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Abstract

In this paper we consider an energy critical wave equation (3 < d <5, ( = +1)
Otu — Au = () |u 4D, (z,t) € R x R

with initial data (u, d;u)|i—0 = (uo,u1) € H' x L*(R?). Here ¢ € C(R%; (0,1]) converges
as |x| — oo and satisfies certain technical conditions. We generalize Kenig and Merle’s
results on the Cauchy problem of the equation d2u — Au = |u\4/(d*2)u, Following a similar
compactness-rigidity argument we prove that any solution with a finite energy must scatter
in the defocusing case ( = —1. While in the focusing case {( = 1 we give a criterion for
global behaviour of the solutions, either scattering or finite-time blow-up when the energy
is smaller than a certain threshold. As an application we give a similar a criterion on the
global behaviour of radial solutions to the focusing, energy critical shifted wave equation
07v — (Ays + 1)v = |v|*v on the hyperbolic space H?>.

1 Introduction

In this work we consider a semi-linear energy critical wave equation in R? with 3 < d < 5:
0Pu — Au = (o) |ulPe" u, (z,t) € RY x R;
u(-,0) =ug € Hl(Rd); (CP1)
Opu(-,0) = uy € L2(RY);

Here the coefficient function ¢(x) satisfies

¢ € C(R%(0,1)), ¢$(o0) = lim ¢(x) is well-defined. (1)
|z|—o00
The exponent p. =1+ ﬁ is energy-critical and ¢ = +1. If ( = 1, then the equation is called
focusing, otherwise defocusing. Solutions to this equation satisfy an energy conservation law:

1 1 X
Ey(u, Ou) = / <2Vu|2 + §|8tu|2 - 2—i¢|u\2 > dx = Ey(ug, u1). (2)
Rd

Here the notation 2* represents the constant 2* = 2d/(d—2). The Sobolev embedding H'(R?)
L?" (RY) implies that the energy Ey(ug,u) is finite for any initial data (ug,u;) € H' x L*(R%).
The results of this work can be applied to deal with the radial solutions to the shifted wave
equation 9?v — (Ags + 1)v = |v|*v on the hyperbolic space H?, as shown in the final section.
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1.1 Background

Pure Power-type Nonlinearity Wave equations with a similar nonlinearity have been ex-
tensively studied in many works over a few decades, in particular with a power-type nonlinearity
C|u|P~tu. There is a large symmetric group acting on the set of solutions to an equation of this
kind. For example, if u(x,t) is a solution to

02u — Au = (ulPtu (3)

1 — t—1
with initial data (ug,u1), then @(z,t) = ——u (a: )\xo, y 0

Ap—1

1 T — Xo 1 T — Xg
U, U
DYV AR Ea DY

at t = to, where A > 0, 2o € R% and ¢, € R are arbitrary constants. One can check that the
energy defined by

) is another solution to (3) with

initial data

1 1 ¢
E(u,0:u) = —|Vul? + = |0pul? — ——ulP™ | dz
o) = [ (5170 + 5o - S
is preserved under the transformations defined above, i.e. E(u,0u) = E(@,0¢), if and only if
p=p.=1+ d4f2' This is the reason why the exponent p, is called the energy-critical exponent,
and why the equation (3) with p = p. is called an energy-critical nonlinear wave equation.

Previous Results A large number of papers have been devoted to the study of wave equations
with a power-type nonlinearity. For instance almost complete results about Strichartz estimates,
which is the basis of a local theory, can be found in [8, 13]. Local and global well-posedness
has been considered for example in [12, 22]. In particular, there are a lot of works regarding
the global existence and well-posedness of solutions with small initial data such as [3, 6, 7, 18].
Questions on global behaviour of larger solutions, such as scattering and blow-up, are usually
considered more subtle. Grillakis [9, 10] and Shatah-Struwe [26, 27] proved the global existence
and scattering of solutions with any H' x L? initial data in the energy-critical, defocusing case
in 1990’s. The focusing, energy-critical case has been the subject of several more recent papers.
This current work is motivated by one of them, F. Merle and C. Kenig’s work [14]. Let us first
briefly describe the main results and ideas of their work.

Merle and Kenig’s work Let us consider the focusing, energy-critical wave equation

0?u — Au = |u|.p“1u, (z,t) € RY x R;
u(-,0) = up € H(RI); (CPO)
(-, 0) = uy € LA(RY);

Unlike the defocusing case, the solutions to this equation do not necessarily scatter. The ground
states, defined as the solutions of (CP0) independent of the time ¢ and thus solving the elliptic
equation —AW = [W|P<=1W are among the most important counterexamples. One specific
example of the ground states is given by the formula

1
(1 + d(iz))
Kenig and Merle’s work classifies all solutions to (CP0) whose energy satisfies the inequality

. 1 1 1 .
E(umul):/ <2|Vuo|2+2|u1|2—2*|u0|2 )dw<E(W,O)
Rd

into two categories:



(D) If |Vuollrz < |[VW| L2, then the solution u exists globally in time and scatters. The exact
meaning of scattering is explained in Definition 2.13 blow.

(IT) If || Vuollzz > ||[VW]|z2, then the solution blows up within finite time in both two time
directions.

Please note that ||Vug|lpz = ||[VW/||r2 can never happen if E(ug,u;) < E(W,0). Thus the
classification is complete under the assumption that E(ug,u;) < E(W,0). The scattering part
of this result is proved via a compactness-rigidity argument, which consists of two major steps.

(I) If the scattering result were false, then there would exist a non-scattering solution to (CP0),
called a “critical element”, with a minimal energy among those non-scattering solutions,
that has a compactness property up to dilations and space translations.

(IT) A “critical element” as described above does not exist.

Solutions with a greater energy Before introducing the main results, the author would like
to mention a few works that discuss the properties of the solutions to (CP0) with an energy
E > E(W,0). These works include [4, 5, 19] (Radial case) and [20] (Non-radial Case).

1.2 Main Results of this work

In this work, we will prove that similar results as mentioned in the previous subsection still hold
for the equation (CP1), at least for those ¢’s that satisfy some additional technical condition
besides (1).

The Defocusing Case As in the case of the wave equation with a pure power-type nonlin-
earity, we expect that all solutions in the defocusing case scatter. In fact we have

Theorem 1.1. Let 3 < d < 5. Assume that the coefficient function ¢ € C*(R?) satisfies the
condition (1) and

(d—2)x-Vo(x)
Then the solution to the Cauchy Problem (CP1) in the defocusing case with any initial data
(ug,uy) € H' x L%(RY) exists globally in time and scatters.

> 0, for any x € RY. (4)

Remark 1.2. Any positive radial C* function satisfies the condition (4) as long as it decreases
as the radius r = || grows. For example, a bump-like function satisfies this condition.

The Focusing Case As in the case of a pure power-type nonlinearity, we can classify all
solutions with an energy smaller than a certain positive constant. Without loss of generality, we
assume that!

sup ¢(x) = é(a0) = 1.

zERY

The threshold here is again the energy of the ground state W for the equation (CPO)

1 1 .
El(W,O):/ (2|VW|2—2*W|2 )dx.
Rd

Please note that W is no longer a ground state of (CP1) and that the energy above is not the
energy E4(W,0) for the equation (CP1) as defined in (2). This can be explained by considering

the function .
T —x
Wiz (@) = =W ( h\ 0) .

2

Hf sup¢ = 1 but ¢(z) < 1 for all © € R%, then the threshold remains the same value via a limiting process
zo — 00; if sup ¢ < 1, then the threshold can be enlarged as in Corollary 2.22.



When A — 0T, the function W) ., becomes “almost” a ground state for (CP1) with its energy
Es(W z,0) = E1(W,0), as shown by Lemma 3.15.

Theorem 1.3. Let 3 < d < 5. Assume the function ¢ € C1(RY) satisfies the condition (1) and
21— 6(x)) + (x- V() >0,  for any =€ R (5)

Given initial data (ug,u1) € H' x L*(R%) with an energy E4(ug,u1) < E1(W,0), the global
behaviour, and in particular, the mazimal interval of existence I = (—T—(up,u1), Ty (ug,u1)) of
the corresponding solution u to the Cauchy problem (CP1) in the focusing case can be determined

by:
(1) If |Vuo|lz < [[VW| L2, then I =R and u scatters in both time directions.

(i1) If |Vuol Lz > [[VW||L2, then u blows up within finite time in both two directions, namely

T_(ug,u1) < 4005 T (ug, u1) < 400.

Remark 1.4. The function ¢(x) = (sin‘ilm )7 satisfies the conditions in Theorem 1.8 as long as
2 <o < 2%,

Remark 1.5. The compactness process and the blow-up part in Theorem 1.8 work for any ¢
that satisfies the basic assumption (1). The main theorems would probably still work without the
assumption (4) or (5), if we could successfully develop a rigidity theory for more general ¢’s.
For example, we show in Section 5.8 that the main theorems still hold without these assumptions
in the three dimensional case, provided that both initial data and the coefficient function ¢(x)
are radial.

Remark 1.6. A mass critical Schrédinger equation with a similar nonlinearity has also been
discussed. Please see Raphael-Szeftel [25] and citation therein, for instance.
1.3 Idea of the proof

In this subsection we briefly describe the idea for the scattering part of our main theorems. We
focus on the focusing case, but the defocusing case, that is relatively less difficult, can be handled
in the same way. Let us first introduce (M > 0)

Statement 1.7 (SC(¢, M)). There exists a function 3 : [0, M) — R*, such that if the initial
data (ug,u1) € H' x L3(R?) satisfy

[Vugllz < [[VW]|2, Ey(ug,ur) < M;

then the solution u to (CP1) in the focusing case with the initial data (ug,uy) exists globally in
time, scatters in both two time directions with

||U\|L%L2<ddj2> ) B(Eg(uo, u1)).

Remark 1.8. According to Remark 2.19, if |Vuollrz < ||[VW]| L2, then we have

Ed)(an ul) = H(u(b ul)”i’]lxlg Z 0.
Therefore we have
o The expression B(Eg(uo,u1)) is always meaningful.

e Proposition 2.11 guarantees that the statement SC(¢p, M) is always true if M > 0 is
sufficiently small.



Compactness Process It is clear that the statement SC(¢, E1(W,0)) implies the scattering
part of our main theorem 1.3. If the statement above broke down at My < E1(W,0), i.e. SC(¢,
M) holds for M = M, but fails for any M > Mjy, then we would find a sequence of non-
scattering solutions w,’s with initial data (ug,u1,,), such that Ey(uon,u1n) — My. In this
case a critical element can be extracted as the limit of some subsequence of {u,,} by applying the
profile decomposition. This process is somewhat standard for the wave or Schrédinger equations.
However, this is still some difference between our argument and that for a wave equation with
a pure power-type nonlinearity. The point is that dilations and space translations are no longer
contained in the symmetric group of this equation. The situation is similar when people are
considering the compactness process for wave/Schrodinger equations on a space other than the
Euclidean spaces, see [11, 21], for instance. We start by introducing the profile decomposition,
before more details are discussed.

The profile decomposition One of the key components in the compactness process is the
profile decomposition. Given a sequence (ugn,u1,) € H' x L*(RY), we can always find a
subsequence of it, still denoted by {(uo.n,%1,n)}tnez+, & sequence of free waves (solutions to the
linear wave equation), denoted by {V;(z,t)},ez+, and a triple (Ajn, @), tn) € RT x R x R for
each pair (j,n), such that

e For each integer J > 0, we have the decomposition
J
(W0 01,) = Y (Vion (00, 00V (-, 0)) + (w0 ).
j=1

Here Vj ,, is a modified version of V; via the application of a dilation, a space translation
and/or a time translation:

1 T—Xip t—1,; 1 rT—xip t—1;
Vi (,8), 0V n(,1)) = v, in L=lin) Ly, pn LT ) )
( Js (1'7 )v tVy, (I )) <>\(122 J( )\]71'7, ’ )\]7n ) )\% t J< )\]’n )\J’n

and (w(‘)] " wi ) represents a remainder that gradually becomes negligible as J and n grow.

e The sequences {(\jn, Zjn:tjn) tnez+ and {(Nj: n, Tj7 n,tjr n) bnez+ are “almost orthogonal”
for j # j'. More precisely we have

lim (Aj,n AT X ek 20 O L2 —tj',nl) e
n=e \Ajrn Ajn Ajn Ajn

e We can also assume \j, — \; € [0,00) U {oo}, zj, — 2; € RYU{oo} and —t;,,/Aj, —
t; € RU {00, —c0} as n — oo for each fixed j.

The nonlinear profile Let us first consider the case with a pure power-type nonlinearity,
namely the equation (CP0). Given j € Z* we can find a solution U; to (CP0), called a nonlinear
profile, so that the function

rT—Tin t—1t;
Um(x,t) = U. ( ]771’ J,n) (6)
J J )\j,n )\j,n

serves as a more and more accurate approximation of the solution to (CP0) with initial data
(Vin(-,0),0:V; n(-,0)) when n — oo. We then add these approximations up to obtain an ap-
proximation of w,, thanks to the almost orthogonality. The fact that the equation (CPO) is
invariant under dilations and space/time translations plays a crucial role in this argument. As
a result, this can no longer be done for the equation (CP1). However, this problem can still be
solved if we allow the use of nonlinear profiles that are not necessarily solutions to (CP1) but



possibly solutions to other related equations instead. In fact, the solution to (CP1) with initial
data (Vj,(-,0),0:Vjn(-,0)) can be approximated by a nonlinear profile U; as described below,
up to a dilation, a space translation and/or a time translation.

I

II

III

v

(Expanding Profile) If A\; = oo, then the profile spreads out in the space as n — oo.
Eventually a given compact set won’t contain any significant part of the profile. The com-
bination of this fact and our assumption lim,|_,. #(x) = ¢(c0) implies that the nonlinear
term ¢(z)|u|Pc~!u works as though ¢ = ¢(c0) is a constant if we make n — co. As a
result, the nonlinear profile U; in this case is a solution to the non-linear wave equation
0?u — Au = ¢(c0)|ulPe~Lu.

(Traveling Profile) If A\; < oo but xz; = oo, then the profile travels to the infinity as
n — oco. Again this enables us to ignore the difference of ¢ and the constant ¢(co) and
choose a nonlinear profile from the solutions to the non-linear wave equation d?u — Au =
¢(00)[ulP=" u.

(Stable Profile) If A; € R* and z; € R?, then the profile approaches a limiting scale and
position as n — oco. Therefore the nonlinear profile U; is still a solution to (CP1).

(Concentrating Profile) If \; = 0 and z; € R?, then the profile concentrates around a
fixed point z; as n — oo. The nonlinear term ¢(x)|u[Pe~'u performs almost the same
as ¢(x;)|ulPe~'u. As a result, the nonlinear profile U; can be chosen as a solution to
02u — Au = ¢(z;)|ulPtu.

Extraction of a critical element After the nonlinear profiles {U;} are assigned, we can
proceed step by step

(D

(IT)

(I11)

First of all, we show there is at least one non-scattering profile U € {U;|j € Z"}, whose
energy is at least M.

By considering the estimates regarding the energy, we show that U is the only nonzero
profile and its energy is exactly M. This also implies that this nonlinear profile is a
solution to (CP1).

Finally we prove that the solution U is “almost periodic”, i.e. the set
{UG0),0U(, 1)t € I}

is pre-compact in H' x L?(R%), where I is the maximal lifespan of U, by considering a
new sequence of solutions derived from U via time translations and repeating the whole
compactness process. A direct corollary is that the maximal lifespan I is actually R.

Nonexistence of a critical element Finally we show that a critical element may never exist.

In the defocusing case, we apply a Morawetz-type inequality, which gives a global integral
estimate. This contradicts with the “almost periodicity”.

In the focusing case, we follow the same idea used in Kenig and Merle’s work. We show

that the derivative J J
— / (x - Vu)uppdr + 7/ pruudx
dt | Jra 2 Jpa

has a negative upper bound but the integral itself is always bounded for all time ¢. This
gives us a contradiction when we consider a long time interval. Here ¢p is a suitable cut-off
function.



1.4 Structure of this Paper

This paper is organized as follows: In Section 2 We make a brief review on some preliminary
results such as the Strichartz estimates, the local theory and some results regarding the wave
equation with a pure power-type nonlinearity. We then consider the linear profile decomposi-
tion, define the nonlinear profiles and discuss their properties in Section 3. After finishing the
preparation work, in Section 4 we perform the crucial compactness procedure and show that
the failure of the scattering part of our main theorem would imply the existence of a critical
element. Next we prove that the critical element can never exist, thus finish the proof of the
scattering part of our main theorem in Section 5. Finally in Sections 6 we prove the blow-up part
of our main theorem. Section 7 is an extra, showing an application of our main theorem, about
the radial solutions to the focusing, energy-critical shifted wave equation on the 3-dimensional
hyperbolic space.

2 Preliminary Results

2.1 Notations

Definition 2.1. Throughout this paper the notation F represents the function F(u) = (|u[P<~1u.
The parameter ¢ = +1 is determined by whether the equation in question is focusing (¢ = 1) or

defocusing (¢ = —1).

Definition 2.2 (Dilation-translation Operators). We define Ty to be the dilation operator

oo = (s 3 (5)

and Ty 4, to be the dilation-translation operator

1 T -1 1 xr—x
Tz (t0(), ur () = ()\d/2—1u0< A 0)’Ad/2u1( ) 0>>;

Here x is the spatial variable of the functions. Similarly we can define these operators in the
same manner when both the input and output are written as column vectors.

Definition 2.3. Let Sy (t) be the linear propagation operator. More precisely, we define

St (to) (o, u1) = (ulto), us(to)) S, (to) (uO) _ <U(to) )

Ut (to)
if u is the solution to the linear wave equation

{ 02u — Au = 0;

(u, Opu)|t=0 = (w0, u1).
In addition, we use the notation Sy, o(to)(uo,u1) = u(to) if we want to ignore the velocity uy.

Definition 2.4 (The energy). Let ¢ : R? — [0,1] be a function and ¢ € {1,—1}. We define
E¢ s(ug,u1) to be the energy of the solution to the nonlinear wave equation 87u—Au = (plulP-~1u
with initial data (ug,u1) € H' x L*(R?):

1 1 .
Eeolunin) = [ (51V00 + gl = Sofuof ) a
Rd

We may omit ¢ and use Ey(ug,u1) instead when the choice of ¢ is obvious.



Definition 2.5 (Space-time Norms). Assume 1 < q,r < co and let I be a time interval. The

norm ||ul| Lo (1 xre)y TEpresents HHU(.’L‘,t)HLr(Rd;dI)HLq(I;dt). In particular, if 1 < q,r < oo, then

q/r
lullarr(rxray = (/ </ u(x,t)|’”dx) dt)
I R4

Definition 2.6 (Function Spaces). Let I be a time interval. We define the norms

we have
1/q

||UHY(1) = ||U||LPuL2Pc(1de)§ | (uo, ur)llm = H(u07u1)||H1><L2(Rd)'

2.2 Local Theory

In this subsection we briefly discuss the local theory of the nonlinear equation (CP1). Our local
theory is based on the Strichartz estimates.

Proposition 2.7 (Strichartz estimates, see [8]). There is a constant C' determined solely by the
dimension d € {3,4,5}, such that if u is a solution to the linear wave equation

0?u — Au = F(x,t); (z,t) € RY x I;
(u, Opu)|t=0 = (uo, u1);
where I is a time interval containing 0; then we have the inequality
sup 1, ). e ) e + el oy < € [0 00 sy + 1Pl s o)
Remark 2.8. We can substitute Y norm in Proposition 2.7 by any L1L" norm if

1 d d
2 < q < oo, 2<r <oo, -+ -=--1,
q r 2

as shown in the paper [8]. These space-time norms are called (energy-critical) Strichartz norms.

Definition 2.9 (Solutions). Let (ug,u;) be initial data in H' x L*(R?) and I be a time interval
containing 0. We say u(t) is a solution of (CP1) defined on the time interval I, if (u(t), dyu(t)) €
C(I; H' x L*(R%)) comes with a finite norm llully sy for any bounded closed interval J C I and
satisfies the integral equation

t—T7)V—A)
V-A

MWP$M®WMM+ASM( (6F(u(-, 7)) dr

holds for all time t € 1.

Combining the inequalities

16F (W)l L1z (1xray < [lullypy;s

I6F (1) = 6F (u2) 12 12 ity < Cllun = ually ) (a8} + ey ) 5

with the Strichartz estimate we can apply a fixed-point argument and obtain the following local
theory. (Our argument is similar to those in a lot of earlier papers. Therefore we only give
important statements but omit most of the proof here. Please see, for instance, [22] for more
details.)

Proposition 2.10 (Local solution). For any initial data (ug,u;) € H' x L*(R%), there is a
mazimal interval (—=T_(ug,u1), T+ (uo,u1)) in which the Cauchy problem (CP1) has a solution.



Proposition 2.11 (Scattering with small data). There exists § > 0 such that if the norm of
the initial data ||(uo,w1)||f1«p2ray < 0, then the Cauchy problem (CP1) has a global-in-time
solution w with [[ully®) < [[(wo, w1)ll g1« 2 (ray -

Lemma 2.12 (Standard finite blow-up criterion). Let u be a solution to (CP1) with a maximal
lifespan (=T-,Ty). If Ty < oo, then |[ully(jo,1.)) = 0o-

Definition 2.13 (Scattering). We say a solution u to (CP1) with a mazimal lifespan I =
(=T_,Ty) scatters in the positive time direction, if Ty = 0o and there exists a pair (vo,v1) €

H' x L2(RY), such that

. u(-, 1) Vo
1 — S, —0.
S H (onien) ~su0(32) HH<>

In fact, the scattering can be characterized by a more convenient but still equivalent condition
lully (7)) < oo. Here T' is an arbitrary time in I. The scattering at the negative time
direction can be defined in the same manner.

Theorem 2.14 (Long-time perturbation theory, see also [2, 14, 15, 28]). Let M be a positive
constant. There exists a constant £9g = €o(M) > 0, such that if an approzimation solution @
defined on R x I (0 € I) and a pair of initial data (ug,u1) € H* x L*(R?) satisfy
(asiA)(ﬁ)f(er(ﬁ):e(xvt)’ (lL’,t) GRdXL
ally ) < M; [1(@(0), B¢ @(0)) |l g1 ¢ 2Ry < 00
£ = [le(z, )l Lrr2(rxra) + [SL.0(t) (w0 — @(0), ur — 0:0(0))lly (1) < €o;
then there exists a solution u(x,t) of (CP1) defined in the interval I with the initial data (ug,u1)

and satisfying
[u(z,t) —a(z,t)|ly 1) < C(M)e.

()~ () =540 () 0005

Proof. Let us first prove the perturbation theory when M is sufficiently small. Let I; be the
maximal lifespan of the solution u(x,t) to the equation (CP1) with the given initial data (ug,u1)
and assume [—T7,Ty] € I N I;. By the Strichartz estimates, we have 2

sup
tel

@ = ully -1 1))
< |[Sz.0(t)(uo — @(0), ur — @(0)ly (-1, 1)) + Clle + F (@) — ¢F(u)|| L1 12((—1, 1) xR
< e+ Cllellpr2(—1y 1) xray + O F(@) — F(u)|| 11 2 ((— 1y ,15) xR )
< e+ Ce+Clli - ullvor m (185 ) + 1@ = DIy )
< Ce + Clli — ully (j-1y,12) (Mp“_l +[lu— U||1;)/“(T,IT1,T2D) :

By a continuity argument in 7} and Ty, there exist My = Mp(d) > 0 and gy = £o(d) > 0, such
that if M < My and ¢ < gg, we have

@ — ully(—1,,1)) < C(d)e.

Observing that this estimate does not depend on Ty or T, we are actually able to conclude
I C I; by the standard blow-up criterion and obtain

|l — ullyy < C(d)e.

2The letter C in the argument represents a constant depending solely on the dimension d, it may represent
different constants in different places.



In addition, by the Strichartz estimate we have

() (5) s (o)

u(t) oru(t) uy — Op(0) £ % L2 (R4)
< ClloF(u) — ¢F(u) — el p12(1xre)

< C (lellprr2rxrey + 1 F(w) = F(@)|| 1 p2(rxra))

< C e+ u—allyay (kg + lu -l )]

< Ce.

sup
tel

This finishes the proof as M < M. To deal with the general case, we can separate the time
interval I into finite number of subintervals {/;}1<;j<n, so that ||i[ly(;,) < Mo, and then iterate
our argument above. O

Remark 2.15. If K is a compact subset of the space H' x L?(R%), then there exists T = T(K) >
0 such that for any (ug,u1) € K, we have T4 (ug,u1) > T(K) and T_(ug,u1) > T(K). This is
a direct corollary of the perturbation theory.

2.3 Ground States and the Energy Trapping

In this subsection we make a brief review on the properties of ground states for the equation
(CP0) and understand the “energy trapping” phenomenon. Let us first recall a particular ground

state
1

(1 + d(§—2))

The ground state is not unique, because given any constants A € RT and zy € R%, the function

1 T — T
Wi,z () = d—ZW( h 0)

W(zx) =

2

is also a ground state. Any ground state constructed in this way share the same H' and L¥
norms as W. The ground state W, or any other ground state we constructed above, can be
characterized by the following lemma.

Lemma 2.16 (Please see [32]). The function W gives the best constant Cq in the Sobolev
embedding H*(R?) — L?" (R?). Namely, the inequality

ull g2+ < CalVullL
holds for any function u € Hl(Rd) and becomes an equality for u=W.

Remark 2.17. Because the function W is a solution to —AW = \W|ﬁW, we also have

/Rd VW |2dx = /R W2 de = VW22 = |[W]%.. = C2 VWV |2,

VW22 =1 and Ey(W,0) = (1/d)|[ VW2, > 0.

As a result, we have C’d*

Proposition 2.18 (Energy Trapping, see also [14, 15]). Let 6 > 0. If u is a solution to (CP1)
in the focusing case with initial data (ug,u1) so that

[Vugllpe < [[VW][Lz, Eg(ug,u1) < (1 —0)E1(W,0);
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then for any time t in the maximal lifespan I of u we have

1), B D)1 gty < (1= 26/d) /2 VW] (7)
u\xr u\xr 2 Tr =~ u\xr 2 xr

| (19t 0F = a0 ) do 5 [ (Va0 (5)

/ g (z, 1) dx+/ (\Vu(x,t)|2—|u(z,t)\2*>d:1: s By (uo, uy). (9)

Proof. 1f we have ||[Vu(-,to)||z2 < [[VW]|% for some time ¢y € I, then we have
[u( o)l 12+ < CallVu(, to)ll> < Cal[ VW (L2 = [[W]| L2+ .

Therefore
1
1000 00,0t ey = Eoluosn) + 57 [ olutto) * da

< (1=68)EL(W,0) + 2—/ W) da

1-9 1
= 2IOWIR + VWP

—(5-5)1vwie

Because we know (u, d;u) € C(I; H' x L*(R%)), this implies that the inequality (7) holds for each t
in a small neighbourhood of to. Using a continuity argument and the fact || Vug| 2 < [|[VW||2, we
know the inequality (7) holds for all ¢t € I. Applying this inequality and the Sobolev embedding
we have

[ el 0 do = a0l < CF Va0

<c¥( 26/d)(2*_2)/2||VWH2*’2/ \Vu(z,t)|*dx (10)
d

2*72/ |Vu(z, t)|>dx

< (1_25/d)<2*—2>/2/ V(e £)2de
Rd

Here we use the identity C3 ||[VIW||7 272 — 1. Since the constant (1 —25/d)2 =2/ < 1, we
obtain the estimate (8). The estlmate (9) immediately follows as a direct corollary. O

Remark 2.19. If (ug,u1) € H' x L*(R?) satisfies |Vuo|p2 < [|[VW| 12, then as we did in (10),
we can show (This inequality becomes an identity only if ug =0)

/d luo|? da < /d |Vug|*dz.
R R

Therefore we have Eg(ug,u1) ~ E1(ug,u1) ~ Ec(ug,ur) =~ ||(u0,u1)||i~lle2(Rd). Here ¢ is any

constant in (0,1). Furthermore, if any of the energy above is zero, then we have (ug,u1) = 0.

2.4 Known Results with a Pure Power-type Nonlinearity

The defocusing case The problem about the global behaviour of solutions in the defocusing,
energy-critical case with a pure power-type nonlinearity was completely solved by Grillakis [9, 10]
and Shatah-Struwe [26, 27] in 1990’s.
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Theorem 2.20. Let (ug,u;) € H' x L*(R%) with 3 < d < 5. Then the solution to the Cauchy
problem

02— Au = —|u|* 42Dy, (x,t) € R x R;

u(+,0) = uop;

Owu(-,0) = uq;

exists globally in time and scatters.

The focusing case The global behaviour of solutions in the focusing case is much more
complicated and subtle. It has not been completely understood. The following result is the
main theorem in [14], on the global well-posedness, scattering and blow-up of solutions to the
focusing, energy-critical non-linear wave equation, as we mentioned in the introduction.

Theorem 2.21. Let (ug,u1) € H' x L*(RY) with 3 < d < 5. Assume that E (ug,u1) < E1(W,0).
Let u be the corresponding solution to the Cauchy problem (CP0) with a mazimal interval of
existence I = (=T—(uo, u1), T4+ (uo,u1)). Then

(i) If ||Vuo|r2 < VW | L2, then I =R and u scatters in both time directions.
(i1) If |Vuol 2 > [[VW||L2, then u blows up within finite time in both two directions, namely

T_(up,u1) < +00; T4 (up, u1) < +o0.

Nonlinearity with a coefficient Assume that c is a positive constant. If u is a solution to
the equation

20 — Ay = c|u|4/(@-2)
{atu Au = clu] u, (11)

(u, Opu)[t=0 = (g, u1);

then ¢“Tu is a solution to the equation (CP0) with initial data (c%uo, c¥u1). This trans-
formation immediately gives us

Corollary 2.22. Let (ug,u1) € H' x L*(RY) with 3 < d < 5. Assume that E.(ug,u;) <
c_%El(VV7 0). Let u be the corresponding solution to the Cauchy problem (11) with a mazimal
interval of existence I = (—=T—(ug,u1), T4 (ug,u1)). Then

(i) If |Vuoll 2 < ¢~ “T2||[VW | 12, then I =R and u scatters in both time direction.

(i) If ||Vuol|rz > c’%HVWHsz, then u blows up within finite time in both two directions,
namely

T_ (ug,u1) < +00; T4 (ug,u1) < +o0.

2.5 Technical Lemma

Lemma 2.23. Let {(wo.n, W1 .n)}nezt be a bounded sequence in the space H' x L*(RY). If we
have [St,0(t)(wo,n, w1,n)|ly®) — 0 as n — oo, then the pairs (won,w1,n) weakly converge to 0
in H' x L*(R%).

Proof. If the weak limit (wgn,wi,) — 0 were not true, we could assume (wgn,w1,n) —
(wg,w1) # 0 in H' x L?(R9) by possibly passing to a subsequence. As a result, we have
S1,0(t)(Wo.n,wi,n) — Sro(t)(wo,wr) in the space Y (R). Thus we have Sy, o(t)(wo, w1) =0 =
(wo,wy) = 0. This is a contradiction. O

3 Profile Decomposition
In this section we review the linear profile decomposition derived in [1], introduce nonlinear

profiles and give their properties as a preparation for our compactness procedure. In order to
save space we use the notation H for the space H! x L?(RY) when necessary.
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3.1 Linear Profile Decomposition

Theorem 3.1 (Linear Profile Decomposition). Given a sequence (ugn,u1,,) € H so that
(wo,m, w1.n) || < A, these exist a subsequence of (wo n,u1,n) (We still use the notation (wo n, v1,n)
for the subsequence), a sequence of free waves Vj(x,t) = Sgo(t)(vo,j,v1,5), a family of triples
(Njns Tjns tjn) € RT x R® x R, which are “almost orthogonal”, i.e. we have

fim (2 X e = @il M = el
notoo \ Ajn  Ajrn Ajn Ajn

for j # 4'; such that

(I) We have the following decomposition for each fixzed J > 1,

J
(’U'O,nvul,n) = Z (‘/}7”('»0)7 atvj,n(W 0)) + (w(L)],nvwi],n)
j=1

Here Vj,, is another free wave derived from Vj:

1 T—Tjn t—t; 1 T—Tjn t—t;
V'n',t,8V‘n',t = 2V( j,n7 J’n>7 av( J:'ﬂ’ JK”/)
(Vinls V1) Az TN N T A ST U N T N
=S5t = tjn)Tx; 25, (V0,5,01,5);
(II) We have the following limits regarding the remainder (wg,,,w{ ) as J — cc.

lim sup ||SL,0(t)(wOJ,n, wi]ﬂl)HY(]R) — 0; limsup |}SL70(t)(wb]7n, wi{,JHLOOL?&X]RQ — 0;
n— 00 n— o0

(III) For each given J > 1, we have (the error oy(n) = 0 as n — o0)

J

1o, wr) 3 = SNV l3 + (| (i w0l )|y + 0 ()
j=1

Here the notation ||V;|| g represents ||(V;(-,t), 0 V; (-, )|l a which is a constant independent
of t e R.

Please see [1] for a proof. There are a few remarks. First of all, the original paper is only
for the three-dimensional case but the same argument also works for higher dimensions. Second,
only the limit with ¥ norm in part (II) of the conclusion is mentioned in the original theorem.
However, we can substitute Y norm by any Strichartz norm LIL"(R x RY) with ¢ > 2, as
mentioned in Page 136 of the paper. Here we use the L°L?" norm. Finally, the original paper
proves the theorem under an additional assumption labelled (1.6) there. But this condition can
be eliminated according to Remark 5 on Page 159 of the paper.

Remark 3.2. Passing to a subsequence if necessary, we can always assume the following limits
hold as n — oo in addition.

—ljn

Ajn

/\jﬂl — )\j € [0, OO}7 — tj S [7007 OO], Tjn —>Xj € R3 U {OO}

Here x;, — 00 means |x;,| — 0o. Furthermore, by adjusting the free waves V;’s, we can always
assume each of the triples (A\j,x;,t;) satisfies one of the following conditions

(I) )\j = 0,’
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(II) \j =1, x; is either 0 or oo;
(III) \; = +oc.
Definition 3.3. For each linear profile V; as above, we choose a coefficient function ¢;(x) by:
e If\; =0 and z; € RY, then ¢;(z) = ¢(x;);
o If (0, 35) = (1,0), then ¢;(z) = 6(x);
o If \j =400 or x; = 00, then ¢;(x) = ¢(00);

In fact, this function ¢;(z) is the limit of ¢(\;n2 + 2;,,) as n — oo in the sense of measure.
More precisely, we have

lim |{z € R%: [¢(Njnx + 250) — b5(x)] > g0} =0, for any €9 > 0.

n— oo

Combining this limit with the inequalities [¢(x)| < 1 and |¢;(z)| < 1, we can apply the basic
real analysis theory and obtain

Proposition 3.4. Assume 1 < py,qi,m1 < oo. Ifu € LP*(RY) and v € LT L™ (R x RY), then we

have

lim d(Njnt + zjn)|u(z)Prde = / ¢j(x)|u(z)Prd.
n— o0 Rd Rd
T (B + 25.0) = 65 (2)] 0 1) | s s sy = O

In the rest of this section, we prove a few properties about the linear profiles.

Remark 3.5 (Almost Orthogonality in the Energy Space). A basic computation shows (j # j')

() )
OVin(sto) ) \OVj (- o) H

— 4. Vo, 4, vo 7

= <SL(t0 t],n)TAj,n,xj,n <Ul,j> 7SL(t0 tj 7n)T)‘j’,n7xj’,n <U1,j’>>H

V0,5 t in — t i’n V. it
={ Tj/n, S I A PO e S S Jj
) atn \ V1,5 17’)% )‘j’,n V1,5 .

Jm,n

Since the triples (Ajn, Tjn,tjn) and (Njrn, T n,tj n) are almost orthogonal, we have

. V’n(ato) ) < V"TL(HtO) )>
1 J 75 =0
n>oo < (atvj,n(-,m \oVin(t)) /

for each to € R and j # j'.

Lemma 3.6. Let V(z,t) = Sp o(t)(vo, v1) be a solution to the linear wave equation with a finite
energy. We have the limit

t_ljgloo V() g2 ey = 0.

Proof. By the Sobolev embedding H'(R?%) < L2 (R%) and the fact that the linear propagation
preserves the H' x L? norm, it is sufficiently to prove this lemma for each (vg,v1) in a dense
subset of H! x L2. Thus we only need to consider smooth and compactly supported initial data.
In this case the kernel of the wave propagation gives a well-known estimate

_d-a
V() Loy S T2

On the other hand the volume of the support of V (-, ) satisfies |Supp(V (-, t))| < [¢|¢ when || is
large. This immediately gives the estimate |V (-,t)| ;2= < [t|~'/? and finishes the proof.
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Lemma 3.7. Given j € Z™, we have:

; : 2% . ift; = £o0;
amn [ @) Vin(@,0) dw‘{ fRd 6;(2)|Vy (2, t;)|2 dz, ift; € R,

Proof. By Lemma 3.6, the case t; = foo is trivial. Thus we only need to consider the case that
t; is finite. By our assumption —t; ,/\;, — t;, the fact V;(-,t) € C(R; H'(R?)) and the Sobolev
embedding H'(R?) < L?"(R%), we have

1 — T ~tjm
‘/}7”("())_ HVJ( /\,‘77 ’tj) :‘VJ(’A,J )_Vj<7t]> —+0
)\ 2 7, 7,Mn Lz*(Rd)
' L2" (R4)
.. . . . 1 *— Tjn
This implies 7}1_{20||Vj,n('70)||L2*(Rd;¢dx) = 7}1_{1;0 )\%Vj o ot . Thus we
i ’ L2 (RY;pda)
have
o
1 T — T,
2% 4 : in o
Jim [ N OF =t [ o) |, (552)| @
= lim [ ¢\jnx +25,)|Vj(2,t))* da
n—oo ]R
= [ i@V onts) e
Rd
In the last step we apply Proposition 3.4. O

Lemma 3.8. Assume Vi, Vs € L? (RY). If the pairs {(A\jn,Tjn)}jm12mez+ satisfy

. )\211 )\ln ‘xln_x2n|
1 ) ) ) il —
neo (Al,n e T A o

then we have the following limit as n — oo

1 - (x—x1p 1 =5 (T — Zan
)\gdgz)/zvl < A > ' )\ng72)/2‘/2 ( Nom )

Proof. Let us first define

— 0.
L2*/2(]Rd)

N(n)=

~ 1 ~ (T — T
Vin(z) = V; L)
() )\gi:z)m J( A )

J,n

Observing the continuity of the map

& : LY (RY x L2 (RY) =1, &V, Wh) = {H% nVa,n

L2 /2 }nez+ ’
we can also assume, without loss of generality, that
|17J(17)| < M;, for any z € R%; Supp(V, i) CA{x:|z| < R;}

for j = 1,2 and some constants M;, R;, because the functions satisfying these conditions are
dense in the space L2 (R9). If the conclusion were false, we would find a sequence n; < ny <
ng < --- and a positive constant £g such that N(ny) > 9. There are three cases
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(I) lim Supy_yo0 Aty /A2, = 00. First of all, we observe that the product Vi ,, Va n, is sup-
ported in a d-dimensional ball centred at x»,, with a radius Ay, Ro since Vs, is sup-
ported in this ball. On the other hand, we have

‘Vlnkvmk <)\1nk )‘Qn: M, M.
A basic computation shows
d—2
N (i) = || V2.0, < O(d) My MyRI-2 (22}
ng) = ni Va.n -k .
k Lng V2,0 L2 /2(Rd) 14V12 Al,nk

The upper bound tends to zero as A, /A2, — 00. Thus we have a contradiction.

(IT) lmsupy_, o A2,ny /A1,n, = 00. This can be handled in the same way as case (I).

(III) A1n, =~ Agp,. Thus we also have — ©00. This implies Supp(Vi,,) N

Supp(%ynk) = () when k is sufficiently large thus gives a contradiction.

O
Lemma 3.9. For any j # j', we have the limit
Jim [V 0) Ve (- 0)[ L2 2 (ray = 0.
Proof. If t; = oo, then Lemma 3.6 guarantees
—tin
||VJ‘,n('aO)HL2*(Rd) = Vil BV —0
gn /L2 (re)
On the other hand, we know
Vi (5 0l 2 may S IV Virn (5 0)lle < [Vjlla < A. (12)

This immediately finishes our proof. Thus we only need to consider the case that t;,¢;; are both
finite. In this case the almost orthogonality of the triples gives

fim (N At e @gal Y
n=toe \Ajrn Ajn Ajn

By the fact V;(-,t), Vi (-, t) € C(R; L?" (R%)), we have

1 T —Tin tin
Va0 =t (S )| = (v 522) -t oo
j,n 7,n LQ* ], L2
1 T—Tj, tirn
Virm(:,0) = )\(d 2)/2V o i1 =||Vir { by Vi (- t) . —0
i n 7’'n L2 j'n L2
Therefore we only need to show
1 T—x; 1 T — T
lim V; D2t Vi S =0.
(d—2)/2 "7 < - ) ]) (d—2)/2 ( ) s Uj )
n—o00 )‘j,n )\]_,n /\j n )\J n r2%/2
This immediately follows Lemma 3.8. O
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Lemma 3.10. The profile decomposition we obtain above satisfies

n—oo

i [ o)) de =3 tim [ 6@Vl 0 da. (13)
Rd j:l n—oo Rd

Proof. First of all, we know each limit on the right hand of (13) exists by Lemma 3.7. Let us

first show

2
J

J
lim [ ¢|> Vin(2,0) dor=)" lim N & |Vjm(z,0)* da. (14)
j=1

n—oo
O

This can proved via an induction by observing (take the value of Vj ,, at t = 0 and let G(u) =
Jul*")

J J—1
limsup/d G D Vin(0) | =G| D Vin(-0) | = G(Vin(:,0))| ¢dz
n—oo JR - -
Jj=1 Jj=1
i 1 J—1 1
Slimsup/ VJm/ G’ TVJ,n—FZij dr| — |:Vj,n/ G/(TVJﬂl)dT] dx
n—00 Rd 0 j=1 0
[ J—1 1 1 J—1
= lim sup / Vin > Vin / / G" | TVin+7 Y Vin | didr||da
n—oo JR4 = o Jo =
2% —2
J—1 J
<limsupC Z IV ViallL2® 12 (ra) Z Vi ll 2= (may
n—oo . .
Jj=1 Jj=1
=0.

Here we use Lemma 3.9 and the estimate (12). Next we can rewrite (14) into

L2 (R;pdx)
The conclusion (II) of profile decomposition gives

||L2* (Rd;d)dz) - O(J) — 07 as J — O

lim sup ||w'O],n
n— oo
By the identity ug, = ijl Vjn(-,0) +wy,, and the limits above, we have

1/2*
J
lim sup [|uo,nll 2% (Ra;pdz) — 0(J) < Z lim / ¢|an(x,0)|2* dx
n—oo ’ R = n—00 JRrd ’
< liminf l[wo,nl L2 (Ra;pdz) + 0(J)

Letting J — oo, we finish the proof. O
Now we can summarize all properties of our profile decomposition for future use.

Proposition 3.11 (Profile Decomposition). Given a sequence (ugn,u1,) € H,n € Z* so
that ||(wom, urn)ller < A, there exist a subsequence of (ugn,u1n) (We still use the notation
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(uo,n,U1,n) for the subsequence), a sequence of free waves Vj(x,t) = Sg o(t)(voj,v1,5) and a
family of triples (Xjn, @jn,tjn) € RT x R3 x R, which are ”almost orthogonal”, i.e. we have

lim (Aj'yn IR N X Rt 2 O |tj,n—tj’,n|> oo

nteo \ Ajn Ajin Ajon Ajin

) )

for j # 7'; such that
(I) We have the decomposition

J
(uO,mul,n) = Z(Vj,n('vo)v atvjm('ﬂ 0)) + (w(‘in, wi],n)
j=1

Here Vj,, is another free wave derived from Vj:

: : - 1 . a:—xj,n t—tj’n 1 .’)S—Z'j’n t—tj’n
(Vin (1), 0Vin (1)) = “Vj( A " i ) )\d/zatv< A " N

)\,2 J,n YR
=St —tjn TAJ nsTj, o (V0,55 01,5);

(II) We have the following limits as n — oco:

Nin = N €{0,1,400};  zj, — x; € RTU{o0}; © — t; € [—o0, ).

—t,
Ajin

In addition, if A\; = 1, then we must have z; =0 or x; = oc.
(III) The remainders (wy ,,,wy,,) satisfy:

limsup HSL,O(t)(w({,n,wi]m)HY(R) — 0, as J — 0.

hmsup” wOn,wln HH < 2A.
n—oo

(IV) We have the limits

(oo}

o0
> IVl = 3 o w0l < it )
JI= JI=

3 lim ()| Vj p(z, 0)|2 dr = hm o(x)|uo n(z )
>t [ st L

3.2 Nonlinear Profiles

Given any linear profile decomposition as in Proposition 3.11, we can assign a nonlinear profile
to each linear profile V;. Let us start by introducing the definition of a nonlinear profile.

Definition 3.12 (A nonlinear profile). Fiz ¢ € C(R%[-1,1]). Let V(x,t) = Sg o(t) (v, v1) be
a free wave and t € [~o0,00] be a time. We say that U(x,t) is a nonlinear profile associated to
(V,é,1) if U(z,t) is a solution to the nonlinear wave equation

O%u — Au = ¢F (u) (15)
with a maximal timespan I so that I contains a neighbourhood® of t and

lim (U £), QU . 0) = (V (-1, V (1) 21 = 0.

3A neighbourhood of +oco is (M, 400), where M is any real number. Similarly a neighbourhood of —oo is
(—o0, M).
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Remark 3.13. Given a triple (V, q~5, t) as above, one can show there is always a unique nonlinear
profile. Please see Remark 2.13 in [15] for the idea of proof. In particular, if t is finite, then the
nonlinear profile is simply the solution to the equation (15) with initial data (V(-,t), 0,V (-,1)) at
the time t = t. We will also use the fact that the nonlinear profile automatically scatters in the
positive time direction if t = +oo.

Definition 3.14 (Nounlinear Profiles). Given j € Z%t, we define U; to be the nonlinear pro-
file associated to (Vj, ¢;,t;). Here the coefficient function ¢; is given in Definition 3.3. For
convenience we will call U; the nonlinear profile associated to V; and use the notation

1 T—Ti, t—1t;
Uynton) = gy (L5 1)
J da—2 ) )‘jm )‘jm

pl
Ain

)

Lemma 3.15 (Uj, is an approximation solution to (CP1)). If I} is a time interval so that
HUj”y([;) < 00, then the error term

€jm = (07 — A)Ujn — ¢F(Uj )

satisfies the estimate

nlggo ||€j,n||L1L2((t,~,n+xj,n1;)xn{d) =0.
Proof. Because Uj; satisfies

T — Tjn

OFU — A, = S0)F () — (08 ~ AU, = 05(0) (522 ) PO,

we can finish the proof by calculating

T —Tin
lesmllLrL2((ty a5 17 xRE) = H <¢j <)\J> - ¢(x)> F(U,;)

Jm

LIL2((tj,n+Xj,nl})xRE)
=11 () = d(Njn& + 250)) U 11 1217 xmay = O- (16)
In the last step we apply Proposition 3.4. O

We also need the following lemmata in order to find an upper bound for the Y norm of

>, Uy

Lemma 3.16 (Almost Orthogonality of Uj,). Assume ||U']-||L4LT»(I;XW) < oo forj=1,2. Here
LAL" is a Strichartz norm with q < oo, i.e. we have

2 < q,r < oo

1

q
Let {(Mns1,m, t1.0) ezt and {(A2.ns Ta,n, to.n) tnez+ be two “almost orthogonal” sequences of
triples, i.e.

. )\Zn )\ln |x1n_$2n| |t1n_t2n|)
lim [—+—+— — 4 — : = +00.
n—r+oo (Al,n A2,n A1,n )\1,71

If I, is a sequence of time intervals, such that I, C (t1,n, + A1,nd1) N (t2,n + A2.n15), then we have

N(n) = Hf]lnﬁgn — 0, as n — 0o.

LY2 L5/ 2 (1, xR9)

Here Uj’n is defined as usual

19



Proof. (See also Lemma 2.7 in [17]) First of all, we can always assume I} = R and I, = R.
Otherwise we can define U, (x,t) = 0 for all t ¢ I} and thus expand the domain of each U; to
R x R?. Observing the continuity of the map

)

& LIL(R x RY) x LILT(R x RY) — 1. O(T,, Uy) = H(?n(?n
(R x RY) x (R x RY) , @(Uh,U2) R P S

we can also assume, without loss of generality, that
102, 0)] < Mj, for any (z,6) € RT xRy Supp((;) C {(x,1) : |al, [t| < R}

for each j = 1,2 and some constants M;, R;, since the functions satisfying these conditions
are dense in the space LIL"(R x R?). If the conclusion were false, we would find a sequence
ny < ng <ng < --- and a positive constant ey such that N(ny) > 9. There are three cases

(I) imsupy_,o0 A ng/A2,n, = 00. On one hand the product Ul,nk 027% is supported in the
(d+1)-dimensional circular cylinder centred at (22 p,, t2 n, ) with radius Ag ,, R2 and height
2X2,n,, 2 since Uy, is supported in this cylinder. On the other hand, we have

_d=2 a—2

-2 _d
p Pl
1,ng )‘Q,Hk

‘Ol,nkUan My Ms.

<A

A basic computation shows

< C(d)M; My RI™2 (;2’%) .

Lng

N(nk) = HU]./I’L;CUz,nk

La/2Lr/2(RxR4)
The upper bound tends to zero as A, /A2, — 00. Thus we have a contradiction.
(IT) lmsupy_, o A2,ny /A1,n, = 00. This can be handled in the same way as case (I).

(III) A1,n, = A2,n,- By the “almost orthogonality” of the sequences of triples, we also have

N t1,n, — 2,4 e
Al,nk )\Lnk

|x17”k — xQ,nk|

This implies Supp(ULnk) N Supp(Ugynk) = () when k is sufficiently large thus gives a con-
tradiction.

O

Lemma 3.17. Let {I}}j=12,.. 7 be time intervals such that ||Uj(l‘7t)||y(1;) < oo holds for each

1<j<J. Suppose {J,}nez+ is a sequence of time intervals, so that J, C ﬁjzl(tj,n + )\j’nlj’-)
holds for sufficiently large n. Then we have

J
Jim P 32 Ui | = XD F(Usn) =0.
Jj=1 Jj=1 L1L2(J, xR%)
§ J 1/pe
lim sup ZUj,n < ||UjH€/C(IJ'.)
n—00 j=1 Y(Jn) Jj=1
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Proof First of all, for any J > 2 we have

J J—1
Jim D Uin | = F 32 Uin | = F(Usn)
j=1 Jj=1 LYL2(J, xR%)
1 J—1 1
= lim || |U;, / F' | 7Usn + Z Ujn | dr| — [UJ,n / F/(TUJ,n)dT]
n— oo N
0 J=1 0 LAL2(J, xR4)
J—1 1,1 J-1
T ) " ~ . ~
= nh—{%o Uin Z Uin /0 /0 F'\1tUsn+7 Z U;n | drdr
j=1 j=1 L1L2(J, xR%)
J_l J pc_2
< nh—>Holo Z ||UJ7TLUj,nHLpC/2LpC(JnXR(I) Z HU47n||Y(JV,L)
j=1 Jj=1
J-1 J pe?
< lim | D UsnUjinllserzime guxmay | | D2 1Uillva)
j=1 J=1
=0.

In the final step we apply Lemma 3.16. As a result we can prove the first limit by an induction.
The second limit is a corollary.

Pe

; J
lim sup ZUj,n =limsup || F° ZUJV"
n—o00 j=1 n—roo Jj=1
Y (Jn) LA xR%)
J
=limsup ZF(UJ‘,n)
Jj= L1L2(J, xR4)
J
< lim sup Z IE(Ujn)ll L1 L2, xr)
J
=limsup > Uil
j=1

J
SZHUJ’HZ;/C(IJ(y

j=1

Lemma 3.18 (Energy of a Nonlinear Profile). Let U; be the nonlinear profile as above. Then
we have the energy defined by

1 1 ; .
p@) = [ (5100 + jlo05 0 - S0k ) as

satisfies

1 ¢ .. .
B = 51Vl = 5 Jim [ 0@Vl 0)F do.

Proof. First of all, our definition of nonlinear profiles guarantees that the energy defined above
does not depend on the time t. We prove the lemma by considering two different cases.
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Case 1 If ¢; = +oo, then the definition of the nonlinear profile gives

[ Gadth) = (otsion) ey =© "

By the Sobolev embedding, we also have ||U;(-,t) — V;(-,t)||p2» — 0 as ¢ — 4o00. Applying
Lemma 3.6, we obtain

t—+oo

lim / U (2, t)|* dz = 0.
Rd

Combining this with (17), we can evaluate the energy at larger and larger times ¢ and finally
obtain E(U;) = 3||V;||3;. This finishes the proof, since we also know

lim / [Vjn(,0)|? dz = lim / [V, —tjn/Njn)|* dz = 0.
Rd n—oo R

n— oo

The same argument works if t; = —o0.
Case 2 Ift; is finite, we can immediately conclude the proof if we evaluate the energy at t = t;
by using Lemma 3.7 and the fact (U;(-,t;),0:U; (-, t;)) = (V;(-,t5), 0:V; (-, t5))- O

Combining Lemma 3.18 and part (IV) of our profile decomposition (see Proposition 3.11),
we obtain

Corollary 3.19. Let U;’s be the nonlinear profiles with energy E(U;) as defined above. Then
we have the inequality

B(U;) < liminf By (uo,n, u1,0).

n—oQ

M

1

J

4 Compactness Procedure

In this section we prove the following proposition

Proposition 4.1. Assume that ¢ satisfies the condition (1). If the statement SC(p, M) breaks
down at My < E1(W,0), i.e. the statement holds for all M < My but fails for any M > My,
then there exists a critical element u, which is a solution to (CP1) in the focusing case with
initial data (ug,u1) such that

(I) The energy Eg(uo,u1) = Mo;

(II) The solution exists globally in time with |ully (j0,00)) = lully ((=00,0) = +00.
(111) The norm [[(u(- ), ue(, )l g1 x 2 (may < VW22 for each t € R.
(IV) The set {(u(t), dyu(t))|t € R} is pre-compact in the space H' x L*(R%).

Remark 4.2. The compactness procedure in the defocusing case is similar. We can substitute
the statement SC(¢, M) and Proposition 4.1 by the statement SC’(¢, M) and Proposition 4.4 as
below.

Statement 4.3 (SC’(¢, M)). There exists a function (3 : [0, M) — R, such that if the initial
data (ug,u1) € H' x L*(R?) satisfy E4(uo,u1) < M, then the corresponding solution u to (CP1)
in the defocusing case exists globally in time, scatters in both two time directions with

lully®) < B(Eg(uo,u1))-
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Proposition 4.4. Assume that ¢ satisfies the condition (1). If the statement SC’(¢p, M) breaks
down at My, i.e. the statement holds for all M < My but fails for any M > My, then there
exists a critical element u, which is a solution to (CP1) in the defocusing case with initial data
(up, u1) such that

o The energy Eg(uo,u1) = Mo;
e The solution exists globally in time with ||ully ([0,00)) = |ully ((=o0,0)) = +00-

e The set {(u(t), dyu(t))|t € R} is pre-compact in the space H' x L?(R%).

4.1 Set-up of the Proof

If the statement SC(¢, M) broke down at My < E;(W,0), then the statement SC(¢, My +27™)
would not be true for each positive integer n. Fix a positive integer Ny so that My + 27" <
E,(W,0) for each n > Ny. Under these assumptions we have

Lemma 4.5. We can find a sequence of solutions {un,}n>n, with initial data (ugm,u1n) €
H' x L*(R?), such that

(I) ||VUO)n||L2 < HVW||L2 and E¢(u07mu17n) < My+277;

(II) Let (—T—(uo.n,U1,n), T4 (Uo,n, U1,n)) be the mazimal lifespan of u,. We have
et 1y (=7 g 00,0 01) > 25 el 0.7 (o sur ) > 2"

Proof. Given n > Ny, we claim that there exists a solution v, with initial data (vg n,v1,,) and
maximal lifespan (—=7—_,T% ), so that part (I) of the conclusion above holds and

1
||Un||Y((7T,,T+)) > 2" pe

Otherwise the statement SC(¢, My + 27™) holds since we can choose 5 = 2""5: + 1 to be a
constant function. Next we can pick a time to € (=7-,T}), so that ||v,|ly«(t,1,)) > 2" and
lvnlly«((=1_ .t > 2" Finally we finish the proof by choosing

(UO,vuul,n) = (’L}n(~,t0), atvn('7t0))§ un('vt) = Un(~,t + t0)~

Note that the conservation law of energy and Lemma 2.18 guarantee the new initial data
(wo,n,u1,pn) still satisfy (I). O

Application of the profile decomposition Let us consider the solutions u, and initial data
(uon,u1n) given above. According to Lemma 2.18, there exists a constant 0 < ¢ < 1, such that

(0. wr0) | 1 2 < (1= )V 2

holds for large n. Thus we are able to apply the linear profile decomposition (Proposition 3.11)
on the sequence {(uon, U1,n)}nez+, then assign a nonlinear profile U; to each linear profile V; as
we did in the previous section. Finally we obtain the decomposition (J € Z%)

J
(UO,mul,n) :Z(Vj,ﬂ("o)v 8tvj,n(', 0)) + (w({nvwi],n)
j=1

(SJ,7L('7O)a8tSJ,n('aO)) + (QI)OJ,n7w1],n) (18)

Here {(ugn, u1,n) fnez+ is actually a subsequence of the original sequence of initial data, although
we still use the same notation. One can check that the conclusion of Lemma 4.5 still holds for this

23



subsequence (along with the corresponding solutions uy). The notations Sy, and (&g, @7 ,,)

represent
J
SJ,n = Z Uj,n»
Jj=1
J
(w({nvwi]n) wO n?wln +Z ]n 7 Jn( ) ),(‘%ij,n(',O) 7atUj7"('70))'
j=1

By our definition of nonlinear profiles, we have (j € Z™)

lim H( ( 70) - Uj,n(-,O),ath’n(-,O) - 6tUj,n('70))||H1><L2 =

n—oo

Thus we still have
limsup ||S,o( )(w({n,wln HY(R) — 0, as J — 0;
n—oo

lim sup ||(@({n,w1 n ||H <2||VW||Le.
n—oo

In addition, part (IV) of the conclusion in the profile decomposition gives
o —
D IVillEr < liminf || (uo.n. urn) I < (1= 8)% VW72
= n—o00

By the definition of nonlinear profiles, we also have
fim ([ (U5 (2), 0:U; (. 1))l = [Vl

Combining (21) and (22), we obtain

e For each given j, we have

fim [ (U5 8), 8:U; ()l < (1= OIVWI L2

(21)

(22)

(23)

According to Remark 2.19, we have E(U;) > 0 unless Uj is identically zero. By Corollary

3.19 we also have ZE ) < M.
Jj=1

e As j — 0o, we have

fim (|5 (2), 805 (- 1))l = |V [l = 0.

Thus we know Uj is globally defined in time and scatters with ||Uj|ly®) < [|Vj]|a for each
sufficiently large j > Jo. Combining this upper bound on ||Uj ||y g and the inequality (21),

we have
oo

Z ||UjHI;/C(R) < 0.

j=Jo+1

4.2 The Extraction of a Critical Element

(24)

In this subsection, we show there is exactly one nonzero profile in the profile decomposition,
whose corresponding nonlinear profile is exactly the critical element we are looking for. We start

by proving
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Lemma 4.6. If each nonlinear profile U; we obtained in the previous subsection scatters in the
positive time direction, then u,, scatters in the positive time direction for sufficiently large n > Ny
and

sup [un |y (0,00)) < 0.

n>Np

J

Proof. Let us consider the approximate solution Sy, =7

=1 Ujn which satisfies the equation

(at2 - A)SJ.,TL - QSF(SJ,TL) = 6f],n7 te [Oa OO)

with the error term

J J

n=0 | FUjn) = F(Ssn)| +>_ [(07 = A)Ujn — ¢F(Uj )]

j=1 j=1

and the initial data (uon,u1,n) = (Ssn(:,0),0:85n(-0)) + (@ ,,w{,). We use the notation
I; for the maximal lifespan of U;. By our assumption on scattering we can choose an interval
I C I for each j in the following way so that HUJ‘HY(IJ’-) < 00,

[ (—o0,00) ifj > Jyort; = —o0;

T [t;7 00) if j < Jo and t; > —oo, here ¢ € I; is a time smaller than ¢;.

One can check that [0,00) C Aj I} 4 t;, holds for all j € ZT as long as n is sufficiently large.
Thus we can apply Lemma 3.15 as well as Lemma 3.17 and obtain for each J

Jim €l nll L1 L2 ([0,00) xR) = 05 (25)
7 1/pe - 1/pe
HHLSUP HSJ,nHy([o,OO)) < Z HUJHZ))/C(I{) < Z ||UjH11)/C(1’.) < 0. (26)
n—00 j=1 7 - J

Here we use our estimate (24). Let

1/pe

> (Lo o +1
i=1

and g9 = €o(M;) be the constant given in the long-time perturbation theory (Theorem 2.14).
Let us first fix a J; so that

lim sup HSL,O(t wgn, ﬁ/i’ln)
n— oo

< 2.
’Y(]R) s/

Using this upper limit as well as (25) and (26), we can find a number Ny € Z*, such that if
n > Ny, then

< 2;
Y (R) o/

Heifl,nHLllﬁ([O’OO)de) < 50/25 “SL,O(t)(w({ln’ ~1J1n)
1/pe

||SJ1,n||y(OOO) < M = Z”U Hy([}) + 1

These estimates enable us to apply the long-time perturbation theory on the approximation
solution Sy, ,, initial data (ug,u1,,) and the time interval [0,00), and then to conclude u,
scatters in the positive time direction with

lunlly (0,00)) < 1Sm,nlly ((0,00)) + [[ttn = S nlly (0,00)) < M1+ C(Mi)eg < 00

for each n > Np. O
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Critical Element Because we have assumed that ||un|ly(o,1 (u,ui,)) > 2", Lemma 4.6
implies that there is at least one nonlinear profile, say Uj,, that fails to scatter in the positive
time direction. In addition, the limit (23) implies ||VU;,(-,t)||z2 < ||[VW/||r2 when ¢t is close to
tj,- According to our assumption that SC(¢, M) is true for any M < M, and Corollary 2.22,
we obtain

E(U ) — { > Mo, if ()‘j()?xjo) = (LO);
J > Ey(W,0) > My, otherwise.

Combining this with the already known facts that Z;’;l E(U;) < My and E(U;) > 0 (please see
the bottom part of Subsection 4.1), we obtain that

e Uj, is a solution to (CP1) with an energy E(Uj,) = E(Uj,, 0:U;,) = M.
e Uj, is the only nonlinear profile with a positive energys;
e Any other profile Uj is identically zero;

e By Lemma 2.18, the inequality ||(Uj, (-, t), OUj, (-, t) |l < [[VW|| L2 holds for all time ¢ in
the maximal lifespan I, of the nonlinear profile Uy, .

Remark 4.7. A similar result as Lemma 4.6 holds for the megative time direction, because
the wave equation is time-invertible. This implies that Uj, fails to scatter in the negative time
direction as well. A direct corollary follows that t;, is finite.

4.3 Almost Periodicity

Let u be the critical element (U;,) we obtained in the previous subsection and I be its maximal
lifespan. In this subsection we prove that

Proposition 4.8. The set {(u(-,t), du(-,t))|t € I} is pre-compact in H* x L*(R%).

Proof. Given an arbitrary sequence of time {t, },cz+ so that t,, € I, we know u,, = u(-,t +t,)
is still a solution to (CP1) with initial data (ugn, u1,n) = (u(-, t,), Ou(-, t,)). This sequence of
solutions still satisfies the conclusion of Lemma 4.5. Thus we can repeat the process we followed
in the previous subsections. Finally we can find a subsequence {un, }rez+ with a single linear
profile V1, a single nonlinear profile U; and a sequence of triples (A1, %1k, t1,%) such that

(a') (nO,nk;ul,nk) = (Ul,k('a O)vatUl,k('ao)) + (ﬁ)o,k7ﬁ)1,k);

(b) limsup [[SL.o(t)(@o.k, D11) lly gy = 0;

k— o0
(C) )\Lk — 1, Tk — 0 and *tl,k/Al,k — 1 € R;

(d) E¢(U1,8tU1) = M, and limsup ||(1D0,k,w1,k)HH < 2||VI/V||L27

k—o0

(e) By the fact Uy(-,t1) = Vi(+,t1), Lemma 3.7 and part (IV) of Proposition 3.11, we have
/ ¢(@)|Us (z,01)[* dw = lim [ ¢(x)|uo,n, (x)|* da.
R4 k—oo Jpd

Now let us prove that (ug n,,u1,n,) converges to (Ui (-, t1),0:Ui(-, 1)) strongly in H, as k — oo.
First of all, the condition (c) above implies that

(Ul,k('7 0), 6tU1,k(', 0)) — <U1(~, tl), 61/U1('7 tl)) StI‘OHgly in H (27)
Thus we can substitute Condition (a) above by

(R0,mps Uty ) = (Ur(+,t1), 0:UL (-, t1)) + (o ks, W1 k) (28)
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Here the remainders (g, W ) may be different from the original ones, but they still satisfy
the same estimates in (b) and (d). According to Lemma 2.23, we know (W , W1 %) converges to
zero weakly in H. Thus

lim <(U1(',t1),8tU1(',t1)), (1])07k7'lj)1,k)>H =0. (29)

k—o0

In addition, using Condition (e) and the fact Ey(U1(-,t1),0:Ui(-,t1)) = Mo = Ep(n0,np s W1,ng ),
we obtain
Jim ([ (n0,my, w1, )7 = 1015 10), B0 (5 12) (30)

Finally we can combine (28), (29) and (30) to conclude that klim (@0 1, W1 1) || ;r — 0, which
—00

is equivalent to the strong convergence of (ngn,,u1,n,), namely the strong convergence of
(u(, tn), Opul(-, t,)), in light of (28). O

4.4 Global existence in time

According to Remark 2.15, the almost periodic property guarantees the existence of a constant
T > 0, so that if ¢ is contained in the maximal lifespan I of u, then (¢ — T,t + T) C I. This
implies I = R. Collecting all the properties of the critical element u we obtained earlier, we can
conclude the proof of Proposition 4.1.

5 Rigidity

In this section we show that the critical element obtained in the previous section can never exist,
thus finish the proof of the scattering part of our main theorem. There are two cases.

e In the defocusing case, A Morawetz-type estimate is sufficient to finish the job.

e In the focusing case, we follow the same idea as Kenig and Merle used to eliminate the
critical element for the equation (CPO) in the paper [14].

5.1 The Defocusing Case: A Morawetz-type Estimate

In this subsection we introduce the following Morawetz-type estimate and use it to “kill” the
critical element.

Proposition 5.1 (A Morawetz-type Inequality). Assume ¢ € C*(RY) satisfies the condition (1)
and

(d—2)z - V¢(z)
2(d-1)

Let u be a solution to the Cauchy problem (CP1) in the defocusing case with initial data (ug,u1) €

H' x L*(R?) and a mazimal lifespan (=T_,T ). Then we have

n(x) = o) — >0, zeR?

T+ |u|? 2d
drdt < ——F, .
Ly oo oot < 5 Bt

The idea of proof The main idea is to choose a suitable function a(z) and then apply the
informal computation

_ 4
dt Jra

— [ VuDa (v de - ¢ [ (uPasa)des [ (Goda= 596 Va) [l d
Rd 4 Rd d 2*

Rd

Ut (Va~Vu+u~A2a> dx
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for a solution u to (CP1) in the defocusing case. In order to obtain a Morawetz inequality,
the same idea has been used in [23] for the defocusing wave equation with a pure power-type
nonlinearity and in [28] for the defocusing shifted wave equation on the hyperbolic spaces. Here
we choose the function a(x) = |x| = r, which satisfies

Va=

—1 —1
E; Aa = d ; D2a > 0; VAa = —u
r

T AAa <0.
r r

Since the original solution does not necessarily possess sufficient smoothness, we need to apply
some smoothing and cut-off techniques. Please see [23, 28] for more details on this argument.

Nonexistence of a critical element Applying Proposition 5.1, we obtain a global integral

estimate
/ / 2d
R4 —d-

for the critical element u. However, the almost periodicity implies that the integral above should
have been infinite, as shown in the following lemma. This gives us a contradiction and finishes
the proof in the defocusing case.

(ug,uy) < 00

Lemma 5.2. Assume that 5(z) is a positive measurable function defined on R%. Let u be a
nontrivial solution to the equation (CP1) defined for allt € R, so that the set {(u(-,t), dwu(-,t)) :
t € R} is precompact in the space H' x L2 (R?). Then for any given T > 0, there exists a positive
constant 81, such that the following inequalities hold for any ty € R.

to+T1 to+T7 .
/ / |Vu(z,t)|*dzdt > 6y, / B(x)|ul* dadt > 6.
to  JRY

Proof. If the lemma were false for some 7 > 0, then there would exist a sequence of time {t, } ,ez+
such that

tn+7 tn+T1
/ / Vu(z, 8)[2dzdt < 27" or / / B ulz, )| dadt < 2" (31)
tn R4 tn R4

By the almost periodicity we know the sequence {(u(+,t,), us (-, tn)) bnez+ converges to some pair
(vo,v1) strongly in the space H' x L2(R%). Let v be the corresponding solution to (CP1) with
initial data (vo,v1) and 7 € (0,7] be a small time contained in the lifespan of v. Thus we have
llvlly (jo,r]) < oo. Applying the long-time perturbation theory on the solution v, the time interval
[0, 7] and the initial data (u(-, ), u(-,t,)), we obtain that

lim sup |u(,tn +t) = v( )|l g1 ray = 0, nh—>néo lu(-, - +tn) = vlly(o,n)) = 0-

n=00 4c[0,71]

Combining this with our assumption (31), we obtain

/ /|Vv(x,t)|2dxdt:0 o //ﬁ(m)w(x,t)\?*dxdt:o.
0 Rd 0 Rd

In either case we have v(x,t) = 0 for ¢ € [0,71]. This means that (vo,v1) = (0,0) and
l(w(-stn), ue (-5 tn))ll i 2 — 0. The conservation law of energy immediately gives the energy
E4(u,0pu) = 0. Finally we apply Remark 2.19 and conclude w = 0. This gives a contradic-
tion. O
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5.2 The Focusing Case

The idea is to show the derivative

d d
r / (x - Vu)ugprdr + - / uusprdr
dt Rd 2 Rd

has a negative upper bound but the integral itself is bounded, which gives a contradiction when
we consider a long time interval. Here ¢p is a cut-off function defined below and the parameter
R is to be determined. It is necessary to apply the cut-off techniques here since the functions
(z - Vu)u, and uuy may not be integrable in the whole space.

Definition 5.3 (Cut-off function). Let us fizx a radial, smooth, nonnegative cut-off function
¢ : R —[0,1] satisfying

L dffel < 1
#(z) ‘{ 0, ifla] > 2;

and define its rescaled version
er(z) = o(z/R).

Definition 5.4. If R > 0, then we define

u(x, t)|? .
k(R) = sup/| o <|ut(x,t)|2 + |Vau(z, t)]* + |(|x’|2t)| + |u(z, t)? > dx

teR

Lemma 5.5. Let u be a critical element as in Proposition 4.1. Then k(R) is bounded and
converges to zero as R — oo.

Proof. This is a direct corollary of the pre-compactness of {(u(-,t),du(-,t))|t € R} and the
Hardy Inequality. O

Lemma 5.6 (Hardy Inequality). Assume f € Hl(Rd). We have

2 1/2
([, 5 ) S 10 e

Lemma 5.7 (Calculation of Derivatives). Fiz R > 0 and let or be the cut-off function as in
Definition 5.3. We have the following derivatives in t

d d .. d—2 , .
= Md(x.vu)ut%dx] *’§/Rd || dx+?/w (|vu\ — ¢lul )dz

o [ (V6 ol prdr+ O(s(R)):

% [/Rd “’R““fdl'] :/W e |*daz - /Rd (\VUI2 - ¢IUI2*) dx + O(k(R)).

Here O(k(R)) represents an error term that can be dominated by a constant multiple of k(R).

Proof. Let us assume that u is a smooth solution to (CP1). Otherwise we can apply basic
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smoothing techniques. The idea is to apply integration by parts

d
7 [/Rd(x . Vu)utchdx} :/Rd (z - Vug)upppdr + /Rd(x - Vu)upprde
1
=5 /]Rd orr - V(|u|*)dx + /Rd (z-Vu)(Au + ¢|u|4/(d72)u)<ppbdx
d 2 1 2
=-3 orlutl dx—§ (Vor - x)|ug|*dz
Rd

— V(@Rx Vu) - Vudx—i-f/ prox - V(jul*)de

:——/ lug|?dz + O(k(R)) + I + I (32)
v 0%u .
In the calculation below, we let u;, u;; represent the derivatives — 92, 9r.08, respectively. We
J
have
I =— V(prz - Vu) - Vudx
]Rd

E— Z /]Rd ( TiUuuj + QRO UG + @szuuu]) dx
Lj

1,7=1
1
:—/ ch|Vu\2da:—f/ onz - V(|Vul2)dz + O(k(R))
Rd 2 Jra
1
/ |Vul?de + - / ¢R|Vu|2dx+§/ (z - Vor)|Vul?dr + O(k(R))
R4 Rd
:T \Vu\de+O( (R))

1 X
I, = =3 /| <PR¢$'V(W|2 )dzx

d . 1 . 1 .
=- 27 <PR¢|U|2 dr — ? (Vo - z)prlul* do — 5 | (Ver: )plul? dx
]Rd Rd
/ ol dz = 5 [ (V0 2)nlul* dz + O((R)).

Plugging I, I5 into (32), we finish the calculation of the first derivative. The second derivative
can be dealt with in the same manner:

d
— [/ wRuutdx] =/ ¢R|Ut|2dx+/ YRUUdT
dt | Jra R Rd

:/ |ut|2dx+/ goRu(Au+¢|u|4/(d’2)u)dac+O(R(R))
Rd Rd
:/ |ut|2dx—/ ¢R|Vu|2dx+/ @R¢\u|2*dx+0(/<;(R))
R4 Rd R4
:/ |ut|2dm—/ <|Vu|2—¢|u|2*>dx+0(/i(R)).
]Rd Rd
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Nonexistence of a critical element Now we can show that a critical element does not exist
in the focusing case. Consider the function (R > 0)

Ggr(t) = /Rd(x -Vu(z, t))u(z, t)prde + g/Rd wru(x, t)u(z, t)dz.

Applying Lemma 5.7, we obtain

2*) dr— L (Vo - 2)|ul* pr dz + O(k(R))

Galt) == [ (1Vu = ol >

_ 2
= /]Rd (\Vu\ |u

<—cm) [ 1vude— 5 [ 12°0-0)+ (Vo o)l pnds -+ O(s(R) (3)

Yo~ [ (=0l pnds - 5 [(6- Dl pnds+ OGx(R)
R4

In the last step above, we apply Proposition 2.18. The positive constant C'(E) only depends on
the energy E = E4(u,u;), but not on ¢ or R. According to our assumption that 2*(1 — ¢(z)) +
(x - Vo(z)) > 0 holds for all z € R?, the integrand of the second integral in (33) is always
nonnegative. Thus we have

Go(t) < —C(E) /]R Vul2de + O(k(R))

forall R > 0 and ¢t € R. Fix 7 > 0 and let §; be the constant in Lemma 5.2. Since lim x(R) =0,

R—o0
we can fix a large R so that

GR(t) < —C(E) /Rd |Vu|*dx + C(2L7_)61, for any t € R.

Integrating both sides from ¢t = 0 to t = nrt for an positive integer n and applying Lemma 5.2,
we obtain
C(FE)d C(E)o - n

Gr(nt) — Gr(0) < —C’(E)/ / Vul?dedt + S0 o
0 Rd 27’ 2

This is impossible as n — 0o, because |G ()| has a uniform upper bound for all ¢ if we fix R.

u(z, £)”

Gul 5 & [ (IVate.0F + o) + 200 a0 <
Rd

Here we need to use Hardy’s inequality.

5.3 Three dimensional Case with Radial Data

If d = 3, then we can substitute the assumptions (4) and (5) in the main theorems with the radial
assumptions on ¢ and initial data (ug,u1). The complete proof will be pretty long but follow
the same “channel of energy” method introduced in [4], thus we only give important statements
here but omit the details.

Step 1: Existence and regularity of “ground states” Section 6 of the author’s recent
paper [31] gives the following results about the radial solution to the elliptic equation —AW =
Co(@)|WP=iw.

Proposition 5.8. Given any constant A, there exist a radius R = R(¢p, A) > 0 and a radial
solution W4 € C%(R3\ B(0, R)) to the elliptic equation —AW = (o|W|*W, such that
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(a) The behaviour of Wa(z) as |x| — oo is characterized by

A

]

1 1
—= VW, < —.
S o VAW £ [

’WA(I)

(b) If R(Cp, A) >0, then limsup |Wa(z)| = +o0.
|z]—=R(CH,A) T
Proposition 5.9. Let W € C%(R3\ {0}) be a radial solution to the elliptic equation —AW =

CH(z)|WIW so that
lim |2 |W (z)| = 0.

|z|—0t

Then we can extend the domain of W to the whole space R3 by continuity so that W € C?(R?)
gives a classic solution to the elliptic equation.

Step 2: The coincidence of a critical element and a ground state Following the same
“channel of energy” argument as given in [4], we obtain

(1) There exists a constant A # 0, so that the behaviour of the critical element u near infinity
is characterized by

u(zx,t) —

Al L
ol | ¥ T

(2) The critical element u coincides with the ground state W4 given in Proposition 5.8 when
|z| > R({¢, A), i.e. we have

u(z,t) = Wy(x), forallt € Rand |z| > R((o,A).

Step 3: C? regularity of the ground state W, (z) Fix a time ¢. Since u(-,t) € H'(R%) is
a radial function, we have (see Lemma 3.2 of [16] and appendix of [28])

luls Ol lim [z]"/? |u(z,t)| = 0.

t)] <
|'Uf(l'a )| ~ ‘xll/Q ) |2]=0

Combining the first inequality and conclusion (b) of Proposition 5.8, we conclude that R({¢, A) =
0. Therefore we can substitute u(x,t) with Wy (z) in the second inequality above and apply
Proposition 5.9 to conclude Wa(z) € C?(R%).

Step 4: Contradiction Multiplying both sides of the equation —AW = (¢|W [*W by W and
applying integration by parts, we obtain an identity

/ VWa(x) e = ¢ / ()| Wa(2)|*da. (34)
Rd Rd

This immediately gives a contradiction in the defocusing case ( = —1. In the focusing case we
have |[VWa|r2 = |[Vu(-,0)||z2 < |[VW||L2 by the third property of the critical element given in
Proposition 4.4. Therefore the energy trapping (Remark 2.19) applies

/ VW ()P > / ()| Wa(2)[0da. (35)

A comparison of the identity (34) and the inequality (35) gives a contradiction.
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6 Finite Time Blow-up

In this section, we prove the second part of my main theorem. Namely, if ||[Vugl|rz > ||[VW||L2
and Ey(ug,u1) < Eq(W,0), then the corresponding solution to (CP1) in the focusing case blows
up within finite time in both two time directions. Since our argument here is similar to the one
used in section 7 of [14], we will omit some details.

The idea If the initial data uy € L?(R?), then the blow-up of the solution u can be proved
by considering the function y(t) = [p. |[u(x,t)[*dz and showing that this function has to blow
up in finite time. In the general case, we have to use a cut-off technique. Let us assume
T. (up,u1) = +oo and show a contradiction. Applying integration by parts and smoothing
approximation techniques, we have

Lemma 6.1. Let pr(x) be the cut-off function as given in Definition 5.5. If we define yr(t) =
[ lutat)Pen(e)da, then
Rd

yR(t) = Q/Rd ug(z, )u(z, t)pr(z)dr

Ad 1 1 1 4(d—1)
" )= ——— - 2 - 2 - 2 d 7/ 2 d
(0= =725 [ (59 + Jhul = ool ) endo+ 2820 [ i onda
4

+— |Vul?prdr — 2/ (Vu - Vog)udz.
d - 2 Rd Rd

Tail Estimate For any given initial data (ug,u;) € H' x L?(R?) we always have

Jim (1= pr(@))uo, (1 = @r(@)un)ll g1 2 ey = 0-

Thus for any € > 0, there exists a number Ry = Ry(g), such that
(1 = @Ry (2))uo, (1 = @Ry (2))ur) | g1 x p2(may <&

When ¢ is sufficiently small, our local theory guarantees that the solution ug, to (CP1) with
initial data ((1 — ¢g,(2))uo, (1 — @r,(z))u1) exists globally in time and scatters with

SUp [ (o (1), Ortomo ()l a2 ey < 28

As a result, we have the following estimate for each ¢t € R:

|ur, (1)

[, (1m0 + v, (0.0 + fun o)+ 2

> dx < Ce2.

Here C > 1 is a constant depending only on the dimension d. Since our center-cutoff version of
initial data ((1 — @g,(x))uo, (1 — @Rr,(x))u1) remain the same as the original initial data (ug,u1)
in the region {x : |x| > 2Ry}, finite speed of propagation immediately gives

2
/ <|Vu(:1:7t)|2 + |0pu(z, 1) + |u(z, t)[* + W) dx < Ce? (36)
|¢|>2Ro () +|t| 2|

Proof of the blow-up part If R > 2R(¢) and t € [0, R — 2Ry(¢)], then we can combine
Lemma 6.1 with the tail estimate (36) and obtain

4d 4(d —1) 4
mepy 20 Ha—1) 2 _* 2 2
yp(t) = d72E¢(u,ut)—|— 7o /Rd |ut|“ordx + i /}Rd |Vu|*dx + O(e?).
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We have already known Eg(u,u:) = Eg(ug,u1) < E1(W,0). In addition, we claim that the
inequality ||Vu(-,t)||rz > |[VW]||2 holds for all ¢ > 0. Otherwise we would have ||Vugl||rz <
[VW]{|2 by Lemma 2.18. Using these inequalities and the identity |[VW |3, = d - E1(W,0) we
can find a lower bound of the second derivative

4d 4(d -1
Yr(t) >——= (E1(W,0) — Ey(uo, u1)) + ( ) /d lue|* o rda
R

d—2 d—2
4
+— < VW |2dx — d - Ey(W, 0)) +0(e?)
d—2 \ Jpa
4(d —1)

>0+ / lug|*ordx — C1€2.
Rd

d—
Here the constant C is determined solely by the dimension d while § can be arbitrarily chosen

in the interval (O, d4—_fl2 (E1(W,0) — E¢(u0,u1))>. Let us fix § < 1 and € = 62 so that

) 1 4d
5—0162:6—0154 >5/27 (5<m1n{C’,M,H(El(WO)—E¢(uo,u1))} (37)

Here C is the constant in the inequality (36). As a result we have if R > 2R((6°) and ¢ €
[0, R — 2Ro(6?)], then

0
2

02 5+ 0 [ uPends = e = T5R0OP. 69

d—2

In addition, we have the following estimates on yr(0) and |yz(0)|. In the integrals below
represents the region {z : 2Ro(6?) < |z| < 2R}.

|uo|?

o |z?

1/2 |u0‘2 1/2
yr(0)] <2 up| - 1| dx + 2 uy |2dx 4R? dz
R 2
|z|<2Ro(52) Q o |zl

§2/ o] - |us] dz + ACS* R,
|| <2R0(62)

yr(0) S/ luo|?dx + 4R? dx < / luo|?dz + 4C5* R?;
|| <2R0(52) |z]<2R0(82)

As a result, we always have the following estimates for sufficiently large R > Rj:

yr(0) < 5C6*R?; ly%(0)] < 5C5*R; R > 100Ry(6%). (39)
Let us consider to(R) = min{t : 0 < ¢t < 12C6R, yi(t) > C6*R} for such a radius R. This is
well-defined since we know 12C0R < 12R/100 < R — 2R(6?) and

)
’ >/ . 1 " > — 4 = 2> 2 .
Vp(12C6R) > yp(0) + 1200R - _ inf  yfi(t) > —5C5*R+12C6R - 5 > CF°R

In addition we have

yr(to(R)) < yr(0) + to(R) . yh(t) < 5CH*R% +12C6R - C5°R < 17C%53R?. (40)
<t<to

!
t
Yr(t) fort € [to(R), R—2Ro(6?)]. The function zx(t) is always positive.

yr(t)
By the estimate (40) and the definition of ¢3(R), we have z(¢to(R)) > Co* R L
we hav = .
v oL W)= TR T 1T08R

Now let us define zg(t) =

Combining basic differentiation and the estimate (38), we have

Con YRR RGP _ 1 [yr®]F 1,
“r(t) = v (t) “ i 2 [yR(t)] S d
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for any t € [to(R), R — 2R (0?)]. Dividing both sides by z%(¢) and integrating in ¢, we obtain
1 _ 1 S 1
z(to(R)) 2z(R—2Ry(6%)) — d—2
Using the upper bound of to(R), the lower bound of z(to(R)) and the choice of R, we have
1 1 R 49

— 1200 17(d — 2) + 12]CSR > —R.
Z(to(R))>d—2 R 50 CorR| = [17( )+ ]C’R>50R

[(R—2Ro(6%)) — to(R)]

17CéR >

This contradicts our choice of §, please see (37).

7 Application on a Shifted Wave Equation on H?

In this section we consider the radial solutions to an energy-critical, focusing, semilinear shifted
wave equation on the hyperbolic space H?

02v — (Ags + v = |v|*v, (y,t) € H3 x R;
v(+,0) = ug € H*!'(H?); (41)
8tv(-,0) =u1 € L2(H3);

as one application of our main theorem.

7.1 Background and the Space of Functions

Model of hyperbolic space There are various models for the Hyperbolic space H?. We select
the hyperboloid model. Let us consider the Minkowswi space R'*3 equipped with the standard
Minkowswi metric —(dz®)? + (dz')? + - - - + (do3)? and the bilinear form [z,y] = xoyo — T191 —
T2y2 — w3y3. The hyperbolic space H? can be defined as the hyperboloid 3 — 23 — 23 — 2% = 1
whose metric, covariant derivatives and measure p are induced by the Minkowswi metric.

Radial Functions We can introduce polar coordinates (r,®) on the hyperbolic space H?.
More precisely, we use the pair (r,0) € [0, 00) xS? to represent the point (coshr, @ sinhr) € R1*3
in the hyperboloid model above. One can check that the r coordinate of a point in H? represents
the distance from that point to the “origin” 0 € H", which is the point (1,0, 0,0) in the Minkiwski
space. In terms of the polar coordinate, the measure and Laplace operator can be given by

dp = sinh? r drd®; Aps = 83 +2cothr -8, +sinh™? 7 - Age

Here dO corresponds the usual unnormalized measure on the sphere S?. As in Euclidean spaces,
for any y € H3 we also use the notation |y| for the distance from y to 0. Namely

r=|y| =d(y,0), y € H™.

A function f defined on H? is radial if it is independent of ©. By convention we can use the
notation f(r) to mention a radial function f.

Function Space The homogenous Sobolev space H%!(H?), which is the counterpart of H'(R%)
in the hyperbolic space H?, is defined by

HOYHP) = (—Ags — 1)~ /2L*(H?) [ull o1 sy = (= Ams — 1) 0l 2us)
If f € Cg°(H?), then its H%'(H?) norm can also be given by (|[Vf| = (D fDf)'/?)
£l o1 rey = /]1-113 (IVF@P = 1f@)P) du(y). (42)

Please pay attention that the spectrum of the Laplace operator —Aps is [1, 00), which is much
different from that of the Laplace operator on R?. As a result, the integral above is always
nonnegative.
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Sobolev Embedding As in Euclidean Spaces, we have the Sobolev embedding H®!(H?) —
LS(H3). (Please see [29] for more details.) This implies that the energy

1 1 1
E(v,0w) = 5”“”%0,1(}1[3) + §||8tv||%2(]1-]13) - EH’U”%G(HB) = E(vo, v1) (43)
is a finite constant as long as (vg,v1) € H®' x L2(H?).

Local Theory Both the Strichartz estimates and local theory have been discussed in the
author’s recent work [30]. Generally speaking, the local theory is similar to that of a wave
equation on the Euclidean space. Given any initial data (vg,v1) € HOL % L?(H?3), there is a
unique solution v defined on a maximal interval of time I, such that (v, 9;,v) € C(I; H%1 x L?(H?))
and the inequality ||v][zsz10(7xms) < oo holds for any bounded closed subinterval J of I.

7.2 A transformation

Let us consider the transformation T : L?(H?) — L?(R?) defined by

sinh r

(Tf)(r,0) = f(r,0).

Here (r,0) € [0,00) x S? represents the polar coordinates, in either the hyperbolic space H?
or the Euclidean space R3. This transformation has been known for many years. (See, for
instance, V. Pierfelice’s work [24] in 2008.) It is trivial to check that the transformation T is
an isometry from L?(H?) to L?(R3?). In addition, the transformation T is also an isometry from
H>L(H3) to H},,(R?). Here the spaces H :L,(H?) and H,,(R?) consist of all radial functions

“Trad rad rad
in the corresponding Sobolev spaces:

HOL (W3 = {f € HOY(H®) : fis radiall  H! ,(R®) = {f € H(R®) : f is radial}.

rad

This can be observed by using the identity (42) and conducting basic calculations. Furthermore,
if f is a radial and smooth function defined on H?, then one can also verify

~Aga (Tf) = T[(~ A~ 1)f].

Combining all the facts above, we have

1

Lemma 7.1. If v(y,t) is a solution to the equation (41) with initial data (vo,v1) € Ho’d X

Ta
L2, ,(H3) and a mazimal lifespan I, then u(-,t) = Tv(-,t) is a solution to the equation

O2u — Apsu = ¢(z)|u|u, (z,t) e R¥ xR (44)

with the initial data (Tvg, Tv1) and the same mazimal lifespan I. Here the coefficient function

4
@ is defined by ¢(x) = Sinlii Bk In particular, the energy is preserved under this transformation.

Namely, the energy of the solution u defined by
1 1
By (u, Oru) = / Lvul + Yo = 2l | da
RS |2 2 6
remains the same as the energy E(v,0yv) defined in (43).

7.3 Conclusion

According to Remark 1.4, our main theorem may be applied to the equation (44). Combing our
main theorem and Lemma 7.1, we immediately obtain
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Theorem 7.2. Given a pair of initial data (vo,v1) € HS(’IZ x L2, (H?) with an energy E(vo,v1) <
E,(W,0), the global behaviour, and in particular, the maximal lifespan I = (—=T—(vg, v1), T (vo, v1))

of the corresponding solution v to the Cauchy problem (41) can be determined by:
(1) If lvoll gro.x ey < [[VW | p2(msy, then I =R and v scatters in both time directions.

(IT) If |Jvoll o1 3y > [[VW || L2(rs), then v blows up within finite time in both two directions,
namely

T_(vg,v1) < 400; T4 (vo,v1) < +00.

Remark 7.3. A similar argument works in the defocusing case as well and gives the following
theorem. Please note that this theorem has already been proved in the author’s previous work
[30] by an application of a Morawetz-type inequality.

2

2 (H3), the corresponding solution v

Theorem 7.4. Given any initial data (vo,v1) € HB&Z x L
to the defocusing shifted wave equation

02v — (Ags + v = —|v|"

must exist for all time t € R and scatter in both two time directions.
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