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Abstract—Brain extraction is an important preprocessing step
for further analysis of brain MR images. Significant intensity
inhomogeneity can be observed in rodent brain images due
to the high-field MRI technique. Unlike most existing brain
extraction methods that require bias corrected MRI, we present
a high-order and L0 regularized variational model for bias
correction and brain extraction. The model is composed of a
data fitting term, a piecewise constant regularization and a
smooth regularization, which is constructed on a 3-D formulation
for medical images with anisotropic voxel sizes. We propose
an efficient multi-resolution algorithm for fast computation. At
each resolution layer, we solve an alternating direction scheme,
all subproblems of which have the closed-form solutions. The
method is tested on three T2 weighted acquisition configurations
comprising a total of 50 rodent brain volumes, which are with
the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6
Tesla, respectively. On one hand, we compare the results of bias
correction with N3 and N4 in terms of the coefficient of variations
on 20 different tissues of rodent brain. On the other hand,
the results of brain extraction are compared against manually
segmented gold standards, BET, BSE and 3-D PCNN based on
a number of metrics. With the high accuracy and efficiency, our
proposed method can facilitate automatic processing of large-
scale brain studies.

Index Terms—Intensity inhomogeneity, brain extraction, high-
field MRI, rodent brain, human brain, segmentation, multi-
resolution

I. INTRODUCTION

RODENT brains have been used as preclinical models to
investigate brain development, disease progression and

new drug discovery [1], [2], [3]. A common processing step
of rodent MR images is to segment the brain tissue from
non brain tissues such as cranium, eyes, muscles and skin
etc., which is usually called brain extraction/cropping or skull
stripping.
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Automated brain extraction methods are widely used for
human brain extraction, such as region growing method[4],
edge-based method [5], hybrid method [6] and expectation-
maximization based method [7] etc.. However, the human
brain extraction methods often perform poorly on rodent
brains due to the diversities in shapes and the differences in
image contrasts between human and rodent brains. In the last
two decades, several methods have been proposed for rodent
brain extraction either by modifying human brain methods
or developing new approaches. The atlas-based expectation
maximization techniques were studied and applied for murine
full brain segmentation in [8], [9]. Uberti et al. [10] presented
a semi-automatic method, called Contrast Level Set (CLS),
which used a level set algorithm to evolve a user-defined initial
surface toward to brain boundary. Murugavel and Sullivan
[11] proposed a neural network based method, called Pulse-
Coupled Neural Network (PCNN) to automatically crop rodent
brain tissue. The PCNN algorithm was further extended in
the 3-D formulation in [12] to overcome the limitation of 2-
D PCNN in segmenting the anterior and posterior region of
rodent volumes. Li et al. [13] proposed an automatic rat brain
extraction method based on the deformable surface model
used in Brain Extraction Tool (BET) [4]. Recently, Oguz et
al. [14] introduced a rodent brain cropping method based on
grayscale mathematical morphology and LOGISMOS-based
graph segmentation.

High-field MRI is a popular technique for the study of
rodent brains, in which obvious intensity inhomogeneity (bias)
widely exists [15] and usually is a smooth intensity variation
across the image. It arises from the imperfections of the
image acquisition process and is induced by the choice of
the radio-frequency coil, the acquisition pulse sequence and
by the nature and geometry of the sample itself. Amongst
the various bias correction methods, the most popular one is
the nonparametric nonuniform normalization (N3) approach
[16], which has established itself as a standard in the field. A
modified method, N4, was proposed to improve the original
N3 algorithm [17]. A good review of methods for correction
of intensity inhomogeneity in MRI can be found in [18].

The intensity inhomogeneity is usually modeled as a smooth
multiplicative field arising from variations in the sensitivity
of the reception coil and to a lesser extent with the non-
uniformity due to induced currents and nonuniform excitation
[19]. Therefore, an observed image v can be modeled as

v(x) =
(
1 + n(x)

)
× u(x)× f(x), (1)

where u is the uncorrupted image, f is the bias field and n is
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the measurement error. Based on the logarithmic transforma-
tion, the image model (1) becomes

v̂(x) = û(x) + f̂(x) + n̂(x), (2)

where v̂ = log v, û = log u, f̂ = log f and n̂ = log
(
1+n(x)

)
.

Here, we make the following assumptions with respect to û
and f̂ , respectively

(A1) The true image û characterizes a physical property of the
tissues being imaged, which ideally has the same value
for the voxels on the same type of tissue.

(A2) The bias field f̂ is a spatially smooth function and
usually follows certain paths, which can be modeled by
a piecewise linear approximation.

A. Variational Methods for Bias Correction

The Mumford-Shah model is a well-known variational seg-
mentation model by pursuing a piecewise smooth approxima-
tion of the given image and the boundaries are referred as the
transition between adjacent pathes of the approximation [20].
One of the most successful relaxation models of the Mumford-
Shah model was proposed by Chan and Vese [21], which seeks
for an approximation of a given image with a binary piecewise
constant representation trough a level set formulation. Many
models and algorithms have been proposed for segmentation of
images with intensity inhomogeneity based on the Mumford-
Shah model and the Chan-Vese model. For example, Li et
al. [22] defined the local binary fitting (LBF) model by
introducing a kernel function into the data term of the Chan-
Vese model to cope with intensity inhomogeneity. Li et al.
[23] proposed a weighted k-means clustering with the cluster
centers to estimate the bias function within the neighborhood.
Later in [24], a local intensity clustering (LIC) property of the
image intensities was derived and used for the segmentation of
MR images in the presence of intensity inhomogeneity. Li et
al. [25] developed a variational fuzzy Mumford-Shah model
for image segmentation with the application to images with
intensity inhomogeneity.

Another kind of variational models to correct intensity inho-
mogeneity are Retinex [26], which deals with inhomogeneity
caused by different illumination conditions. Retinex theory and
intensity inhomogeneity originate from the same assumptions
based on the image decomposition model (1). Based on the
well-known Total Variation (TV) [27], different TV models
have been proposed for Retinex. Kimmel et al. [28] proposed
a variational framework for Retinex based on the TV and H1

regularization. Later, a variant of this model was proposed by
Ng and Wang [29]. Ma et al. proposed a variational model to
recover the piecewise constant function u with a data term in
gradient field [30], [31]. Zosso et al. extended the TV models
to a unified non-local formulation [32].

Although TV based models have been studied intensively,
this kind of approaches suffers the so-called staircase effect. In
order to suppress such effect, a number of high-order models
have been established. Chambolle and Lions [33] proposed the
infimal convolution by combining the first-order total variation
and second-total variation, which was further studied in [34],
[35]. The total generalized variation (TGV) was proposed and

studied in [36], which also involved higher order derivatives.
Recently, Liang and Zhang [37] used the high-order total
variation L1 decomposition to solve the Retinex problems,
which decomposed the gradient field of images into salient
edges and relatively smoother illumination field.

B. Our Contributions

In our previous work [38], we proposed a novel variational
model for simultaneously bias correction and segmentation,
called the L0 regularized Mumford-Shah model (L0MS),
which is closely related to the Mumford-Shah model as well.
Let Ω be an index set, the L0MS model is defined based on
the additive image model (2) as follows

min
û,f̂

∑
ω∈Ω

∑
$∈Nω

1

2
K
(
x(ω)− x($)

)(
v̂($)− û($)− f̂(ω)

)2
+
µ

2
‖∇f̂‖2 + α‖∇û‖0, (3)

where µ, α are positive parameters, K is a nonnegative
weighting function, Nω is a neighborhood of the index ω,
‖ · ‖ denotes the L2 norm and ‖ · ‖0 denotes the L0 norm.

In the functional (3), the first term measures the fidelity
to the observed data. Unlike the Mumford-Shah model, we
defined the data fidelity using the local intensity properties to
allow the bias field to be influenced by its neighborhood. If we
pursue the Euler-Lagrange equation of this term with respect
to f̂ , we come up with f̂ = K ∗ (v̂ − û), where “*” denotes
the convolution operation. The difference between v̂ and û
is exactly f̂ , which means we used a window function K to
smooth the solution of f̂ . The second term imposes spatial
smoothness on the bias field, which was derived from the
Mumford-Shah model. Actually, minimizing ‖∇f̂‖2 translates
into the Euler-Lagrange equation ∆f̂ = 0, the steepest decent
solution of which is a Gaussian smoothing operation. It is
obviously that these two terms share the same functions for the
bias field f̂ . Moreover, when we consider 3-D problems such
as rodent MRI segmentation, the computational costs of the
convolution increase evidently due to the 3-D window function
involved in the computation.

In this paper, we plan to improve our previous model (3) by
modeling the bias field f̂ based on a high-order regularization
and design a new variational model for bias correction of
MR images with significant intensity inhomogeneity. We call
it as high-order and L0 regularized Mumford-Shah model
(HoL0MS), which is given as follows

min
û,f̂

1

2
‖v̂ − û− f̂‖2 +

µ

2
‖Hf̂‖2 + α‖∇û‖0, (4)

where H denotes the Hessian operator, a square matrix of
second-order partial derivatives of f̂ , to be defined in Section
II. Closely connected to our previous work, we use an L0

gradient minimization to establish the discontinuity set with
the minimal length and introduce a smooth regularizer by
extracting high order singularities as the bias field. In the
meantime, the data fitting term is simplified by removing the
local kernel function. Both true intensity and bias field are
estimated based on the HoL0MS model (4). Targeted for the
applications in brain extraction, we model the true intensity
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as a piecewise constant function, where a simple thresholding
can isolate the brain region from non-brain regions. Certain
morphological operations are required to accurately estimate
the boundaries of the brain mask. Since the voxel size may not
be isotropic in medical data sets, it is important to allow for
non-uniform grid sizes. We construct the minimization prob-
lem in a fully 3-D formulation to be with global perspective.
For fast computation, we design a multi-resolution algorithm
with few relaxation iterations on each resolution layer. The
processing flow is outlined in Fig. 1, while the high-order
and L0 regularized Mumford-Shah model is described in the
following sections.

Fig. 1. Processing flow of the HoL0MS model for rodent brain extraction.

II. NOTATIONS

Without loss of generality, we represent a grayscale 3-D
image as an M ×N ×L tensor, that is Ω = {1, 2, · · · ,M}×
{1, 2, ..., N} × {1, 2, ..., L}. The Euclidean space RM×N×L
is denoted as V . The discrete grid points are given by
(xi, yj , zk) = (i∆x, j∆y, k∆z), where ∆x, ∆y, ∆z denote
the spatial discretization steps. Here, ∆x, ∆y, ∆z can be
distinct with each other for anisotropic voxel sizes of the
rodent MR images.

We will use the discrete backward and forward difference
operators for u ∈ V as follows

D−x u(i, j, k) =

{
u(i,j,k)−u(i−1,j,k)

∆x 1 < i ≤M,
u(1,j,k)−u(M,j,k)

∆x i = 1.

D−y u(i, j, k) =

{
u(i,j,k)−u(i,j−1,k)

∆y 1 < j ≤ N,
u(i,1,k)−u(i,N,k)

∆y j = 1.

D−z u(i, j, k) =

{
u(i,j,k)−u(i,j,k−1)

∆z 1 < k ≤ L,
u(i,j,1)−u(i,j,L)

∆z k = 1.

D+
x u(i, j, k) =

{
u(i+1,j,k)−u(i,j,k)

∆x 1 ≤ i < M,
u(1,j,k)−u(M,j,k)

∆x i = M.

D+
y u(i, j, k) =

{
u(i,j+1,k)−u(i,j,k)

∆y 1 ≤ j < N,
u(i,1,k)−u(i,N,k)

∆y j = N.

D+
z u(i, j, k) =

{
u(i,j,k+1)−u(i,j,k)

∆z 1 ≤ k < L,
u(i,j,1)−u(i,j,L)

∆z k = L.

Here, we use the periodic boundary condition to define the
difference operators, where u is periodically extended. Accord-
ingly, the Fast Fourier Transform can be used in the algorithm.
Indeed, other boundary conditions can be used as well, which
haven been discussed in [39].

We define the gradient operator ∇ : V → P , where P =
V × V × V in the discrete context

∇u(i, j, k) =
(
D+
x u(i, j, k), D+

y u(i, j, k), D+
z u(i, j, k)

)
.

We define the discrete divergence operator div : P → V
for p = (p1, p2, p3) ∈ P as

divp(i, j, k) = D−x p1(i, j, k) +D−y p2(i, j, k) +D−z p3(i, j, k).

Next, we explicitly give the definition of H for u ∈ V based
on the second order difference operators as

Hu(i, j, k) =

 D−+
xx u(i, j, k), D−+

xy u(i, j, k), D−+
xz u(i, j, k)

D−+
yx u(i, j, k), D−+

yy u(i, j, k), D−+
yz u(i, j, k)

D−+
zx u(i, j, k), D−+

zy u(i, j, k), D−+
zz u(i, j, k)

 .

We also define the adjoint operator HT for the above
Hessian as

HTq = D+−
xx q11 +D−+

yx q12 +D−+
zx q13 +D+−

xy q21 +D−+
yy q22

+D−+
zy q23 +D+−

xz q31 +D−+
yz q32 +D−+

zz q33,

where

q =

 q11 q12 q13

q21 q22 q23

q31 q32 q33

 ,

with qi,j ∈ V , i, j = 1, 2, 3.
When discussing discretized problems, we shall frequently

use vector norms to avoid cumbersome summation. Thus,
∀S ⊆ Ω, we define the following norm

‖u‖S =
(∑
ω∈S
|u(ω)|2

) 1
2

.

If S = Ω, we simply denote the norm as ‖u‖.
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III. HIGH ORDER AND L0 REGULARIZED MUMFORD-SHAH
MODEL (HOL0MS)

We propose a novel variational model for bias correction
and brain extraction as follows

min
û,f̂

{
E(û, f̂) :=

1

2
‖v̂ − û− f̂‖2 +

µ

2
‖Hf̂‖2 +

τ

2
‖f̂‖2

+ α‖∇û‖0
}
,

(5)

where τ is a positive parameter. We explicitly define the L0

measure of gradient as follows

‖∇û‖0 = #{ω ∈ Ω
∣∣ |∂xû(ω)|+ |∂yû(ω)|+ |∂zû(ω)| 6= 0},

(6)
with #{·} being the counting operator, which outputs the
number of ω that satisfies |∂xû(ω)|+|∂yû(ω)|+|∂zû(ω)| 6= 0.
It means the L0 regularization on ∇û counts the number of
jumps of û, which is able to promote a jump-sparse solution
of û. This property agrees with our assumption on û as a
piecewise constant function.

The existence of the minimizer for (5) is given as follows.

Theorem 3.1. There exist a pair (û∗, f̂∗), which minimizes
the proposed model (5), i.e.

(û∗, f̂∗) = arg min
û,f̂
E(û, f̂)

Proof: Due to the lower semi-continuous property of term
‖∇(·)‖0, one can readily prove this theorem.

IV. ENERGY MINIMIZATION AND ALGORITHM

In this section, we present the algorithm for solving the
minimization problem (5). We first rewrite the minimization
problem into the following constrained problem

min
û,f̂ ,p

1

2
‖v̂ − û− f̂‖2 +

µ

2
‖Hf̂‖2 +

τ

2
‖f̂‖2 + α‖p‖0

s.t., p = ∇û,
(7)

where p = (p1, p2, p3) ∈ P .
To solve the constrained optimization problem (7), we

rewrite it into the unconstrained minimization problem using
the penalty method as follows

min
û,f̂ ,p

{
Lβ(û, f̂ ,p) :=

1

2
‖v̂ − û− f̂‖2 + α‖p‖0 +

µ

2
‖Hf̂‖2

+
τ

2
‖f̂‖2 +

β

2
‖p−∇û‖2

}
, (8)

with a sufficiently large penalty parameter β. Since the three
unknowns are coupled together in (8), an inner alternating
scheme is used with respect to û, f̂ and p, respectively. It
seems one can prove the convergence in the sense that the
limit of the subsequences of the iterative solutions is only
the local minimizer to (5) following [40], [41]. More future
work will be done to study how to describe the convergence
behavior with respect to the global property [42].

A. Sub-Minimization with respect to û

We obtain the sub-minimization problem w.r.t. the variable
û as follows

min
û

1

2
‖v̂ − û− f̂‖2 +

β

2
‖p−∇û‖2. (9)

The Euler-Lagrange equation of the û-sub minimization prob-
lem (9) is given as

(I − βdiv∇)û = v̂ − f̂ − βdivp. (10)

Using the discrete difference operators, we can rewrite the
above equation as follows(

I − β(D−x D
+
x +D−y D

+
y +D−z D

+
z

))
û = g,

where g = v̂ − f̂ − β(D−x p1 + D−y p2 + D−z p3). Since
periodic boundary condition is imposed on û, D−x D

+
x , D−y D

+
y

and D−z D
+
z are block circulant and can be diagonalized by

discrete Fourier transform [39]. Denoting F(û) as the Fourier
transform of û, we have(
I − β

(
F(D−x )F(D+

x ) + F(D−y )F(D+
y )
))
F(û) = F(g).

(11)
Here, the multiplication between the difference operators is
componentwise according to the convolution theorem [43]. Let
G = I−β

(
F(D−x )F(D+

x )+F(D−y )F(D+
y )
)
. By applying the

discrete inverse Fourier transform F−1, we have the following
closed-form solution to û

û∗ = F−1
(
F(g)/G

)
, (12)

where ·/· denotes the componentwise division. The quantities
including G and F(v̂) in (11) are constant and can be pre-
computed. The main computational cost of û∗ is one Fourier
transform and one inverse Fourier transform in one iteration.

B. Sub-Minimization with respect to f̂

We obtain the sub-minimization problem w.r.t. the variable
f̂ as follows

min
f̂

1

2
‖v̂ − û− f̂‖2 +

µ

2
‖Hf̂‖2 +

τ

2
‖f̂‖2. (13)

By pursuing the Euler-Lagrange equation of f̂ -sub minimiza-
tion problem (13), we have the following linear equation(

(1 + τ)I + µHTH
)
f̂ = v̂ − û, (14)

with the periodic boundary condition. Since HT and H are
block circulant, we can solve (14) based on the FFT as well,
which gives(

(1 + τ)I + µF(HT )F(H)
)
F(f̂) = F(v̂ − û). (15)

Let J =
(
(1+τ)I+µF(HT )F(H)

)
. We have the following

closed-form solution to f̂

f̂∗ = F−1
(
F(v̂ − û)/J

)
. (16)

Similarly, since J and F(v̂) can be pre-computed, the main
computational cost of f̂ in (16) involves one Fourier transform
and one inverse Fourier transform in one iteration.
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C. Sub-Minimization with respect to p

We obtain the sub-minimization problem w.r.t. the variable
p as follows

min
p

α‖p‖0 +
β

2
‖p−∇û‖2. (17)

According to the definition of L0 norm (6), the minimiza-
tion problem (17) can be spatially decomposed. For ease
of illustration, we define the following binary function for
p(ω) = (p1(ω), p2(ω), p3(ω)), ∀ω ∈ Ω

C(p(ω)) =

{
1, |p1(ω)|+ |p2(ω)|+ |p3(ω)| 6= 0;

0, otherwise.

Relying on the above binary function, we are able to rewrite
(17) as the following summation∑

ω

min
p(ω)

{
αC(p(ω)) +

β

2

(
p(ω)−∇û(ω)

)2}
.

Thus, the optimal p∗ can be solved individually by

p∗(ω) = arg min
p(ω)

{
αC(p(ω)) +

β

2

(
p(ω)−∇û(ω)

)2}
.

The solution to above minimization problem for 2-D case has
been provided and proven in [44]. We can easily extend the
result to 3-D setting as follows

p∗(ω) =

 0, ‖∇û(ω)
∥∥2 ≤ 2α

β
;

∇û(ω), otherwise.
(18)

The proof for the 3-D minimization is provided in Appendix.

D. Multi-resolution Algorithm

We apply a multi-resolution algorithm [28] that starts by es-
timating a coarse resolution image, expands it by interpolation
and uses the result as an initialization for the next resolution
layer. In this way, it requires few iterations at each resolution
in the computation.

We summarize our algorithm as follows
1. Input: The input to the algorithm is an image v and

parameters α, µ, τ , β0, βmax and κ.
2. Initialization: Set k = l, i.e., start at the coarsest

resolution layer and set the initial condition û = v̂l, where
v̂l is obtained by down scaling v̂ with ratio 1 : 2l, and
f̂ = 0.

3. Main Loop: For the kth resolution layer, set β = β0

Repeat
¬ With û(i)

k , solve for f̂ (i)
k from Eq. (16);

­ With û(i)
k , solve for p(i)

k from Eq. (18);
® With f̂ (i)

k and p
(i)
k , solve for û(i+1)

k from Eq. (12);
¯ β ← κβ, i← i+ 1;

until β ≥ βmax
4. Update the next resolution layer: If k > 1, the result ûk

and f̂k is up scaled (2:1 ratio) by voxel replication as the
initialization for the next resolution layer. The resolution
layer is updated by k = k−1, and the algorithm proceeds
by going again to Step 3. If k = 1, the result û1 and f̂1

are the final outputs of the algorithm.

E. Comparison with Other Variational Methods

We discuss the connection of the proposed HoL0MS with
the other two variational methods for intensity inhomogeneity
correction, i.e., TVH1 model [29] and HoTVL1 [37], both of
which were proposed for Retinex problem. Based on the same
image decomposition model (2), the two models are given as
• TVH1 model: uses TV norm and H1 norm to regularize

on û and f̂ as follows

min
û≥0,f̂≥0

1

2

∫
Ω

(v̂ − û− f̂)2dx+ α

∫
Ω

|∇û|dx

+
µ

2

∫
Ω

|∇f̂ |2dx+
τ

2

∫
Ω

f̂2dx,

where the parameters are chosen as α = 1, µ = 0.01 and
τ = 1.0× 10−3 in the tests.

• HoTVL1 model: employs the first and second order TV
regularization on û and f̂ as follows

min
û∈Bû,f̂∈Bf̂

1

2

∫
Ω

(v̂ − û− f̂)2dx+ α
(∫

Ω

|∇û|dx

+µ

∫
Ω

|∇2f̂ |dx
)

+
τ

2

∫
Ω

f̂2dx,

where the parameters are set to α = 10, µ = 50, τ =
1.0 × 10−3 and box constraints are Bû =

[
0,max{v̂}

]
and Bf̂ =

[
−max{v̂}, 0

]
in the tests.

We evaluate the performance of the three variational meth-
ods on a phantom data and a rodent data, both of which
were acquired on a Bruker 9.4 Tesla MR instrument. The
imaging protocol was a TurboRare T2 sequence with the slice
thickness of 1 mm, and the pixel spacing of 0.12 mm ×
0.12 mm × 1 mm and 0.09 mm × 0.0.09 mm × 1 mm for
phantom data and rodent data, respectively. One slice of the
test images are displayed in Fig. 2, both of which present
significant intensity inhomogeneity. The parameters used in
HoL0MS are α = 0.02, µ = 0.01, τ = 1.0 × 10−3,
β0 = 1.0× 10−3, βmax = 1× 103 and κ = 1.2. The stopping
rule for TVH1 and HoTVL1 is either the relative error reaches
1.0× 10−4 or the iteration reaches 5× 103.

(a) (b)

Fig. 2. Two test images. (a) Phantom data and (b) Rodent data.

Fig. 3 and Fig. 4 display the visual comparison results of
the phantom and rodent images, respectively. We can observe
that HoL0MS produces the best visual results, whereas the
bias corrected images are more homogeneous than TVH1 and
HoTVL1. Indeed, as shown by Fig. 3 (a) and Fig. 4 (a),
the solution of u from HoL0MS is able to give a piecewise
constant approximation of the original image.
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(a) (b) (c)

Fig. 3. Decomposition comparison of the phantom image among TVH1 (1st
row), HoTVL1 (2nd row) and HoL0MS (3rd row). (a) u. (b) f . (c) v/f .

(a) (b) (c)

Fig. 4. Decomposition comparison of the rodent brain image among TVH1
(1st row), HoTVL1 (2nd row) and HoL0MS (3rd row). (a) u. (b) f . (c) v/f .

Relying on the comparison results, we can conclude on the
three variational models for bias correction as follows

¬ From the perspective of bias correction, the second-order
TV regularization outperforms the H1 regularization in
modeling the spatially smooth bias field function. It is
partially because the high-order TV is contrast invariant.
Thus, less edges and structures are contained in bias field.

­ For the purpose of segmentation, the L0 minimization

on the gradient field works better than TV minimization.
It is obviously that the L0 regularization yields genuine
piecewise-constant solution whereas TV does so only
approximately. As shown in Fig. 4 (a), the solution of
HoL0MS can identify the brain region from the non-brain
region, which can be used as a guess for the brain mask.

V. BRAIN EXTRACTION

As shown in the previous example, the solution u of our
HoL0MS has already identified the brain region from the sur-
rounding tissues. Therefore, we can use a simple thresholding
technique to obtain the binary brain mask. More specifically,
a three phase clustering method is used to classify the image
domain into the brain region, the surrounding non-brain region,
and the background outside the body. We adopt the k-means
method [45] as an example for automatically computing the
thresholds. As alternatives, fuzzy c-means method [46], Otsu’s
method [47] etc. can be implemented to perform a global
clustering-based image thresholding.

Certain morphological operations are performed on the
resultant brain mask, which have been widely used in brain ex-
traction algorithms including 2-D PCNN [11], 3-D PCNN [12]
and RATS [14] etc.. We use morphological erosion operation
to remove the narrow bridges connecting continuous regions
for isolation of the brain mask from adjacent structures. Then,
we select the largest continuous component from the field of
view by choosing the largest volume. After the brain mask
is chosen, a morphological dilation operation is implemented
to restore the size of the brain mask. For both morphological
erosion and dilation, we use the same neighborhood with a
radius r. In the end, we fill the holes to create a full 3-D
geometry representation of the cropped brain.

VI. VALIDATION AND DISCUSSION

In this section, we conduct a series of numerical experiments
to validate the performance of our HoL0MS model. Both the
HoL0MS model and 3-D PCNN are implemented Matlab on
a MacBook Pro with Processor 2.2 GHz Intel Core i7. All the
brain software including ANTs, FSL and BrainSuite are run on
Linux Debian Jessie computer system. In the implementation,
we simplify the Hessian operator H with the elements on the
diagonal to reduce the computational costs.

A. Data

Data Set 1: 4.7 T anatomy data set (30 volumes)
The data set was used in [11]. All data volumes were obtained
in a Bruker Biospec 4.7 T, 40 cm horizonal magnet. The
imaging protocol was a RARE pulse sequence with slice
thickness 1.2 mm and resolution 256 × 256 × 12. The pixel
spacing is 0.12 mm× 0.12 mm× 1.2 mm.

Data Set 2: 17.6 T mouse data set (12 volumes)
The data set was C57BL/6J adult mouse brains imaged in vivo
on a 17.6 Tesla MR instrument at an isotropic spatial resolu-
tion of 0.1 mm and the resolution of 192×96×256. The mouse
brains were segmented into 20 anatomical structures [48], [49].
Both the MR images and atlas images can be download from
http://brainatlas.mbi.ufl.edu/Database/dbdownload/.
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Data Set 3: 9.4 T anatomy data set (8 volumes)
The data set was acquired in a Bruker 9.4 Tesla MR instru-
ment. The imaging protocol was a TurboRare T2 sequence
with slice thickness 1 mm and resolution 384×384×24. The
pixel spacing is 0.09 mm× 0.09 mm× 1 mm.

For the purpose of numerical evaluation, it requires the
manual masks for all images. There are publicly available
ground truth for both Data Set 1 and Data Set 2. For Data
Set 3, we employed experienced technician manually created
the masks served as the ‘gold’ standard.

B. Parameters Employed

The parameters for HoL0MS are described in TABLE I. We
can fix most parameters in the evaluation, i.e., τ , β0, κ, βmax
and l. The piecewise constant parameter α and the radius for
the morphological operator r vary with data sets. The smooth
parameter µ is chosen as µ = 0.01 for all rodent images and
µ = 100 for all human images.

TABLE I
THE VALUES OF THE COEFFICIENTS USED IN THE HOL0MS MODEL.

parameter value interpretation
α 0.01-0.1 piecewise constant parameter
µ 0.01 smooth parameter
τ 1.0× 10−3 boundedness control parameter
β0 1.0× 10−3 initial value of β

βmax 1.0× 103 maximum value of β
κ 1.2 update speed of β
l 3 number of layers in Algorithm
r 0.0-5.0 radius of morphological operator

C. Evaluation Methods

We use the coefficient of variations (CV) [50] to quantify
the degree of intensity inhomogeneity, which is defined as

CV(T) =
σ(T)

µ(T)
, (19)

where σ(T) and µ(T) are the standard deviation and the mean
of the intensities in the tissue T.

As shown in TABLE II, we use a number of metrics [51],
i.e., true positive rate (TPR), false positive rate (FPR), volume
overlap (VO), volume difference (VD) and average symmetric
surface distance (SD), to measure the similarity of the brain
masks obtained from automatic methods (Seg) to the manual
standard (GT ) .

D. Comparison with Established Brain Software

In this subsection, we compare the performance of HoL0MS
with other well-known brain software. The comparison is
conducted from two aspects: 1) comparing the results of
inhomogeneity correction with N3 algorithm [16] and N4
algorithm [17]; 2) comparing the results of brain extraction
with BET [4], BSE [52] and 3-D PCNN [12]. We list the
implementation details of each software as follows
• N3: It is performed using Advanced Normalization Tools

(ANTs). The parameters are shrink factor=4; number of
iterations=50; and number of fitting levels=4.

TABLE II
THE EVALUATION METRICS.

Name Definition Unit Best Worst

TPR TP
TP+FN

% 100 0

FPR FP
FP+TN

% 0 100

VO V ol(Seg∩GT )
V ol(Seg∪GT )

% 100 0

VD |V ol(Seg)−V ol(GT )|
V ol(GT )

% 0 <∞

SD

∑
v∈B1

min
u∈B2

d(u,v)+
∑

v∈B2

min
u∈B1

d(u,v)

card(Seg∪GT )
mm 0 <∞

In the table, TP is true positives; TN is true negatives; FP is false positives;
FN is false negatives; B1 and B2 in SD denote the boundary of Seg and
GT , respectively.

• N4: It is performed N4 using Advanced Normalization
Tools (ANTs). The parameters are kernel fwhm=0.15;
Wiener filter noise=0.1; number of iterations=50; and
fitting levels=4

• BET: We use FSL version 5.0 [53], [54] with parameter
r=8 mm. All input images for BET are rescaled by a
factor of 10 for better segmentation [11], [55].

• BSE: We use the BrainSuite 16a1 with iterations=3 [5],
which is downloaded from http://brainsuite.org/.

• 3-D PCNN: It can be downloaded from http://www.sbic.
astar.edu.sg/research/lmi/PCNN3D%20binary.zip, where
the radius of structural element is set to p = 4.

Firstly, the HoL0MS is tested on Data Set 1. The parameter
α and r are defined as α = 0.01 and r = 0. In order to evaluate
the performance of bias correction, we manually labeled both
gray matter and white matter, one slice of which are shown in
Fig. 5. The CV on gray matter and white matter are calculated
and compare with N3 and N4 in Fig. 6. It can be observed
that the bias correction of HoL0MS is better than N4, which
is better than N3 for both GM and WM.

(a) Gray Matter (b) White Matter

Fig. 5. Manual labeled gray matter and white matter for Data Set 1. (a)
Gray Matter and (b) White Matter.

We use the bias corrected images obtained from N4 as
the input of BET, BSE and 3-D PCNN for brain extraction
comparison. Fig. 7 shows examples of the brain boundaries
identified by these methods on three slices of a 3-D vol-
ume, and TABLE III presents the quantitative results, i.e.,
TPR, FPR, VO, VD and SD, for different brain extraction
algorithms. The p-values of two-sample single-tailed t-test
between the proposed HoL0MS model and other methods are
provided below each quantitative result. Generally speaking,
the improvement of HoL0MS is statistically significant with
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Fig. 6. Comparison of accuracy of bias correction in terms of CV for Data
Set 1. (a) CV of gray matter and (b) CV of white matter.

p < 0.05 except for TPR, where the BET gives the best.
However, BET over-segments the brain region with a much
bigger FPR than HoL0MS. According to both visual results
and the quantitative metrics, our HoL0MS model outperforms
the rest of competing methods. Furthermore, we can make the
following conclusions based on the experiments of Data Set
1:

¬ BET tends to over-segment the brain mask for rodent
images;

­ BSE only performs good for the middle part of brain and
is less accurate in both anterior and posterior brain;

® 3-D PCNN may over-segment the brain mask due to the
low contrast on the boundary;

¯ HoL0MS can well segment the brain mask even when the
radius for the morphological operator is set to r = 0. It
is mainly because the piecewise constant solution u can
successfully identify the brain region from the non-brain
region.

(a) BET (b) BSE (c) 3-D PCNN (d) HoL0MS

Fig. 7. Comparison of brain masks (axial view) obtained using automatic
methods on selected slices of a mouse volume from Data Set 1, where
red curves denote the manual gold standard and yellow curves denote the
automatic method. (a) BET; (b) BSE; (c)3-D PCNN and (d) HoL0MS.

Secondly, the HoL0MS model is tested on Data Set 2. The
values of α and r are given as α = 0.1 and r = 5. Since the
atlas of all the 12 volumes are available publicly, as displayed
in Fig. 9, we compute the CV on each structure and compare
them with both N3 and N4 in Fig. 10. It is clearly shown that

%

BET BSE PCNN HoL0
0

20

40

60

80

100
VO

%

BET BSE PCNN HoL0
0

20

40

60

80

100
VD

Fig. 8. Comparison of accuracy of various automatic methods for Data Set
1 in terms of VO and VD.

the bias correction of HoL0MS is better than both N3 and N4
for all brain structures. More importantly, the bias correction
of HoL0MS is much better than N4 on brain stem, olfactory
bulb, cerebellum etc., where the intensity inhomogeneity is
most serious.

Fig. 9. Atlas surface rendering and cutting plane display of the atlas for one
volume from Data Set 2. There are total 20 structures including neocortex,
hippocampus, amygdala, olfactory bulbs, basal forebrain and septum, caudate-
putamen, globus pallidus, thalamus, hypothalamus, central gray, superior
colliculi, inferior colliculi, the rest of midbrain, cerebellum, brainstem, corpus,
callosum/external capsule, internal capsule, anterior commissure, fimbria and
ventricles.

When conducting the experiments on brain extraction, we
use different input for brain extraction algorithms, i.e., the
original image, N4 corrected image and HoL0MS corrected
image. We display the quantitative metrics in TABLE IV. No
matter which brain extraction method has been used, most
metrics obtained based on the HoL0MS corrected image give
the best mean and standard deviation. In TABLE IV, the
p-values between the proposed HoL0MS model and other
methods are evaluated and indicated by ∗ for those quantitative
results with p < 0.05. It is shown that the improvement of
the proposed HoL0MS is statistically significant compared
to BET, BSE and 3-D PCNN with original image and N4
corrected image. Moreover, the box plots of VO and SD
are presented in Fig. 11. We can observe, for 3-D PCNN,
there is significant improvement of the segmentation accuracy
based on HoL0MS corrected image compared to N4 corrected
image, the accuracy of which is also improved compared to the
original image. In fact, TABLE IV shows that the quantitative
metrics of 3-D PCNN based on HoL0MS corrected image are
similar to the ones obtained by our HoL0MS method, both of
which are better than BET and BSE.

Furthermore, two typical results are displayed in Fig. 12.
It can be observed that BET can well segment the central
region of brain, but performs poorly on the anterior and
posterior brain for all input images. The segmentation results
of BSE vary with the original image, and the influence of
bias correction seems limited. For 3-D PCNN, the best brain
boundaries are obtained using the HoL0MS corrected image,



0278-0062 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2636026, IEEE
Transactions on Medical Imaging

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

TABLE III
MEAN AND STANDARD DEVIATION OF QUANTITATIVE RESULTS FOR Data Set 1 WITH DIFFERENT BRAIN EXTRACTION METHODS. BEST

PERFORMANCE BASED ON MEAN IS INDICATED BY BOLD FONT.

Method TPR (%) FPR (%) VO (%) VD (%) SD (mm)

BET 99.82± 0.27 2.42± 0.25 84.46± 1.70 18.05± 2.37 5.65± 0.76
(7.3e-16) (5.3e-43) (2.9e-36) (3.0e-39) (9.7e-35)

BSE 86.90± 15.76 1.18± 0.39 79.61± 13.81 10.10± 15.14 7.66± 8.85
(2.4e-04) (2.2e-13) (1.7e-07) (2.1e-03) (1.5e-04)

3-D PCNN 98.89± 0.76 1.88± 2.09 87.94± 10.21 13.15± 15.99 6.07± 8.34
(5.7e-07) (2.8e-04) (7.8e-04) (1.5e-04) (1.8e-03)

HoL0MS 97.56± 1.11 0.48± 0.13 94.14± 0.72 1.90± 1.32 1.44± 0.39
(NA) (NA) (NA) (NA) (NA)

which can help 3-D PCNN to successfully locate the brain
stem from other tissues. As shown, our HoL0MS is also proved
to be able to produce satisfactory brain masks, where the
segmented brain masks are quite close to the manually labeled
ones. In Fig. 13, we display the 3D renderings of the brain
masks of the same volumes for visual comparison, where the
brain masks of BSE, BET and 3-D PCNN are obtained on
HoL0MS corrected image. Obviously, both 3-D PCNN and
our HoL0MS give the satisfactory 3-D brain mask.

We can make the following summary on the experiments
on Data Set 2:

¬ Both BET and BSE are somehow robust against intensity
inhomogeneity. Therefore, the accuracy of brain extrac-
tion is improved limited by applying an efficient bias
correction method to the test images;

­ 3-D PCNN is sensitive to intensity inhomogeneity. Thus,
the bias corrected image of high quality can improve its
segmentation results significantly.

Lastly, we test the HoL0MS on Data Set 3. We set α = 0.02
and r = 1 for HoL0MS. We display the segmentation results
in Fig. 14 and the quantitative metrics in TABLE V. Similarly,
the p-values between the proposed HoL0MS model and other
methods are evaluated and indicated by ∗ for those quantitative
results with p < 0.05. It is shown that both visual results and
the quantitative results are consistent with our conclusion on
Data Set 2. We observe that BET, BSE and 3-D PCNN with
HoL0MS corrected images give better brain extraction results
than N4 corrected images. Indeed, the four slices in Fig. 14
show that 3-D PCNN based on HoL0MS corrected images
overtakes the segmentation results of HoL0MS, the boundaries
of which are the closest one to the manually labeled mask.
Meanwhile, the HoL0MS method still gives the best overall
performance as shown by TABLE V and Fig. 15, which shows
that HoL0MS is more robust to the diversity of brain shapes
and image qualities, etc..

E. Computational Complexity and Efficiency

In this subsection, we analyze the computational cost of
HoL0MS. The computational complexity of HoL0MS is about
O(n(17MNL+4MNL log(MNL))), where n is the number
of iterations to satisfy the stopping condition.

We display the computational time of 3-D PCNN and
HoL0MS for the three data sets in TABLE VI. We see that the
3-D PCNN algorithm need more than 16 minutes to segment

one volume in Data Set 2, while our HoL0MS only need less
than 4 minutes without any other optimization technique such
as GPU and multi-core programming. Moreover, 3-D PCNN
requires an additional step for bias correction. Therefore, both
complexity and numerical experiments demonstrate that our
HoL0MS is highly efficient and scalable.

TABLE VI
THE CPU TIME OF 3-D PCNN AND HOL0MS MODEL IN SECONDS.

Data Set 1 Data Set 2 Data Set 3
M ×N × L 256× 256× 12 192× 96× 256 384× 384× 24
3-D PCNN 46.32 971.24 167.54
HoL0MS 31.71 213.23 166.74

F. Experiments on Human Brain Extraction and Limitations

Although our discussion focuses on rodent images, the
HoL0MS is also suitable for human brain extraction. We
downloaded a T2-weighted data set from http://insight-
journal.org/midas/collection/view/190. There are total five im-
ages acquired using a 3T GE at BWH in Boston, MA. We
set α = 0.02 and r = 5 for all images and tabulate the
quantitative metrics in TABLE VII. As shown, HoL0MS gives
relatively high values of TPR, VO and low values of FPR, VD
and SD. Besides, we use data 5 as an example and present
selective 2-D and 3-D segmentation results in Fig. 16 and
Fig. 17, respectively. It is obviously shown that our HoL0MS
method works well for human brain extraction.

TABLE VII
BRAIN EXTRACTION OF HOL0MS METHOD FOR HUMAN 3T IMAGES.

Data TPR FPR VO VD HD
1 92.76 0.0045 92.73 7.22 0.1314
2 94.25 0.0558 93.87 5.36 0.1152
3 95.45 0.0626 95.14 4.22 0.0884
4 94.34 0.3088 92.67 3.86 0.1487
5 96.89 0.0391 96.64 2.85 0.0695

However, similar to 3-D PCNN, the HoL0MS has its
limitation in processing the T1-weighted MR images due
to the low contrast between the skull and the cerebrospinal
(CFS). In fact, we are still able to use HoL0MS to re-
move the severe intensity inhomogeneity for T1-weighted
images and images of other modalities. Here, we use a 7T
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TABLE IV
MEAN AND STANDARD DEVIATION OF QUANTITATIVE RESULTS FOR Data Set 2 WITH DIFFERENT BRAIN EXTRACTION METHODS. BEST

PERFORMANCE BASED ON MEAN IS INDICATED BY BOLD FONT.

Method Data TPR FPR VO VD SD
BET Orig 95.33± 0.92 4.94± 2.05∗ 68.21± 7.87∗ 36.92± 17.36∗ 57.80± 14.56∗

N4 94.76± 0.86∗ 3.36± 1.51∗ 74.49± 6.74∗ 23.05± 13.37∗ 47.30± 11.28∗

HoL0 95.07± 0.72∗ 3.02± 0.54∗ 75.89± 2.89∗ 20.53± 5.50∗ 44.78± 5.52∗

BSE Orig 93.16± 6.67 3.27± 5.11∗ 78.14± 17.09∗ 26.59± 40.58∗ 50.25± 51.33∗

N4 92.32± 6.77∗ 1.69± 3.61 83.71± 12.21∗ 14.13± 28.47 33.83± 35.10∗

HoL0 91.87± 6.24∗ 1.61± 3.35 83.44± 11.89∗ 13.92± 27.11 36.18± 40.60∗

3-D PCNN Orig 93.54± 4.47∗ 1.51± 1.55∗ 83.55± 6.79∗ 13.99± 10.67∗ 40.08± 20.14∗

N4 94.79± 2.30 1.12± 1.25∗ 87.19± 6.37∗ 9.47± 8.83∗ 28.94± 17.80∗

HoL0 96.82± 1.37∗ 0.61± 0.27 92.15± 1.16 2.85± 2.74∗ 13.97± 2.22
HoL0MS 95.79± 1.12 0.47± 0.0009 92.19± 0.88 1.37± 0.96 14.56± 2.45

∗ indicates p < 0.05 by single-tailed t-test between the HoL0MS method and other methods.

TABLE V
MEAN AND STANDARD DEVIATION OF QUANTITATIVE RESULTS FOR Data Set 3 WITH DIFFERENT BRAIN EXTRACTION METHODS. BEST

PERFORMANCE BASED ON MEAN IS INDICATED BY BOLD FONT.

Method Data TPR FPR VO VD SD
BET Orig 88.84± 1.77∗ 0.80± 0.03∗ 80.32± 1.16∗ 2.05± 1.26∗ 11.97± 0.77∗

N4 90.93± 1.81∗ 0.77± 0.04∗ 82.54± 1.12∗ 2.46± 1.28∗ 10.70± 0.81∗

HoL0 93.84± 1.33∗ 0.74± 0.06∗ 85.51± 0.69∗ 3.58± 2.37∗ 10.70± 1.19∗

BSE Orig 89.48± 9.14∗ 1.32± 0.89∗ 76.52± 7.67∗ 13.54± 13.04∗ 18.24± 14.83∗

N4 90.86± 9.09∗ 1.24± 1.12∗ 78.80± 9.62∗ 12.51± 15.86∗ 18.65± 21.03∗

HoL0 97.00± 2.16 1.63± 1.95∗ 81.95± 11.38∗ 18.38± 26.09∗ 14.38± 14.53∗

3-D PCNN Orig 87.04± 6.97∗ 0.82± 0.79∗ 78.88± 4.71∗ 13.89± 7.15∗ 20.32± 9.87∗

N4 96.52± 2.20 1.26± 0.95∗ 83.34± 8.21∗ 15.82± 11.66∗ 20.05± 13.47∗

HoL0 98.82± 0.93∗ 0.59± 0.48∗ 92.01± 4.40 6.62± 6.80∗ 6.19± 5.61
HoL0MS 96.85± 0.38 0.27± 0.08 93.54± 1.20 0.93± 0.70 3.24± 1.37

∗ indicates p < 0.05 by single-tailed t-test between the HoL0MS method and other methods.

human T1 MR scan as an example, which is download-
ed from http://multimodal.projects.nitrc.org/MMRR-3T7T-2-
1 multimodal.tar.gz (posted by Bennett Landman). As shown
in Fig. 18, obvious intensity inhomogeneity are presented in
the axial, sagittal and coronal direction of the image. By
applying HoL0MS for bias correction, we can recover the
brain region with high visual quality.

VII. CONCLUSION

In this paper, we introduced a high-order variational model
for bias correction and considered its applications in brain
extraction. We formulated the minimization problem using an
L0 minimization and a high-order smooth regularization in
the gradient field. The existence of the solution was derived
in the work. We used a fast multi-resolution solution to the
corresponding variational problem, resulting in an efficient
algorithm. The HoL0MS model was tested on rodent brain
volumes from three different acquisition configurations and
quantitatively compared against the well-known brain software
for both bias correction and rodent brain extraction. Applica-
tions to human brain MR images were also discussed and
presented. The numerical results demonstrate that HoL0MS
can be used as a powerful tool for intensity inhomogeneity
correction and brain extraction. The extracted brain images
with bias correction can facilitate other image processing tasks
such as brain registration, segmentation etc..

APPENDIX

We consider the minimum of the following problem

E =
2α

β
C
(
p(ω)

)
+
(
p(ω)−∇û(ω)

)2
. (20)

Proof. Followed [44], we discuss the minimizer E∗ in two
cases as follows.

¬ When 2α
β ≥ ‖∇û(ω)‖2 and p(ω) 6= 0, Eq. (20) yields

E(p(ω)) =
(
p1(ω)− ∂xû(ω)

)2
+
(
p2(ω)− ∂yû(ω)

)2
+
(
p3(ω)− ∂zû(ω)

)2
+

2α

β

≥ 2α

β
≥ ‖∇û(ω)‖2. (21)

If p(ω) = 0, Eq. (20) leads to

E(p(ω)) = (∂xû(ω))2 + (∂yû(ω))2 + (∂zû(ω))2. (22)

Thus, the minimum E∗ is obtained when p(ω) = 0.
­ When ‖∇û(ω)‖2 > 2α

β and p(ω) = 0, Eq. (22) still
holds. If p(ω) 6= 0, Eq. (21) reaches its minimum
when p(ω) = ∇û(ω). Comparing these two values, the
minimum E∗ is obtained when p(ω) = ∇û(ω). �
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