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Abstract This paper concerns with the non-overlapping domain decomposition methods
(DDMs) for the Chan–Vese model in variational image segmentation. We work with a saddle
point formulation for the non-overlapping decompositions, which leads to independent sub-
problems decoupled by the primal–dual algorithm.With the non-overlappingDDMs, only the
interfaces of the adjacent subdomains are coupled, whichmeans the information transmission
takes place on such interfaces and therefore makes the proposed DDMs flexible and efficient.
Moreover, we consider both the stripe-type and checkerboard-type decomposition methods
and provide the rigorous proof of the convergence. Our numerical experiments demonstrate
that the proposed DDMs are convergent, efficient, and quite robust with respect to the model
parameters and image resolutions.
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1 Introduction

Image segmentation plays an important role in computer vision and machine learning, which
aims to separate a given image into several disjoint parts, each of which shares certain visual
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characteristics, such as image intensities, colors and textures etc. Researchers have devel-
oped a wide range of methods for image segmentation including the thresholding methods,
histogram-based methods, edge detection based methods, region-growing methods, partial
differential equations (PDEs) based methods and variational methods, and graph partitioning
methods, etc. [1].

Variational methods, including both edge-based models and region-based models, have
been established to extract objects of interest in images for the task of segmentation. The
active contour/snake model was proposed by Kass et al. [2], which deforms an initial contour
towards the boundaries of the objects. It is a very typical representative of the edge-based
models, where a lot of efforts have been stimulated to improve the model, e.g., the geometric
active contours [3,4] and the geodesic active contours [5]. As one of the most successful
region-based models, the Mumford–Shah (MS) model [6] was built up to pursue a piecewise
smooth approximation of the given image. Letting � ⊂ R

2 be open and bounded and � be a
closed Jordan curve in�, Mumford and Shah proposed to minimize the following functional
to find a piecewise smooth approximation u and edge �

min
u,�

α

∫
�

( f − u)2dx + μ

∫
�\�

|∇u|2dx + |�|, (1.1)

where μ and α are positive parameters and |�| denotes the length of � if given an observed
image f : � → R. The MS model requires to deal with both the shape optimizations and
topology changes. However, due to the non-convexity, it is very challengeable to seek the
minimizer, which may trap into local minima.

One of the most successful convex relaxation of the MS functional was proposed by
Chan and Vese [7]. By assuming the given images as piecewise constant, it seeks for an
approximationwith a binary piecewise constant representation through a level set formulation
[8]. Letting � be its boundaries, the Chan–Vese (CV) model is

min
c1,c2,�

MS(c1, c2, �) = α

(∫
�

( f − c1)
2 +

∫
�\�

( f − c2)
2
)

+ |�|, (1.2)

where c1, c2 are two constants that approximate the image intensity in � and �\�, respec-
tively. One can obtain the binary valued segmentation results based on the total variation
regularization [9] and the thersholding technique [10]. The two-phase segmentation model
(1.2) was extended by Vese and Chan [11] to the multiple phase cases using a multiple level
set formulation. There also exist other related convex CV models in [12–14].

The main purpose of this paper is to explore more efficient algorithms for the convex
CV model [10]. The challenge to design efficient algorithms for such kind of models is
the non-differentiability of the total variation semi-norm. In general, the existing algorithms
can be classified into three categories based on the nature of manipulating the primal and
dual variables and one can refer to [15]. The first category is the primal approach, such
as the gradient descent method etc. [9,16–21]. In order to accelerate these methods, the
most popular splitting algorithms were proposed based on the Bregman iteration [22,23],
augmented Lagrangian methods (ALM) [24,25] and the alternative direction method of
multiplier (ADMM) [26,27], etc. The second category is the dual approach [28], where a
gradient projectionmethodwas designed for the dual formulation of theRudin–Osher–Fatemi
(ROF) model [9]. The third category is the primal–dual approach [29,30], which was further
studied for image processing applications in [31–33].

Domain decomposition methods (DDMs) and multigrid methods are well-known tech-
niques for solving the large-scale PDEs. However, their applications in image processing
are relatively limited. The DDMs can break down a large scale problem into a sequence
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of smaller scale subproblems, which could be solved in parallel. The space decomposi-
tion and subspace correction ideas for the minimization problems were adopted in [34–37].
Recently some researches were devoted to the non-differential non-additive total variation
based optimization problems for image processing problems. Firsov and Lui proposed the
DDMs with Dirichlet boundary condition for image denoising related to Gaussian curva-
ture [38]. The overlapping DDMs were used based on a primal–dual formulation for the
anisotropic total variation problem [39]. The subspace correction methods were applied to
variational image restoration and segmentation in [40–42], where the original total vari-
ation based problems were successfully decomposed into the smaller-size subproblems.
Two level DDMs involving a coarse mesh space correction were further considered [42].
Xu et al. [43] applied the DDMs to the image deblurring problems, which coupled with
a convolution operator. Chang et al. [44] extended the DDMs to the nonlocal total vari-
ation (NLTV) based image restoration, where a unified framework was proposed for the
NLTV and ROF model. Chang et al. [45,46] introduced a stable “unity decomposition” and
derived an overlapping DDMs for the dual formulation, where the convergence rates were
first deduced for the DDMs of total variation minimization problems. Some variants of the
classical DDMs have been studied in [47–50]. Fornasier and Schönlieb [47] and Fornasier
et al. [48] introduced the surrogate functional and generated an iterative proximity-map of
the subproblems, where the subproblems were solved by the fast oblique thresholding. Such
algorithms performed efficiently for image restoration and compress sensing problems and
the weak convergence of the algorithms was proved as well. Hintermüller and Langer [49]
studied the general TV–L1–L2 model for mixed noise removal and the related DDMs, where
the convergence and monotone decay of the associated objective functional values for the
Successive Subspace Correction (SSC) were guaranteed. A non-overlapping DDM was pro-
posed by Hintermüler and Langer [51] for the dual formulation of the anisotropical total
variation based image denoising, where fast solvers for the subproblems and convergence
analysis of the algorithm were given as well. Similarly to [50], Lee et al. [52] proposed a
non-overlapping block decomposition methods, which introduced a primal–dual stitching
method.

Comparing with the overlapping DDMs, we prefer to use the non-overlapping DDMs for
two reasons: (1) the ease of handling the constraints, where we do not need to introduce any
sophisticated technique as [53]; (2) less communication cost and the convergence guarantee.
Therefore, we mainly focus on the non-overlapping DDMs for the variational image seg-
mentation tasks. Stimulated by the work in [54,55], the DDMs are build upon the coupled
relations on the interfaces of the adjacent subdomains. The efficient primal–dual algorithm
[31] is used to solve the subproblems. Actually, we use the DDMs to handle the more com-
plicated model since the minimizer is not unique, and the optimization procedure is coupled
with a convex set constraint. Moreover, the proposed DDMs are proved to be convergent
theoretically. Meanwhile, inferred from our numerical experiments, the proposed DDMs are
very efficient and stable, even for the case with the updating schemes.

The paper is organized as follows. The convex Chan–Vese model is reviewed in Sect. 2.
In Sect. 3, the proposed DDMs are given with the convergence analysis. The numerical
experiments are provided to verify the convergence and efficiency of the DDMs in Sect. 4.
We conclude the paper with some remarks in Sect. 5.
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2 Convex Chan–Vese Model

On the first place, we review the convex Chan–Vese (CCV) model [10] for (1.2), which can
be expressed as follows

min
0≤h∈BV(�)≤1

TV(h;�) + α

∫
�

(
h( f − c1)

2 + (1 − h)( f − c2)
2) ,

where

TV(h;�) := sup

{
−
∫

�

div(φ)h : φ = (φ1, φ2) ∈ (C1
c (�)

)2
, ‖φ‖L∞ ≤ 1

}
,

div(φ) := ∂x1φ1 + ∂x2φ2, BV(�) := {h ∈ L1(�) : TV(h) < +∞}. By fixing c1, c2, the
above CCV model is reduced to the following form

min
h∈V F(h) = TV(h) + α〈s, h〉, (2.1)

where V = Kh
⋂

BV(�), Kh = {h : 0 ≤ h ≤ 1}, 〈·, ·〉 denotes the inner product over the
space L2(�). In (2.1), we define

s(x) := 2(c2 − c1)( f (x) − (c1 + c2)/2), ∀x ∈ �,

and TV(h) := TV(h;�).

Theorem 2.1 The CCV model (2.1) admits at least a minimizer h∗ ∈ V, i.e.

h∗ = arg min
0≤h≤1

F(h). (2.2)

Remark 2.2 One can readily know that CCV model is not strictly convex, that can not guar-
antee a unique minimizer.

Theorem 2.3 ([10]) For any given c1, c2 ∈ R, 1� by thresholding h∗ as for a.e. μ ∈ [0, 1]
in (2.2) is the global minimizer to MS(c1, c2, ·),where � := {x : h(x)∗ ≥ μ}.

In practise, one needs to provide suitable values of c1, c2. Generally speaking, there exist
two approaches to obtain the mean values for unsupervised segmentation tasks. One is to
compute the values from the image histogram. The other is to iteratively update the values
from

c1 = 〈 f, h〉∫
�
h

, and c2 = 〈 f, 1 − h〉∫
�
(1 − h)

. (2.3)

Actually the following Table 1 illuminates the procedure of the two phase segmentation
problem. We consider to solve (2.1) instead of the original CV model (1.2) by the DDMs,
since the left parts including the updating ci , i = 1, 2 can be accelerated readily by parallel
computing.

3 Non-overlapping DDMs for Chan–Vese Models

We follow the non-overlapping DDM framework in [54,55], where the original problem
defined on the whole domain is localized with a consistency constraint. Indeed only one
layer of the subdomains are coupled with the adjacent subdomains. Here we do not adopt any
first order or higher order transmission conditions as [56], since the optimization variables
in (2.1) belong to BV(�), which is not sufficiently smooth.
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Table 1 Flow-process diagram for two phase segmentation

3.1 Non-overlapping DDMs with Two Subdomains

In the continuous setting, assume that there exists the decomposition of the space V =⊕2
i=1 Vi , where Vi = {h : 0 ≤ h(x) ≤ 1, ∀x ∈ �i } ∩ BV (�i ), associated with the

non-overlapping domain decomposition as follows

� = �1 ∪ �2, �̊1 ∩ �̊2 = ∅,

and the interface � = �1 ∩ �2. We consider the minimization problem followed [55] as

min
hi∈Vi

2∑
i=1

Fi (hi ) , (3.1)

s.t., h1 = h2 on �,

where Fi (h) = TV(h;�i ) + α〈s, h〉�i , and 〈·, ·〉�i denotes the L2 inner product over �i .
One can readily observe that the subproblems of the above minimization problem are linked
by the constraints on the interfaces for adjacent subdomains. By introducing a Lagrangian
multiplier λ : � → R, the saddle point problem for (3.1) can be built up as follows

max
g

min
hi∈Vi

2∑
i=1

Fi (hi ) + 〈g, h1 − h2〉�. (3.2)

Therefore, if a better decoupled method is employed to solve the above saddle point problem,
we can design the efficient DDMs to realize fast image segmentation.

For simplicity and the purpose of real applications, we rebuild the framework of the non-
overlapping DDMs in the discrete setting hereafter, where the same notations such as �,�i

and � are adopted as in continuous setting. Figure 1 illustrates the non-overlapping domain
decomposition in the discrete setting. Assume that the image is of the resolution M × N ,
i.e., � := {0, 1, 2, . . . ,M − 1} × {0, 1, 2, . . . ,N − 1}. The two subdomains of the non-
overlapping DDM with the stripe-style as shown in Fig. 1 are �1 := {0, 1, 2, . . . , [(M −
1)/2]} × {0, 1, 2, . . . ,N − 1} and �2 := {[(M − 1)/2], [(M − 1)/2] + 1, . . . ,M − 1} ×
{0, 1, 2, . . . ,N −1}, respectively. The interface of the two subdomains� = {[(M−1)/2]}×
{0, 1, 2, . . . ,N − 1}. Therefore, one can define the function

hi ∈ Vi :=
{
v : �i → R, 0 ≤ v j1, j2 ≤ 1, ∀( j1, j2) ∈ �i

}
.
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Fig. 1 Discrete domain decomposition with stripe-style in (a) and checkerboard-style in (b)

In the following, we consider how to decompose the objective functional (2.1) over the
subdomains. First, we rewrite the discrete form of F(h) as follows

F(h) =
∑

( j1, j2)∈�

(∣∣∣(Dh) j1, j2
∣∣∣+ αs j1, j2h j1, j2

)

=
∑

( j1, j2)∈�1\�

(∣∣∣(Dh) j1, j2
∣∣∣+ αs j1, j2h j1, j2

)
+

∑
( j1, j2)∈�2

(∣∣∣(Dh) j1, j2
∣∣∣+ αs j1, j2h j1, j2

)

:= F1(h) + F2(h),

(3.3)
where Dh denotes the forwarddifferencediscretizationof the gradient operator and |·|denotes
the isotropic or the anisotropic absolute value of a vector, i.e., |[v1, v2]| = √|v1|2 + |v2|2 or
|[v1, v2]| = |v1| + |v2|, respectively.

Next, we introduce two variables hi : �i → R, i = 1, 2, for arbitrary h : � → R, which
satisfies that

hi := h|�i .

Conversely, in order to reconstruct h from hi , one needs additional condition for hi , that is
to say,

h1|� = h2|�.

Therefore, we obtain an equivalent form as (3.1) for the original problem (2.1), where the
same notations are used for the discrete setting as in the continuous setting. The Lagrangian
functional of the constrained optimization (3.1) is built up as follows

L(h1, h2; g) :=
2∑

i=1
Fi (hi ) + 〈g, h1 − h2〉�, (3.4)

where g ∈ V� := {v : � → R} and 〈g, h〉� := ∑
( j1, j2)∈�

g j1, j2h j1, j2 .

We can solve (3.4) by considering the following saddle point problem

max
g∈V�

min
hi∈Vi

L(h1, h2; g). (3.5)
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One can readily have the equivalence between the saddle point problem (3.5) and the original
optimization problem (3.1).

3.2 Numerical Algorithm

Define the extensive operator E�→� : V� → V as

E�→�(g) j1, j2 =
{
g j1, j2 , if ( j1, j2) ∈ �,

0, otherwise,

and the restrictive operator RS→T : VS → VT as

RS→T (h) j1, j2 = h j1, j2 , if ( j1, j2) ∈ T,

where T ⊆ S.We employ the primal–dual algorithm [57] (see the “Appendix”) to solve (3.5)
shown as Algorithm I.

Algorithm I: Primal–Dual algorithm for (3.5)

1. Initialization: choose g0 = 0, h̄0i = h0i = 0, and select parameters τ, σ and θ ∈ [0, 1].
2. Iterations for n ≥ 0: Update hni , g

n, h̄ni as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step I : gn+1 = gn + σ(R�1→� h̄
n
1 − R�2→� h̄

n
2),

Step II : (hn+1
1 , hn+1

2 ) = arg min
hi∈Vi

2∑
i=1

⎛
⎝Fi (hi ) + 1

2τ

∑
( j1, j2)∈�i

|h j1, j2
i − (ĥni )

j1, j2 |2
⎞
⎠ ,

with (ĥn1, ĥ
n
2) = (hn1, h

n
2) − τ

(
E�→�1g

n+1,−E�→�2g
n+1) ,

Step III : h̄n+1
i = (1 + θ)hn+1

i − θhni .
(3.6)

End till some stopping criterion meets.

Remark 3.1 Here we do not solve the saddle point problem by the ADMM [26,27] because
the corresponding subproblems defined on the adjacent subdomains by the ADMM will be
coupled together.

We give some observations of Algorithm I. For the subproblem in Step II of (3.6), one
can solve the minimization problem with respect to hi independently, which means the
subproblems can be solved in parallel.

Now we will separately discuss how to obtain hn+1
1 and hn+1

2 in the following. On one
hand, the subproblem hn+1

1 can be explicitly defined as follows
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hn+1
1 = arg min

h1∈V1
F1(h1) + 1

2τ

∑
( j1, j2)∈�1

∣∣∣∣h j1, j2
1 −

(
ĥn1

) j1, j2 ∣∣∣∣
2

= arg min
h1∈V1

∑
( j1, j2)∈�1\�

∣∣∣(Dh1)
j1, j2
∣∣∣+
⎛
⎝ ∑

( j1, j2)∈�1\�
αs j1, j21 h j1, j2

1

+ 1

2τ

∑
( j1, j2)∈�1

∣∣∣∣h j1, j2
1 −

(
ĥn1

) j1, j2 ∣∣∣∣
2
⎞
⎠

:= arg min
h1∈V1

∑
( j1, j2)∈�1\�

∣∣∣(Dh1)
j1, j2
∣∣∣+ H1(h1),

(3.7)

where H1(h1) := ∑
( j1, j2)∈�1\�

αs j1, j21 h j1, j2
1 + 1

2τ

∑
( j1, j2)∈�1

|h j1, j2
1 − (ĥn1)

j1, j2 |2.
By applying the algorithm in the appendix to the subproblem (3.7) and defining Kp =

{ p = (p1, p2) :
√
p21 + p22 ≤ 1}, we can obtain Algorithm II-I for the subproblem hn+1

1 .

Algorithm II-I: Primal–Dual algorithm for (3.7)

1. Initialization: choose p01 = 0, ȟ01 = h01 = 0, and select parameters κ, γ and θ ∈ [0, 1].
2. For k = 0, 1 . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk+1
1 = argmin

p1
IK p ( p1) + 1

2κ

∑
( j1, j2)∈�1\�

| p1 − p̂k1|2,

where p̂k1 = pk1 + κR�1→�1\�(∇ȟk1),

hk+1
1 = argmin

h1
α

∑
( j1, j2)∈�1

E�1\�→�1(s1)h1 + IKh (h1)

+ 1

2γ

∑
( j1, j2)∈�1

|h1 − h̃k1|2 + 1

2τ

∑
( j1, j2)∈�1

|h1 − ĥn1 |2,

where h̃k1 = hk1 + γE�1\�→�1(div p
k+1
1 ),

ȟk+1
1 =(1 + θ)hk+1

1 − θhk1.

End till some stopping criterion meets.

The variable pk+1
1 in Algorithm II-I has the closed-form form as follows

pk+1
1 (x) = p̂k1 (x)

max{1, | p̂k1 (x)|}
, ∀x ∈ �1\�,

and the variable hk+1
1 is computed from

hn+1
1 (x) = min

{
1,max

{
0, τ h̃k1 + γ ĥn1 − τγ αE(s1)(x)

}
/(τ + γ )

}
, ∀x ∈ �1.
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On the other hand, the subproblem of hn+1
2 is formulated as follows

hn+1
2 = arg min

h2∈V2
F2(h2) + 1

2τ

∑
( j1, j2)∈�2

∣∣∣∣h j1, j2
2 −

(
ĥn2

) j1, j2 ∣∣∣∣
2

= arg min
h2∈V2

∑
( j1, j2)∈�2

∣∣∣(Dh1)
j1, j2
∣∣∣+
⎛
⎝ ∑

( j1, j2)∈�2

αs j1, j22 h j1, j2
1

+ 1

2τ

∑
( j1, j2)∈�2

∣∣∣∣h j1, j2
1 −

(
ĥn1

) j1, j2 ∣∣∣∣
2
⎞
⎠

:= arg min
h2∈V2

∑
( j1, j2)∈�2

∣∣∣(Dh2)
j1, j2
∣∣∣+ H2(h2),

(3.8)

where H2(h2) :=∑( j1, j2)∈�2
αs j1, j22 h j1, j2

2 + 1

2τ

∑
( j1, j2)∈�2

|h j1, j2
2 − (ĥn2)

j1, j2 |2.
Similarly to Algorithm II-I, we can obtain Algorithm II-II for the subproblem hn+1

2 .

Algorithm II-II: Primal–Dual algorithm for (3.8)

1. Initialization: choose p02 = 0, ȟ02 = h02 = 0, and select parameters κ, γ and θ ∈ [0, 1].
2. For k = 0, 1 . . . ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk+1
2 = argmin

p2
IK p ( p2) + 1

2κ

∑
( j1, j2)∈�2

| p2 − p̂k2|2,

with p̂k2 = pk2 + κ∇ȟk2,

hk+1
2 = argmin

h2
α

∑
( j1, j2)∈�2

s2h2 + IKh (h2) + 1

2γ

∑
( j1, j2)∈�2

|h2 − h̃k2|2

+ 1

2τ

∑
( j1, j2)∈�2

|h2 − ĥn2 |2,

with h̃k2 = hk2 + γ div pk+1
2 ,

ȟk+1
2 =(1 + θ)hk+1

2 − θhk2.

End till some stopping criterion meets.

It is clear that pk+1
2 has the closed-form form as

pk+1
2 (x) = p̂k2 (x)

max
{
1, | p̂k2 (x)|

} , ∀x ∈ �2,

and hk+1
2 can be computed from

hn+1
2 (x) = min

{
1,max

{
0, τ h̃k2 + γ ĥn2 − τγ αs2(x)

}
/(τ + γ )

}
, ∀x ∈ �2.

Remark 3.2 TheAlgorithm II-I andAlgorithm II-II are almost the same except for the dimen-
sion of p1 and p2. Therefore additional restrictive and extensive operators are introduced in
Algorithm II-I.
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3.3 Extension to the Cases with More Than Two Subdomains

One can also deduce the DDMs for the cases with T non-overlapping subdomains (T > 2),
i.e.,

� :=
T⋃
i=1

�i ,

with the inner boundaries�i,k = �i
⋂

�k,where�i,k = �k,i . To describe the set of boundary
information transmission, we denote �̂ = {�i,k : �i,k has more than one point}, where we
only consider the transfer between two adjacent regions sharing a boundary (not a point). We
split the functional F as F := ∑1≤i≤T Fi such that Fi is only defined upon the subdomain
�i , and define the minimization problem as follows

min
hi∈Vi

T∑
i=1

Fi (hi ) , (3.9)

s.t., hi = hk on �i,k ∈ �̂, ∀ 1 ≤ i < k ≤ T .

Remark 3.3 One can readily give the details for splitting of the functional F . For the stripe-
type domain decomposition, it is the same as (3.3). And similar splitting technique can be
employed for the checkerboard-type domain decomposition.

Similarly to the case of two subdomains, we can build up the following saddle point
problem

max
gi,k

min
hi∈Vi

T∑
i=1

Fi (hi ) + ∑
�i,k∈�̂

〈gi,k, hi − hk〉�i,k .

By considering the checkerboard-type decomposition, Algorithm III gives the details of
solving the associated saddle point problem.

Algorithm III: Primal–Dual algorithm for (3.5)
with checkerboard-type domain decomposition

1. Initialization: choose g0i,k = 0, h̄0i = h0i = 0, and select parameters τ, σ and θ ∈ [0, 1].
2. Iterations for n ≥ 0: Update hni , g

n
i,k , h̄

n
i as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gn+1
i,k = gni,k + σE�i,k→�(R�i→�i,k h̄i − R�k→�i,k h̄k),∀ 1 ≤ i < k ≤ T

(hn+1
1 , hn+1

2 , . . .) = arg min
hi∈Vi

T∑
i=1

(
Fi (hi ) + 1

2τ

∑
( j1, j2)∈�i

|h j1, j2
i − (ĥni )

j1, j2 |2
)
,

with ĥni = hni − τ

⎛
⎜⎜⎝

∑
{
k: k>i,�i,k∈�̂

}E�i,k→�i g
n+1
i,k −

∑
{
k: k<i,�k,i∈�̂

}E�k,i→�i g
n+1
k,i

⎞
⎟⎟⎠ ,

h̄n+1
i = (1 + θ)hn+1

i − θhni .
(3.10)

End till some stopping criterion meets.
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Asmentioned, one uses an iteratively scheme to refine themean values, the update schemes
of which are given in the discrete setting as follows

c1 =
∑

( j1, j2)∈� f j1, j2h j1, j2∑
( j1, j2)∈� h j1, j2

and c2 =
∑

( j1, j2)∈� f j1, j2(1 − h j1, j2)∑
( j1, j2)∈�(1 − h j1, j2)

,

where we assume that
∑

( j1, j2)∈�

h j1, j2 �= 0 and 1. The above update schemes could be incor-

porated into Algorithm I, where c1, c2 can be initialized as 0 and 1, respectively.

3.4 Convergence Analysis

In order to analyze the convergence of the proposed Algorithm I, we shall first define the
following operator

K(h1, h2) = E�→�

(
R�→�(h1 − h2)

)
, ∀ h1, h2

for domain decomposition with two subdomains. For T subdomains, one can define

KT (h1, h2, . . . , hT )

as

[KT (h1, h2, . . . , hT )]i,k = E�i,k→�(R�i→�i,k hi − R�k→�i,k hk).

Denote the discrete L2 inner product by 〈·, ·〉.
Proposition 3.1 The norm of the operator KT is bounded.

Proof We can readily prove the boundedness of this operator by the property of the linear
operator in the finite dimension space. ��

In order to set the parameters, we need to further study the upper bound of the operator
KT . For the simplicity, we first analyze it by using the stripe-type domain decomposition

〈KT (h1, h2, . . . , hT ),KT (h1, h2, . . . , hT )〉
=

∑
1≤i≤T−1

∑
( j1, j2)∈�i,i+1

(
h j1, j2
i − h j1, j2

i+1

)2

≤ 2
∑

1≤i≤T−1

∑
( j1, j2)∈�i,i+1

((
h j1, j2
i

)2 +
(
h j1, j2
i+1

)2)

≤ 2
∑

1≤i≤T

∑
( j1, j2)∈�i

(
h j1, j2
i

)2
.

There exists ‖KT ‖2 ≤ 2 for the stripe-type domain decompositions. For the checkerboard-
type domain decomposition, we have

〈KT (h1, h2, . . . , hT ),KT (h1, h2, . . . , hT )〉
=
∑

�i,k∈�̂

∑
( j1, j2)∈�i,k

(
h j1, j2
i − h j1, j2

k

)2
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≤ 2
∑

�i,k∈�̂

∑
( j1, j2)∈�i,k

((
h j1, j2
i

)2 +
(
h j1, j2
k

)2)

≤ 8
∑

1≤i≤T

∑
( j1, j2)∈�i

(
h j1, j2
i

)2
.

There exists ‖KT ‖2 ≤ 8 for the checkerboard-type domain decomposition. By defining the
norm of K as L := ‖KT ‖ < +∞, we can have the following theorem.

Theorem 3.4 Algorithm I is convergent if τσ < 1/L2.

Proof Following [31] and Proposition 3.1, one can readily prove this theorem.

Theorem 3.5 Algorithm II-I and Algorithm II-II for solving the subproblems of Algorithm I
are both convergent if κγ < 1/8.

4 Numerical Experiments

In this section, we conduct several numerical experiments to verify the performance of the
proposed DDMs. All the experiments are implemented in a MATLAB environment on a
desktop with Intel (R) Core(TM) i3-2120 CPU@3.30GHz, and 8G RAM. Hereafter, we set
the parameter θ = 1.

4.1 Performance and Convergence

We first test our proposed DDMs on two images as shown in Fig. 2, where the left one is a
synthetic image and the right one is a natural image.

In order to verify the convergence, we shall have the exact solution. Alternatively, we
numerically get h∗ as a “ground truth” solution by the primal–dual algorithm [31] without

Fig. 2 Both images in (a) and (b) are of the resolution 256 × 256
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the DDMs (see the “Appendix”), where the stopping condition is set as
∥∥∥hk − hk−1

∥∥∥/
∥∥∥hk
∥∥∥ ≤ TOL, (4.1)

with TOL = 1.0 × 10−15 or the maximum iteration number reaches 1.0 × 106. Two mea-
surements are used to qualify the convergence of the proposed DDMs, i.e., the normalized
error ek := ‖hk − h∗‖/‖h∗‖ and the numerical energy Ek := F(hk).

Firstly, we show the performance of the DDMs on Fig. 2a with the stripe-type domain
decomposition. The parameters are set as τ = 0.5, σ = 1.0, κ = 1.0, γ = 1/8. We imple-
ment Algorithm I with the stopping condition (4.1) with TOL = 1.0×10−5 or the maximum
iteration number Nout = 1.0 × 103. Here, the inner iteration number of Algorithm II-I and
Algorithm II-II are fixed to be Nin = 1.0×103 in order to guarantee the convergence. Figure 3
shows the segmentation results with different α and Fig. 4 displays the differences images
between the ground truth and the solutions of the DDMs. Both two figures demonstrate that
our proposed DDMs performs well and are quite robust with respect to different number of
subdomains and different parameter α.

Secondly, we implement Algorithm III to show the performance of the DDMs with the
checkerboard-type domain decomposition. The segmentation results and differences between
the ground truth and the solutions by the DDMs are shown in Fig. 5 and in Fig. 6, respectively.
Inferred from these two figures, we observe that the DDMs based algorithm works well for
the checkerboard-type domain decomposition. In order to further verify our DDMs, we test
both algorithms on the natural image in Fig. 2b and the results are shown in Figs. 7 and 8.
Once again, both decomposition methods produce satisfactory and accurate segmentation
results on the nature image.

The convergence curves of the stripe-type decomposition (i.e., Fig. 3h) are plotted in
Fig. 9, where both the errors and the numerical energy of the objective functional decrease

Fig. 3 Performance of DDMs with the stripe-type domain decomposition (red lines represent the interfaces
of domain decomposition). The parameter α for the first row is α = 0.4 and the second row is α = 0.6.
From left to right the ground truth with different α, the segmentation results by the DDMs with 2, 22 and 23

subdomains, respectively (Color figure online)
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Fig. 4 Differences between the ground truth and the solution by the DDMs with the stripe-type domain
decomposition of Fig. 3. From left to right: differences by DDMs with 2, 22 and 23 subdomains, respectively

Fig. 5 Performance of DDMs with checkerboard-type domain decomposition. The parameter α for the first
row is α = 0.4 and the second row is α = 0.6. From left to right the segmentation results by DDMs with
22, 32, and 42 subdomains, respectively
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Fig. 6 Differences for Fig. 5 between the ground truth and the solution by the checkerboard-type domain
decomposition. From left to right the differences by DDMs with 22, 32, and 42 subdomains, respectively

Fig. 7 Performance of DDMs with stripe-type (the first row) and checkerboard-type (the second row) domain
decomposition. From left to right on the first row are the segmentation result by the DDMs with 2, 22, and
23 subdomains while on the second row are the segmentation results by the DDMs with 22, 32, and 42

subdomains, respectively
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Fig. 8 Differences between ground truth and the solution by the DDMs with stripe-type (the first row) and
checkerboard-type (the second row) decomposition w.r.t. Fig. 7
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Fig. 9 The convergence curves of the DDMs w.r.t. Fig. 3h. (a) Decay of numerical energy Ek . (b) Errors ek

as the iteration number increases. We use c1 = 1, c2 = 0 for Fig. 2a and c1 = 0.5, c2 = 0
for Fig. 2b as the default values. We see that the errors and the objective functional values
monotonely decrease fast, which numerically verifies our theoretical analysis.

Additional tests are done on the medical images of different resolutions, i.e., Fig. 10a with
the resolution 512×512 and Fig. 10d with the resolution 1024×1024. In the experiment, we
set α = 1, c1 = 0.5, c2 = 0 for Fig. 10a and α = 50, c1 = 0, c2 = 1 for Fig. 10d. All other
parameters and stopping conditions for the DDMs are the same as the previous experiments.
We display the segmentation results in Fig. 10, which demonstrates that the DDMs work
quite well for images with different resolutions.
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Fig. 10 Performance of the DDMswith stripe-type domain decomposition for awith the resolution 512×512
and dwith the resolution 1024×1024. The values of the parameters for the first row areα = 1, c1 = 0.5, c2 = 0
and for the second row are α = 50, c1 = 0, c2 = 1. From left to right the original images, the ground truth,
the segmentation results by the DDMs with 23 subdomains

4.2 Performance w.r.t. the Inner Iteration Number Nin

In order to discover the performance of the DDMs affected by the iteration number of the
inner solver of Algorithm II-I and Algorithm II-II, we test the DDMs with different inner
iterations under the stopping condition as

ek ≤ 5.0 × 10−5 (4.2)

for the stripe-type decomposition of 2 subdomains. All other parameters are set to be
the same as the above subsection. The results of the testing image Fig. 2a are shown
in Table 2. By inferring from the table, one can see that our DDMs with less inner
iterations require more outer iterations Nout to obtain the same error. Meanwhile, the
DDMs become slower gradually as the cost of per outer iteration increases although less
outer iterations are used. Therefore, a suitable inner iteration number Nin needs to be
chosen to achieve the best performance. Hereafter, we set Nin = 10 as the default
value.

4.3 Performance w.r.t. the Number of Subdomains and Other Parameters

We use Fig. 2a and set Nin = 10 and other parameters are set to be the same as Subsection
4.1. We first test the performance of the DDMs w.r.t. different numbers of the subdomains
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Table 2 Performance of the
stripe-type decomposition with
different inner iterations Nin

Time denotes the elapsed time in
seconds, ek denotes the error, Ek
denotes the objective functional
values and Nout denotes the outer
iterations

Nin Time ek (1.0 × 10−5) Ek Nout

1 20 4.9987 −5597.0078 1960

2 15 4.9965 −5597.0078 991

5 12 4.9918 −5597.0079 389

10 11 4.9860 −5597.0080 201

20 20 4.5986 −5597.0090 174

50 43 4.2034 −5597.0097 172

100 85 4.2638 −5597.0099 172

200 167 4.3518 −5597.0100 172

500 418 4.3966 −5597.0100 172

1000 833 4.3978 −5597.0100 172

Table 3 Performance of the stripe-type decomposition with different numbers of the subdomains Nsub

Nsub Time ek (1.0 × 10−5) Ek Nout

2 11 4.9860 −5597.0080 201

4 12 4.9906 −5597.0080 202

8 18 4.9922 −5597.0082 285

16 22 4.9979 −5597.0078 301

24 32 4.9918 −5597.0080 379

Time denotes the elapsed time in seconds, ek denotes the error, Ek denotes the objective functional values and
Nout denotes the outer iterations

Nsub. We choose the stopping condition as (4.2) and display the results in Table 3. As the
number of subdomain increases, more outer iterations are required to reach the given error
tolerance. On the other hand, the segmentation results are not so sensitive to the number of
subdomains. Thus, we may consider to incorporate some global information into the original
minimization problem in our future work.

We also evaluate the performance of ourDDMsw.r.t. other parameters including τ, σ, κ, γ .
The effect of parameters κ, γ has been discussed in [31]. In our proposed DDMs, these
parameters play the role of controlling the inner solver for the subproblems, which are quite
similar to [31]. Therefore, we only show the impact of the parameters τ, σ , which actually
control the outer solver for the DDMs. In the tests ahead, we set κ = 1, γ = 1/8 as the
default values. The iterations for the DDMs stop if (4.2) is satisfied or the maximum iteration
number reaches 1.0×103. Our estimation demonstrates the upper bound of themultiplication
of the two parameters are τσ = 1/2 to guarantee the convergence. Hence, we conduct the
experiments with τσ = 1/2. By selecting σ in

{
2−m, 2−m+1, . . . , 0, . . . , 2m−1, 2m

}
with

m = 5, we show the results in Fig. 11, which illustrates that a suitable value of σ is needed
for the best performance. In this paper, we do not conclude any rule for selecting the optimal
parameters for the DDMs and leave it as a future work.

4.4 Performance with the Updating Means

In this subsection, instead of selecting themeans c1, c2 manually,weuse the updating schemes
(2.3) to compute the means automatically. We set α = 1 and stopping condition (4.1) of
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Fig. 11 Performance influenced by parameter σ w.r.t. iteration number. (a) Nout and (b) elapsed time with
respect to the iteration number

Fig. 12 Performance of the stripe-type and checkerboard-type domain decomposition with the updating
means. From left to right on the first row are the segmentation results of the stripe-type decomposition with
2, 22 and 23 subdomains while on the second row are the segmentation results by the checkerboard-type
decomposition with 22, 32 and 42 subdomains

TOL = 1.0 × 10−5. The segmentation results of the stripe-type and checkerboard-type
decomposition are displayed in Fig. 12. The updating schemes perform very well since
the means of the DDMs always keep the same values for the decomposition with different
numbers of subdomains.

4.5 The Large-Scale Image Segmentation

In order to test practical performance of our proposed DDMs, three large-scale images with
the resolution 512×512 in Fig. 10a, 1024×1024 in Fig. 10d and 4096×4096 (interpolation

123



J Sci Comput

Table 4 Performances of the DDMs with updating means for the image of resolution 512 × 512

Nsub 22 42 62 82 102

Nout 201 201 202 199 201

Ek (1.0 × 10−5) −4.2929000 −4.292900 −4.292900 −4.292900 −4.292900

Time 25 18 19 21 24

The parameters are α = 50 and Ek ≤ −4.292900×105. Time denotes the elapsed time in seconds, Ek denotes
the objective functional values and Nout is the iteration number of Algorithm III

Table 5 Performances of the DDMs with updating means for the image of resolution 1024 × 1024

Nsub 22 42 62 82 102

Nout 345 346 346 346 346

Ek (1.0 × 10−5) −2.204990 −2.204990 −2.204990 −2.204990 −2.204990

Time 219 174 119 125 130

The parameters are α = 1 and Ek ≤ −2.204990×105. Time denotes the elapsed time in seconds, Ek denotes
the objective functional values and Nout is the iteration number of Algorithm III

Table 6 Performances of the DDMs with updating means for the image of resolution 4096 × 4096

Nsub 22 42 62 82 102

Nout 52 52 52 52 53

Ek (1.0 × 10−6) −3.375788 −3.375603 −3.375066 −3.375066 −3.381588

Time 370 372 373 378 388

The parameters are α = 1 and Ek ≤ −3.374890× 106 is adopted. Time denotes the elapsed time in seconds,
Ek denotes the objective functional values and Nout is the iteration number of Algorithm III

version of “Cameraman” in Fig. 2b) are employed.Adifferent stopping condition Ek ≤ TOLe

is used as [51,53], which is defined to guarantee the quality of segmentation visually. We set
TOLe = −4.292900 × 105,−2.204990 × 105,−3.374890 × 106, which are the numerical
energy of the iterative solutions by the primal–dual algorithm without the DDMs for the
three images, respectively. It is very expensive for the computation on the large-scale images
and we set Nin = 2 in this experiment. We separately display the results in Tables 4, 5, and
6. As the number of subdomains increases, the iteration numbers Nout vary very slightly. It
means the DDMs are rather robust w.r.t. the number of subdomains when segmenting the
large-scale images. Moreover, inferred from Tables 4 and 5, the elapsed time first decreases
and increases as the number of subdomains increases. It implies that one should adopt the
DDMs with a suitable number of subdomains to gain the best performances in practise.

4.6 Comparison with the Original Algorithm by the Level Set Method

In this subsection, our proposed DDMs with the updating means are compared with the
original algorithm solved by the level set method [10]. We set α = 0.6. In order to give a
fair comparison, these two algorithms stop at the same time if tDDM , tLS ≥ 40 in seconds,
where tDDM , tLS denote the elapsed time by the checkerboard-type domain decomposition

123



J Sci Comput

Table 7 The RAM and
numerical energy values Ek
when tDDM , tLS ≥ 40 s

Methods Memories (MB) Ek

DDM 13.63 −2.732757 × 103

LS 11.25 −2.705405 × 103

with 4 subdomains and the level set based method, respectively. The package “TVREG” [58]
is used for the level set method. Both the RAM used and the corresponding energy values are
reported in Table 7. It is observed that the objective functional value obtained by the DDMs is
smaller than the one by the level set method. On the other hand, the RAM used by the DDMs
is a little bit bigger than the one by the level set method. It is because the current DDMs is
implemented with a sequential manner. Both the memory cost and CPU time will be greatly
reduced when a parallel pattern is realized (It is shown that the speed-up efficiency reported
could reach 0.8 even for nonlocal total variation based restoration problems by the DDMs in
[59]).

5 Conclusion

It is very important to investigate the convergence for the CCV model with the updating
schemes. We will further investigate the multi-phase segmentation problems in the future. In
order to accelerate the computation speed, the DDMs for the continuous max-flow [12,60]
and the min-cut model [40,41] will be considered as well.

Appendix

There are many solvers to minimize (2.1) including the primal–dual algorithm [57]. The
saddle point problem of (2.1) is built up as follows:

max
p

min
h

∫
�

∇h · p + α

∫
�

sh − IK p ( p) + IKh (h), (5.1)

where

IS(h) =
{
0, h ∈ S, (5.2)

+∞, h /∈ S. (5.2′)

By defining G1(h) = α
∫
�
sh + IKh (h) and G2( p) = IK p ( p), Eq. (5.1) reduces to the

following form:

max
p

min
h

∫
�

∇h · p + G1(h) − G2( p).

The primal–dual algorithm by Chambolle and Pock [31] can be used to solve the above
problem.

Primal–Dual algorithm for (1.2)

1. Initialization: choose p0 = 0, h̄0 = h0 = 0, and select parameters τ, σ (τσ < 1/8) and
θ ∈ [0, 1].
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2. Iterations for n ≥ 0: Update hn, pn, h̄n as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pn+1 = argmin p G2( p) + 1

2σ

∫
�

| p − p̂n|2, with p̂n = pn + σ∇h̄n,

hn+1 = argminh G1(h) + 1

2τ

∫
�

|h − ĥn |2, with ĥn = hn + τdiv pn+1,

h̄n+1 = (1 + θ)hn+1 − θhn .

(5.3)

End till some stopping criterion meets.

Both subproblems of p and h in Eq. (5.3) have the closed-form forms, which are

pn+1(x) = p̂n(x)
max{1, | p̂n(x)|} ,

and

hn+1(x) = min
{
1,max{0, ĥn(x) − ταs(x)}

}
, ∀x ∈ �.

Theorem 5.1 ([31]) The primal–dual algorithm is convergent if τσ < 1/8.

References

1. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning,
Boston (2014)

2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331
(1988)

3. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing.
Numer. Math. 66(1), 1–31 (1993)

4. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach.
IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
6. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational

problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
7. Chan, T.F., Vese, L.A.: Active contours without edges. IEEETrans. Image Process. 10(2), 266–277 (2001)
8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on

Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
9. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation noise removal algorithm. Phys. D 60, 259–268

(1992)
10. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation

and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
11. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and

Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
12. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using

a dual approach. Int. J. Comput. Vis. 92, 112–129 (2011)
13. Brown, E., Chan, T., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation

model. Int. J. Comput. Vis. 98, 103–121 (2012)
14. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci.

5, 1113–1158 (2012)
15. Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, New York (2011)
16. Acar, R., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl.

10, 1217–1230 (1994)
17. Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion

for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22, 387–405 (2000)

123



J Sci Comput

18. Vogel, C.: Amultigrid method for total variation-based image denoising. In: Bowers, K.L., Lund, J. (eds.)
Computation and Control IV, Progress in Systems and Control Theory, vol. 20, pp. 323–331. Birkhäuser,
Boston (1995)

19. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)
20. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238

(1996)
21. Vogel, C.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image

Process. 7, 813–824 (1998)
22. Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci.

2, 323–343 (2009)
23. Wang, Y., Yang, J., Yin,W., Zhang, Y.: A new alternatingminimization algorithm for total variation image

reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)
24. Glowinski, R., Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechan-

ics. SIAM, Philadelphia (1989)
25. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods and split-Bregman iterations for ROF,

vectorial TV and higher order models. SIAM J. Imaging Sci. 3, 300–339 (2010)
26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)
27. Chan, R.H., Tao, M., Yuan, X.: Constrained total variational deblurring models and fast algorithms based

on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)
28. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.

20(1–2), 89–97 (2004)
29. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23, 67–86

(2005)
30. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in linear and non-linear programming, with contributions by

H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in
the Social Sciences, vol. II. Stanford University Press, Stanford (1958)

31. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

32. Zhu,M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration.
UCLA, pp. 08–34. Center for Applied Math, CAM Reports No (2008)

33. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

34. Tai, X.-C.: Rate of convergence for some constraint decomposition methods for nonlinear variational
inequalities. Numer. Math. 93, 755–786 (2003)

35. Tai, X.-C., Espedal, M.: Applications of a space decomposition method to linear and nonlinear elliptic
problems. Numer. Methods Partial Differ. Equ. 14, 717–737 (1998)

36. Tai, X.-C., Espedal, M.: Rate of convergence of some space decomposition methods for linear and non-
linear problems. SIAM J. Numer. Anal. 35, 1558–1570 (1998)

37. Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex
optimization problems. Math. Comput. 71, 105–124 (2002)

38. Firsov, D., Lui, S.H.: Domain decomposition methods in image denoising using Gaussian curvature. J.
Comput. Appl. Math. 193, 460–473 (2006)

39. Müller, J.: Parallel total variation minimization. University of Muenster, Diploma Thesis (2008)
40. Duan, Y., Tai, X.C.: Domain decomposition methods with graph cuts algorithms for total variation mini-

mization. Adv. Comput. Math. 36, 175–199 (2012)
41. Tai, X.-C., Duan, Y.: Domain decomposition methods with graph cuts algorithms for image segmentation.

Int. J. Numer. Anal. Model. 8, 137–155 (2011)
42. Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse

Probl. Imaging 4, 523–545 (2010)
43. Xu, J., Chang, H., Qin, J.: Domain decomposition method for image deblurring. J. Comput. Appl. Math.

271, 401–414 (2014)
44. Chang, H., Zhang, X., Tai, X.-C., Yang, D.: Domain decomposition methods for nonlocal total variation

image restoration. J. Sci. Comput. 60, 79–100 (2014)
45. Chang, H., Tai, X.-C., Yang, D.: Domain decomposition methods for total variation minimization. In:

Tai, X.-C., et al. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, vol.
8932. LNCS, Springer, Berlin (2015)

46. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition
methods for the Rudin–Osher–Fatami model based on a dual formulation. SIAM J. Imaging Sci. 8,
564–591 (2015)

123



J Sci Comput

47. Fornasier, M., Schönlieb, C.: Subspace correction methods for total variation and l1 minimization. SIAM
J. Numer. Anal. 47, 3397–3428 (2009)

48. Fornasier, M., Langer, A., Schönlieb, C.: A convergent overlapping domain decomposition method for
total variation minimization. Numer. Math. 116, 645–685 (2010)

49. Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive
convex variational problems with mixed l1/l2 data-fidelity in image processing. SIAM J. Imaging Sci. 6,
2134–2173 (2013)

50. Langer, A., Osher, S., Schonlieb, C.: Bregmanized domain decomposition for image restoration. J. Sci.
Comput. 54, 549–576 (2013)

51. Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation
based image denoising. J. Sci. Comput. 62, 456–481 (2015)

52. Lee, C., Lee, J., Woo, H., Yun, S.: Block decomposition methods for total variation by primal-dual
stitching. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0138-9

53. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition
methods for the Rudin–Osher–Fatami model based on a dual formulation. SIAM J. Imaging Sci. 8(1),
564–591 (2015)

54. Kunisch, K., Tai, X.-C.: Nonoverlapping domain decomposition methods for inverse problems. In:
Bjorstard, P., Espedal, M., Keyes, D. (eds.) Proceedings of 9th International Conference on Domain
Decompostion Methods. Wiley (1997)

55. Boyd, S., Lin, X., Almir, M., Jacob, M.: Notes on Decomposition Methods. Notes for EE364B. Stanford
University, Stanford (2007)

56. Lions, P.: On Schwarz Alternating Method III: A Variant for Nonoverlapping Subdomains. SIAM,
Philadelphia (1990)

57. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

58. Pascal, G.: tvreg v2: variational imaging methods for denoising, deconvolution, inpainting, and segmen-
tation (2010)

59. Chang, H., Zhang, X., Tai, X.-C., Yang, D.: Domain decomposition methods for nonlocal total variation
image restoration. J. Sci. Comput. 60(1), 79–100 (2014)

60. Wei, K., Tai, X.-C., Chan, T.F., Leung, S.: Primal-dual method for continuous max-flow approaches, vol.
pp. 15–67. UCLA CAM Report (2015)

123

http://dx.doi.org/10.1007/s10915-015-0138-9

	Convergent Non-overlapping Domain Decomposition Methods for Variational Image Segmentation
	Abstract
	1 Introduction
	2 Convex Chan--Vese Model
	3 Non-overlapping DDMs for Chan--Vese Models
	3.1 Non-overlapping DDMs with Two Subdomains
	3.2 Numerical Algorithm
	3.3 Extension to the Cases with More Than Two Subdomains
	3.4 Convergence Analysis

	4 Numerical Experiments
	4.1 Performance and Convergence
	4.2 Performance w.r.t. the Inner Iteration Number Nin
	4.3 Performance w.r.t. the Number of Subdomains and Other Parameters
	4.4 Performance with the Updating Means
	4.5 The Large-Scale Image Segmentation
	4.6 Comparison with the Original Algorithm by the Level Set Method

	5 Conclusion
	Appendix
	References




