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IMPULSE AND SAMPLED-DATA OPTIMAL CONTROL OF HEAT
EQUATIONS, AND ERROR ESTIMATES*

EMMANUEL TRELATT, LIJUAN WANG!, AND YUBIAO ZHANGS

Abstract. We consider the optimal control problem of minimizing some quadratic functional
over all possible solutions of an internally controlled multidimensional heat equation with a periodic
terminal state constraint. This problem has a unique optimal solution, which can be characterized by
an optimality system derived from the Pontryagin maximum principle. We define two approximations
of this optimal control problem. The first one is an impulse approximation and consists of considering
a system of linear heat equations with impulse control. The second one is obtained by the sample-and-
hold procedure applied to the control, resulting in a sampled-data approximation of the controlled
heat equation. We prove that both problems have a unique optimal solution, and we establish precise
error estimates for the optimal controls and optimal states of the initial problem with respect to its
impulse and sampled-data approximations.
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1. Introduction and main results.

1.1. The context. There is a vast literature on numerical approximations of
optimal control problems settled for parabolic differential equations. In the linear
quadratic regulator (LQR) problem, many results exist concerning space semidis-
cretizations of the Riccati procedure. We refer to [1, 2, 14, 16, 27, 31] for general
results showing convergence of the approximations of the Riccati operator, under as-
sumptions of uniform exponential stabilizability, and of uniform boundedness of the
sequence of approximate Riccati solutions. In [1, 22, 27], these sufficient conditions
(and thus the convergence result) are proved to hold true in the general parabolic
case and for unbounded control operators. Note that in such LQR problems, the
final point is not fixed. When there is a terminal constraint the situation is more
intricate, because things may go badly when discretizing optimal control problems in
infinite dimension, due to interferences with the mesh that may cause the divergence
of the optimization procedure when the mesh size is going to zero. These interfer-
ences are stronger when the terminal constraint has infinite codimension, in spite of
strong dissipativity properties of parabolic equations. For the optimal control problem
of minimizing the L? norm of the control (corresponding to the celebrated “Hilbert
Uniqueness Method”), one can find results on uniform exact controllability and/or
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observability of discretized control systems in [4, 5, 7, 8, 18, 38| (see also references
therein), for different discretization processes on different parabolic models. It can
be noted that uniformity requires in general adding some appropriate viscosity terms
in the numerical scheme. Besides, when the convergence is ensured, it is important
to be able to derive error estimates which are as sharp as possible, and we refer the
reader to [10, 12, 13, 15, 20, 21, 26, 32, 33, 34] for situations where Galerkin finite
element approximations are used.

In many cases impulse control is an interesting alternative, not only to usual
discretization schemes but also in order to deal with systems that cannot be acted on
by means of continuous control inputs, as often occurs in applications. For example,
relevant controls for acting on a population of bacteria should be impulsive, so that
the density of the bactericide may change instantaneously; indeed continuous control
would enhance drug resistance of bacteria. For more discussions and examples about
impulse control or impulse control problems in infinite dimension, we refer the readers
to [3, 36, 35] and references therein. It is also interesting to note that impulse control
is as well an alternative to the well-known concept of digital control, or sampled-data
control, which is much used in the engineering community.

To the best of our knowledge, error estimates for impulse approximations or
for sampled-data approximations of an optimal control problem settled with partial
differential equations and with continuous control inputs have not been investigated.

In this paper, we consider the problem of deriving precise error estimates for
impulse approximations and for sampled-data approximations of a linear quadratic
optimal control problem settled for an internally controlled linear homogeneous heat
equation with periodic terminal state constraint. The latter periodicity requirement
is motivated by the fact that steady solutions and periodic solutions are of particular
interest when considering parabolic differential equations.

1.2. Definitions of the optimal control problems. Let N > 1 be an integer,
let 2 C RN be a bounded open set having a C? boundary 99, let w C Q be an open
nonempty subset, and let 7' > 0 and y4 € L?(0,T; L*(2)) be arbitrary. Throughout
the paper, the norm in L?(2) is denoted by || ||.

The optimal control problem (OCP). We consider the optimal control problem
(OCP) of minimizing the functional

e ) T
(1) o) =5 [ ly-valPaer 5 [ ular
0 0
over all (y,u) € L*(0,T; H*(2) N HL(Q)) N H*(0,T; L3()) x L*(0,T; L*(2)) such
that

Oy — Ay =xwu in Qx(0,7),
(1.2) y=0 on 00 x (0,7,
y(0) =y(7) in Q.

Here, x. designates the characteristic function of w, and y and w are functions of
(z,1).
We will prove the following facts:
e Given any u € L?(0,T;L?(Q2)), there exists a unique solution y € L2(0,T};
H2(Q)N HY Q)N HY0,T; L3(Q)) of (1.2).
e The problem (OCP) has a unique optimal solution (y*,u*).
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e The Pontryagin maximum principle (PMP) of the problem (OCP) holds.
More precisely, (y*,u*) is characterized by the existence of p* € H'(0,T;
L23(Q)) N L3(0,T; H*(Q) N H}(2)) such that

oy* — Ay* = x,u* in Qx(0,7),

(1.3) y* =0 on 00 x (0,7),
y*(0) = y*(T) i Q,

Op*+Ap* =y*—yq in Qx(0,7T),

(1.4) p* =0 on 09 x (0,7),
p*(0) = p*(T) in €,

and

(1.5) u' = xup* in Qx(0,T).

Moreover, (1.3), (1.4), and (1.5) are necessary and sufficient conditions for optimality
because the problem (OCP) is linear quadratic.

These three claims are easy to establish, but for completeness they are proved in
section 2.1.

We are next going to design an approximating impulse optimal control problem
(I0CP),, and an approximating sampled-data optimal control problem (SOCP),, for
a linear heat equation with periodic terminal state constraint. Both problems have
as well a unique solution, to which we will give the PMP. We will then establish error
estimates between the optimal solutions of (OCP) and, respectively, (IOCP), and
(SOCP),,.

The approzimating impulse optimal control problem (IOCP),. Let us define the
approximating impulse optimal control problem (IOCP), for n > 2. We set

hn, =T/n, 7 =1 hp, 1=0,1,...,n,

X:Hle Xi:LQ(Ti—laTi;Hol(Q))mHl(Ti—laTi;H_l(Q))7 t=1,2,...,n,

and we define the functional J,, : X x (L?(Q))"~ — [0, +o0) by

(L6)  Ju(Y,Up) (Z / 9 — yalldt + — Znumn?)

for Y, = (Y1,n,Y2,ms -+ Ynn) € X and Uy, = (Uin, U2y -y Un—1n) € (L2(Q))"L
Here and throughout, || - | designates the norm in L?(). Accordingly, the inner
product is denoted by (-, -).

We consider the impulse optimal control problem (IOCP),, consisting of mini-
mizing the functional J,, over all possible (Y,,,U,) € X x (L*(€2))"~! such that

atyi,n - Ayz,n =0 in Qx (Ti7177-i)7 1 < { < n,

Yin =0 on GQX(Ti_l,Ti), 1<1<n,
(L.7) ’ , :

yz‘,n(Ti—l) = yi—l,n(Ti_O + Xoli—1,, in §, 2<i<n,

yl,n(o) = yn,n(T) in Q.
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PROPOSITION 1. For every n > 2, the optimal control problem (IOCP), has a
= (v

unique solution (Y,X,UY) with Y, oY Unp) and Uy = (uf ,,u5 ..,
uy,_1.,)- The optimal solution (Y7, U) 0 (IOCP)T1 is characterized by the existence
of pi, € L*(0,T; H*(Q) N HY(Q)) N HY(0,T; L*(Q)) such that

8ty;{,n_AyZn =0 mn QX (Ti—lyTi)a 1<t n,

(1.8) Yin=0 on 00X (Ti—1,71), 1<i<n,
’ Yin(Tic1) = Yy o (Tic1) + XUy, i Q, 2<i<n,
Yi.n(0) = y5 n(T) in

oy + Apyy =y —ya in Q2 x(0,T),

(1.9) py, =0 on 00 x (0,T),
P (0) = pr,(T) in Q,

and

(1.10) U1 = hnXwPr(Tic1), 2<i<n,

with

(1.11) Yn(0) =y (T),

where y € L°°(0,T; L?(Q)) is defined by
(1'12) y;(t) = y;k,n(t)7 te (Ti*I’Ti]’ l<i<n,

and y;,, € C([ri—1,7); L*()), 1 <i < n.
Proposition 1 is proved in section 2.2.

Remark 1. We could also consider the corresponding impulse version of the opti-
mality system (1.3)—(1.4)—(1.5), but then its well-posedness would be hard to prove,
and therefore obtaining error estimates in such a way seems difficult.

The approzimating sampled-data optimal control problem (SOCP),. Let us now
define the approximating sampled-data optimal control problem (SOCP),,, for n > 2
by performing the usual sample-and-hold procedure on the control function. This
consists of freezing the value of the control over a certain horizon of time, usually called
sampling time. In other words, we replace the control function u € L?(0,T; L?(f2))
with a control that is piecewise constant in time with values in L?(2). We keep the
same notation as in the definition of (IOCP),, and we assume that the sampling time
is equal to h, = T/n. Recall that we have set 7, =i h,, for i = 0,...,n. We consider
the class of sampled-data controls f,, € L?(0,T; L?(€2)) defined by

(113) fn(t) = Vin Vite (Ti_l,’l'i], 1 g ) < n,

where v; , € L?(2) for every i € {1,...,n}. This class of controls is therefore identified
with (L3(Q))™.

Recall that the functional J is defined by (1.1). We consider the sampled-data
optimal control problem (SOCP),,, consisting of minimizing the functional

J(WYns fn) = % </ 1yn — yall? dt + hy, ZHUMII >

i=1
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over all (y,, V;,) € L*(0,T; H*(2) N HE(Q)) N HY(0,T; L*(Q)) x (L*(Q))", with V,, =
(V1my .-+, Unn), such that

8tyn - Ayn = wan in Qx (OaT)v
Yn =0 on 90 x (0,7),
Yn(0) = yn(T) in @,

where f,, € L%(0,T; L*(Q)) is the sampled-data control defined by (1.13).
PROPOSITION 2. For every n > 2, the optimal control problem (SOCP), has a

unique solution (yy,V,') with V' = (v{,,...,v; ). The optimal solution (¥, V,’)

of (SOCP), is characterized by the ezistence of pi, € L*(0,T; H?(2) N Hi(Q)) N
HY(0,T; L*(Q)) such that

6tg:, - Ay: = XWf; in Q x (07T)a

(1.14) yr =0 on 90 x (0,7),
9n(0) = 7,(T) in

0Pt + AP =795 —ya in Qx(0,T),

(1.15) pr=0 on 00 x (0,T),
Pp(0) = pr,(T) in
and
1 i
(1.16) Vip = h—xw/ py(t)dt, 1<i<n,
n Ti—1

where f € L*(0,T; L?(2)) is the (optimal) sampled-data control given by

(1.17) f;(f):’l}:’n VtE(Tifl,Ti], 1<1<n.
Since the proof of Proposition 2 is similar to the one of Proposition 1, we do not
provide any proof in the present paper. Note that the optimal sampled-data control
* defined by (1.17), is given by time-averages of the adjoint state p;, over the time-
subdivision defined by the sampling time h,, (see (1.16)). This fact has been proved
as well in a more general context in [6].

Remark 2. Tt is clear that the sampled-data optimal control problem (SOCP),
may be considered as an approximate version of (OCP), but it is less clear, at least
intuitively, for the impulse optimal control problem (IOCP),. Before establishing
precise error estimates in the next section, let us provide a first intuitive explanation.
First, any continuously distributed control may be discretized by the sample-and-hold
procedure, leading to the sampled-data control Z?:l X((i=1)hn i hny) Vi With v; € L2(Q).
Second, this sampled-data control can be seen as an approximation of an impulsive
control, in the sense that

1
7 X(0,h,) = Ofe=0}

in the distributional sense, where dy;—¢y is the Dirac mass at ¢ = 0 (note that we have
as well the convergence of the corresponding solutions; see Lemma 2) Denoting by
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y(u) the solution of (1.2), we have, noting that u;—1 , =~ hpu(ihy), for i =2,...,n,

y(u) =y (Z X((i=1)hn i ) () hn)> ~y <Z Oft=(i—1) hnyhnu(i hn))
im1 i=2
=y (Z 5{t=(i—1) hyl}uz‘—l,n)

i=2
and

n

n
) 1
lulZaoize ) = D Anllu(ha)l? 2 = flui-ial®.

i=1 hn i=2
Here, y (2?22 5{t:(¢_1)hn}ui,1’n) is the corresponding impulsive solution, and we
have moreover J(y,u) =~ J, (Y, Up).

1.3. Error estimates. We keep all notation introduced in section 1.2. The
main results of the paper are as follows.
Error estimates for the impulse approximation.

THEOREM 1. We set

(1.18) ur(t) = Fu:_l’"’ te(ri—,m), 1<i<n, w5, =0

n

Then there exists C(T') > 0 such that

(1.19) " = w2, p20)) < CDRY 2 lyall 20,722 )
and
(1.20) | Jn (Y, Up) — J (g™ u™)| < C(T)hi/z||yd||%2(o,T;L2(Q))-

For every r € [2,+00), there exists C(T,r) such that

(1.21) Iy = yillz-omr2) < CT )R yall 252200y, T € [2,400).

Moreover, the constants C(T) and C(T,r) are independent of n and of yq.

Theorem 1 is proved in section 2.3. Note that we have assumed that r < +o00 in
the statement. If r = 400, then the situation is more complicated, and we have the
following result.

THEOREM 2. We assume that the subset w of Q has a C? boundary. Let q €
(1, 400) be arbitrary. If w # 2, then

C(T)hflm/zj\;”ydHLQ(O,T;LQ(Q)) for N >3,

(122) ”y* - y:rkL”L‘”(O,T;LQ(Q)) < C(T, q)h:l/ q”deL2(O,T;L2(Q)) fO’I" N = 2,
1/4

C(T)hn/ lyall L2 0,522 (9)) for N =1.

If w=Q, then

ly* = yill=o,miz2 () < CTIRY?|lyall 220,722 (2))-
The constants C(T') and C(T,q) are independent of n and of yq.
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Theorem 2 is proved in section 2.4.

Remark 3. The above error estimates are much easier to obtain when the control
domain w is equal to the whole domain €2, that is, when w = 2. But in this case the
optimal control problems (OCP) and (IOCP),, have little interest. Actually, the main
difficulty in obtaining our results is due to the fact that if w C €2, then the function
Xw is not smooth and the function x,p}(7;—1) in (1.10) is not in H} (). In the proof
of Theorem 2 (see section 2), in addition to more or less standard functional analysis
arguments, to overcome the above-mentioned difficulty, we use smooth regularizations
of the characteristic function y,, the gradient of which we have to estimate in a
refined way in some appropriate L™ norm. Of course, this gradient blows up as the
regularization parameter tends to zero, but fortunately there is some room to design
appropriate regularizations, with adequate blow-up exponents (which we compute in
a sharp way) that can be compensated elsewhere in the estimates, using Sobolev
embeddings and usual functional inequalities. Using this approach, and deriving
nonstandard estimates for the linear heat equation, we ultimately establish the desired
error estimates.

Remark 4. In Theorem 2, if w = Q (trivial case, according to Remark 3), then
the order of convergence of the state is 1/2, and we conjecture that it is sharp.! If
w € Q, then we have obtained the error estimate (1.22) but we conjecture that it is
not sharp and that the order of convergence 1/2 should hold true as well.

Error estimates for the sampled-data approximation.
THEOREM 3. There exists C(T) > 0 such that

(1.23)

S 1/2
v — fallz0.1:2(0)) = (Z/ [ dt) < C(D)hnllyallzz0,1:L20))>
i=1vTi—1

(1.24) 1" = Unllcqorsmi ) + 1" = Unllzzo,m;m2 @nm1 @)nm (07522 (2)
< C(T)hnHZ/d||L2(o,T;L2(Q)),

and

(1.25) [Ty u”) = T (@, f)] < O hallyall7z 07,120

Moreover, the constant C(T) is independent of n and of yq.
Theorem 3 is proved in section 2.5.

Remark 5. 1t is interesting to note that the error estimates are better for the
sampled-data approximation than for the impulse approximation. For instance, the
control error estimate is of order 1 for the sampled-data approximation but is of order
1/2 for the impulse approximation (in L? norm). This is not surprising because,
as explained in Remark 2, the sampled-data optimal control problem (SOCP), can
easily be recast as a classical approximation of (OCP), in the sense that the class of
admissible sampled-data controls of (SOCP), is a subset of the class of admissible

L Actually, we are able to prove that the exponent 1/2 is sharp in the estimate given in Lemma
2 (in section 2.3) and in Lemma 5 (in section 2.4.3), in the case where w =  and r = 2. We do not
provide the proofs of these facts here.
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controls of (OCP). In this sense, obtaining the error estimates of Theorem 3 could be
expected. In contrast, the set of unknowns (Y,,,U,,) for the impulse optimal control
problem (IOCP), is not a subset of the set of unknowns (y,u) for (OCP). This
explains why the derivation of error estimates for (IOCP),, is much more difficult.

1.4. Further comments. We have established error estimates for the optimal
controls and states of impulse approximations and of sampled-data approximations
of a linear quadratic optimal control problem for a linear heat equation, with internal
control, and with periodic terminal constraints. To our knowledge, this is the first
result providing such convergence results and estimates, in an infinite-dimensional
context. Many questions are open, that are in order.

Terminal constraints. Here, we have considered periodic terminal constraints.
This condition is instrumental in order to obtain existence and uniqueness results and
to be able to derive a PMP (see, in particular, Lemma 1 in section 2.1). But it is of
course of interest to consider other terminal conditions. For instance, one may want
to consider the problem (OCP) with the fixed terminal conditions y(0) = y° € L?*(Q)
and y(T) = 0. It is well known that this exact null controllability problem admits
some solutions, without any specific requirement on the (open) domain of control w.
But it is well known too that the final adjoint state coming from the PMP lives in a
very big space that is larger than any distribution space. This will lead to the lack
of regularity of adjoint state and optimal control. Hence this raises an important
difficulty from the functional analysis point of view, preventing us from extending our
analysis to this setting.

Moreover, when considering more general equations (see the next item), if one
considers an infinite-codimensional state constraint, then it is well known that the
PMP may fail (see [24]), and then in this case even the basic fact of establishing an
optimality system may raise some impassable obstacles.

More general evolution equations. We have considered the linear homoge-
neous heat equations. The question is open to extend our analysis to more general
parabolic equations, of the kind 0;y = Ay + x,u, with A : D(A) — L?(f2) generating
an analytic semigroup. For instance, one may want to replace the Dirichlet Laplacian
with a general elliptic second-order differential operator, with various possible bound-
ary conditions (Dirichlet, Neumann, Robin, mixed), or with the Stokes operator. It
is likely that our results may be extended to this situation, but note anyway that, in
our proofs, we repeatedly use the fact that we have Dirichlet conditions.

More generally, the question is open to investigate semilinear parabolic equations,
of the kind dyy = Ay + f(y) + xwu. Even when A is the Dirichlet Laplacian, this
extension seems to be challenging.

The case of hyperbolic equations is another completely open issue. Certainly, the
first case to be investigated is the wave equation: in that case one replaces the first
equation in (1.2) with the internally controlled linear homogeneous wave equation
Oxy = Ay + xou. In this case, it is well known that exact controllability holds true
under the so-called Geometric Control Condition on (w,7T’). What happens for the
corresponding impulse model is open and is far from being clear (see [17] for results in
that direction). Also, many estimates, that are quite standard for heat-like equations
and that we use in this paper are no longer valid in the hyperbolic context.

More general control operators. In this paper, we have considered an inter-
nal control. Writing the control system in the abstract form 0,y = Ay + Bu, this
corresponds to considering the control operator B defined by Bu = x,u. In this case,
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the control operator is bounded, and we implicitly use this fact in many places in
our proofs. We expect that our results can be extended to more general classes of
bounded control operators, but the case of unbounded control operators seems much
more challenging. For instance, what happens when considering a Dirichlet boundary
control is open.

Time-varying control domains and optimal design. Another open question
is how to derive our error estimates for time-varying control domains. Note that
control issues for wave equations with time-varying domains have been investigated
in [23]. In our context, this means that we consider a control domain w(t) depending
on ¢t in (1.2). In this case, the definition of the approximating impulse control system
(1.7) must be adapted as well, by considering w(7;_1) at time 7;_1. It is likely that our
main results may be at least extended to the case where w(t) depends continuously
on t. The general case is open.

Related to this issue is the question of determining how to place and shape “op-
timally” the control domain. Of course, the optimization criterion has to be defined,
and we refer to [28, 29, 30], where optimal design problems have been modeled and
studied. In the context of the present paper, we could investigate the problem of
designing the best possible control domain such that the constants appearing in our
error estimates are minimal.

Let us be more precise and let us define the open problem. Given any 7" > 0,
and any open subset w of 2, Theorem 1 asserts that there exists a constant C(T") > 0
such that the error estimates (1.19), (1.20), and (1.21) (with r = 2, for instance) are
satisfied. Since this constant depends on w, we rather denote it by Cr(w). Given a
real number L € (0, 1), we consider the optimal design problem

g, Or().

that is, the problem of finding, if it exists, the best possible control subset having a
prescribed Lebesgue measure, such that the functional constant in the error estimates
is as small as possible. This prescribed measure is L|(}|, that is, a fixed fraction of
the total volume of the domain. We stress that the set of unknowns is the (very big)
set of all possible measurable subsets of Q of measure L|Q|. It does not share any
good compactness properties that would be appropriate for deriving nice functional
properties, and thus already the problem of the existence of an optimal set is far
from obvious. However, following [30], where similar optimal design problems have
been investigated in the parabolic setting, we conjecture that there exists a unique
best control domain, in the sense given above. Proving this conjecture, and deriving
characterizations of the optimal set, is an interesting open issue.

Note that, less ambitiously than the problem above, one could already consider
simpler optimal design problems, where the problem consists, for instance, of opti-
mizing the placement of a control domain having a prescribed shape, such as a ball:
in this case the set of unknowns is finite-dimensional (centers of the balls).

Impulse Riccati theory. In the present paper, we have considered a problem
within a finite horizon of time 7. It would be interesting to consider the optimal
control problems (OCP), (IOCP),, and (SOCP), in infinite horizon, that is, when
T = +4oo. In this case, the optimal control solution of (OCP) is obtained by the
well-known Riccati theory (see, e.g., [37]), which gives, here,

u = XoE(y — ya),
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where E, a linear and bounded operator from L?(2) to L?(2), is the unique negative
definite solution of the algebraic Riccati equation

AE + EA + Ex, E = id.

For the approximating impulse problem (IOCP),, to our knowledge, the Riccati
procedure has not been investigated. In other words, until now there does not seem to
exist a Riccati theory for impulse linear quadratic optimal control problems in infinite
dimension. Developing such a theory is already a challenge in itself. Assuming that
such a theory has been established, the next challenge would be to establish as well
the corresponding error estimates on the control and on the state, as done in our
paper.

For the approximating sampled-data problem (SOCP),,, few results exist in the lit-
erature. In [31] the authors have established a convergence result (which can certainly
be improved, by combining it with the more recent results of [22, 27], for instance),
but we are not aware of any result providing error estimates as in our paper.

For impulse systems in particular, such a theory would certainly be very useful
for many practical issues, because, as already mentioned, impulse control may be an
interesting alternative to discretization approaches, or to sample-and-hold procedures,
which is sometimes better suited to the context of the study. Notice that although the
theory of space semidiscretization of the Riccati procedure is complete in the parabolic
case (but not in the hyperbolic case when the control operators are unbounded), to
our knowledge the theory is far from complete for infinite-dimensional sampled-data
control systems. Therefore, with respect to sample-and-hold procedures, this is one
more motivation for developing an impulse Riccati theory and its approximations.

2. Proofs.
2.1. Preliminaries.

Existence and uniqueness. We start with an easy existence and uniqueness
result, together with a useful estimate. Throughout the paper, we denote by {e!*};>¢
the semigroup generated by the Dirichlet Laplacian on L?(€2).

LEMMA 1. Let T > 0 be arbitrary. Let f € L?(0,T;L*(Q2)). Then the equation

Oy —Ly=f i Qx(0,7),
(2.1) y=0 on 90 x (0,T),
y(0) =y(T) in Q

has a unique solutiony € H(0,T; L*(Q))NL2(0,T; H*(Q)NH (). Moreover, there
exists C(T) > 0, not depending on f and on y, such that

(2.2)
lvlleqo,rrm3 ) + Wl E1 0,152 ()22 (0,182 ()N HL (@) < C(D) | f 2200, 7:L2(92)) -
This lemma is easy to prove. Such results are known; however, for the sake of
completeness we give a proof in Appendix A, section A.1.
COROLLARY 1. Let T > 0 be arbitrary. Let g € L?(0,T; L?(Q)). Then the equa-
tion
o+ Np=g in Qx(0,7T),
(2.3) P=0 on 90 x (0,7T),
P(0) =(T) in Q
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has a unique solution v € H(0,T; L?(Q))NL2(0,T; H*(Q)NH(2)). Moreover, there
exists C(T) > 0, not depending on g and on 1, such that
(2.4)

I lleqo,msm @) + 1915 0,12 @) L2 0,152 @) EE () < C(D)9ll2200,7;L2(02)) -

This corollary is proved in Appendix A, section A.2.

Optimality system (PMP). The proof of existence and uniqueness of an op-
timal solution of (OCP) is easy. Since it is similar to, but simpler than, the proof of
Proposition 1, we skip it.

Let (y*,u*) be the optimal solution of (OCP). For any v € L?(0,T; L*(Q)) and
A € R\ {0}, let y», be the solution of

OYrw — DYrw = Xw(u* +Av) in Qx(0,7),

Yro =0 on 9Q x (0,7),
Yaw(0) = yan(T) in Q.
Setting z = M, we have

Oz — Nz =x,v in Qx(0,T),
z=0 on 90 x (0,7),
z(0) = z(T) in Q.

Moreover, by definition, J(yx ., u* + Av) = J(y*,u*), for every A # 0, and hence

(2.5) / /y — Yq) zd:cdt—i—/ /uvdxdt—()

Let p* be the solution of

op*+ Ap*=y*—ys in Qx(0,T),
p* =0 on 00 x (0,7,
p(0) = p(T) in 0

This, together with (2.5), yields that

0—/ / (¥ — ya) zdmdt—i—/ /u vdzdt = / / —XwP" + u)vdadt.

Hence u* = x,p*. This gives the PMP for the problem (OCP).

2.2. Proof of Proposition 1. Let us first prove existence and uniqueness of a
solution of (IOCP),. For U, = (u1n,...,uUn—1,) € (L*(Q))"!, we say that V,, =
(Y1my- -+ Ynn) € X is a weak solution of (1.7) if

(Oyin(t), ) r—1(),m () + /Q Vyin(t) - Veodr =0 ae. t € (r_1,7), 1 <i<n,

for each p € H}(Q) (this means that the differential equation is written in H~1(£2))
and Y n(Ti—1) = Yi—1,n(Ti=1) + XwUi—1,n, for 2 <@ < n, and y1,,(0) = ynn(T). By
the same arguments as in the proof of Lemma 1, if we define

Y1n(0) = (I —e™) 71y T8 uy g,
j=2

then y1 ,(0) € L?(2) and (1.7) has a unique weak solution.
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Let d* = inf J,,(Y,,, Uy,) = 0, where the infimum is taken over all pairs (Y,,,U,,) €
X x (L2(2))" ! satisfying (1.7). By definition, there exists a sequence (Yy,.m, Un.im)m>1,
with Yim = Winm)1<i<n and Upm = (Ui n,m)1<i<n—1 satisfying (1.7), such that

1
(2.6) A" < (Yo, Unm) < d° + —.

It follows that
(2.7) > Nttic1nmll® < 2hn(d” +1).
=2

Integrating the equations given by (1.7), we get

(2.8)
yl,n,m(t) = etAyl,n,m(o); t‘€ [05 Tl]a
i
Yisnm () = €2 y10,m(0) + Ze(t_Tjil)Aqujfl,n,ma tem,ml, 2<i<n,
yl,n,m(o) = eTAyl,n,m(O) + Ze(TiTjil)Aquj—l,n,m-
j=2

Using (2.7) and the third equality of (2.8), we infer that

(2.9) 1Y1.0.m (0)]| < C

for every m > 1.2 Here and throughout the proof, C' designates a generic positive
constant not depending on m. Multiplying the first equation of (1.7) (written for
Yinm) OY 2Yinm and integrating over Q x (7;_1,1), we obtain that

t
1Ysm,m (8[| +2/ IVYinm ()1 ds < [Yimm(ri)|® VE € [rio1, 7], 1<i<n,

Ti—1

which implies that

”yi,mmHC([TFl,n];LQ(Q)) + 1Yinmllx; < C”yi,n,m(ﬂ'—l)”a 1<i<n

This, together with (2.7), (2.9), and the third equation of (1.7), gives

n

n
S Uimmllcrmizz@) + 1Winmlx) + > it nml < C.

i=1 =2

Hence, up to some subsequence, we have
Yinm — Yin, Weakly in X, strongly in L*(1i_1,7; LA(Q)), 1<i<n,

and

Ui—1pm —> Uy, weakly in L*(Q), 2<i<n,

2Here, the L? norm is used. For yi,n,m(0), we may wish to consider the HJ(2) norm. But
since Yi n,m(Ti—1) = Yi—1,n,m (Ti—1) + XwUi—1,n and u;_1,, € LQ(Q) (2 < i < n), it follows that
Yi,n,m(Ti—1) € L?(2) for 2 < i < n. Hence the H{ (£2) norm does not seem to be useful.
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for some Y\ = (Y7, %505 Unn) € X and Uy = (uf,, U3, 5Up_1,) €
(L2(2))"~1. Passing to the limit in (2.6) and in (1.7), it is clear that (Y,*,U}) is
an optimal solution of (IOCP),.

The uniqueness follows from the strict convexity of the functional T
(L2(Q))"~t — [0,+00) defined by J,(U,) = J,(Yy,U,), where Y, is the unique
solution of (1.7) corresponding to U,,.

Let us now prove the characterization of the optimal solution given in the
proposition.

We assume that (Y,*,U) is the optimal solution of (IOCP),. Let us prove the
existence of the adjoint state. The argument goes by perturbation of the optimal
solution. Given any U, = (u1n,U2.n,---,Un—1,n) € (L*(2))""1 and any A € (0,1),
we set

(2.10) U = U + AU,,.

Let Yo x = (Y100, Y2.0,0s - - - » Yn,n,x) e the solution of

OtYinx — DYinx =0 in Qx(ri-1,m), 1<i<n,
Yin, X = 0 on 0N x (Ti,1,7'i), 1<i<n,
YimMTic1) = Yic1ma(Tic1) + Xw (Ui p + Auic1n) in Q, 2<i<n,
yl,n,A(O) = yn,n,)\(T) in Q.
Setting z; , = w, 1 < i < n, we have
Ozion — DNzin =0 in Qx(r-1,7%), 1<i<n,
(2.11) Zim =0 on 9N x (r,-1,7), 1<i<n,
' Zin(Tic1) = zicin(Tic1) + Xwlic1,n, I Q, 2<i<n,
21,n(0) = 2n,n(T) in Q.

Since (Y;¥,U;) is the optimal solution of (IOCP),, we have J, (Y, x, Uy,
U) > 0. Dividing by A and passing the limit A — 0T, using (1.6), (2.10), and (2.11),
we infer that

(2.12)
n i 1 n
S [ v > 1) 20 VU € (L)
i=1 Y Ti—1 =2

Let p} be defined by (1.9) (same reasoning as in section 2.1). Multiplying the first
equation of (2.11) by p¥ and integrating over Q x (7;_1,7;), we get

i

(Zin (1), 0y (T0)) = (Zin(Tiz1), Py (Tiz1)) = / (Yin = Ya,zin)dt, 1<i<n,

Ti—1
and summing over ¢ = 1,2, ..., n, we obtain

n

(2.13) Z/ (Yin — Ya, zin) dt = — Z<pr:(7_i—1); Ui—1,n),
i=1vTi—-1

=2

which, combined with (2.12), yields (1.10).
Let us now prove the converse, that is, let us prove that if (Y,*,U}¥) and p, satisty
(1.8)—(1.9)—(1.10)—(1.11), then (Y;*,U;) is the optimal solution of (IOCP),,.
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Given any U, = (U1 n,U2n,-. Un—1,) € (L*(Q))"!, we denote by Y, =
(Y1, Y2,m5 - - - s Yn,n) the corresponding solution of (1.7). By using arguments simi-
lar to those used to establish (2.13), we obtain that

n T4 n
Z/ <yz*n —Yds Yin — Z/z*n> dt + Z(XwPZ(Ti—ﬂ, Ui—1,n — uf_17n> =0.
i=1"Ti-1 i=2

This, together with (1.10), implies that

n

1 *
Z/ yzn Yd>Yin — yzn dt hiz i—1,ns Wi—1,n _’u’ifl,n> =0.
=2

n
Hence

Jn(Ym Un) - Jn(Yrt7 U;{)

= 5 E / <yi,n+yi’n_2yd7yi,n yz n> dt+—— 2h <ui*1,n+ui71,n>uifl,n_uifl,n)
) J =2

T
1 n

Z/ y’L n —Yd,Yin yz n hf Z U, 1,n7ui*17ﬂ - ur—l,n> =0.
=2

n

We conclude that (Y,*, U) is the optimal solution of (IOCP),,.

2.3. Proof of Theorem 1.

2.3.1. A first estimate. The following lemma compares two states generated
by controls activated in different ways.

LEMMA 2. Let 0 < Ty < Ty + 8 < Ty < +o0 and let u € L*(Q). Let z and w be
the solutions of

1 .
Oz — Nz = SX(Tl,Tl—i-é)qu in Qx(Th,T),
(2.14) z=0 on 0 x (Ty,Ts),
z2(T1) =0 in
and

Ow—Aw=0 in Qx(T1,Ts),
(2.15) w=0 on 0 x (Ty,Ty),
w(Ty) = xwu in Q.

For every r € [2,00), there exists C(T,r) > 0 such that

1
2 = wllLr 1y 10522 (0)) < C(T2, )07 [ Xwull.

Proof. By the definitions of z and w, we have

t

1
(2.16) =(t) — w(t) :/ eA(tiT)gX(ThTH-é) (T)xwudr — 20Ty u Vit € [Ty, Ty).
T

Let ¢ = -5 and let f € LY(Ty,Tz; L?(2)). Let ¢ be the solution of

8t(p—|—A(p=f in Q x (Tl,TQ),
(217) Y = 0 on O x (Tl,TQ),
w(Tz) =0 in Q.
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By [19, Theorem 1], there exists C(Ts,r) > 0 such that

(2.18) 106l Lary 1o 02(0)) < C(L2s ) f | La(ry o502 () -
It follows from (2.16) and (2.17) that

Ts 1 T +6
[t - wo. s = (rnpm -5 [ emar
1 T1+6 T
= =\ Xwl, ¢ 81%0 dtdr )
oJr T
which, together with (2.18), yields

T>
/ (2() — w(t), f()

T

Ty 46 .
< HXwUH/ [0vplldt < C(Ta, )67 | xwull| Il o (T 2502(0)-
T

This leads to the desired result and completes the proof. 0

2.3.2. Proof of the control error estimate. In this section, our objective is
to establish (1.19).

Recalling that u) is defined by (1.18), we denote by y(u)) and by p(u)) the
solutions of

Dry(u ) Ay(uy,) = Xwuy, i Qx(0,T),
(2.19) y(ur) = on 09 x (0,7),
y(uz,)(0 ) y(up)(T) in
and
Op(uy,) + Ap(uy,) = y(uy) —ya in Qx(0,T),
(2.20) p(ur) =0 on 90 x (0,7),
p(uy,)(0) = p(uy)(T) in Q.
The existence of these solutions follows from section 2.1. The proof goes in three
steps.
Step 1. We claim that
T
(2.21) / lu* —wt |2 dt = Iy + I
T1
with

n Ti
I = Z/ (XwP" = Xwp(uy), v —uy) dt,
= )
I, = Z / pr pr:(Ti—l)v u* — U:) dt,
Ti—

where p* and p} are given by (1.4) and (1.9), respectively.
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The claim follows from (1.5), (1.18), and (1.10) and from the fact that

T n Ti
J R GEARED DY BT A L
T i=2 vV Ti

1 Ti—1
n Ti
= [t = i) ) de
1=2 " Ti—1

Step 2. We claim that
(2.22) I < C(T)hallyall 20,7020

We first infer from (1.18) that

I

Z/n (Xw(P" = pluy,)), v —uy,) dt
(2.23) i—o JTi—1

T T1
- j/ <p*—-p(UZ)yxw(u*-UZ)>dt— /1 (0" — D), o) dt.
0 0

Then, on one hand, by (1.3), (1.4), (2.19), and (2.20), we get that

XY™ —y(uy)) — Ay* —y(uy)) = xo(u* —uy) in Qx(0,7),
(2.24) y*—y(ur) =0 on 9JQx (0,7),

(y* = y(up))(0) = (y* — y(uy))(T) n Q
and

(p* —p(uy)) + A" —pluy)) =y" —y(uy) in Qx(0,7),
(2.25) p*—p(ur)=0 on o0 x (0,T),

(" = p(up))(0) = (p* — p(uz))(T) in Q.

Multiplying the first equation of (2.24) by p* — p(u}) and integrating over £ x (0,7,
by (2.24) and (2.25), we obtain that

(2.26) | o st et —uiae == [y =y ar<o.

On the other hand, since (Y, U) is the optimal pair for the problem (IOCP),, we
have J,(Y,*,U}) < J,(0,0). Then by (1.6), (1.12), and (1.18), it follows that

T T T
(2.27) /H%W&+/H%W&<0/waﬁ
0 0 0

From (2.27), (2.19), (2.20), Lemma 1, and Corollary 1, we infer that

(2.28)
ly(u)lleo,m;m @) + 1) oo, 1152 ()nE (0,7:22(2)) < C(D)|lYallL2(0,7:22(2)-

Since (y*,u*) is the optimal pair for the problem (OCP), we have J(y*,u*) < J(0,0).
Then by (1.1), we get

T T T
(2.29) /nwWw+/umww<0/nWW%
0 0 0
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which, combined with (1.4) and Corollary 1, implies that

(2.30)  p"leqorirz) < CMNY" = vallLzo,1:20)) < C(T)l|yallz2o,7:020))-
By (1.5), we have that

T1 T1
(2.31) / " —p(uy), xou*)dt = / " —p(u}), xwp®) dt.
0 0
Noticing that 7 = h,,, by (2.23), (2.26), (2.31), (2.28), and (2.30), we get that

< [0 b))
0
< 7ullp* — pup)ll ooz @) llp* ooz @) < CD)hnllyalliz o .02 )

and (2.22) follows.
Step 3. We claim that

1 r * *
(232 <y [ 0 =il dt+ OOyl riso
T1

We first note that
(2.33) bzz/<mm9wmmmw—ma
i=2 v Ti-1

1 T * * 1 - i * *
<5 [ —wiae 530 [ bt - pinen P
T1 =2 Y Ti—1

Then, we proceed with three substeps.
e Substep 3.1. Let us prove that

(2.34) };/wm&wmmAW&<mﬂ@mmmmwm
i=2 " Ti—1
T
+mﬂ/|w%wwm%t
0

By (2.28), we have

e3) 3 [ o) — st Pa= Y [

< hi”atp(u;)||2L2(0,T;L2(Q)) < C(T)hi||yd\|%2(o,T;L2(Q))~

t 2
/‘_ asp(u;i)dsH d¢

Moreover, from (1.9), (2.20), and Corollary 1, we obtain that
Z/ Ip(up)(7i1) = P (ri) |12 At < Tllp(up) = pillE 0.1, 020
=2 7 Tim1

T
<c@) [ vt - v
0

Combined with (2.35), this gives (2.34).
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e Substep 3.2. We claim that

(2:36) [le" (y(uy,)(0) — ;,(0)) @) < O [yall 20,1522 )

for every r € [2,00).
Indeed, by (1.8), (1.11), (2.19), and (1.18), we have

y;(o) TA * +26(T ks I)AX uj 1,n»
j=2

n 1 Tj
)0 =2y 0) + Y- o [ T 0Bt
j=2 T

Then
(2:37) y(u;)(0) = 5,(0) = "2 (y(u;)(0) — 9 (0))
+ Z (h e(T_T)Aqu;‘LLndT - e(T_le)Aqu;l,n> .
j=2 \ " T

It follows that

1€ (5 () (0) =y ()l £r(0,7:22(0)
g 1— 67)\1T)71

—~

n
Z 7/ (T— ‘r+t)A U;_LndT _ e(T—7'_7~_1+t)Aqu;<_1,n
Jj=2 L7(0,T;L?(Q2))
< C(T)
n
Z 7 / ] 1 ndT - e(tiTj_l)Axwu;—l,n )
j=2 L7 (14,2T;L2(Q))

where —\; < 0 is the first eigenvalue of the Dirichlet Laplacian. Moreover,

by Lemma 2 with 71 = 7;_1,0 = hy, T = 27", and u = u}

7—1,ns We get that

Y L .
hi/ e )AX(Tj—l7Tj)(T)quj—17ndT
n T. 1

j—

(2.38)

t—7i_1)A *
76( i=1) Xwlj_1n

L7(1j-1,2T5L%(2))
< C(T, 1) X}yl

for every j € {2,...,n}. Since

¢
/ e(t_T)AX(Tf—th)(T)qu;k’fl,ndT

Jj—1

:/ e(t*T)Aqu;f_lyndT vt € [r;,2T7,
Tio1

J
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by (2.38) and (1.18), we obtain that

1€ (y(up ) (0) =y (0)) | L (0,752 (2))

< C(Ta ’I“)Zh,}/r Hu;kfl,n H

=2

(2.39) 1 1
n n 1 )
SCTOh/™ (Db | D551l
=2 j=2""

< C(T,r)h! " [up L2 g0,7:02(0)

which, combined with (2.27), implies (2.36).
Substep 3.3. Let us prove that

(2.40) ly(us) = yillro.rsL2@) < C(To )Y " lyall 22 0,75220)

for every r € [2,+00).
Let (zjn)1<j<n and (w; »)1<<n be solutions of (2.14) and (2.15), respectively,
with Ty = 751,60 = hy,, To =T, and u = u;71,n~ We set

~ . 0, te (077']'71], ~ . 0, te (077']'71],
Zinlt) = {%‘,n(t)’ te (r-1,T), and jn(1) _{ wjn(t), te(r-1,T).

By (1.8), (1.11), (1.18), and (2.19), we have

y(up) () = yn(t) = e (y(ur)(0) = y,(0))

i T;
+ E (/ X(rs 1.0 (8)e ™8y ui (s) ds
j=1 \/7i-1

(241) _ e(t_le)Aqu;l,n>
i
= " (y(ur)(0) =y (0)) + D (25 (t) = wjn (1))
j=1
for every t € (1,1, 7] and every i € {1,...,n}. Then
(2.42)

y(un) () = g (1) = " (y(u;)(0) =y (0) + Y X(r, 1,1y () (Zjin () = Dy (1))
j=1

for every t € (0,7). Indeed, given any t € (0,7), let ig € {1,...,n} be such
that ¢ € (1;,—1, 7). It follows from (2.41) that

y(up)(t) =y () = e (y(u3) (0) = w2 (0) + Y (21 (t) — wjn(t)
j=1
= e (y(uy) (0) = 7,(0)) + Z (Zj,n (1) = wjn (1))

= "2 (y(u;,)(0) — ,(0)) + ZX(TH,T) (1) (Zjn(t) = wjn (1)),
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which yields (2.42). By (2.42), (2.36), and Lemma 2, we obtain that

ly(uy,) — y;”LT(O,T;LQ(Q))

n
< Hem(y(u;:)(o) = Yn (O 7 0,7;L2(02)) + ZHZj,n - wj,nHLr(rjfl,T;P(Q))
j=1

< C(T,r) | h " yall2o.75L20)) + Zhi/rllu;ll,nll
=

Using (2.27) and the same arguments as in (2.39), we obtain (2.40).
Step 3 follows immediately from (2.33), (2.34), and (2.40).
Finally, by (2.21), (2.22), and (2.32), we get that

T
(2.43) / lu* =y |*dt < C(T)hallyallZzo,r;z20))-

1

Moreover, it follows from (1.5), (1.18), and (2.30) that

T1 T1
| == [ Par
0 0

< TlP 2 o, 220)) < CDhallyalliz o722 ()
This, combined with (2.43), yields the control error estimate (1.19).

Remark 6. Although more general estimates for r € [2,400) in Substeps 3.2 and
3.3 are provided, only the case r = 2 is required in the proof of (1.19).

2.3.3. Proof of the state and cost functional error estimates. In this
section, our objective is to establish (1.20) and (1.21).
We start with the case 2 < r < +00. By the triangular inequality, we have

(2.44) ly* —ynllzro.1izz) < NY° —y(up)llzr oz + 1y(un) =y llr 0,752 @) -
We infer from (1.3), (2.19) and from Lemma 1 that

(2.45) ly™ —y(u)llr o720 < T Ily" —y(un)lleqo,m:c2 )

< O(T,r)|[u” = upllL2(0,7;02(0)) -
Since r > 2, it follows from (2.45) and (1.19) that

C(T, 1)V hallyall L2 0,7;02(22))
C(T,r)hY " allz2 0,7:22(2))

which, combined with (2.44) and (2.40), gives (1.21).
Finally, (1.20) follows from (1.1), (1.6), (1.12), (1.18), (1.19), (1.21), (2.27), and
(2.29).

2.4. Proof of Theorem 2. In this part, Lemma 5 plays an important role in
the proof of Theorem 2. In Lemma 5, as mentioned in Remark 3, the difficulty for
proving (2.64) comes from the following fact: if w C 2, then the characteristic function
X is not smooth and the function x,z0(20 € HJ(Q2)) of (2.62) may not belong to
H}(£2). This causes a lack of regularity of the solution z to (2.62), more precisely,
Oyz € L*(T1, Tz; L*(9)) does not hold for any x,,z0 (20 € HE(R)). To overcome this
difficulty, we design smooth regularizations x¢ of x, (see (2.53)). Then we need
to estimate x5 — x. and Vx& in a refined way (see Lemma 4). In order to prove
Lemma 4, a geometric result (Lemma 3) is required.

ly* = y(up)llLr o102 (0) <
<
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2.4.1. A general result in measure theory.

LEMMA 3. Let w be a measurable subset of Q) having a C? boundary Ow. For
€ >0, we define

(2.46) we ={z e RY | d(z,0w) < ¢},

where d(z,0w) = inf{|x —y| | y € Ow}. There exists pu > 0 such that
€
(2.47) |we| = / |0w, | dn < 2(1 +¢/p) Nt ow|e
0

for every € € (0, ).

In (2.47), without ambiguity, |w.| designates the Lebesgue measure of w., and
|Ow,| = HN~1(0w,) designates the (N — 1)-Hausdorff measure of dw,,.

We give a proof of this result for completeness, borrowing arguments from [11,
pp. 354-355].

Remark 7. In the proof below, the assumption dw € C? is required. For the
general case, whether (2.47) holds seems to be open.

Proof. For every y € dw, let v(y) and I'(y) respectively denote the unit inner
normal to dw at y and the tangent hyperplane to dw at y. The curvatures of dw at a
fixed point yg € Jw are determined as follows. By a rotation of coordinates, we assume
that the 2y coordinate axis lies in the direction v(y). In some neighborhood A (yo) of
Yo, we have N (yo) N dw = {xn = ¢(2')}, where 2/ = (x1,...,25-1),¢ € CZ(T(yo) N
N(yo0)), and Do(y,) = 0. The eigenvalues k1, . . ., kn—1 of the Hessian matrix D2p(y()
are the principal curvatures of dw at gy and the corresponding eigenvectors are the
principal directions of Jw at yo. By an additional rotation of coordinates, we assume
that the x1, ..., xny_1 axes lie along principal directions corresponding to x1, ..., kKn_1
at yo. Such a coordinate system is said to be a principal coordinate system at yg.
The Hessian matrix D?¢(y})) with respect to the principal coordinate system at yo

described above is given by D?p(y)) = diag(k1,...,5n—1). The unit inner normal
vector v(y) at the point y = (v, p(y')) € N(yo) N Ow is given by
Doy 1
)= -2 iGN ) =

V1+De(y)*

1+ Doy’
Hence, with respect to the principal coordinate system at yg, we have
(248) Djyi(y()) = —méij, Z,] = 1,7N—1

Since Ow is C?, Ow satisfies a uniform interior and exterior sphere condition, i.e.,
at each point yg € dw, there exist two balls B; and By depending on yg such that
BN (RY —w) = {yo} and Bo N@w = {yo}, and the radii of the balls B; and By
are bounded below by a positive constant denoted by . It is easy to show that !
bounds the principal curvatures of dw.
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The rest of the proof goes in two steps.

Step 1. Let us prove that w. (0 < & < u) has a C''-smooth manifold structure.

Given any point x such that d(z,0w) < p, there exists a unique point y =
y(x) € dw satistying |z — y| = d(z, dw). We have z = y + v(y)d(z, 0w) if € w and
r =y —v(y)d(z,w) if * ¢ w. Now we give a construction of a C''-smooth manifold
structure on w,. For this purpose, we fix a 1y € Ow and we define the C' map @
from & = (T(yo) NN (y0)) x (—p, 1) to RN by

(2.49) Do(y',d) =y +v(y)d V', d) € (T(yo) NN(yo)) x (—p, 1),

where y = (v, ¢(y')). By (2.48), the Jacobian matrix of ®¢ at (yg,d) is DPg(yg, d) =
diag(1—k1d,...,1—kn_1d, 1), and hence det DPq(y,,d) = (1—k1d) - - (1—kn_1d) #
0, for every d € (—pu, ). It follows from the inverse function theorem that ®q is a
local C'-diffeomorphism in a neighborhood of any point of the line {yf} x (—u, ).
Then by compactness of [—¢, €], we can choose Uy = By X [—¢, ¢], with By an open ball
in T'(yo) NN (yo), so that ®q is a C!-diffeomorphism from Uy to ®o(Up). This shows
that (®o(Up), ®y') is a coordinate chart centered at o in the topological space we..

We carry on the above process for each y € dw and we define an atlas {(V,, ®;1)}
for w,, where V,, is an open neighborhood of y, € dw, ®;(V,) = U, = B, X [—¢,¢€]
and B, is an open ball in I'(y,) NN (y,). By the definition of ®, (similar to (2.49)),
one can check that any two charts in {(V,,®,')} are C'-smoothly compatible one
with each other. Hence {(V,,®,')} is a C! atlas for w.. This atlas induces a C!
structure on w;.

Step 2. Let us establish (2.47).

By [11, Lemma 14.16, p. 355], we have d(-,0w) € C?(w.) and |Vd(-,0w)| =1 in
we, which, combined with the coarea formula (see, e.g., [9]) applied to f = d(-, 0w),
gives

(2.50) o = [ V(a0 ar = [ 55 ((a00) = by an

- / By dn = / (16w} + 6w ]) dn,
0 0

where dwy and dwj are the inner and outer parts (with respect to w) of dws for each
d € (0,¢), respectively. Now, given any 7 € (0,¢), to compute |8wf7r| and [Ow, |, we
define ¢, : Ow — (%J; by ¥y (Ya) = ®o 0 7, 0 Pt (ya) for every y, € Ow, where 7,
is the mapping given by 7,(z,0) = (z,n) for every 2 € RV~1. From Step 1, we take
two arbitrary coordinate charts {(V3, <I>/§1)} and {(V, ®;")}, where Vj and V,, are an
open neighborhood of yz and y ( ys,y, € Ow), respectively. Then by the definitions
of g and @, (similar to (2.49)), one can check that

(2.51) Pgor, oq)[;l(y) =® 07,00 (y) VyeVanV,Now.

We recall from Step 1 that each ! is C' diffeomorphic from V,, to U, = @4 (V,).
Therefore, by (2.51), v, is C! diffeomorphic from dw onto 8wf7r and

det(®4 07y 0 D1 ) (Yo )
= (1= r1(ya)n) - (1= iv-1(ya)n) € (L—ep™ )V A +en™HN )
for every y, € Ow. This, together with the definition of ¢, and (2.51), implies that

@59 fouf|= [ detfu)@)do < (1m0l e 0.9)
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Similarly, we have |dw, | < (1 4 nu~')N"!ow| for every n € (0,¢). Then, (2.47)
follows from the latter inequality, from (2.52) and (2.50).
This completes the proof. ]

2.4.2. Smooth regularizations of characteristic functions. We define the
C™ function x& : RY — R by

(2.53) o (&) = / 7 (@ — 1) xw(y) dy

for every x € RY, where

1 rx cexp (%) if |z| <1
2.54 ne(2) = =1 (f) n(z) = RS )
(254) (2) = o @=1¢ o
with ¢ > 0 such that [,y n(z)dz = 1.
LEMMA 4. Let p be as in Lemma 3 and let € € (0, ). For every r € [1,+00], we
have
14l 1
(2.55) 19 @) < G and |G = Xl < Ot
Here and throughout the proof, C' is a generic positive constant independent of r
and e.

Proof. Note that the case r = 400 follows by passing to the limit. Therefore it
suffices to prove (2.55) for 1 < 7 < +00. We set w! = {z € w : d(z,0w) > ¢} and
w? ={z ¢ w:d(r,0w) > e}. Then w! and w? are an open subsets of R such that

(2.56) wUw?Uw, =RY,

where w, is defined by (2.46).
On the one hand, by (2.53) and (2.54), we get that

e

(2.57) X5, () = /RN EiNn <x — y) Xw () dy,

which, combined with (2.54), yields

(2.58)  Vxg(z) =/R %%xw(y)vn (l:y> dy = 1/RNXw(ﬂs —¢ey)Vn(y) dy

N & e

1

! / ol — ) V(y) dy.
€ J{yeRN:|y|<1}

On the other hand, by (2.57), we have

e = [ - [ e

This implies that

1 if zewl
15 _ [l
(2.60) Xo(w) = { 0 if z€w?
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It follows from (2.56), (2.58), and (2.60) that
IVXEN L) S IVXENTr @y = VXG0 < (O™ wel,

which, combined with Lemma 3, yields ||[Vx5 ||z o) < Ce™1+7.
Besides, by (2.59), we have

0< X, () <1 vz e RY,

w

which indicates
(2.61) —1<x5 () — xo(z) <1 Vo eRY,
Moreover, by (2.60), we get
X5, (x) — Xu(z) =0 V€ w!Uw?.
This, together with (2.61), (2.56), and Lemma 3, implies that ||x{, — xwllzr@) <

|w5|% < Cer. This completes the proof. a

2.4.3. A useful estimate. The following estimate for a linear heat equation is
not standard.

LEMMA 5. Let w C Q be a subset having a C? boundary. Let r € (1,+00), let Ty
and Ty be two nonnegative real numbers such that Ty < Ty, and let zg € H}(Q). Let
z be the solution of

atZ—AZ:O m QX (Tl,Tg),
(2.62) z=0 on 00 x (Ty,Ty),
2(Th) = xwzo in .

If w=Q, then
(2.63) 12(s) = 2(Ty)|| < (s = T1) % || 20l g ()

for every s € [Th,T3].
If w # Q, then
C(Ty)(s — T2 |20l ey if N >3,
1 .
(2.64) l(s) = 2(TVl < | C(T2.)(s =T |20l gy o N =2,
C(T2)(s —=T1)%lzollmyo) of N=1

for every s € [Ty, Ty, for some constants C(Tz) > 0 and C(T5,r) not depending on zg.

Proof. Since the proof of (2.63) is similar to obtain but simpler than the one of
(2.64), we assume that we are in the (more difficult) case where w # Q. Let p be as
in Lemma 3 and let s € (17, T2]. We set

min{y, 1}
2.65 = d e=cpv/s—1T11.
(2.65) o 2 max{\/Ty, 1} o ovETa

Note that € < min{yu, 1}. Recalling the definition of x¢, in (2.53), by (2.62), we have

(2.66) z(s) = e(S*Tl)A(xw —x5)z0 + e(S*Tl)Axizo = z1(8) + 22(s)
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for every s € [T1,Ts]. We have

S 2 T2
Jaa(s) = I = [ | [0z e < (5= 11) [ ozl ar
Q'Jn T

for every s € [T1,T5]. By definition, 25 is the unique solution of the Dirichlet heat
equation with initial condition zo(T7) = x5 20. By integration by parts, we have

To T> T>
/ 19y dt = / /(8tzg(a:,t))2dm dt = / / Dyza(z, 1) - Do(a, £) dardlt
T Ty Q Ty Q
1 1
=5 [ 1Vaala T)Pds — 5 [ [Vea(o To)Pde < [Vaa(T)
Q Q
and therefore we get that
[z2(5) = 22(T1)||* < (s = T0)[|V22(T0)]|?

for every s € [Ty, Tz]. It follows from (2.66) that

(2.67) 12(5) = (Tl < 121 (s) — 21(TV)I + [[z2(s) = 22(T) |
< 2)(xw = x&)20ll + Vs = ThIV(xG20)l-

If N > 3, then, using the Hélder inequality, the Sobolev embedding HE(Q) <

L% (), Lemma 4, and (2.65), we obtain that
1
10w = x2)20ll < ll20ll | 22, (Q)wa — Xallz~v @) < Cllzollap@)e™
and

IV 20l < Nlzollmy o) + ll2oll 2, o IVXGIzY @) < Cllzollm o) (1 +evTh).

These estimates, together with (2.67), imply that

(2.68) 12(s) — 2(TV)| < Cllzollm @) (gw + /s Tlgﬁ—l).

From (2.68) and (2.65) it follows that (2.64) holds.
If N = 2, then, similarly, using the Holder inequality, the Sobolev embedding
HL(Q) < L¥1(Q) (r > 1), Lemma 4, and (2.65), we get that

1
10w = x&)20ll < ll20ll 2oy (Q)wa = Xallzzr ) < C()llzo0ll g2 (@)

£ € 1
VG20l < llzollmy o) + l2oll 2z o 1VXG N z2r @) < C)20ll g 0y (1 + 227 D

and using (2.67) we infer that
(2.69) () = 2T < COllzollmy ey (=7 + v/ — Tae® ).

It follows from (2.69) and (2.65) that (2.64) holds.
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If N = 1, then, by the Sobolev embedding Hg (2) < C(Q), Lemma 4, and (2.65),
we have that

1
(¢ = x&)2oll < ll2oll o IXw = XG I < Cll2oll my ()22

_1
IV(xG20)ll < llzoll a0y + l20llc @ IVXGI < Cllzoll g o) (1 +272),
which, combined with (2.67), imply that

(2.70) () = 2T < Cllzollyce (7 + Vs = Tae™H).

By (2.70) and (2.65), we obtain (2.64). The proof is complete. O
2.4.4. Proof of the state error estimates. We prove (1.22) only when N > 3,

the other cases being similar. Let u* and U;; be the optimal controls solutions of

(OCP) and (IOCP),, respectively, where Uy = (uf ,,,u3 ,,, ..., u} 1 ,,) € (L*(Q))" 1.

Let u} be given by (1.18). We have

(2.71) lly* =ynllLeeo,m5220)) < N1Y"=y(un)lle0,1;02(0) +1y(un) =ynlle 0,7522(0))-

By (1.3), (2.19), and Lemma 1, we infer that

(2.72) ly* —y(up)llcqo,r;rz) < C(D)||u* — upllL20,7L2(9)) -

Besides, we claim that

(2.73) lly(uy,) — y:zHLOO(O,T;H(Q)) < C(T)h}z/QNHyd”L2(O,T;L2(Q))-

Then (1.22) follows from (2.71), (2.72), (2.73), and Theorem 1.
Let us prove (2.73). On the one hand, by (2.37) and (1.10), we have

(2.74)
[97.(0) — y(un) ()]

n .
1 (7 , .
j=2 \' " T

j—

Z/ T8 (= =08 ) i (751) ds

Tj—1

ny [
j=2 /T

On the other hand, by (2.41), (1.18), and (1.10), we infer that
e for every t € [0, 7],
(2.75) y(up) () =y (8) = e (y(ur)(0) — 9 (0));

e for every t € (11, 2],
(2.76) y(un) () = yn(t) = € (y(uy,)(0) — y;,(0))

t
+/ e(t_s)Athglu’{’n ds — e(t_Tl)Aquin
T

1

= A (y(us)(0) — 93 (0))

t T2
+ / 9B\ b (1) ds — / eTB Y b (1) ds;
T1 T

1

(1= etm02) xupy ()| ds
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e for every t € (1y,_1, 7], with ¢ > 3,
(2.77) y(u *)(t) —yn(t) = e (y(uy,)(0) — y;(0))

+Z( [ e ) ds = g L)

Tj—1

t
Jr/ I8Ny (s) ds — ey u Ly,
Ti—1

= "> (y(u;,)(0) = ;,(0))

+Z/ I — TRyt (15-1) ds

t .
Jr/ e(tfs)Axwp;(n_l) ds — / e(th“l)Axwp;(n_l) ds.
T 1 Ti—1

It follows from (1.9), Corollary 1, and (2.27) that
(2.78) IPrllcormt @) < CDlyn — vall2o,m;r29)) < vallrz0,1;02(0)).

which, combined with (2.75), (2.76), (2.77), and (2.74), implies that
(2.79)
lly(ur, yn||Loo(0TL2(Q))

Z/ e(s_Tj_l)A]prfl(Tj—l)H ds + C(T)hn||deL2(O,T;L2(Q))-

For each 5,2 < j < n, we set
zj(t) = B ph (o), tE [, T
It is obvious that
Opzj — DNzj =0 in Qx(r-1,T),
zj =0 on 0Q x (15-1,T),
2j(Tj-1) = XwPr(m-1) n Q.
By Lemma 5 (with Th = 7;_1,T> =T, and 2o = p},(7j—1)), we have that
125 (£) = 2;(r;—)| < CO)t = 7j-1) 27 ||p5(rj—1) 3y Wt € [rj—1, T)-
This, together with (2.79) and (2.78), yields
lly(uy) — yZHLoo (0,T;L2(Q2))

Z - I Dl s O ooz

<O(T )hiﬂN||yd||L2(0,T-,L2(Q)),

and (2.73) follows. This ends the proof.
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2.5. Proof of Theorem 3.

2.5.1. Proof of the control error estimate. Let us establish (1.23). As in
section 2.3.2, the proof goes in three steps.
Step 1. We claim that

(2.80) Z/ Ju* — v}, |IPdt = I + I
i=1"Ti-1
with

n T
n=% / (X" — Xl 0 — v
i=17Ti-1

and

. T * 1 T — * *
I = Z/ <Xw15n — h—xw/ pr(s)ds,u* — vi,n> dt,
i=1 Y Ti—1 n Ti—1

3

where p* is defined by (1.4) and p;, is defined by (1.15).
The claim follows from (1.5), (1.16) and from the fact that

n Ti n T
S [ =P = 3 [ e o)
=17 Ti—1 i=1"Ti=1
- i * 1 T % * *
= ;/Tl <pr - EXUJ /Tilpn(s) ds,u* — vm> dt.

Step 2. We claim that

(2.81) I 0.
Indeed, using (1.3), (1.4), (1.14), and (1.15), we get that

Wy —un) — AW —4n) =xw(w = f7) in Qx(0,7),
(2.82) Yy —yr =0 on 9J0 x (0,7),
(y* = 9r)(0) = (y* — yp)(T) n Q

and

Oh(p* —pn) + AP —py) =y —y, n Qx(0,T),
(2.83) p*—pi =0 on 90 x (0,7),
(" = pp)(0) = (p* — pp)(T) in €.

Multiplying the first equation of (2.82) by p* — pr, and integrating over Q x (0,7T), by
(2.82) and (2.83), we obtain that

T T
| =rixetu = gy == [y - g <o,
0 0

which, combined with (1.17), gives (2.81).
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Step 3. We claim that

(2.84) L] < C(T)hnllyallLz(0,1;L2(02)) (Z/ Ju™ — Ui*,n||2dt>
i=1"7Ti-1
Indeed, on one hand, we first note that

(2.85) <y [
i=17/Ti-1

It is easy to check that, for every ¢ € [r;—1, 7],

ol MRGICRATIER

n

1
2

Ti

- 1 % * *
Pn — 71— pn(s) ds L vi,n” dt.
h” Ti—1

(2.86)

—k 1 T —k
-5 [ pods

T4 t
/ /37252(7') drds
n Ti—1 Y8
1 Ti Ti .
<o [ [ lemmlaras
h‘” Ti—1 Y Ti—1

- / 10.55(r) | dr

. 1/2
< hl/? ( / ||afﬁ;:<7>||2dv> .
Ti—1

It follows from (2.85), (2.86) and from the Holder inequality that

|12<Zh“2</ 10, ||2dt> /”Hu — v}, dt
(2.87) <h Z(/ |0:p ||2dt) ( / | ||u*—v;in||2dt>

i —

’ Yoo !
o (/ ||atza:;||2dt> (Z / ||u*—v;in||2dt>
0 i=1YTi-1

On the other hand, since (g, V,’) is optimal (with V,* = (v ,,...,v} ,)), we have
J(gx, 1) < J(0,0), from which it follows that

1
2

T T
(2.88) / 17 — yall? dt < / lyal?
0 0
and
T n T
(2.80) / 122 = o S el < / lyall? dt.
=1

By (1.15), (2.88), and Corollary 1, we get that

T T T
/ 10,5512 dt < C(T) / 17, — vall? dt < O(T) / lyall? .
0 0 0

This, combined with (2.87), implies (2.84).
Finally, (1.23) follows from (2.80), (2.81), and (2.84).
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2.5.2. Proof of the state and cost functional error estimates. We start
with establishing (1.24). Using (1.3) and (1.14), we have

Wy —yn) — AW —vn) =xw(w = fr) in Qx(0,T),
(2.90) Yt —un = on 09Q x (0,7),
(" = 52)(0) = (v" = 9)(T) in Q.

Equation (1.24) follows from (2.90), Lemma 1, and (1.23).
Finally, by (1.1), (1.23), (1.24), (2.88), and (2.89), we obtain (1.25).

Appendix A.

A.1. Proof of Lemma 1. As a preliminary remark, we recall that, given
Yo € L*(Q) and f € L2(0,T; L*(Q)) arbitrary, there exists a unique weak solution
y(:3y0, f) € L2(0,T; HE(Q)) N HL(0,T; H-1(Q)) € C([0,T); L*(2)) of Oy — Ny = f
in Qx(0,7T), with y = 0 along 99 x (0,T), such that y(0) = yo (see [25], for instance).
Here, “weak” means that the differential equation is written in H~!(Q). More-
over, if yo € H}(2), then y(-;vo, f) € L*(0,T; H2(2) N HY(Q)) N HL(0,T; L*(Q)) C
C((0, T, HA(9)).

Given any f € L?(0,T; L*(Q2)), let us prove the existence and uniqueness of a weak
solution of (2.1). Since ||€TA||L"(L2(Q)7L2(Q)) < e MT <1, it follows that (I —eT4)~1
exists and [|[( — 7)™ | z(r2(a),22(0)) < (1 — e MT)71, where —\; < 0 is the first
eigenvalue of the Dirichlet Laplacian. Now we define

T
(A1) o ==yt [ em0s py
0
and
t
(A.2) y(t;yg,f) = etAyg +/ e(t_s)Af(s) ds, t€]10,7T].
0

Then y{ € L2(Q) and y(-;4d, f) € L2(0,T; HA(Q)) N HY(0,T; H-1(Q)) is the weak
solution of dyy — Ay = f in Q x (0,7T), with y = 0 along 9Q x (0,T), such that
y(0) = y({ Using (A.1) and (A.2), we have

T
y(T; 9, f) =eTAy§+/ =08 f(t) dt
0
T T
=TT [ pyars [T pe)ar
0 0
T
= (I—em)*l/ eT=D2 f(tydt = y(0;, f),
0

which gives the periodicity requirement. Hence y(+; yg , f) is a weak solution of (2.1).
Now, if y; and yo are two weak solutions of (2.1) associated with f, then

1d
Sy = Y2 (D)I72() + /Q [Vy1(t) = Vo (t)|*dz = 0 ace. t € (0,7).

Integrating the latter equality over (0,7), we deduce from the periodicity condition
that y; = y2. Therefore the weak solution is unique.
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It remains to prove that the weak solution y of (2.1) actually belongs to L2(0, T}
H2(Q) N HY(Q)) N HY(0,T; L*()) and to prove the estimate (2.2). Using the pre-
liminary remark, we have y(T) € H}(2), and since y(0) = y(T), it follows that
y(0) € HY(Q). Therefore y € L?(0,T; H*(Q) N HY(Q)) N HY(0,T; L*(Q)). Now,
multiplying the differential equation by 2y and integrating over €0, we get that

d
(A.3) aIIyH2 +2[|Vyl* = 2(f,y) ae. te(0,T).

Using the Poincaré inequality |¢| < C||Ve||, valid for any ¢ € HE (), combined
with (A.3) and the Young inequality, we infer that

d
P +20Vyl* < [Vyl* + ClIfI* ae. t€(0,T).

Here and throughout, C' designates a generic positive constant only depending on €.
Integrating over (0,7"), we obtain that

T T
(A4) / IVyl2dt < © / 172 .
0 0

Besides, multiplying the first equation of (2.1) by —2tAy and integrating over ), we
have

d
t&IIVyHQ +2t]| Ay||? = —26(f, Ay) <t Ayl + L] f]1*

Integrating again over (0,7"), we obtain that

T T
T||Vy(T)|? < / IVy|2dt + T / 112 dt,
0 0

which, combined with (A.4) and the third equation of (2.1), gives ||[Vy(0)|? < <£L
fOT || £||? dt. This, together with the first and second equations of (2.1), implies that

||yHC([o,T];Hg(Q)) + ||y||Hl(o,T;L2(Q))mL?(o,T;Hz(Q)mHg(Q))

C(T+1
< CUVYO I+ Il oz < S o rsrcay.

This completes the proof of the lemma.

A.2. Proof of Corollary 1. Set
F(t) = —g(T 1) Vie(0,T).
Then f € L?(0,T; L?(Q2)). By Lemma 1, the equation

Oy—Ay=f in Qx(0,7),
(A.5) y=0 on 00 x (0,T),
y(0)=y(T) in Q
has a unique solution y € H'(0,T; L?(Q))NL2(0,T; H?(Q)N H (). Moreover, there
exists C(T') > 0, not depending on f and on y, such that
(A.6)
lylleqo e ) + 19l 0,2 @)nrz 0.0 52 @ nE ) < CD)fll20,7522(0)) -
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Define
() =y(T —1t) Vte|0,T].

Then it follows from (A.5) and (A.6) that ¢ satisfies (2.3) and (2.4). The uniqueness
follows from a very similar argument as Lemma 1. This completes the proof.
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