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Abstract. Linear inverse problems with total variation regularization can be reformulated
as saddle-point problems; the primal and dual variables of such a saddle-point reformula-
tion can be discretized in piecewise affine and constant finite element spaces, respectively.
Thus, the well-developed primal-dual approach (a.k.a. inexact Uzawa method) is concep-
tually applicable to such a regularized and discretized model. When the primal-dual ap-
proach is applied, the resulting subproblems may be highly nontrivial and it is necessary
to discuss how to tackle these hard subproblems and thus make the primal-dual approach
implementable. In this paper, we suggest to linearize the data-fidelity quadratic term of the
hard subproblems so as to obtain easier subproblems. A linearized primal-dual method is
thus proposed. Inspired by the fact that the linearized primal-dual method can be explained
as an application of the proximal point algorithm, a relaxed version of the linearized primal-
dual method, which can often accelerate the convergence numerically with the same order
of computation, is also proposed. The global convergence and worst-case convergence
rate measured by the iteration complexity are established for the new algorithms. Their
efficiency is verified by some numerical results.

Keywords: Linear inverse problem, Numerical optimization, Saddle-point problem, Primal-
dual method, Total variation, Finite element, Convergence rate

1 Introduction

Consider the linear equation with discontinuous or piecewise constant solutions
(1.1) Au=g

with A : L"(Q) — L%(Q) a bounded linear operator, 2 C R a bounded domain with a
Lipschitz continuous boundary, d = 1,2, and g € L*(2) a given function. For a variety of
practical applications in such areas as astrophysics, signal and image processing, statistical
inference, and optics, the problem (1.1) may be ill-posed and thus it cannot be solved
directly, see, e.g. [25, 29, 32, 56], for some monographs.

To solve ill-posed cases of (1.1), regularization techniques are important. Among the
different regularization techniques in the literature, the total variation (TV) regularization is
widely used, particularly for inverse problems with discontinuous solutions. Indeed, since
the work [31, 52], TV regularization has found many applications in areas such as image
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processing [2, 12, 13, 14, 16, 20, 24, 44], linear operator inverse problems [1, 18, 51, 58],
parameters identification in partial differential equations [17, 19, 23, 37], and so on. An
important property of the TV functional is exhibiting a spatially sparse gradient. Thus it
can effectively recover solutions with large constant regions and sharp edges for models
whose unknown variables describe the density or material functions changing in different
regions or objects. We refer to [12, 13, 24, 51, 53] for some theoretical discussions on the
TV regularization; and [14, 17, 19, 24, 52, 53] for some numerical results of its ability of
restoring discontinuities near sharp edges.

In this paper, we also consider the TV regularization for the inverse problem (1.1). That
is, we approximate a solution of (1.1) by solving the minimization model

. 1
(1.2) 12f {E(u) = §||AU - 9H2L2(Q) + a||Du||}.

In (1.2), % || Au— g||2L2 ) is the data-fidelity term reflecting the purpose of solving the linear
system (1.1); || Dul| is the TV regularization term defined by

(1.3) || Dul| := sup {/ udivp dz : ¢ € CHOLRY), ||@)leo < 1},
Q

where [[¢]loe = sup,ca(30, @i(2)[2)1/2, Du represents the gradient of u in the dis-
tributional sense, div denotes the divergence operator, C}(£2; R?) is the set of once con-
tinuously differentiable R%-valued functions with compact support in €; and o > 0 is a
parameter reflecting the relative weight of the data-fidelity and regularization terms. Note
that the BV (€2) space endowed with norm ||v|| gy := ||v[|11(q) + || Dv|| is a Banach space,
see, e.g., [3, 5, 6, 62].

The model (1.2) is not easy to solve, mainly due to the nonsmoothness of the TV reg-
ularization term. We follow the approach in [7, 8, 15] to replace the TV term by its dual
representation. More specifically, the model (1.2) can be reformulated as the saddle-point
problem

1
(1.4) iEfE(u) = ir;fsup {S(u,p) = §HAu - g||2L2(Q) + a/ Vu-pdz — IB(p)},
P Q

where B = {p € L*(Q;R?) : ||p|l < 1} and I5(+) denotes its indicator function.

As mentioned in [7], the piecewise constant and piecewise affine globally continuous
finite element spaces are dense in BV ({2) with respect to weak* convergence in BV (Q);
and the space BV () is continuously embedded into L"(€2) for all r satisfying 1 < r <
%’ see Theorem 10.1.4 in [5]. In addition, it was demonstrated in [7] that the piecewise
constant finite element approximation for u cannot be expected to converge to an exact
solution in general. Thus, the following finite element spaces

(L.5) SY(Th) == {vn € C(Q) : vy |7 is affine for each T € T},
' LY(Ty) == {qn € L' (Q) : q3|7 is constant for each T € Ty, },
are built to approximate the functions u and p in (1.4), respectively; where 7}, denotes a

regular triangulation of €2 into intervals or triangles and h = maxpe7;, diam(T) as the
maximal diameter. It is easy to see that

LOT)4 = L%(Th) x --- x LTy)
d




is a space of piecewise constant vector fields equipped with L? scalar product as

d
o) =Y /Q (p1)i (an):de,

where (py,); stands for the i-th component of vector-valued function pj,. Furthermore, it is
shown in [7] that

|Dus = sup / Tup, - py d.
Q

PR €LY (Th)%|Ipnlloo <1

Then, the saddle-point problem (1.4) approximated in the finite element spaces given by
(1.5) can be reformulated as the following discretized version:

(1.6)
inf F(up) =  inf su E(up,
up ( }) uhesl(Th)pheﬁoFTh)d ( h ph)
1
= inf ‘ fA—2+/V-d—I .
uhegllm)phez%?’rh)dbn un = 9lia) +o Q unPa dz = In(pr)

In this paper we focus on the discretized saddle-point problem (1.6) arising from (1.2)
and discuss how to solve it efficiently. In particular, we concentrate on the implementation
of primal-dual methods, which can be traced back to the inexact Uzawa method in [4], to the
discretized saddle-point problem (1.6). Recently, various primal-dual methods have been
studied in different contexts, see, e.g., [15, 26, 34, 61] for some special considerations for
some variational image restoration models with TV regularization and some more general
variants in [10, 50]. Conceptually all these existing primal-dual schemes are applicable to
the discretized saddle-point problem (1.6) under our discussion; while as we shall show
later, some numerical issues relating to the particular problem (1.6) are worthy of more
sophisticated discussions and this consideration motivates us to propose two new primal-
dual schemes that are particularly suitable for the discretized saddle-point problem (1.6) in
the finite element discretization setting. Let us concentrate our discussion on a generalized
primal-dual method proposed in [15] whose iterative scheme for (1.6) reads as

) 1
uz+1 = argmin {E(Uh,pZ) + 7”“11 - UZH%Q(Q)}7
?LhESl(Th) T
(1.7) =2t =,
~ 1
p'ZJ’_l = argimax {5(U2+1,ph) - ?th - p;LLH%z(Q)}’
ph€LO(T3) ¢

with 7 > 0 and ¢ > 0. We consider this particular primal-dual scheme because of its
numerical efficiency that has been well verified in the literature and its theoretical simplicity
such as its equivalence to the proximal point algorithm (see [42, 43]) as analyzed in [34].

Some other choices for generating ﬂZ“ have been studied in [15, 34]; but here we only

focus on (1.7) with the simplest choice of 112“. Note that the parameters 7 > 0 and ¢ > 0
can be understood as the step sizes of implementing gradient-based iterative methods for
the minimization and maximization subproblems in (1.7), respectively; and they should be
appropriately chosen to ensure the convergence as shown in [34]. Since how to tune these

two parameters numerically is not the emphasis in this paper, we restrict our discussion to



the case

1
ut = argmin {E(up, pi) + —|Jun — w2200 s
" uhesl(n){ Vg i)
(1.8) = 2u T —
- g
p2+1 = argmax {5(U2+1,ph) - Z‘lph _pZ||%2(Q)}7

pr€LO(Th)?

where the parameters 7 and ¢ in (1.7) are related by the fixed ratio ¢ > 0. This special
consideration will alleviate the notation of analysis and thus expose our main content more
clearly.

For the special case of (1.6) where A is the identity operator, the scheme (1.8) has
been well studied in the literature, see, e.g., [7, 54]. For some cases of (1.1), however, the
particular application of primal-dual scheme (1.8) may not be truly implementable. To see
this, first of all, we know that the optimality condition of the uj-subproblem in (1.8) can be
written as

1
(1.9) (;(uz+1 —up) + A (Aup ™ = g),vp) + a(pf, Vor) =0, Vv, € SY(Th),

where A* denotes the adjoint operator of A. With the choice of S(73) given in (1.5), (1.9)
reduces to a system of linear equations; and conceptually its solution can be given explicitly
by algebra. However, from numerical point of view, it could be hard to find a solution
of (1.9) for some important cases of (1.1) and this is indeed our main motivation of this
paper. These cases include the one where the operator A is implicit and thus the discretized
matrix of the operator A* A is unknown. Moreover, even if A is known explicitly, it is well
known that the dimension of the discretized matrix of A* A could be easily huge when the
function w is discretized over a finite element mesh with a small diameter for achieving
high accuracy, see, e.g., [11]. Also, the discretized matrix of A*A is generally full and it
has no special structures [38] and no ad hoc faster solvers for (1.9) can be expected. Thus,
solving (1.9) directly may not be practical. All these difficulties urge us to consider how to
solve the uy-subproblem in (1.8) approximately and efficiently; while the convergence can
be still ensured.
Our strategy is to replace the regularization term % |un—up 3. () Of the up,-subproblem

in (1.8) by the more general term with a metric distance

1

2THuh *UZ”%(,LZ’(Q)v

with || - [|% r2(q) = (X-;+), where X is a bounded and strictly monotone operator. That
is, instead of (1.8), we suggest the following primal-dual approach:
upt' = argmin {E(un, i) + 2—||uh — uh||§(7Lz(Q)},
up €S (Th) T
(1.10) aptt = 2up Tt —
3 ~MN g n
pytt = argmax {E(ayt,p) - oy LD — il 2 )
pr€LO(Th)? T

An interesting choice for X is X := I — 7A* A, where [ is the identity operator. With this
choice, the uj-subproblem in (1.10) is specified as

n : * n n 1 n
(1.11) uf™ = argmin {(A (Auh—g)7uh)+a/ Vup,-ph dx—l——Huh—uhH%z(Q)},
up €S (Th) Q 2T



Thus, the uy,-subproblem in (1.8) is approximated by (1.11), meaning the data-fidelity term
|| Awy, — gH%Q(Q) in (1.8) is linearized. Note that the linearized subproblem (1.11) is
equivalent to the system of equations

1
(1L12) (™ —up) + A"(Auf = g),vn) + a(ph, Vou) = 0,V on € S'(Tn).

For some cases such as the inverse source or optimal control problem of elliptic partial
differential equations (see e.g., [21, 38]), the operator A is implicit but A*(Au} — g) can
be computed by its dual equation, see, e.g., [41, 57]. In this case, (1.12) can be solved
easily. Even when the operator A is explicit, solving (1.12) does not require computing
the inverse of any matrix involving the discretized matrix of A*A. Therefore, compared
with the counterpart in (1.8), the u-subproblem in (1.10) with the particular choice X :=
I —T71A*A,ie., (1.12), could be much easier.

The rest of this paper is organized as follows. In Section 2, we revisit the linearized
primal-dual method (1.10) from the perspective of proximal point algorithm (PPA); and
propose a relaxed version of (1.10), followed by some remarks. In Section 3, we consider
the finite element approximation for the model (1.2), and the error of the finite element
approximation to the energy functional F(-) is estimated. Then, we prove the convergence
and estimate the convergence rate measured by the iteration complexity for the new meth-
ods in Section 4. Some preliminary numerical results are reported in Section 5 to verify the
efficiency of the proposed methods. Finally, some conclusions are made in Section 6.

2 Algorithms

In this section, we propose two primal-dual-based algorithms for the discretized saddle-
point problem (1.6) and give some remarks. We first propose a new linearized primal-dual
method and then follow the work [34] to show that it is indeed an application of the PPA in
[42, 43]. Then, we follow the relaxed version of PPA in [28] to propose a relaxed version
of the linearized primal-dual method.

2.1 A Linearized Primal-Dual Method

We first explicitly present the linearized primal-dual scheme in which the u,-subproblem
in (1.8) is approximated by (1.11). It is summarized in Algorithm 1.

Remark 2.1. The uj,-subproblem (2.2a) is equivalent to (1.12); and it can be easily solved
as mentioned previously. For the py-subproblem (2.2c), as mentioned in [7], its solution is
explicitly given by

pitt = (ph + (ar/o) Vgt fmax {1, pj; + (a7 /o) Vay ™|}

in component-wise.

2.2 The PPA Revisit

Now, we follow the work [34] to show that Algorithm 1 can be regarded as an application
of the PPA in [42, 43]. This analysis requires the variational form of the subproblems in
Algorithm 1. First, let us analyze the optimality condition of the saddle-point problem (1.6)
as a variational inequality in the following lemma. Hereafter, the notation (-, -) stands for
the L? scalar product.



Algorithm 1: A Linearized primal-dual scheme for solving (1.6).

Input: Choose an initial iteration (u?,p?) € S*(75,) x L°(75)%. Choose T > 0 and
o > 0 such that

1 o
@ (= - 141?)Z > o],

forn=20,1,2,---, do

Generate the new iteration (u} ", pi*+!

, Dy ") via solving

(2.2a) uZH = argmin
“hesl(ﬂz>

(A*(Auﬁ -9), uh) + a/ Vuy, - pp, dz
9] )
+oxllun — upllZ2q)

@2b) @t =2urtt —

~ g
220)  pp' = argmax {a/ Vi prda = In(pr) — o llpn — pﬁ”i?(m}'
PR €LO(TH)? 2 T

end

Lemma 2.1. The function u;, € S*(Ty) minimizes E(-) in S*(Ty) if and only if there exists
pn € Bi(LTn)Y) == {qn € LO(Tn)? : ||qn||co < 1} such that

(A*(Auh - g)7vh) + a(pfu V'U}L) = Oa v Up € Sl(ﬁ)v

2.3)
(Vun,qn —pn) <0, Van € Bi(L(Th)).

Proof. The equations in (2.3) are the Karush-Kuhn-Tucker optimality conditions of £(-, ).
The proof is similar as that of Lemma 10.3 in [8]; thus omitted. O

With Lemma 2.1, we can rewrite (2.3) in a compact form: Finding 5, € S'(7) x
By (L£°(T)?) such that

24) (F(Nh)th - Mh) >0, Vv, €SYT) x 81(50(771)d),

where

(2.5) [y, = <uh,>7 vy = (vh>’ Flun) = (ozdwph + A*(Auyp, — g)>7
Ph n —aVup

and —div is the adjoint operator of V and —(divgy, vy) = (qn, Vug). It is easy to check
that the mapping F'(-) in (2.5) satisfies

(2.6) (F(un) = F(wn), pn — vi) = | A(un — vn) |12 (0 -
To see why Algorithm 1 is indeed an application of the PPA, we first derive the first-

order optimality conditions for the subproblems (2.2a) and (2.2¢). It is easy to see that the

iterate pair (UZH, pZH) generated by Algorithm 1 satisfies the following conditions:

1 ,
(27) (;(UZ+1 - ’U’Z) + A*(Auz - g)a Uh) + a(p;zlﬂ Vvh) = 07 v Vhp € 81(771)1

o ~n n
(28) (_ ;(pz+1 - p’;LL) + avuh+1u dh — ph+1) S 07 v dh S Bl(ﬁo(ﬂl)d)7



which can be further written as
Q29) (F(up™) + M (™ = pi)vn — pptt) 20, Yn € SH(Th) x Bi(£°(Th)?)

with

lr—A*A  adiv
(2.10) M = (T —aVv o ) .
Therefore, the iteration of Algorithm 1 can be expressed by the variational inequality (2.9).
Recall the variational inequality reformulation (2.4) of the saddle-point problem (1.6). It
is thus clear that Algorithm 1 can be regarded as an application of the PPA to the varia-
tional inequality (2.4) with the metric proximal term defined by the matrix form operator
M in (2.10), provided that the parameters of M are chosen to ensure its symmetry and
positive definiteness. Indeed, this explains why restricts the choices of 7 and ¢ according
to condition (2.1). We refer to [30, 34] for more details.

Finally, we remark that some preconditioned versions of primal-dual schemes (e.g.,
[50]) can also be analytically explained as applications of the PPA with certain metric proxi-
mal terms via the variational inequality context. But the proximal matrices of these primal-
dual schemes are mainly chosen to precondition the related linear systems, and they are
different from the matrix form operator M in (2.10) whose exclusive purpose is to linearize
the data-fidelity term in the objective function so as to alleviate the hard subproblem (1.9)
as the easier one (1.12). On the other hand, despite different choices of the proximal matri-
ces for distinct purposes, the unified PPA illustration via the variational inequality context
makes the convergence analysis of some primal-dual schemes in different settings, includ-
ing the preconditioned version in [50] and Algorithm 1 in the finite element discretization
setting, significantly easier.

2.3 A Relaxed Linearized Primal-Dual Method

An advantage of explaining Algorithm 1 as an application of the PPA is that we can im-
mediately use the relaxed PPA originally proposed in [28] to propose a relaxed linearized
primal-dual method. We summarize the specific steps in Algorithm 2.

Algorithm 2: A relaxed linearized primal-dual scheme for solving (1.6).

Input: Choose an initial iteration (u9,p)) € S*(T5,) x L°(T5)%. Choose 7 > 0 and
o > 0 by the condition (2.1). Choose p € (0, 2).

forn=20,1,2,---, do

Primal-dual step Implement the primal-dual scheme (2.2) and denote its output

by g, = (uy;pp)-

Relaxation step Generate the new iterate uﬁ“ by

.11 pptt = (1= p)uit + piiy-

end

Remark 2.2. Algorithm 2 differs from Algorithm 1 slightly in the relaxation step (2.11)
whose extra computation is negligible. As verified empirically in the literature (see, e.g.,
[34]), this relaxation step can accelerate the convergence favorably. We are thus interested
in this relaxed linearized primal-dual method. Its acceleration effectiveness over Algorithm
1 will be further verified by some preliminary numerical results.



2.4 Comparison with Algorithms in [54]

First, notice that the model discussed in our previous work [54] is a special case of the
model (1.2) with A = I. Second, though the algorithms proposed in [54] are also inspired
by primal-dual methods, they are different from Algorithms 1 and 2 in this paper. To
elaborate on the difference, we notice that Algorithm 1 in [54] extends the primal-dual
scheme proposed in [15] to the setting of (1.6) with A = I and its iterative scheme is

. 1
apt = argmin {€r(un, o) + o llun — uR oy b
uhesl(Th) T
2.12) = w0 — ),

3 o
pptt = argmax {0 ) = o-llpn — phlee |
PRELO(Th)? T
with
oY
Er(un,pn) = §||Uh — 9ll72(0) +/ Vuy, - pp dz — I5(pn)
Q

and 0 € [—1, 1] as a combination parameter. Hence, Algorithm 1 in this paper differs from
(2.12) in that the combination parameter § = 1 in (2.2b) rather than a general value in
[—1,1] as in (2.12). Another more significant is that, as elucidated in the introduction, the
regularization term 5 [lup, — u}t||%. () Of the up-subproblem in (1.8) is replaced by the
more general term with a metric distance

EHUh - UZH?M*A,H(Q)-

Hence, the data-fidelity term £ | Auy, — 9||%2(Q) in (1.8) is linearized in Algorithm 1 in this
paper and the resulting subproblem is (2.2a). As comparison, there is no need to change
the data-fidelity term for (2.12) in its wuj-subproblem because A = [ in this case. To
summarize, Algorithm 1 in this paper only considers the combination parameter § = 1 but
for a more general model; while (2.12) considers the more general case of § € [—1, 1] but
for a specific model; the former considers a new (approximated) data-fidelity term (because
A # I) while the latter keeps the original data-fidelity term (because A = TI).

Moreover, as analyzed in Section 2.2, Algorithm 1 in this paper can be regarded as
an application of the PPA in [42, 43]; and this is not true when 6 # 1 as shown in [34].
Hence this fact inspires us to apply the relaxed PPA in [28] to propose Algorithm 2 in this
paper. As comparison, Algorithm 2 in [54] is in different nature and proposed by different
motivations. Let us explain this difference with more details. For (2.12), we show in [54]
that the step size 7 and the finite element mesh size h should satisfy the condition 7 < ch?
for 6 € [—1,1) where c is a constant, which seems restrictive in the sense of Remark 3.2.
Then, with the purpose of relaxing the condition 7 < ch? to 7 < ch for 0 € [—1,1), we
propose Algorithm 2 in [54] as a prediction-correction framework which uses the output
of (2.12) as a predictor and then corrects it with a particularly designed correction step.
Therefore, Algorithm 2 in this paper is in PPA nature and can be regarded as an extension
of the work [28] to the setting of (1.6) with a general A; while Algorithm 2 in [54] is in
prediction-correction nature with the particular purpose of relaxing the restriction on the
step size 7 and finite element mesh size h.

Overall, even though both the current work and the previous one [54] are inspired by
primal-dual methods, neither of these works is a special case of the other. The algorithms
in these two works have significant differences and these differences require us to conduct



the convergence analysis using different techniques and procedures. In these two works, we
do purposively use some identical notation referring to variables that play the same roles
in their respectively different analysis so that their limited similarity can be exposed more
clearly.

3 Finite Element Error Analysis

In this section, we first recall some known results about the existence and uniqueness of the
solution to the model (1.2). We then consider the finite element approximation for it, and
finally estimate the error of the finite element approximation to the energy functional E(-).

First of all, the existence and uniqueness of the solution point of the regularized model
for (1.1) have been studied in the literature, see, e.g., [1, 18, 58]. We summarize the results
in the following theorem without proof.

Theorem 3.1. Let K be a closed and convex subset of L™ (Q) with 1 < r < d/(d — 1) for
d>2and1 <1 < 400 for d = 1, then there exists a solution to (1.2) in K. If moreover,
the null space Ker(A) of A does not contain nonzero constant functions over §Q, then the
functional in (1.2) has a unique minimizer over K.

Next we will discuss the error estimate of the finite element approximation to the energy
functional E(-) used in the primal-dual scheme (1.10) for the two-dimensional case. A
definition is recalled at the beginning, see, e.g., [22].

Definition 3.1. The Lipschitz space Lip(3, L*(Q2)) with 0 < 8 < 1 consists of all functions
v € L?(Q) such that

[v|Lip(8,22(Q)) = iug{t_ﬁw(v,t)} < 00,
>

where w(v,t) = supj, < (Jolv(@+y) — v(z)|*dx) Y2 s called the first order modulus
of smoothness of v € L?().

For the following theorem, the special case of A = I has been proved in [7] and we
can easily follow the proof therein to prove the general case of A # I. Here, we provide an
easier proof which is mainly based on the result (3.3).

Theorem 3.2. Assume Q C R2 Let u € L*(Q) N BV () and u, € S*(Ty) be the
minimizer of the energy functional E(-) in (1.2). Ifu € Lip(8, L*(2)) for some 0 < 3 < 1,
then we have

(3.1) E(up) — E(u) < ch?/(B+D),

Proof. Denote u. as the mollification of v and Z,u. € S'(7},) as the nodal interpolation
of u.. Then, it follows from [59] that
e — ull L2 () < clulLips,2()e”,

|1 Zhue — uell L2y < clulLips,2 @) h”
We thus have the estimate

1Zhue — ullL2() < 1 Znue — uellL2(0) + llue — ullL2(0)

3.2
G2 < c(hP +&P).



Further, it follows from Lemma 10.1 in [8] that
(3.3) IVZhuel|pio) < (1+ ch/e + ce)||[Dul|.

Since uy, is the minimizer of the energy functional E(-) in S*(7y,), the estimates (3.2) and
(3.3) imply that

3.4
E(up) — E(u) < E(Zhue) — E(u)
= oIV T 1oy + I ATue) — gl 0y — allDull — 314w — g0
= a|VTutel| 20y — ol Dul| + %(A(Zhug +u) — 29, A(Thue — )
< c(he™! + &)l Dul| + gllA(Ihug +u) = 29|21 Znue — ullL2(9)
<clhe P +e+h +&7),
where the last inequality follows from the fact that the operator A, || Dul| and ||Zpuc || 22 (o)

are bounded provided that i < ce. Setting ¢ = h/(#+1) the proof is complete. O

Remark 3.1. Let u and uy, be the solution points of (1.2) in the spaces L*(Q2) N BV ()
and S'(Ty,), respectively. When A in (1.2) is the identity operator and E(-) is strongly
convex, it is derived in [7, Theorem 3.1] that

[u = unl|72(q) < ch?/0FP).

For the general case where the operator A in (1.2) is not identity, we need more assumptions
to estimate the error between u and uy. For example, if A*A is further assumed to be
strongly monotone:

(3.5) |Aw — Av||* > co|lw —v||?, Yw,v,

with co > 0, as u is a minimizer of E(-), then it follows from the strong convexity of
II - ||%2(Q), the convexity of the TV norm and (3.5) that

Co 1
§||Uh —ufF2q) < §||Auh — Aul2q) < E(un) — E(u).
Together with (3.1), these inequalities imply that

||u — uhH%Z(Q) S 3(E(’Lth) - E(U)) S %hﬁ/(l—"_ﬁ).
Co Co
Remark 3.2. In [49], the PPA is interpreted as a discretization of the gradient flow related
to some monotone operator. We can specify this interpretation for the saddle-point problem
(1.4) and Algorithm 1. Indeed, as mentioned, the optimality conditions of the subproblems
(2.2a) and (2.2¢) are given in (2.7) and (2.8), respectively. So, they can be viewed as the
discretization of the simultaneous gradient flow of (1.4)

(3.6) Oru — adivp + A*(Au—g) =0
and
(3.7) — 00+ aVu € 0Ip(p),

respectively, with finite element discretization in space, where 0, denotes the time partial
derivative and 0l (p) denotes the subdifferential of Ig(p). Moreover, the parameter T
behaves as the step size of the discretization in time direction.
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4 Convergence Analysis

In this section, we prove the convergence for the proposed algorithms and estimate their
worst-case convergence rates measured by the iteration complexity. Since Algorithm 1
is a special case of Algorithm 2 with p = 1, it suffices to conduct the analysis only for
Algorithm 2.

4.1 Global Convergence

We have shown that Algorithm 1 is an application of the PPA in [42, 43] and Algorithm 2
is obtained directly by using the technique in [28]; thus their convergence can be basically
derived from the known results in these literatures. But because we are considering the
particular finite element discretization setting (1.6) and it seems worthy to explicitly show
the proof in detail; we still include a complete proof of the convergence.

First, as mentioned, the output of the primal-dual step g} = (@};py) satisfies the
variational inequality

4.1 (F(mh) + M (g, — i), vn — fg) 20, Yoy € SH(Th) x Bi(L(Th)?),

where M is given in (2.10). In the next theorem, we prove that the sequence {4}, } generated
by Algorithm 2 is strictly contractive with respect to the solution set of (1.6). This is an
important proposition to ensure the global convergence of Algorithm 2.

Theorem 4.1 (Strict contraction). Let uy, be a solution point of (1.6) and {p}™'} be the

sequence generated by Algorithm 2 with p € (0,2). Then, we have
(4.2) ™ = w3 < Nk = mall3e = o2 = o)l — 2713
where M is defined in (2.10).
Proof. Adding (F(vy,), i) — v4) to both sides of (4.1), we have
(F () = Fvn) + MG}, — 13)svn — i) > (F(vn), i — vn),
Vv, € S'Y(Th) x Bu(L(Th)?).
Then, using (2.6), we have
(M (phy = ), gy = vn) = (M(uy, = Ah), iy — fi) + (F(vn), iy, — va)
+ | ACon = @172, ¥ vn € S'(Th) x Bi(L2(Th)Y),
which implies that
2p(M (uyy — i), ik — vi) — p° it — Bl
(4.3) > p(2 = p)llui — myl3s + 20(F(vn), iy — vn),
Y, € 81(771) X Bl(ﬁo(ﬁ)d).

With (4.3) and a simple calculation, we have that

ln ™t = wnllar = N (ufy = vn) = pluiy — ) |3r
4 = gy = vall3r = 20(M (uy — B7)s iy — vi) + P2l — A7 |13
<k = vnllis = (2 = o)l — 31130 — 20 (F(vn), iy — vn),
Y, € SY(T) x Bi(L%(Th)?).
Therefore, the result is obtained from (4.4) and (2.4) with v, = uy,. O
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The assertion (4.2) implies that the sequence { MZH} generated by Algorithm 2 is strict-
ly contractive with respect to the solution set of (1.6), which essentially implies the conver-

gence of the sequence { uZH }+. We present the convergence result in the following theorem.

Theorem 4.2 (Global convergence). Let {u} ™" = (u}™'; pit1)} be the sequence generat-

ed by Algorithm 2 with p € (0,2). Then, the sequence {uZH} converges to a minimizer of
the problem (1.2) in S'(Ty). If Ker(A) = {0}, then it converges to the unique minimizer
of (1.2) in SY(Tp).

Proof. For any integer N > 0, because of the strict contraction property of the sequence
{py} shown in (4.2), we have

al 1
Iy = a3 < —m—=llen = mpllars
7;) h h Il M p(2_p) h Il M

which yields that
: n_ =nl2 _
nll—>120 lun, — fn i3 = 0.
Recall that M is positive definite under the condition (2.1). Together with (2.11), we have

: n+l _ ny _ : o mY
Jim (™" = py) = p lim (g —pp) =0
and
. n+l _ 1 —n
J i = Jim g
Since (4.2), the sequence {u} } is bounded. Thus, it has a cluster point, e.g., denoted as ..

Then, substituting it into (4.1), we obtain that
(F(up),vn —pi,) 20, Y, € 8Y(Th) x Bu(L2(Tw)?),

which means i} is a solution point of (2.4). In addition, if Ker(A) = {0}, then it follows
from (2.6) that 1} is the unique solution of (2.4). The assertion follows immediately from
Lemma 2.1. O

4.2 Convergence Rate

In this subsection, we estimate the worst-case O(%) convergence rate measured by the it-
eration complexity for the proposed algorithms, where N denotes the iteration counter. We
follow [45, 47] and many others, to call a worst-case O(%) convergence rate by meaning
that the accuracy to a solution under certain criteria is of the order O(%) after N iterations
of an iterative scheme; or equivalently, it requires at most O(%) iterations to achieve an ap-
proximate solution with an accuracy of e. Again, we only present the results for Algorithm
2 because Algorithm 1 is its special case with p = 1.

4.2.1 Convergence Rate in the Ergodic Sense

First, we introduce a criterion to measure the accuracy of an approximate solution point of
the variational inequality (2.4).

Theorem 4.3. The solution set of variational inequality (2.4) is convex and can be charac-
terized as

(4.5) © =) {in € S (Th) x Bi(LY(Tr)*) : (F(vn), v — fin) > 0}.

vn

12



Proof. The proof is similar to that of Theorem 2.3.5 in [27] or Theorem 2.1 in [35]. O

According to the criterion in [46] and Theorem 4.3, we say that i, € S'(Tp) x
B1(L°(T)?) is an approximate solution of variational inequality (2.4) with an accuracy
of e if

(4.6) (F(vn),fin —vn) <€, Y un € D(fin),

where D(fip,) := {vn € S (Tn) x Bu(LYTh)Y) : |lvn — jinllar < 1}

In the following theorem, we show that we can find an approximate solution point such
that (4.6) is satisfied with ¢ = O(;) after N iterations of Algorithm 2. Therefore, a worst-
case O(;) convergence rate is established for Algorithm 2.

Theorem 4.4 (Convergence rate in the ergodic sense). Let the sequence {1} "'} be gen-
erated by Algorithm 2 with p € (0,2) under the condition (2.1). For any integer N > 0,
let

1 N
7 — —n
N =N Z Hn-
n=0
Then, we have

1
4.7 F N — < — — 193, ¥ D(in).
( ) ( (Vh)aMN Vh) — Q,D(N+1) ||Vh Mh||M7 vy € (MN)

Proof. As p € (0,2), it follows from (4.4) that

_ 1
(F(vn), i = vn) < o= (llvw = i lRs = lvn = 137 )

(4.8) 2p
Vo, € SYTL) x Bi(L°(Th)?).
Then, summarizing the above inequalities forn = 0, --- , N, we have

1
2p

N+1

N
4.9) (Fn), Y g = (N + Do) < o= (lon = mfl3r = lvw = 13 130)

n=0
which implies the result (4.7) immediately. O

This theorem shows a worst-case O(%) convergence rate in the ergodic sense for Al-
gorithm 2. As [35], the “ergodic” sense means the approximate solution with an accuracy
of O(%) is the average of all the [V iterations generated by Algorithm 2.

4.2.2 Convergence Rate in a Nonergodic Sense

Indeed, we can derive a stronger worst-case O(%) convergence rate in a nonergodic sense.
For this purpose, we first prove a lemma.

Lemma 4.1. Let the sequence {1} '} be generated by Algorithm 2 with p € (0,2) under

the condition (2.1). Then the sequence { ||t — ;" ||2,} is monotonically non-increasing.

That is, for any integer n, we have

(4.10) ™ = P2, < e — w13
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Proof. It follows from (4.1) that jij; and ,u”+1 respectively, satisfy the following two in-
equalities:

@11 (F(ap) + My — pp),ve — ay) =0, Vv € SY(Th) x Bi(L2(Th)Y),
and
@.12) (F(ap™)+M(aptt —pw ™), v —aptt) >0, Vv, € SY(Th) x B (L2(Th)D).

Adding the above two inequalities together, choosing v}, as ﬂZ’Ll and zj in (4.11) and
(4.12), respectively, we obtain

(4.13) (M (g = ) — (et = th), ay — gty > 0.

Adding the term
(M (e = fig) = (i = A D), (g = an) = (™ = ™))
to both sides of (4.13), and using (2.11), we get

(M ((ph = ™) = (™t = ), i — ™)

1
EEH(ﬂh ) = (=

(4.14)
Then, applying the identity

(M(b = a),b) = 5 (Ibll3s = llallis + lla = blI3,)

l\.’)\r—l

to (4.14) witha = pf ™ — 2 and b = pft — p} ™', we obtain
(4.15)

W= 2R < e = IR - 7H( =) = G = )R

< i — w3

(%

which indicates that the sequence {||u? — )" ||2,} is monotonically non-increasing. [

Now, it is easy to show that the quantity ||p — s N*1112, is bounded by the order
O(%) from which a stronger worst-case O(%) convergence rate in a nonergodic sense for
Algorithm 2 is established. We summarize this result in the following theorem; its proof is
based on the assertions in Lemma 4.1 and Theorem 4.1.

Theorem 4.5 (Convergence rate in a nonergodic sense). Let iy, be a solution point of (1.6)
and the sequence {11} } be generated by Algorithm 2 with p € (0, 2) under the condition
(2.1). Then, for any integer N > 0, we have

N 1
i — 113 = O(

N+1
(4.16) T )

1
p(N+1)
Proof. Tt follows from (4.2) and (2.11) that

n+1

@ik < g (= e = )
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Taking the sum of (4.17) from n = 0 to [V, we obtain that

N
(4.18) Dl = iR < g (1= s = ™ =l ).
n=0
Therefore, the result (4.16) follows immediately from (4.18) and the non-increasing mono-
tonicity of the sequence {||u — p |2, } in (4.10). O

Remark 4.1. Recall that M defined in (2.10) is symmetric and positive definite under the
condition (2.1). Therefore, if ||uf — i 7|2, = 0, then we have u = pl ™ and it

follows from (2.11) that uibv = ﬂflv. Further, because of (4.1), we have
(F(up vn =y 1) = 0, Yy € SY(Th) x Bu(L(Th)?),

which means ,uhN 1 is a solution point of (1.6). In this sense, for the sequence {up} gen-
erated by Algorithm 2, we can measure the accuracy of the iterate ,uhN L by the quantity
|ty — T3, and thus the conclusion in Theorem 4.5 means a worst-case O(%) con-
vergence rate in a nonergodic sense for Algorithm 2.

5 Numerical Examples

In this section, we test the proposed Algorithms 1 and 2; and report some numerical results.
In particular, we verify that Algorithm 2 is more efficient than Algorithm 1 because of the
relaxation step (2.11). This conclusion is consistent to some observations in the PPA litera-
ture, e.g. [28]. All codes were written in C++ based on the finite element library AFEPack
[40] and all experiments were run on a Linux desktop with i5-4570s Intel 2.9GHz four Pro-
cessors and 8GB Memory. The triangular meshes used for the finite element discretization
are generated by the package EasyMesh [48].

5.1 Examples

We focus on the case of (1.2) where the linear operator A arises from the Fredholm integral
equations of the first kind in one and two dimensions. That is, A is given by

5.1 Au(z) ::/Qk(m,f)u(g)dg,

where the kernel k(-,-) : © x Q — R is a given integrable function and (2 is a bounded
domain in R? with d = 1 or d = 2. It is well known (e.g., [29, 39]) that many problems
of the type (5.1) are ill-posed and thus it is not practical to solve the equation (1.1) directly.
We refer to, e.g., [9, 29, 33, 39, 55, 58, 60], for a variety of applications of (5.1) in remote
sensing, indirect measurement, identification of distributed parameters, and so on. We will
test the following examples.
Example 5.1. First, let us define
{ 1, x€0.2,0.4] or[0.6,0.8],

u(z) = .

0, otherwise.

(5.2)

_lz—¢?
Then, choosing k(x,&) = e 22* withn = 0.05 and Q = (0,1) in (5.1), we obtain a
specific example of (5.1) in R! with

1 L jo—gp?
(5.3) Au(z) = \/ﬂn/o e 27 u(f)de.
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Now, we have the ill-posed equation (1.1) with g(x) := Au(x) where A is defined in (5.3)
and the exact solution u(x) is given in (5.2). We choose o = 5.0 x 10=% in (1.2).

Example 5.2. Our second example of (5.1) is the Fredholm integral equation of the first
kind in two dimensions as follows

G4 Aula) = s [ 7T u()d€ = gla),

with Q = (0,1)2 and ) = 0.05. Its exact solution u = LB(wo,r) IS the characteristic function
of
B(zo,r) ={z € Q: |z —x0| <7, 2o =(0.5,0.5)}

with r = 0.2. That is, we solve the problem (1.1) with g(x) := Au(x) defined in (5.4). We
choose o = 1.0 x 1073 in (1.2).

Example 5.3. Last, we consider the example of (5.1) with Q = {x : |x — x¢| < 0.5, z¢ =
(0.5,0.5)} and the operator A is the case of (5.4) with n = 0.05, where the exact solution
u(x) is given by

0, otherwise,

w(z) = { L ((U)\ (Q2U0)) Uy,

with Qo = {(z1,22) € Q: 21 <05} Q ={x € Q:0.1 < |z —xo] <025, g =
(0.5,0.75)}, Qy = {x € Q : | — x| < 0.25, 7 = (0.5,0.25)}, Q3 = {z € Q :
|z — x0| < 0.1, o = (0.5,0.75)} and Uy = {x € Q : |x — x| < 0.1, zo = (0.5,0.25) }.
We take o = 1.0 x 10™% in the model (1.2).

5.2 Algorithms to be Compared

5.2.1 Primal-Dual Methods Without Linearization

Instead of alleviating the subproblem (1.9) as the linearized surrogate (1.12), one can di-
rectly solve (1.8) by some standard solvers for systems of linear equations for the case
where A* A is computable. To see the advantages of the proposed algorithms, we com-
pare them with the primal-dual scheme (1.8) where the u;-subproblem is solved by the
standard conjugate gradient (CG) and the generalized Minimum RESidual (GMRES) in
[36], respectively. They are denoted by “PDCG” and “PDGMRES”, respectively. Analo-
gous to Section 2.2, we can see that the iterate p) = (u}; p}) generated by (1.8) can be
characterized by the variational inequality

(Fup ™) + Glup ™ = pi)svn — ™) 20, Vg € SH(Tw) x Bi(L0(Tw)?)
where F'(-) and v}, are defined in (2.5); and
17 adiv
6= (g )

Similar to the condition that ensures the positive definiteness of M defined in (2.10), we
restrict

(5.5) <7 :=+o/(a|V|)

to ensure the positive definiteness of GG and thus the convergence of the scheme (1.8).
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5.2.2 Primal-Dual-Dual Method

As mentioned in [15, Section 6.3.1], an alternative approach to overcome the necessity
of solving the implicit equation (1.9) (i.e., the up-subproblem in (1.8)) is to additionally
dualize the data fidelity term in (1.6). Omitting some details, we can derive that the resulting
saddle-point reformulation of (1.2) is

(5.6)

1
inf sup { Aup — g,qr) — =|lan 2, +a/Vuh~phdat—I Dh },
“"ESI(Th)pheLO(Th)d ( ) QH HL (Q) o B( )

@, €S (Th)

where uy, is the primal variable and both p, and ¢, are dual variables (hence, the name
“primal-dual-dual” is used). Applying the primal-dual scheme in [15] to (5.6), we obtain
the iterative scheme

(5.7)
. 1
ul ™ = argmin {(Auh - g.qr) + a/ Vuy, - pp doe + —|Jup, — uﬁ||%z(g)},
up €S (Th) Q 2T
ﬂZ+1 = 2“Z+1 — uy,
~ ag
pZ-i-l = argmax {Oé/ VULH_l *Ph dl’ — IB(ph) — 27”]7};, *pZ”%z(Q)},
PRELO(Th)? Q T
1 o
+1 ~n+1 2 n||2
gt = argmax { (A = g, ) = 5 lanlFe@) — o llon — a8 I3

Similar to the discussion in Section 2.2, the scheme (5.7) can be rewritten as the variational

inequality
(5.8)
(Fu ™)+ H (P = pig)pn = ™) 2 0,V € SH(To) x Bi(L2(Th)*) x SH(Tn),
where
up, —adivp, + A*qp %I adiv —A*
prn=\pn |, Flun)= —aVuy, , H=[-av 21 o0
an qn — Aup + g -A 0 I

Thus, if the matrix form operator H defined above is guaranteed to be symmetric and
positive definite, the convergence of the scheme (5.7) is ensured by analogy to the analysis
in Section 4. This requires the condition

o
(5.9 T < Tg = \/ .
’ 2(e?[[VI[* + [ AlI?)

We shall compare the proposed algorithms with the PDDM (5.7) subject to the condition
(5.9).

5.3 Implementation Details
When implementing algorithms, we use the stopping criterion

HUZH _“ZHB(Q)

(5.10)
||UZ+1||L2(Q)

< 1.0 x 1074,
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and calculate
(5.11) L2err := |lup — up| z2(q)

to measure the accuracy of the iterate u}Y generated by algorithms.
Note that the condition (2.1) to guarantee the convergence of Algorithms 1 and 2 can
be rewritten as

VETAT T 20a2[VE - o| Al
5.12 < =
612 T 22V

Below we list some parameters of the proposed algorithms and the mentioned algo-
rithms to be compared.

e Algorithm 1 (Algl) and Algorithm 2 (Alg2): 7 = 0.9573 where 73 is given by (5.12);

e PDCG and PDGMRES: 7 = 0.957;, where 7 is given by (5.5), with an accuracy of
1.0 x 1075 for the CG and GMRES procedure in the w,-subproblem of (1.8);

e PDDM (5.7): 7 = 0.9573, where 79 is given by (5.9).

Note that we choose the accuracy of 1.0 x 1076 for the internal iterations of PDCG
and PDGMRES because we have found in our experiments that lower accuracy may lead
to divergence or very slow convergence and higher accuracy can hardly improve the perfor-
mance. We take the initial iterate as u$) = gj,, where gj, is the finite element discretization
of g(x) with noise and p) as the zero function.

5.4 Numerical Results
5.4.1 Results for Example 5.1

Some noise generated by 69| 2 (o)randn(x) is added to g(x), where the values of randn (z)
over nodes of the mesh are sampled from the standard normal distribution and § > 0 is a
noise-level parameter. To generate the finite element discretization, the mesh size over
[0, 1] is taken as 0.01. Accordingly, the condition number of the discretized matrix of A* A
in (1.9) is 1.1883 x 10°. With our choices of the kernel function in (5.3) and the finite
element discretization mesh, we have || A[|? = 0.0098 and 1/ V|| = 3.0 x 1073, We fix
o = 0.03. Then, the values of 7 for Algorithms 1 and 2, PDCG/PDGMRES and PDDM
are 0.9822544, 0.987269, 0.6002106, respectively.

In Table 1, we report the iteration numbers (“/N”’), computing time in seconds (“CPU(s)”")
and L2 errors (“L2err”) defined in (5.11) for Example 5.1. Recall that Algorithm 1 is the
special case of Algorithm 2 with p = 1.0. Several other choices of p are also tested. We
test the cases with noise levels 6 = 20%, 10%, 5% and 1%. According to the data in this
table, we see that the proposed linearized primal-dual schemes work well for Example 5.1
and they are both faster than PDDM. In particular, we see that Algorithm 2 with p € (1, 2)
is usually faster than the special case of p = 1, i.e., Algorithm 1. Also, we see that PDCG
and PDGMRES perform nearly the same as Algorithm 1 for the case where the size of
discretized matrix of A*A is 101 x 101. It will be shown later that they are less efficient
than Algorithm 1 for the case where the size of the discretized matrix of A* A is larger.

In Figure 1, for Example 5.1 with the tested noise levels, we plot the graphs of uy,, Aup,
gn, and the numerical solution u}’ generated by Algorithm 2 with p = 1.6. The curve of the
exact solution given in (5.2) is also plotted for comparison. We see that the exact solution of
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Example 5.1 can be very accurately approximated; thus the effectiveness of the model (1.2)
with TV regularization is also well justified. Figure 2 plots the convergence rate measured
by || - uhN *1)12, of Algorithms 1 and 2 with p = 1.6 for Example 5.1 with different noise
levels. It is shown that practically the proposed algorithms can perform more favorably than
the worst-case estimate of the theoretical convergence rate derived in Section 4. In Figure
3, we plot the convergence order of the error E(uf, ) — E(u) and |luj, — ul|r2(q) for the
sequence generated by Algorithm 1 for Example 5.1 with noise level 0.01, where « is an
approximation of the true solution of (1.2) generated by a finer mesh with h = 1.25 x 1073,

Table 1: Iteration numbers N, computing time in seconds and L? errors by Algorithm 1
(Algl), Algorithm 2 (Alg2) with p = 0.4,0.6,--- , 1.8, and PDCG, PDGMRES, PDDM
for Example 5.1 with noise levels § = 20%, 10%, 5% and 1%.

5 =20% §=10% 6=5% 6=1%
N [CPU(s)[ L2err | N [CPU(s)[ L2err | N [CPU(s)[ L2err [ N [CPU(s)[ L2err
Algl 551] 0.81 [0.0572]502] 0.72 ]0.0324][524] 0.76 [0.0197] 528 | 0.75 [0.0131

p=0.4 1709 1.01 [0.0615|823| 1.18 [0.0358|927| 1.33 |0.0251|1064| 1.54 |0.0200
p=0.6 || 765| 1.09 |0.0581|796| 1.16 [0.0319]685| 0.98 |0.0216| 806 | 1.17 {0.0150
p=0.8 [|655| 094 [0.0575|603| 0.87 [0.0319(629| 0.90 [0.0194| 652 | 0.93 |0.0133
Alg2 | p=1.2 ||462] 0.67 |0.0572|424| 0.61 [0.0325[456| 0.65 [0.0202| 455 | 0.65 |0.0126
p=1.4 1399 0.57 [0.0571|365| 0.53 [0.0324(396| 0.57 [0.0204| 403 | 0.58 |0.0123
p=1.6 [|363| 0.52 [0.0567|339| 0.51 [0.0328[369| 0.55 [0.0208| 364 | 0.52 |0.0124
p=1.8 ||429| 0.61 [0.0572|417| 0.61 [0.0318[412| 0.61 |0.0204| 413 | 0.60 |0.0139

PDCG 554| 0.84 |0.0572]502| 0.76 |0.0323|524| 0.79 |0.0197| 527 | 0.82 |0.0131
PDGMRES ||554| 0.74 [0.0572|502| 0.70 |0.0323|524| 0.70 [0.0197| 527 | 0.72 |0.0131

PDDM 839| 1.39 [0.0576|799| 1.28 [0.0319|828| 1.33 [0.0194| 835 | 1.32 |0.0138

5.4.2 Results for Example 5.2

In our experiments, the domain 2 is partitioned by the regular triangular mesh with 1046
nodes and 1990 elements. The partition is shown in Figure 4(a). In Figures 4(b) and (c),
we plot the graphs of u;, and Auy. The noise d||g|z2(oyrandn(z) is added to g(x), where
randn(z) is the standard normal distribution over the finite element mesh and 6 > 0 is
a noise-level parameter. Accordingly, the condition number of the discretized matrix of
A*Ain (1.9) is 5.4031 x 10'°. Note that for the kernel function and finite element mesh
for Example 5.2, we have ||A]|> = 0.002 and 1/||V|| = 3.5 x 1073, We fix o = 0.12.
Then, the values of 7 for Algorithms 1 and 2, PDCG/PDGMRES and PDDM are 1.150418,
1.151814, 0.8046579, respectively.

The iteration numbers (“N”), computing time in seconds (“CPU(s)”) and L? errors
(“L2err”) are reported in Table 2 for Example 5.2 with different noise levels § = 20%, 10%,
5% and 1%. The efficiency of the proposed algorithms, and in particular, the acceleration
effectiveness of Algorithm 2, are verified again by the data in Table 2. It should be noted
that PDCG and PDGMRES require much more computing time compared with Algorithm
1 even though their iteration numbers (for the outer iteration) are almost the same. Again,
we see the superiority of Algorithm 2 over Algorithm 1 with appropriate choices of p; and
their superiority to PDDM.

In Figure 5, we plot the graphs of g), and the corresponding numerical solution u}Y of
Example 5.2 with different noise levels for Algorithm 2 with p = 1.2. Again, the plots in
this figure show that the exact solution of Example 5.2 can be very accurately approximated.
Thus, the model (1.2) with TV regularization is well verified. In Figure 6, we demonstrate
the convergence rate of Algorithms 1 and 2 for Example 5.2; and in Figure 7 we plot the
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Figure 1: Graphs of uj,, Aup, g, and the numerical solution u}’ of Example 5.1 for dif-

ferent noise levels by Algorithm 2 with p = 1.6. (uj: exact solution; g;: data with noise;

u}: output numerical solution)
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Figure 2: Convergence rate measured by || — MZV +1 ||, of Algorithm 1 and Algorithm 2

with p = 1.6 for Example 5.1 with different noise levels.
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Figure 3: Convergence order of errors E(uj ) — E(u) and |[uy) — u||12(q) by Algorithm 1
for Example 5.1 with noise level 0.01.
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Figure 4: Triangular mesh over {2 and the graphs of wj and Awj, for Example 5.2.

convergence order of errors E(uj ) — E(u) and [|uy’ —ul| 2 () by Algorithm 1 for Example
5.2 with noise level 0.01.
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Table 2: Iteration numbers N, computing time in seconds and L? errors by Algorithm 1
(Algl), Algorithm 2 (Alg2) with p = 0.4,0.6, - - - , 1.8 and PDCG, PDGMRES, PDDM for
Example 5.2 with noise levels § = 20%, 10%, 5% and 1%.

5§ =20% 6 =10% =5% §=1%
N [CPU(s)[ L2err | N [CPU(s)[ L2err | N [CPU(s) [ L2err [ N [CPU(s)[ L2err
Algl 310] 8.68 [0.0243]326] 9.29 [0.0137][252] 7.22 [0.0107[255] 7.21 [0.0099

p=0.4 |[454] 12.62 [0.0248 {420 | 11.68 [0.0140(412| 11.41 {0.0119{399| 11.18 |0.0110
p=0.6 |[357] 10.09 [0.0242|319| 8.91 [0.0135[323| 9.04 |0.0113|316| 8.86 |0.0107
p=0.8 |[342] 9.54 [0.0242|371| 10.47 [0.0135(276| 7.81 |0.0109|261| 7.41 |0.0106
Alg2 | p=1.2 [|297| 8.35 |0.0244|290| 8.27 [0.0137[230| 6.54 [0.0105]235| 6.67 |0.0096
p=14 |[314] 8.79 [0.0242|274| 7.73 [0.0138(262| 7.40 |0.0096|268| 7.71 |0.0088
p=1.6 [[336] 9.38 [0.0240(298| 8.41 [0.0137[302| 8.48 [0.0093{279| 7.85 |0.0084
p=1.8 |[450| 12.49 {0.0240 {421 | 11.81 [0.0139(416| 11.52 |0.0095|411| 11.38 |0.0079

PDCG 3141 20.85 |0.0243|327| 21.26 |[0.0136|255| 16.06 |0.0106|257| 16.07 |0.0098
PDGMRES || 315 22.10 [0.0242|324| 22.11 |0.0136|253| 16.74 [0.0106|256| 16.73 |0.0098

PDDM 451| 14.56 |0.0243|444| 14.09 |0.0136|388| 12.64 |0.0105|386| 12.36 |0.0096

5.4.3 Results for Example 5.3

As shown in Figure 9(a), the appearance of u(z) over the triangular mesh with 2647 nodes
and 5092 elements is the Tai-Chi diagram, and its blurred image is shown in Figure 9(b). So,
solving (1.2) can be regarded as a deblurring problem for the Tai-Chi image. Accordingly,
the condition number of the discretized matrix of A*A in (1.9) is 1.1013 x 10'!. For the
kernel function and finite element mesh for Example 5.3 , we have ||A]|? = 8.4527 x 10~
and 1/||V]| = 5.0 x 10~*. We fix 0 = 4.0 x 10~3. Then, the values of 7 for Algorithms 1
and 2, PDCG/PDGMRES and PDDM are 0.3003762, 0.3004164, 0.2102169, respectively.

In Table 3, we report some numerical results for Example 5.3. The data clearly shows
the superiority of Algorithms 1 and 2. In Figure 8, we plot the blurred images of u; with
different noise levels and the corresponding output iteration ufl\' obtained by Algorithm 2
with p = 1.4. We see that the exact solution can be well approximated by the model
(1.2) and iteratively approached by the proposed algorithms. In particular, the edges of the
original image can be well recovered. The convergence rates of Algorithm 1 and Algorithm
2 with p = 1.4 for Example 5.3 are plotted in Figure 10.

Table 3: Iteration numbers N, computing time in seconds and L? errors by Algorithm 1
(Algl), Algorithm 2 (Alg2) with p = 0.4, 0.6, - - - , 1.8 and PDCG, PDGMRES, PDDM for
Example 5.3 with noise levels § = 20%, 10%, 5% and 1%.

§=20% §=10% 6=5% 6=1%
N [CPU(s)[ L2err [ N [CPU(s)[ L2err | N [CPU(s)[ L2err | N [CPU(s)[ L2err
Algl 745 ] 62.61 [0.1086]1045] 84.43 [0.0749]1193] 92.51 [0.0639]1316] 101.70 [0.0578

p=0.4 |/ 1013 | 81.49 [0.1145[1199| 96.71 |0.0912| 1314 | 101.45 | 0.0839 | 1331 | 103.23 | 0.0819

p=0.6 || 894 | 72.24 |0.1117|1179] 96.79 |0.0830| 1270 | 99.20 |0.0748 | 1348 | 105.52 | 0.0709

p=0.8 || 810 | 65.71 [0.1099 [ 1111| 90.16 |0.0782|1237| 96.52 |0.0683 | 1376 | 106.39 | 0.0625

Alg2| p=1.2 || 709 | 58.36 |0.1074| 988 | 79.84 |0.0726|1120| 87.46 |0.0613|1280| 100.30 |0.0540

p=1.4 || 689 | 56.38 |0.1064 | 954 | 78.23 |0.0706 | 1139 | 89.92 |0.0578|1287| 98.91 |0.0505

p=1.6 || 705 | 58.59 [0.1053| 956 | 77.88 |[0.0686 | 1179 | 93.26 |0.0548 | 1348 | 105.37 | 0.0475

p=1.8 || 805 | 66.58 |0.1038|1076| 88.36 |0.0657 | 1382 | 110.87 | 0.0512| 1527 | 119.59 | 0.0449

PDCG 746 | 321.91 |0.1086 | 1042 | 439.85 [ 0.0751 | 1191 | 503.44 | 0.0641 | 1314 | 557.73 | 0.0580

PDGMRES || 747 | 312.52|0.1087| 1053 | 425.05 | 0.0750| 1200 | 487.84 | 0.0639| 1320 539.16 | 0.0576

PDDM 936 | 93.18 [0.1092|1337| 128.68 [ 0.0774 | 1545 | 140.82 | 0.0668 | 1662 | 152.03 | 0.0617
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Figure 5: Graphs of g;, with noise levels 6 = 20%, 10%, 1% and the corresponding numer-
ical solution uj’ of Example 5.2 by Algorithm 2 with p = 1.2.

6 Conclusions

In this paper, we studied the primal-dual approach to the saddle-point reformulation of a lin-
ear inverse problem with the total variation regularization and finite element discretization.
We modified the original primal-dual scheme by linearizing the data-fidelity term at each
iteration and thus obtained easier subproblems. A linearized primal-dual method was thus
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Figure 7: Convergence order of errors E(uy ) — E(u) and ||up — || 12(q) by Algorithm 1
for Example 5.2 with noise level 0.01.

proposed. A relaxed version of this linearized primal-dual method was also studied, mainly
inspired by the fact that it is indeed an application of the proximal point algorithm. We es-
tablished the global convergence and estimated the worst-case convergence rate measured
by the iteration complexity for both algorithms. Their efficiency was verified by prelimi-
nary numerical results. The linearized primal-dual method has the main advantage that the
linearized surrogate subproblems are much easier and inner iteration is completely avoided
for each linearized subproblem. That is, it can be regarded as a special approximate version
of the original primal-dual method which linearizes the data-fidelity term at each iteration,
and each iterate is the exact solution of the linearized surrogate. An alternative is keeping
the hard subproblem completely at each iteration of the original primal-dual method and
adopting a certain inner iteration process to solve the subproblem iteratively — no surro-
gate subproblem is generated and an inner iteration is necessary at each step. We partially
studied this alternative empirically and it seems that algorithms based on this approach are
less efficient than our linearized primal-dual approach. It is certainly interesting to conduct
more serious research on how to design an easily implementable stopping criterion to ter-
minate the inner iteration; how to balance the errors accumulated in the inner iteration and
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(e) gp with 6 = 1% (f) Numerical solution ulY with § = 1%

Figure 8: Graphs of g, with noise levels 6 = 20%, 10%, 1% and the corresponding numer-
ical solution u}’ of Example 5.3 by Algorithm 2 with p = 1.4.

the accuracy of the outer iteration; and how to prove the convergence rigorously for these
algorithms.
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Figure 9: Image of Tai-Chi diagram and its blurred image for Example 5.3.
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Figure 10: Convergence rate measured by ||uY — 15 t1||3, of Algorithm 1 and Algorithm
2 with p = 1.4 for Example 5.3 with different noise levels.
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