes contain structural motifs

of a-helices and b-strands. We note that even human experts may

differ in categorizing proteins in these two classes. For example, the

CATH database merges them into a single ab class (Sillitoe et al.,

2015).

TA-fold is compared with RKS_PPSC (Yang et al., 2010), one of

the best programs for structural class prediction using predicted sec-

ondary structure. Note that there are some other good structural

class prediction programs, such as the iFC2 (Chen et al., 2011) and

MODAS (Mizianty and Kurgan, 2009). However, RKS_PPSC was

selected for the sake of easy comparisons as we have the source

codes and executables to run it locally for all datasets. The results of

RKS_PPSC are listed in Table 5 as well. We can see that the overall

accuracy of TA-fold is significantly higher than RKS_PPSC on all

datasets, though the accuracy for the aþb class in the DD and RDD

datasets is higher for RKS_PPSC. This demonstrates that TA-fold is

also effective for structural class prediction.

3.7 Online TA-fold server
To facilitate the use of TA-fold, we have setup a web server to im-

plement the TA-fold algorithm, which is freely available at http://

yanglab.nankai.edu.cn/TA-fold. The only input information is the

amino acid sequence of the query protein to be predicted. A job ID

will be assigned to each submission. After the job is finished, a noti-

fication email will be sent to the users for accessing the prediction re-

sults. In general, the prediction can be completed within 15 min. The

output of the server includes the predicted fold together with a con-

fidence score (C-score), a summary of the submitted sequence, pre-

dicted secondary structure and sequence profiles. The C-score is in

the range of [0, 1], obtained from the probability outputs of SVM

and HHsearch. In general, a higher C-score indicates a more reliable

prediction. Based on the analysis of the predictions on RDD dataset,

a recommended C-score cutoff for trusting a prediction is 0.22, at

which 96% proteins are predicted with an accuracy of 0.96

(Supplementary Fig. S5).

Note that the server takes each submission as a single-domain

protein. Thus when the query protein contains multiple domains, it

is advisable to split the protein into domains using other domain

prediction software and submit each domain sequence to the server.

This may be made automated by developing in-house domain pars-

ing algorithm in future.

We estimate the possibility that the fold of a protein can be clas-

sified with the server as follows. The maximum number of folds that

TA-fold could deal with is 184 (in the F184 dataset). As mentioned

before, there are 8679 sequences from 1222 folds at 25% sequence

identity cutoff in the SCOPe database. After filtering, 6451 proteins

from 184 folds were kept in the F184 dataset. Therefore, though the

proportion of folds considered is small (15%¼184/1222), the possi-

bility of a query protein being a TA-fold target is high (74%¼6451/

8679). Anyway, SVM-fold is not applicable for the remaining 26%

proteins that do not belong to any of the 184 folds. The SVM-fold

models remain to be re-built in future when there are enough sam-

ples for training.

To partially solve the above limitation, we incorporated proteins

from other folds in the SCOP database into the HH-fold database.

Currently, the maximum number of folds considered is 1193 (list

available at http://yanglab.nankai.edu.cn/TA-fold/1193_name.txt).

When the query proteins do not belong to any of the 184-folds and

the confidence scores of the predictions are anticipated to be lower

(<0.22), users are encouraged to check the prediction results in the

1193 folds.

4 Conclusions

Accurate classification of protein fold is essential for protein struc-

ture prediction. We have developed two complementary algorithms,

HH-fold for template-based fold assignment, and SVM-fold for sup-

port vector machine-based ab-initio fold classification using features

extracted from three complementary sequence profiles. These two

algorithms are then combined to make accurate and robust fold type

prediction, resulting to the ensemble approach TA-fold.

The proposed methods were assessed and compared with both

machine learning-based ab-initio methods and template-based

threading methods on six benchmark datasets. Experiments show

that TA-fold consistently outperforms both ab-initio and threading

methods. TA-fold was successfully applied to the problem of protein

structural class prediction with accuracy of>0.95 for datasets of

updated class information. We attribute the success of TA-fold to

three factors: (1) template-based fold assignment; (2) ab-initio classi-

fication using features from three complementary sequence profiles

that contain rich evolution information of query protein; and (3) in-

tegration of (1) and (2).
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