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LOCALLY CONFORMAL SYMPLECTIC BLOW-UPS

SONG YANG, XIANGDONG YANG, AND GUOSONG ZHAO

ABSTRACT. In this paper, we study the blow-up of a locally conformal sym-

plectic manifold. We show that there exists a locally conformal symplectic

structure on the blow-up of a locally conformal symplectic manifold along a

compact induced symplectic submanifold.

1. INTRODUCTION

Let M be a smooth manifold. A symplectic form on M is a 2-form ω ∈ Ω2(M)

satisfying: (1) dω = 0 and (2) ω is non-degenerate, i.e. the map

TpM ∋ v 7−→ ω(v,−) ∈ T ∗

pM, ∀p ∈ M,

is an isomorphism. It is of importance to point out that the existence of the

symplectic form ω on M determines pieces of topological data: the de Rham

cohomology of M with even degrees are non-vanishing and the dimension of

M is even, denoted by 2n, and there exists a homotopy class of reductions

of the structural group of the tangent bundle TM to U(n) ≃ Sp(2n;R). In

particular, if M is a complex manifold and ω is a Kähler form of a Hermitian

metric on M then we say that (M,ω) a Kähler manifold.

In a more general setting, a subclass of almost symplectic manifolds called

locally conformal symplectic manifolds (for short LCS) was introduced and

studied by Lee [7], Liebermann[8] and Vaisman [13, 14]. Intuitively, a locally

conformal symplectic form is a non-degenerate 2-form ω which is conformally

equivalent to a symplectic form locally. From a conformal point of view, locally

conformal symplectic manifolds may be thought of as closest to symplectic

manifolds. In particular, the locally conformal symplectic manifolds can serve

as natural phase spaces of Hamiltonian dynamical systems and from geomet-

ric aspect it appears in the study of contact manifolds and Jacobi manifolds
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(cf. [14, 1, 6]). Likewise, if M is a complex manifold and a locally confor-

mal symplectic form ω on M is the Kähler form of a Hermitian metric h then

we say that (M,ω) is a locally conformal Kähler manifold (for short LCK)(cf.

[5]). To make this more precisely, we have the following diagram explaining

the relationships between symplectic/Kähler manifolds and locally conformal

symplectic/Kähler manifolds:

{Kähler manifolds} ⊂ {LCK manifolds}

⊃ ⊃

{Symplectic manifolds} ⊂ {LCS manifolds}.

It is well known that the blow-up operation is a very useful operation in

symplectic/Kähler geometry. In particular, the Kähler property is preserved

under blow-ups. In the symplectic category, it was McDuff [9] who first proved

that the blow-up of a symplectic manifolds along a compact symplectic sub-

manifold also admits a symplectic structure and using this symplectic blow-

up technique she constructed the first simply-connected, symplectic manifolds

which are non-Kähler. For locally conformal Kähler manifolds, Tricerri [12]

and Vuletescu [15] proved that the blow-up of a locally conformal Kähler man-

ifold at a point is locally conformal Kähler. In 2013, using the current the-

ory on locally conformal Kähler manifolds, Ornea-Verbitsky-Vuletescu [11]

showed that the blow-up of an locally conformal Kähler manifold along a sub-

manifold is locally conformal Kähler if and only if the submanifold is glob-

ally conformally equivalent to a Kähler submanifold. In the locally conformal

symplectic case, Y. Chen and the first named author [4] introduced the defini-

tion of locally conformal symplectic blow-up at points and proved that the lo-

cally conformal symplectic blow-ups at points also admits locally conformally

symplectic structures. Therefore, a natural problem is: What is the locally

conformal symplectic blow-up along a submanifold?

The purpose of this paper is to study some birational properties of locally

conformal symplectic manifolds. Motivated by the work of McDuff [9] we give

the construction of locally conformal symplectic blow-up. In addition, using

the same method of McDuff [9] and Ornea-Verbitsky-Vuletescu [11] we prove

the following result

Theorem 1.1. Let (M,ω, θ) be a locally conformal symplectic manifold and Z

be a compact induced globally conformally symplectic submanifold of M , and

let π : M̃ // M be the blow-up of M along Z. Then M̃ also admits a locally

conformally symplectic structure (ω̃, θ̃) where θ̃ = π∗θ.

This paper is organized as follows. We devote Section 2 to preliminaries of

locally conformal symplectic structures. In Section 3, we give the construction
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of locally conformal symplectic blow-up. This construction is based on the

fact that the tangent bundle of a locally conformal symplectic manifold is a

symplectic vector bundle. In Section 4, we give the proof of the main result

(Theorem 1.1). At last, we propose two further problems related to the locally

conformal symplectic blow-ups.

2. LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS

In this section we give a rapid review of locally conformal symplectic mani-

folds. Assume that M be a smooth manifold of dimension n ≥ 4. Intuitively, a

locally conformally symplectic structure on a manifold M is a non-degenerate

2-form ω which is locally conformal to a symplectic form. More precisely, if

there exist an open covering {Uα} of M and a family of smooth functions a

family of smooth real-valued functions {fα : Uα
//R} such that exp (−fα)(ω|Uα

)

is a symplectic form on Uα, i.e., d(exp (−fα)ω|Uα
) = 0, then we say that ω is a

locally conformal symplectic structure on M .

Let ωα := exp (−fα)(ω |Uα
), then from definition we have

0 = dωα = d(exp (−fα)ω)

= − exp (−fα)(dfα ∧ ω − dω)

= exp (−fα)(dω − dfα ∧ ω).

on Uα. This implies that

dω = dfα ∧ ω (2.1)

on Uα. Likewise, consider the form ωβ := exp (−fβ)(ω |Uβ
) we get

dω = dfβ ∧ ω (2.2)

on Uβ. Suppose that Uα ∩ Uβ 6= ∅ then from (2.1) and (2.2) we obtain

(dfα − dfβ) ∧ ω = 0 (2.3)

on Uα ∩ Uβ. Note that ω is non-degenerate and the wedge product with ω is

injective on 1-forms, hence we obtain a globally defined closed 1-form θ :=

{dfα, Uα} on M which satisfies

dω = θ ∧ ω. (2.4)

Equivalently, we have

Definition 2.1 (Locally conformal symplectic structure). Let M be a smooth

manifold of dimension n ≥ 4. We say that a non-degenerate 2-form ω is a lo-

cally conformally symplectic structure (for short LCS structure) if, there exists

a closed 1-form θ such that

dω = θ ∧ ω. (2.5)
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The triple (M,ω, θ) is called a locally conformally symplectic manifold.

Suppose that there exists another θ′ satisfying (2.5), then (θ − θ′) ∧ ω = 0.

From Cartan lemma we get ω = (θ − θ′) ∧ β for some 1-form β; however, this

leads to a contradiction with the non-degeneracy of ω. This implies that θ is

uniquely determined by ω and we call it the Lee form of the LCS manifold. In

particular, if θ is an exact 1-form, i.e. θ = df for some smooth function f on

M then ω is called globally conformally symplectic (for short GCS) and it is

straightforward to verify that e−fω is a symplectic form on M .

Example 2.2. Every locally conformal Kähler manifold is a locally conformal

symplectic manifold. In particular, many well-known non-Kähler manifolds

are locally conformal Kähler such as the Hopf manifolds and the Inoue sur-

faces and so on (cf. [5, Chapter 3]).

Example 2.3. Let N be a smooth manifold. Then the cotangent bundle (T ∗N, ω)

is an open symplectic manifold with the symplectic form dλ, where λ is the

canonical 1-form on T ∗N . If θ′ is a closed 1-form on N , then ω := dπ∗θ′λ is a

locally conformally symplectic form on T ∗N with the Lee form θ = π∗θ′, where

π : T ∗N // N is the bundle map. Moreover, if θ′ is an exact 1-form then

ω = dπ∗θ′λ is a globally conformally symplectic form.

Example 2.4. ([1, Section 5]) Let X be a compact contact manifold and let

φ : X −→ X be a strict contactomorphism, there there exists a natural locally

conformal symplectic structure on the mapping torus of X with respect to

φ. In particular, we can choose a 3-dimensional contact X such that X × S1

admits no symplectic and complex structures. This gives rise to an example

which is locally conformal symplectic and not locally conformal Kähler.

Let Ω∗(M) be the space of smooth forms on the locally conformal symplectic

manifold (M,ω, θ). We may define the Lichnerowicz differential 1 by

dθ : Ω
∗(M) → Ω∗+1(M)

α 7→ dα− θ ∧ α.

Furthermore, we have a complex

· · ·
dθ
// Ωk−1(M)

dθ
// Ωk(M)

dθ
// · · · (2.6)

1In the case of locally conformal Kähler manifolds the differential is called the θ-twisted

differential and the associated complex(cohomology) is called the Morse-Novikov complex

(cohomology).
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The complex (Ω∗(M), dθ) is called the Lichnerowicz complex, and the associ-

ated cohomology group

H∗

θ (M) := H∗(Ω∗(M); dθ)

is called the Lichnerowicz cohomology. This cohomology is a conformal invari-

ant of the locally conformal symplectic manifold, which is a proper tool in the

study of locally conformal symplectic geometry.

3. CONSTRUCTION OF LOCALLY CONFORMAL SYMPLECTIC BLOW-UPS

In this section, inspired by McDuff ’s construction of symplectic blow-ups,

we give the construction of blow-up of locally conformally symplectic man-

ifolds along its induced locally conformal symplectic submanifolds and for

more details, we refer to McDuff [9, Section 2 and Section 3].

Let (M,ω, θ) be a LCS manifold of dimension 2n. Then for any p ∈ M the

tangent space TpM is a symplectic vector space with the symplectic bilinear

form

ωp : TpM × TpM −→ R.

This implies that the structural group of the tangent bundle of M is Sp(2n;R);

in further, fix an orientation of M then we can reduce the structural group

Sp(2n;R) to U(n).

Definition 3.1 (Induced LCS submanifold). Let (M,ω, θ) be a LCS manifold,

and let i : Z →֒ M be a submsnifold. We say that Z is an induced locally

conformal symplectic submanifold (for short ILCS submanifold) if i∗ω is non-

degenerate.

Definition 3.2 (Induced GCS submanifold). We say that Z is an induced glob-

ally conformal symplectic submanifold (for short IGCS submanifold) if Z is a

ILCS submanifold and the cohomology class i∗[θ] = 0 vanishes.

Notice that a IGCS submanifold of a LCS manifold is always a symplectic

submanifold. Now let (M,ω, θ) be a LCS manifold, and let i : Z →֒ M be its

ILCS submsnifold then we have the following lemma.

Lemma 3.3. Let (M,ω, θ) be a LCS manifold, and let Z ⊂ M be an ILCS

submsnifold. Then the normal bundle N := NZ/M of Z in M admits a complex

vector bundle structure.

Proof. Note that the locally conformal symplectic form ω on M yields a smooth

section of the vector bundle T ∗M ∧ T ∗M . The non-degeneration of ω means

that (TM, ω) is a symplectic vector bundle. Since Z is an ILCS submsnifold of
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M the tangent subbuncle (TZ, ω|Z) is a symplectic subbundle of (TM |Z , ω|Z).

Define the symplectic complement of TZ in (TM |Z , ω|Z) to be the space

TZω :=
⋃

p∈Z

{v ∈ TpM | ωp(v, w) = 0, ∀w ∈ TpZ}.

On the one hand, we observe that TZω is a symplectic vector bundle with

symplectic bilinear form ω |Z which can be identified with the normal bundle

N . On the other hand, since we can choose a compatible complex structure

on each symplectic vector bundle to make it into a complex vector bundle.

This immediately implies that the normal bundle N admits a complex vector

bundle structure. �

We are now in a position to give the construction of LCS blow-up. This

construction is analogous to the case of symplectic blow-up since the normal

bundle N is a complex vector bundle. In the rest of this section we follow the

lines in [9] and use the same results and intermediate steps as [9] to construct

the LCS blow-ups.

Let p : P(N ) // Z, be the projective bundle corresponding to the normal

bundle N −→ Z. The tautological line bundle over P(N ), denoted by L, is

defined to be the subbundle of P(N )×N whose fiber is {(l, v) | v ∈ l}, i.e.,

L := {(l, v) | (l, v ∈ l) ∈ P(N )×N}.

Then we have the following commutative diagram:

L0 −−−→ L
q

−−−→ P(N )

π





y

π





y

p





y

N0 −−−→ N
ϕ

−−−→ Z

where q and π are the projections of L over P(N ) and N respectively, and L0 is

the complement of the zero section in L and N0 is the complement of the zero

section in N .

To define the blow-up as a smooth manifold, we need following notations:

• W a compact tubular neighborhood of Z in M .

• D a compact neighborhood of Z in N diffeomorphic to W

• D̃ := π−1(D); it is a disc subbundle of the complex line bundle L.

Following McDuff [9] we have:

Definition 3.4 (LCS blow-up). Let (M,ω, θ) be a LCS manifold, and let Z ⊂ M

be an ILCS submsnifold. The blow-up M̃ of M along Z is the manifold

M̃ := M −W
⋃

∂D̃

D̃,
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where ∂D̃ is identified with ∂W via the diffeomorphism from D to W .

In particular, the map π gives rise to an identification of D̃ − P(N ) with

D − Z, and thus an identification of M̃ − P(N ) with M − Z. Therefore, on

topology we may view

M̃ := (M − Z)
⋃

D̃

by equalizing M − Z and D̃ along W − Z ∼= D − Z ∼= D̃ − P(N ). There is

a natural inclusion P(N ) →֒ M̃ , and we call the projective bundle P(N ) the

exceptional divisor of the blow-up π : M̃ //M along Z.

Remark 3.5. Note that the construction of LCS blow-up depends on the com-

plex vector bundle structure of the normal bundle N and the tubular neigh-

bourhoods. Thus this construction is not canonical; however, we can choose

the compact tubular neighborhood W of Z in M sufficiently small.

4. PROOF OF THE MAIN RESULT

In this section we give the proof of Theorem 1.1. We use the same method

as [9, Section 3] and for the reader’s convenience we first recall this argument.

Let (U, ω) be a symplectic manifold and let i : Z →֒ U be a compact symplec-

tic submanifold of codimension 2k. Consider the normal bundle π : N −→ Z

of Z in U . Since N has a complex vector bundle structure the fiber Nx for

each x ∈ Z admits a canonical exact symplectic form. From another aspect, in

the horizonal direction the zero section of N , still write as Z, is a symplectic

manifold with the symplectic form ωZ := i∗ω. Choose a local trivialization of

N , i.e. an open covering {Ui} of Z such that N |Ui
∼= Ui × C

k. For each i there

exists a 1-form αi on N |Ui
satisfying:

(1) for any x ∈ Ui the restriction of dαi on the fiber Nx is the canonical

form;

(2) αi is zero on Ui.

Let {fi} be a partition of unity subordinate to the open cover {Ui} then we

may construct a closed 2-form on N , denoted by

ρ = π∗ω +
∑

i

d(fiαi).

In particular, ρ restrict to the canonical form on each fiber and to ωZ on Z.

According to [9, Lemma 3.2], there exists a closed 2-form α on P(N ) such

that α restricts to the Kähler form of the canonical Fubini-Study metric on

each fibre of p : P(N ) −→ Z and the pull-back of α under q∗ is an exact form

on L0. Since q∗α is exact on L0 we have q∗α = dβ for some 1-form β on L0. Let

Ũ := U −W
⋃

∂D̃ D̃ be the symplectic blow-up of U along Z. We can choose a
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constant ε = ε(ρ, α) > 0 and a bump-function b on D̃ which equals 0 near ∂D̃.

Define a closed 2-form ρ̃ on D̃ by setting

ρ̃ :=

{

π∗ρ+ εq∗α on P(N ),

π∗ρ+ εd(bβ) on D̃ − P(N ).

We may choose suitable ε such that ρ̃ is non-degenerated on Ṽ := π−1(V ),

where V is a neighborhood of Z. Hence the 2-form

ω̃ :=

{

ω on U −W

ρ̃ on D̃

is non-degenerated and closed, i.e. it is a symplectic form on Ũ . More precisely,

we have the following key result in the symplectic blow-up.

Proposition 4.1. ([9, Proposition 3.7]) Suppose (U, ω) be a symplectic mani-

fold, and i : Z →֒ U be a compact symplectic submanifold (i.e., i∗ω is a sym-

plectic form). Let π : Ũ // U be the blow-up of U along Z. Then there exists a

symplectic form ω̃ on Ũ such that

ω̃|Ũ−π−1(V ) = π∗ω,

for some neighborhood V of Z.

We are in a position to prove Theorem 1.1. Assume that (M,ω, θ) is a locally

conformal symplectic manifold. Let Z ⊂ M be an induced globally confomal

symplectic submanifold, thus the restriction of the Lee form θ|Z is exact. By

a conformal rescaling of the LCS form ω we may assume that θ|Z = 0. In

fact, if θ|Z = df , we denote ω′ := exp(−f)ω, then dω′ = exp(−f)(−df ∧ ω +

θ ∧ ω) = (θ − df) ∧ ω = 0. Actually, an induced globally conformal symplectic

submanifold is a symplectic submanifold. In the rest of this section we will

prove the following

Theorem 4.2 (Theorem 1.1). Assume that (M,ω, θ) be a locally conformal sym-

plectic manifold and i : Z →֒ M is a compact induced symplectic submanifold.

Let π : M̃ // M be the locally conformal symplectic blow-up of M along Z.

Then M̃ also admits a locally conformal symplectic structure ω̃ with the Lee

form θ̃ = π∗θ.

Proof. By assumpation, the pull back θ|Z := i∗θ is zero. Let U be a neighbor-

hood of Z such that the inclusion i : Z →֒ U induces an isomorphism on the

first de Rham cohomology groups

i∗ : H1
dR(U)

∼=
// H1

dR(Z).
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Via a conformal change of the LCS form ω, we may assume that θ|U = 0. It

follows that ω|U is a symplectic form on U . In particular, since θ|U = 0 the

intersection of the support of θ with U is empty. Choose a sufficiently small

tubular neighborhood of Z in M such that W ⊂ U . Let π : M̃ // M be the

LCS blow-up of M along Z with respect to the compact tubular neighborhood

W and a compact neighborhood D of Z in N which is diffeomorphic to W . Let

Ũ := π−1(U) then π : Ũ −→ U is the symplectic blow-up of U along Z with

respect to the compact neighborhoods W and D, i.e.

Ũ := U −W
⋃

∂D̃

D̃.

From Proposition 4.1, there exists a symplectic form ω̃U on Ũ , which is equal

to π∗ω outside of π−1(V ) ⊃ π−1(Z) = P(N ) for a neighborhood V of Z in U .

Observe that π gives rise to an identification between M̃ − P(N ) and M − Z;

therefore, we obtain a non-degenerate 2-form ω̃ on M̃ given by

ω̃ :=

{

π∗ω on M̃ − Ũ

ω̃U on Ũ .

It remains to verify that ω̃ is a LCS form with Lee form θ̃ = π∗θ. It is straight-

forward since we have θ̃ |Ũ= 0 and ω̃ = π∗ω outside of Ũ . This completes the

proof. �

Under the locally conformal symplectic blow-ups we also have a blow-up

formula of the Lichnerowicz cohomology as following.

Corollary 4.3. ([16, Theorem 1.1]) Let (M,ω, θ) be a compact locally confor-

mal symplectic manifold of dimension 2n. Assume that Z ⊂ M is a compact

induced globally conformal symplectic submanifold of codimension 2r. Then

we have

Hk
θ (M)⊕

( r−2
⊕

i=0

Hk−2i−2
dR (Z)

)

∼= Hk
θ̃
(M̃),

where π : M̃ −→ M is the locally conformal symplectic blow-up of M along Z.

5. FURTHER PROBLEMS

In [11, Corollary 2.11], using the current theory on complex manifolds,

Ornea-Verbitsky-Vuletescu proved that if the blow-up of a compact locally

conformal Kähler manifold along a compact submanifold admits a locally con-

formal Kähler structure then the submanifold must be an induced globally

conformal Kähler submanifold. Similarly, for LCS manifolds we have the fol-

lowing problem:
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If the blow-up of a compact LCS manifold along a compact ILCS submani-

fold admits a LCS structure, is it true that this submanifold is IGCS?

It is worthwhile to point out that for LCS manifolds we can not use the

current theory since the almost complex structures on LCS manifolds are not

integrable necessarily.

The existence of Kähler metrics on a manifold implies many topological

properties, for instance, the even property of odd Betti numbers and formal-

ity property and so on. These properties enable people to construct many

examples of non-Kähler and symplectic manifolds. In the case of locally con-

formal Kähler geometry, it is not easy to exclude whether a manifold admits a

locally conformal Kähler metric for the lack of topological obstructions. Com-

paring with symplectic/Kähler geometries, Ornea-Verbitsky [10] proposed an

open problem:

Construct a compact LCS manifold which admits no LCK metrics.

In 2011, Bande-Kotschick [1] constructed a 4-dimensional product mani-

fold M × S1 which is LCS and not LCK. Later, in 2014 Bazzoni-Marrero [2]

constructed a symplectic, and hence locally conformal symplectic, nilmani-

fold N which is not the product of a compact 3-manifold and a circle (see also

Bazzoni-Marrero [3, Corollary 3.6]). In particular, they proved that N admits

no complex structures. This implies that N is LCS and not LCK. In fact, using

the LCS blow-up technique at points of LCS manifolds having no LCK struc-

tures, we may obtain more LCS manifolds without any LCK structures (cf. [4,

Corollary 2.4]). Furthermore, a natural problem is:

How to construct examples of LCS manifolds which are not symplectic and

LCK? Moreover, can we construct higher dimensional LCS manifolds without

any complex structures?
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