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Abstract

In this paper we consider a semi-linear, energy sub-critical, defocusing wave equation
∂2
t u − ∆u = −|u|p−1u in the 3-dimensional space with p ∈ [3, 5). We prove that if initial

data (u0, u1) are radial so that ‖∇u0‖L2(R3;dµ), ‖u1‖L2(R3;dµ) <∞, where dµ = (|x|+1)1+2ε

with ε > 0, then the corresponding solution u must exist for all time t ∈ R and scatter.
The key ingredients of the proof include a transformation T so that v = Tu solves the

equation vττ −∆yv = −
(
|y|

sinh |y|

)p−1

e−(p−3)τ |v|p−1v with a finite energy, and a Morawetz-

type estimate regarding a solution v as above.

1 Introduction

The defocusing semi-linear wave equation ∂2
t u−∆u = −|u|p−1u, (x, t) ∈ R3 × R;
u(·, 0) = u0;
ut(·, 0) = u1

(CP1)

has been extensively studied in the past few decades. This problem is locally well-posed if
initial data (u0, u1) are contained in the critical Sobolev space Ḣsp × Ḣsp−1(R3) with sp

.
=

3/2 − 2/(p − 1). Please see [16] for more details on the local theory. Suitable solutions also
satisfy an energy conservation law:

E(u, ut) =

∫
R3

(
1

2
|∇u(·, t)|2 +

1

2
|ut(·, t)|2 +

1

p+ 1
|u(·, t)|p+1

)
dx = Const.

The problem of global existence and scattering is much more difficult. In the energy critical case
p = 5, M. Grillakis [8] proved that any solution with initial data in the space Ḣ1×L2(R3) must
scatter in both two time directions. In other words, the asymptotic behaviour of any solution
mentioned above resembles that of a free wave. It is conjectured that a similar result holds for
other exponents p as well: Any solution to (CP1) with initial data (u0, u1) ∈ Ḣsp × Ḣsp−1 must
exist for all time t ∈ R and scatter in both two time directions. This conjecture has not been
proved yet, as far as the author knows, in spite of some progress:

• It has been proved that if a radial solution u with a maximal lifespan I satisfies an a priori
estimate

sup
t∈I
‖(u(·, t), ut(·, t))‖Ḣsp×Ḣsp−1(R3) < +∞, (1)

∗MSC classes: 35L71, 35L05

1



then u is a global solution in time and scatters. The proof uses the standard compactness-
rigidity argument, where the radial assumption plays a crucial role in the rigidity part.
The details can be found in [14] for p > 5, [17] for 3 < p < 5 and [3] for 1 +

√
2 < p ≤ 3.

The author would also like to mention that the same result still holds in the non-radial
case if p > 5, see [15]. Please note that our assumption (1) is automatically true in the
energy critical case p = 5, thanks to the conservation law of energy. When p is other than
5, however, nobody has ever found a way to actually prove this a priori estimate without
additional assumptions on initial data.

• In the energy sub-critical case 3 ≤ p < 5, the scattering result can be proved via conformal
conservation laws if initial data satisfy an additional regularity-decay condition∫

R3

[
(|x|2 + 1)(|∇u0(x)|2 + |u1(x)|2) + |u0(x)|2

]
dx <∞. (2)

The proof consists of three steps. First of all, our assumption guarantees that the solution
has a finite energy. A combination of a local theory and the energy conservation law
immediately gives the global existence. In addition, these solutions satisfy the conformal
conservation law

d

dt
Q(t, u, ut) =

4(3− p)t
p+ 1

∫
R3

|u(x, t)|p+1
dx.

Here Q(t, ϕ, ψ) = Q0(t, ϕ, ψ) +Q1(t, ϕ) is called the conformal charge with

Q0(t, ϕ, ψ) = ‖xψ + t∇ϕ‖2L2(R3) +

∥∥∥∥(tψ + 2ϕ)
x

|x|
+ |x|∇ϕ

∥∥∥∥2

L2(R3)

Q1(t, ϕ) =
2

p+ 1

∫
R3

(|x|2 + t2)|u(x, t)|p+1dx.

Please see [6, 9] for more details. It immediately follows that

sup
t∈R

Q1(t, u(·, t)) ≤ sup
t∈R

Q(t, u, ut) = Q(0, u0, u1) < +∞.

Therefore we have a space-time integral estimate∫
|t|>1

∫
R3

|u(x, t)|p+1 dxdt < +∞.

Finally, one can prove the scattering of solutions by using the integral estimate above and
following a similar argument as in Section 3.4 below. The assumption (2) is essential to
guarantee the finiteness of the conformal charge Q(t, u, ut) as defined above. One advantage
of this argument is that the radial assumption is not necessary.

Main Result In this work we still deal with the energy subcritical equation with p ∈ [3, 5) as
the conformal conservation law method does. We assume that initial data are radial but satisfy a
weaker decay condition than (2) and prove the same scattering result. Due to the weaker decay
assumption on initial data, we no longer have access to the powerful conformal conservation
law. Instead we introduce a transformation that maps radial solutions of (CP1) to solutions of
another nonlinear wave equation vττ − ∆yv = −(|y|/ sinh |y|)p−1e−(p−3)τ |v|p−1v, which turns
out to be relatively easier to work on.

Theorem 1.1. Assume that A, ε are positive constants and 3 ≤ p < 5. Let (u0, u1) ∈ Ḣ1 × L2

be radial initial data so that

‖∇u0‖L2(R3;dµ), ‖u1‖L2(R3;dµ) ≤ A, dµ = (|x|+ 1)1+2εdx.
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Then the corresponding solution u to (CP1) scatters in both two time directions with

‖u‖L2(p−1)L2(p−1)(R×R3) ≤ C(A, ε) <∞.

Here the upper bound C(A, ε) are solely determined by the values of A and ε.

Here are some remarks regarding the initial data in the main theorem.

Remark 1.2. The initial data (u0, u1) satisfy the inequality∫
R3

(
|∇u0|

3
2 + |u1|

3
2

)
dx ≤2

[∫
R3

(
|∇u0|2 + |u1|2

)
(1 + |x|)1+2ε dx

]3/4 [∫
R3

(1 + |x|)−3−6ε dx

]1/4

≤C(A, ε) <∞.

In other words we have (u0, u1) ∈ Ẇ 1,3/2 × L3/2. It immediately follows that (u0, u1) ∈ Ḣsp ×
Ḣsp−1 by the Sobolev embedding Ẇ 1,3/2 × L3/2 ↪→ Ḣ1/2 × Ḣ−1/2 and an interpolation.

Remark 1.3. The radial assumption implies that the initial data (u0, u1) satisfy∫ ∞
0

(
|∂ru0(r)|2 + |u1(r)|2

)
r3+2εdr ≤ (1/4π)A2.

Remark 1.4. Any pair (u0, u1) as in Theorem 1.1 comes with a finite energy

E(u0, u1) =

∫
R3

[
1

2
|∇u0(x)|2 +

1

2
|u1(x)|2 +

1

p+ 1
|u0(x)|p+1

]
dx ≤ C(A) <∞.

In addition, u0 satisfies a point-wise estimate |u0(x)| ≤ A|x|−1−ε.

Proof. By Remark 1.3 we have (0 < r1 < r2 <∞)

|u0(r1)− u0(r2)| ≤
∫ r2

r1

|∂ru0(r)|dr ≤
(∫ r2

r1

|∂ru0(r)|2r3+2εdr

)1/2(∫ r2

r1

r−3−2εdr

)1/2

≤ Ar−1−ε
1 . (3)

Next we recall the point-wise estimate for radial Ḣ1 functions |u0(x)| ≤ C‖u0‖Ḣ1 |x|−1/2 (Please
refer to, for instance, Lemma 3.2 of [14]), make r2 →∞ in the inequality (3) above and obtain
a point-wise estimate |u0(x)| ≤ A|x|−1−ε. Furthermore, we can combine this point-wise esti-
mate with the Sobolev embedding Ḣ1(R3) ↪→ L6(R3) to conclude ‖u0‖Lp+1(R3) ≤ C(A). This
immediately gives a finite upper bound on the energy.

The idea Wave equations are time-invertible, thus it is sufficient to consider the positive time
direction. Since the initial data come with a finite energy, Energy-subcriticality leads to the
global existence of the corresponding solution u. In order to obtain the scattering result, we also
need to show the critical space-time norm ‖u‖L2(p−1)L2(p−1)([0,∞)×R3) is finite. In fact, we can

choose a suitable positive number R and split the space-time R3 × [0,∞) into two parts

Ω1 = {(x, t) ∈ R3 × [0,∞) : |x| < t+R}; Ω2 = {(x, t) ∈ R3 × [0,∞) : |x| ≥ t+R}.

A combination of the small-data scattering result and the finite speed of propagation of wave
equation gives a finite upper bound on the norm ‖u‖L2(p−1)L2(p−1)(Ω2) as long as R is sufficiently
large. The majority of this paper is devoted to the control of the norm ‖u‖L2(p−1)L2(p−1)(Ω1).
There are three major steps.
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• We show that the function v = Tu defined by

v(y, τ) =
sinh |y|
|y|

eτu

(
eτ

sinh |y|
|y|

· y, t0 + eτ cosh |y|
)
, (y, τ) ∈ R3 × R

solves the non-linear wave equation

vττ −∆yv = −
(
|y|

sinh |y|

)p−1

e−(p−3)τ |v|p−1v. (CP2)

Here the number t0 is a large negative number so that the image Ω of the set R3 × R+

under the geometric transformation (y, τ)→ (yeτ sinh |y|/|y|, t0 + eτ cosh |y|) contains the
region Ω1. Please pay attention that this transformation works for radial solutions only.
In addition, we prove that v has a finite energy E at τ = 0 by a few decay properties of v
for large y and an space-time integral estimate for small y.

• We show that the solution v satisfies a few space-time integral estimates. In particular we
have a Morawetz estimate∫ ∞

0

∫
R3

e−(p−3)τ |y|p−1 cosh |y|
sinhp |y|

|v(y, τ)|p+1dy dτ . E <∞.

Next we use the radial assumption again, apply the pointwise estimate |v(y, τ)| . ‖v(·, τ)‖Ḣ1 ·
|y|−1/2 . E1/2 · |y|−1/2 and obtain

I ′
.
=

∫ ∞
0

∫
R3

e−(p−3)τ

(
|y|

sinh |y|

)p−1

|v(y, τ)|2(p−1)dy <∞.

• We use the fact Ω1 ⊂ Ω, rewrite the integral of |u|2(p−1) over Ω in term of v via a change
of variables formula and finally conclude∫∫

Ω1

|u|2(p−1)dx dt ≤
∫∫

Ω

|u|2(p−1)dx dt

=

∫ ∞
0

∫
R3

e−2(p−3)τ

(
|y|

sinh |y|

)2p−4

|v(y, τ)|2(p−1)dy dτ ≤ I ′ <∞.

Construction of T The transformation v = Tu as defined above is one of the key ingredients
of our proof. Its validity can be verified by a basic calculation, as given in Section 5. The author
would also like to mention that the transformation can be constructed via two different routes:

Route 1 We can write T = T2 ◦ T1. Here T1 is a transformation from the set of functions
defined on the forward light cone {(x, t) : t− t0 > |x|} to the set of functions defined on H3×R,
whose formula has been given by D. Tataru in the work [20]:

(T1u)(s,Θ, τ) = eτu(eτ sinh s ·Θ, t0 + eτ cosh s).

Here (s,Θ) ∈ [0,∞)×S2 are polar coordinates on the hyperbolic space H3. One can demonstrate
the importance of this transformation by the fact

(∂2
τ −∆H3 − 1) ◦T1 = e2τT1 ◦ (∂2

t −∆).

As a result, if u is a solution to (CP1), then the function v1 = T1u solves the non-linear shifted
wave equation on H3 (See [1, 18, 19] for Strichartz estimates and local theory on this type of
equations)

∂2
τv1 − (∆H3 + 1)v1 = −e−(p−3)τ |v1|p−1v1. (4)
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Next we introduce the second transformation1 (T2v1)(y, τ) = sinh |y|
|y| v1(|y|, τ), whose domain is

the set of radial functions on H3 × R and whose range is the set of radial functions on R3 × R.
This transformation satisfies (∂2

τ −∆y) ◦T2 = T2 ◦ (∂2
τ −∆H3 − 1). A basic calculation shows

that if v1 solves (4), then v = T2v1 satisfies (CP2).

Route 2 We have another decomposition T = T−1
3 ◦T4 ◦T3, where

(T3u)(|x|, t) = |x|u(x, t); (T4w)(s, τ) = w(eτ sinh s, t0 + eτ cosh s).

Both T3u and T4w are functions defined on [0,∞)× R. Please pay attention that T3u is only
defined for radial functions u. These two transformations satisfy the commutator identities

(∂2
t − ∂2

r ) ◦T3 = T3 ◦ (∂2
t −∆x); (∂2

τ − ∂2
s ) ◦T4 = e2τT4 ◦ (∂2

t − ∂2
r ).

As a result, if u is a radial solution to (CP1), then w = T3u and w1 = T4w solve the non-linear
wave equations ∂2

tw − ∂2
rw = − 1

rp−1 |w|p−1w and ∂2
τw1 − ∂2

sw1 = −e−(p−3)τ 1
sinhp−1 s

|w1|p−1w1,
respectively.

The structure of this paper This paper is organized as follows. In section 2 we collect
notations, recall the Strichartz estimates and introduce a local theory for a class of wave equations
in the form of ∂2

t v − ∆v = −φ(x)e−κt|v|p−1u with a function φ : R3 → [−1, 1] and a constant
κ ≥ 0. In particular we can combine this with the energy conservation law to conclude that
any solution to (CP1) with a finite energy is defined for all time. Next in Section 3 we discuss
the global behaviour of solutions to the wave equation above with a suitable coefficient function
φ : R3 → [0, 1]. More precisely we have

• An energy monotonicity (conservation) law holds, i.e. the energy defined by

E(t) =

∫
R3

[
1

2
|∇xv(x, t)|2 +

1

2
|vt(x, t)|2 + e−κtφ(x)

|v(x, t)|p+1

p+ 1

]
dx

is either a constant if κ = 0, or a nonincreasing function of time t if κ > 0. A direct
corollary follows that any solution with a finite energy is defined for all t ∈ [0,∞).

• A Morawetz-type inequality holds if in addition (p− 1)φ− x · ∇φ ≥ 0 for all x ∈ R3.∫ ∞
t0

∫
R3

e−κt · (p− 1)φ− x · ∇φ
|x|

· |v|p+1dx dt .1 E(t0).

Here t0 is an arbitrary time in the lifespan of solution v.

After all of these preparation work is finished, we prove the main theorem in the last three
sections. In Section 4 we start by assuming that u is a solution as in the main theorem and proving
a few preliminary estimates regarding u in the region Ω2 = {(x, t) ∈ R3 × [0,∞) : |x| > t + R}
for a suitable R > 0 . Here we need to apply an “channel of energy” argument. Next in Section
5 we apply the transformation T and show that v = Tu is indeed a solution to (CP2). In the
final section we verify that v has a finite energy by the estimates obtained in Section 4, take
advantage of the Morawetz estimate, rewrite the obtained integral estimates in term of u and
eventually finish the proof.

1we need to use the radial assumption on v1 in the definition.
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2 Preliminary Results

2.1 Notations

The . symbol We use the notation A . B if there exists a constant c, so that the inequality
A ≤ cB always holds. In addition, a subscript of the symbol . indicates that the constant c is
determined by the parameter(s) mentioned in the subscript but nothing else. In particular, .1

means that the constant c is an absolute constant.

Radial functions Let u(x, t) be a spatially radial function. By convention u(r, t) represents
the value of u(x, t) when |x| = r.

Linear wave propagation Given a pair of initial data (u0, u1), we define SL,0(t)(u0, u1) to be
the solution u of the free linear wave equation utt−∆u = 0 with initial data (u, ut)|t=0 = (u0, u1).
If we are also interested in the velocity ut, we can use the notation

SL(t)(u0, u1)
.
= (u(·, t), ut(·, t)), SL(t)

(
u0

u1

)
.
=

(
u(·, t)
ut(·, t)

)
.

2.2 Local theory

In this subsection we consider the local theory of the equation
∂2
t v −∆v = −φ(x)e−κt|v|p−1v, (x, t) ∈ R3 × R;

v(·, t0) = v0 ∈ Ḣ1(R3);
vt(·, t0) = v1 ∈ L2(R3).

(5)

Here φ : R3 → [−1, 1] is a measurable function, κ is a nonnegative constant and p ∈ [3, 5). This
covers both equations (CP1) and (CP2).

Definition 2.1. We say that a solution v solves the equation (5) in a time interval I containing
t0, if v satisfies

• (v(·, t), vt(·, t)) ∈ C(I; Ḣ1 × L2(R3));

• The norm ‖v‖L2p/(p−3)L2p(J×R3) is finite for any bound closed interval J ⊆ I;

• The integral equation

v(·, t) = SL,0(t− t0)(v0, v1) +

∫ t

t0

sin((t− τ)
√
−∆)√

−∆
G(·, τ, v(·, τ))dτ

holds for all t ∈ I, here G(x, t, v) = −φ(x)e−κt|v|p−1v.

Strichartz estimates The basis of our local theory is the following generalized Strichartz
estimates. (Please see Proposition 3.1 of [7], here we use the Sobolev version in R3)

Proposition 2.2. Let 2 ≤ q1, q2 ≤ ∞, 2 ≤ r1, r2 <∞ and ρ1, ρ2, s ∈ R with

1/qi + 1/ri ≤ 1/2, i = 1, 2;

1/q1 + 3/r1 = 3/2− s′ + ρ1; 1/q2 + 3/r2 = 1/2 + s′ + ρ2.

Let v be the solution of the following linear wave equation (t0 ∈ I){
∂2
t v −∆v = F (x, t), (x, t) ∈ R3 × I;

(v, vt)|t=t0 = (v0, v1) ∈ Ḣs′(R3)× Ḣs′−1(R3).
(6)

Then there exists a constant independent of I and initial data (u0, u1), so that

‖(v(·, t), vt(·, t))‖C(I;Ḣs′×Ḣs′−1) + ‖Dρ1
x v‖Lq1Lr1 (I×R3)

≤ C
(
‖(v0, v1)‖Ḣs′×Ḣs′−1 + ‖D−ρ2

x F (x, t)‖Lq̄2Lr̄2 (I×R3)

)
.
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A fixed-point argument We first choose specific coefficients ρ1 = ρ2 = 0, s′ = 1, (q1, r1) =
(2p/(p− 3), 2p), (q2, r2) = (∞, 2) in the Strichartz estimates

‖(v(·, t), vt(·, t))‖C([t1,t2];Ḣ1×L2) + ‖v‖
L

2p
p−3 L2p([t1,t2]×R3)

≤ Cp
[
‖(v(·, t1), vt(·, t1))‖Ḣ1×L2 + ‖(∂2

t −∆)v‖L1L2([t1,t2]×R3)

]
,

and observe the inequalities

‖G(·, ·, v)‖L1L2([t1,t2]×R3) ≤ e−κt1(t2 − t1)
5−p

2 ‖v‖p
L

2p
p−3 L2p([t1,t2]×R3)

;

‖G(·, ·, v1)−G(·, ·, v2)‖L1L2([t1,t2]×R3) ≤
[
‖v1‖p−1

L
2p
p−3 L2p([t1,t2]×R3)

+ ‖v2‖p−1

L
2p
p−3 L2p([t1,t2]×R3)

]
× e−κt1(t2 − t1)

5−p
2 ‖v1 − v2‖

L
2p
p−3 L2p([t1,t2]×R3)

.

A fixed-point argument then shows (Our argument is similar to a lot of earlier works. See [10, 16],
for instance.)

Theorem 2.3 (Local solution). Given a time t0 and a pair (v0, v1) ∈ Ḣ1 × L2, then there is a
maximal time interval (t0 − T−(v0, v1, t0), t0 + T+(v0, v1, t0)) in which the equation (5) with the
initial condition (v, vt)|t=t0 = (v0, v1) has a unique solution v(x, t). In addition we have

T+(v0, v1, t0) > T1
.
= C1(p)e2κt0/(5−p)‖(v0, v1)‖−2(p−1)/(5−p)

Ḣ1×L2(R3)
;

‖v(x, t)‖L2p/(p−3)L2p([t0,t0+T1]×R3) ≤ C2(p)‖(v0, v1)‖Ḣ1×L2(R3).

Remark 2.4. If v is a solution to (5), then we have ‖D1/2v‖L4L4([a,b]×R3) < +∞ for any finite
bounded interval [a, b] contained in the maximal lifespan of v by the Strichartz estimates.

Proposition 2.5. Any solution u to (CP1) with a finite energy is global in time, i.e. it has a
maximal lifespan R.

Proof. The conservation law of energy guarantees that the norm ‖(u(·, t), ut(·, t))‖Ḣ1×L2 . E1/2

is uniformly bounded for all time t in the maximal lifespan of u. The combination of this fact
and Theorem 2.3 implies that u is well-defined for all t > 0. Since (CP1) is time-invertible, we
are able to conclude that the maximal lifespan of u must be R.

Perturbation theory Next let us consider the continuous dependence of the solutions to (5)
on the initial data. The special case with φ(x) ≡ 1 and κ = 0 has been proved in Appendix of
[17]. We can prove the general case in exactly the same way.

Theorem 2.6. Let ṽ be a solution of equation (5) in a bounded time interval I with initial data
(ṽ0, ṽ1), so that

‖(ṽ0, ṽ1)‖Ḣ1×L2 <∞; ‖ṽ‖L2p/(p−3)L2p(I×R3) < M.

There exist two constants ε0(I,M), C(I,M) > 0, such that if (v0, v1) ∈ Ḣ1 × L2 satisfy

‖(v0 − ṽ0, v1 − ṽ1)‖Ḣ1×L2 < ε0(I,M),

then the corresponding solution v of (5) with initial data (v0, v1) is well-defined in I so that

‖v − ṽ‖L2p/(p−3)L2p(I×R3) ≤ C(I,M)‖(v0 − ṽ0, v1 − ṽ1)‖Ḣ1×L2 ;∥∥∥∥( v(·, t)
vt(·, t)

)
−
(
ṽ(·, t)
ṽt(·, t)

)∥∥∥∥
C(I;Ḣ1×L2)

≤ C(I,M)‖(v0 − ṽ0, v1 − ṽ1)‖Ḣ1×L2 .
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2.3 A Pointwise Estimate on Radial Ḣ1 Functions

Lemma 2.7. There exists a constant C, so that the inequality |f(x)| ≤ C‖f‖Ḣ1(R3) · |x|−1/2

holds for any radial Ḣ1(R3) function f and any x ∈ R3 \ {0}.

This is a special case of Lemma 3.2 in [14]. A smooth approximation argument immediately
gives

Corollary 2.8. If u(·, t) ∈ C(R; Ḣ1(R3)), then u(x, t) is continuous in (R3 \ {0})× R.

3 A Wave Equation with a Time Dependent Nonlinearity

In this section we discuss the global behaviour of the solutions to the equation
vtt −∆u = −φ(x)e−κt|v|p−1v, (x, t) ∈ R3 × R;

v(·, t0) = v0 ∈ Ḣ1(R3) ∩ Lp+1(R3;φ(x)dx);
vt(·, t0) = v1 ∈ L2(R3).

(7)

Here we assume that p ∈ [3, 5), κ ≥ 0 are constants and φ : R3 → [0, 1] is a measurable function.

The equation (CP2) corresponds to the case with κ = p − 3 and φ(x) =
(
|x|

sinh |x|

)p−1

. In this

case the parameter κ > 0 whenever p > 3.

3.1 Monotonicity of the Energy

Now let us consider the “energy” defined by

E(t) =

∫
R3

[
1

2
|∇xv(x, t)|2 +

1

2
|vt(x, t)|2 + e−κtφ(x)

|v(x, t)|p+1

p+ 1

]
dx.

If u is sufficiently smooth and decays sufficiently fast near infinity, we can differentiate and obtain

E′(t) =

∫
R3

[
∇v∇vt + vtvtt + e−κtφ(x)|v|p−1vvt − κe−κtφ

|v|p+1

p+ 1

]
dx

=

∫
R3

vt
(
−∆v + vtt + e−κtφ|v|p−1v

)
dx− κ

p+ 1

∫
R3

e−κtφ|v|p+1dx

=− κ

p+ 1

∫
R3

e−κtφ(x)|v(x, t)|p+1dx ≤ 0.

One can verify that this formula of E′(t) works for general solutions v of the Cauchy problem
(7) as well by standard smooth approximation and cut-off techniques. Therefore we have

Proposition 3.1. Let v be a solution to the Cauchy problem (7) in a time interval [t0, t0 + T+)
with E(t0) <∞.

• If κ > 0, then E(t) is a non-increasing function of t ∈ [t0, t0 + T+). In addition, we have
the integral estimate∫ t0+T+

t0

∫
R3

e−κtφ(x)|v(x, t)|p+1dx dt ≤ p+ 1

κ
E(t0).

• If κ = 0, then E(t) is a constant independent of t.
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3.2 Global behaviour in the positive time direction

Assume that v is a solution to the Cauchy problem (7) with a maximal lifespan (t0−T−, t0 +T+).
Given any t ∈ I+

.
= [t0, t0 + T+), Proposition 3.1 implies

‖(v(·, t), vt(·, t))‖Ḣ1×L2 ≤ [2E(t)]
1/2 ≤ [2E(t0)]

1/2
.

According to Theorem 2.3, this means that there are two positive constants T1 and N1, such
that if t ∈ I+, then we have [t, t + T1] ⊆ I+ and ‖v‖L2p/(p−3)L2p([t,t+T1]) ≤ N1. It immediately
follows that T+ = +∞. Namely the solution u is defined for all time t > t0. Furthermore, if
κ > 0 we have

‖G(x, t, v)‖L1
tL

2
x([t0,∞)×R3) =

∞∑
j=0

∥∥e−κtφ(x)|v|p−1v
∥∥
L1L2([t0+jT1,t0+(j+1)T1]×R3)

≤
∞∑
j=0

e−κt0−jκT1T
(5−p)/2
1 ‖v‖p

L2p/(p−3)L2p([t0+jT1,t0+(j+1)T1]×R3)

=

∞∑
j=0

e−κt0−jκT1T
(5−p)/2
1 Np

1 <∞.

Recalling the Strichartz estimates and the fact that the linear wave propagation preserves the
Ḣ1 × L2 norm, we obtain

lim
t1,t2→+∞

∥∥∥∥SL(−t1)

(
v(·, t1)
vt(·, t1)

)
− SL(−t2)

(
v(·, t2)
vt(·, t2))

)∥∥∥∥
Ḣ1×L2

= lim
t1,t2→+∞

∥∥∥∥SL(t2 − t1)

(
v(·, t1)
vt(·, t1)

)
−
(
v(·, t2)
vt(·, t2))

)∥∥∥∥
Ḣ1×L2

≤ lim
t1,t2→+∞

‖G(x, t, v)‖L1
tL

2
x([t1,t2]×R3) = 0.

As a result, the pair SL(−t)(v(·, t), vt(·, t)) converges in the space Ḣ1 × L2 as t → ∞. Let us
assume SL(−t)(v(·, t), vt(·, t))→ (v+

0 , v
+
1 ). This is equivalent to saying

lim
t→+∞

∥∥(v(·, t), vt(·, t))− SL(t)(v+
0 , v

+
1 )
∥∥
Ḣ1×L2 = 0.

We summarize our results below

Theorem 3.2 (Global behaviour). Let v be a solution to the Cauchy problem (7) with a finite
energy E(t0) <∞. Then v is well-defined for all t ≥ t0. If we also have κ > 0, then there exists
a pair (v+

0 , v
+
1 ) ∈ Ḣ1 × L2 so that

lim
t→∞

∥∥(v(·, t), vt(·, t))− SL(t)(v+
0 , v

+
1 )
∥∥
Ḣ1×L2 = 0.

A combination of Theorem 3.2 and Proposition 3.1 immediately gives

Corollary 3.3. Let v be a solution to the Cauchy problem (7) with κ > 0 and a finite energy
E(t0) <∞. Then we have∫ ∞

t0

∫
R3

e−κtφ(x)|v(x, t)|p+1dx dt ≤ p+ 1

κ
E(t0).
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3.3 A Morawetz-type Inequality

Proposition 3.4. Let v be a solution to the Cauchy problem (7) in a time interval [t0, t0 + T+)
so that

(I) E(t0) <∞;

(II) The inequalities 0 ≤ φ(x) ≤ 1 and (p− 1)φ− x · ∇φ ≥ 0 hold for all x ∈ R3.

Then we have the following Morawetz-type inequality∫ t0+T+

t0

∫
R3

e−κt · (p− 1)φ− x · ∇φ
|x|

· |v|p+1dx dt .1 E(t0).

Remark 3.5. According to Theorem 3.2, we can substitute the upper limit of integral by +∞.

Outline of the proof Let us consider a function a(x) = |x| and define

M(t) =

∫
R3

vt(x, t)

(
∇v(x, t) · ∇a(x) +

1

2
∆a(x)v(x, t)

)
dx.

A basic calculation shows

∇a =
x

|x|
, ∆a =

2

|x|
, D2a ≥ 0, ∆∆a ≤ 0.

As a result, we obtain an upper bound on |M(t)| by Hardy’s inequality ‖v/|x|‖L2 . ‖∇v‖L2 :

|M(t)| ≤ ‖vt(·, t)‖L2

(
‖∇v(·, t)‖L2 + ‖v(x, t)/|x|‖L2

x(R3)

)
.1 E(t). (8)

Next we calculate the derivative M ′(t) informally

M ′(t) =

∫
R3

vtt

(
∇v · ∇a+

1

2
v∆a

)
dx+

∫
R3

vt

(
∇vt · ∇a+

1

2
vt∆a

)
dx

=

∫
R3

∆v

(
∇v · ∇a+

1

2
v∆a

)
dx−

∫
R3

φ(x)e−κt|v|p−1v

(
∇v · ∇a+

1

2
v∆a

)
dx

+

∫
R3

vt

(
∇vt · ∇a+

1

2
vt∆a

)
dx

=I1 + I2 + I3.

Let us start with I1. For simplicity we use lower indices to represent partial derivatives.

I1 =

∫
R3

 3∑
i,j=1

viivjaj

 dx− 1

2

∫
R3

|∇v|2∆a dx− 1

2

∫
R3

v∇v · ∇∆a dx

=−
∫
R3

 3∑
i,j=1

aijvivj

 dx−
∫
R3

 3∑
i,j=1

ajvivij

 dx− 1

2

∫
R3

|∇v|2∆a dx+
1

4

∫
R3

|v|2∆∆a dx

≤− 1

2

∫
R3

∇a · ∇(|∇v|2)dx− 1

2

∫
R3

|∇v|2∆a dx

=0.
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Here we use the facts D2a ≥ 0 and ∆∆a ≤ 0. In addition we have

I2 =− 1

p+ 1

∫
R3

φ(x)e−κt∇(|v|p+1) · ∇a dx− 1

2

∫
R3

φ(x)e−κt|v|p+1∆a dx

=
1

p+ 1

∫
R3

e−κt|v|p+1∇φ · ∇adx+

(
1

p+ 1
− 1

2

)∫
R3

e−κt|v|p+1φ∆a dx

=
1

p+ 1

∫
R3

e−κt|v|p+1

(
∇φ · ∇a− p− 1

2
φ∆a

)
dx

=
−1

p+ 1

∫ t2

t1

∫
R3

e−κt · (p− 1)φ− x · ∇φ
|x|

· |v|p+1dx dt.

Finally

I3 =
1

2

∫
R3

∇(|∂tv|2) · ∇a dx+
1

2

∫
R3

|∂tv|2∆a dx = 0.

Now we collect all the terms above and then integrate from t = t1 to t = t2:

M(t2)−M(t1) ≤ −1

p+ 1

∫ t2

t1

∫
R3

e−κt · (p− 1)φ− x · ∇φ
|x|

· |v|p+1dx dt.

We plug the upper bound on |M(t)| as given in (8) into the left hand side above, recall the
monotonicity of E(t) and finally complete our proof.

Remark 3.6. The argument above works only for solutions v that satisfies certain regularity
conditions. However, Proposition 3.4 still holds for all solutions v with a finite energy E(t0) <∞.
This can be proved via standard smooth approximation and cut-off techniques. Please refer to
Section 4 of [18] for more details about this type of argument.

3.4 An Equivalent Condition of Scattering

Let us start by a technical result.

Proposition 3.7. Let v be a solution to the Cauchy problem (7) in a bounded closed time interval
I = [a, b] with initial data (v0, v1) ∈ (Ḣ1 ∩ Ḣsp)× (L2 ∩ Ḣsp−1). Then we have (v(·, t), vt(·, t)) ∈
C(I; Ḣsp × Ḣsp−1) and

‖Dsp−1/2v‖L4L4([a,b]×R3) < +∞.

Proof. Let us recall the Strichartz estimate

‖(v(·, t), vt(·, t))‖C(I;Ḣsp×Ḣsp−1) + ‖Dsp−1/2v‖L4L4([a,b]×R3)

. ‖(v0, v1)‖Ḣsp×Ḣsp−1 + ‖(∂2
t −∆)v‖

L
2

1+sp L
2

2−sp (I×R3)
.

As a result, it suffices to show∥∥−e−κtφ(x)|v|p−1v
∥∥
L

2
1+sp L

2
2−sp (I×R3)

<∞⇔
∥∥∥φ1/pv

∥∥∥
L

4(p−1)p
5p−9 L

4(p−1)p
p+3 (I×R3)

<∞. (9)

A combination of the Sobolev embeddings Ḣsp ↪→ L3(p−1)/2, Ḣ1 ↪→ L6 and the interpolation
L3(p−1)/2 ∩ L6 ↪→ Lp+1 implies that u0 ∈ Lp+1. Therefore the initial data come with a finite
energy E(0) <∞. Two space-time estimates regarding φ1/pv immediately follow: On one hand,
the monotonicity of E(t) gives

sup
t∈I

∫
R3

e−κtφ(x)|v(x, t)|p+1dx dt <∞⇒
∥∥∥φ1/pv

∥∥∥
L∞Lp+1(I×R3)

<∞.
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On the other hand, the Strichartz estimates give

‖v‖L5L10(I×R3) <∞ =⇒
∥∥∥φ1/pv

∥∥∥
L5L10(I×R3)

<∞.

We combine these two inequalities via an interpolation (with ratio (5 − p)(2p + 3)(p + 1) :
5(p− 3)(3p+ 1)) to obtain∥∥∥φ1/pv

∥∥∥
L

2p(p−1)(9−p)
(p−3)(3p+1) L

4(p−1)p
p+3 (I×R3)

< +∞.

This is a sufficient condition of (9) because I is a finite interval and 2p(p−1)(9−p)
(p−3)(3p+1) ≥

4(p−1)p
5p−9 .

Proposition 3.8 (Scattering with a finite L2(p−1)L2(p−1) norm). Let u be a solution to (CP1)
with initial data (u0, u1) ∈ (Ḣ1 ∩ Ḣsp) × (L2 ∩ Ḣsp−1). If ‖u‖L2(p−1)L2(p−1)(R×R3) < ∞, then

u scatters in both two time directions. More precisely, there exist two pairs (u±0 , u
±
1 ) ∈ (Ḣ1 ∩

Ḣsp)× (L2 ∩ Ḣsp−1), so that the following limit holds for each s′ ∈ [sp, 1]

lim
t→±∞

∥∥(u(·, t), ut(·, t))− SL(t)(u±0 , u
±
1 )
∥∥
Ḣs′×Ḣs′−1(R3)

= 0.

Proof. Since the equation is time-invertible, it suffices to consider the case t → +∞. In the
argument below, we temporarily assume that s′ is either 1 or sp. We start by picking up an
arbitrary finite time interval [a, b] and applying the Strichartz estimates

‖Ds′−1/2
x u‖L4L4([a,b]×R3)

≤ C‖(u(·, a), ut(·, a))‖Ḣs′×Ḣs′−1 + C‖Ds′−1/2
x (−|u|p−1u)‖L4/3L4/3([a,b]×R3)

≤ C‖(u(·, a), ut(·, a))‖Ḣs′×Ḣs′−1 + Cs′,p‖u‖p−1
L2(p−1)L2(p−1)([a,b]×R3)

‖Ds′−1/2
x u‖L4L4([a,b]×R3).

In the last step above, we apply the chain rule with fractional derivatives. Please see Proposition
3.1 of [2] for more details. By the assumption ‖u‖L2(p−1)L2(p−1)(R×R3) < ∞, we can fix a large

number a, so that Cs′,p‖u‖p−1
L2(p−1)L2(p−1)([a,∞)×R3)

< 1/2. We plug this upper bound into the

inequality above, recall the fact ‖Ds′−1/2
x u‖L4L4([a,b]×R3) < ∞ that comes from either Remark

2.4, if s′ = 1, or Proposition 3.7, if s′ = sp, and obtain

‖Ds′−1/2
x u‖L4L4([a,b]×R3) < 2C‖(u(·, a), ut(·, a))‖Ḣs′×Ḣs′−1 <∞.

Here the finiteness of Ḣs′ × Ḣs′−1norm comes from either the definition of a solution, if s′ = 1,
or Proposition 3.7, if s′ = sp. Please note that the upper bound here does not depend on the
right endpoint b. A combination of this uniform upper bound with the fact that SL(t) preserves
the Ḣs′ × Ḣs′−1 norm implies

lim sup
t1,t2→+∞

∥∥∥∥SL(−t2)

(
u(·, t2)
ut(·, t2)

)
− SL(−t1)

(
u(·, t1)
ut(·, t1)

)∥∥∥∥
Ḣs′×Ḣs′−1

= lim sup
t1,t2→+∞

∥∥∥∥( u(·, t2)
ut(·, t2)

)
− SL(t2 − t1)

(
u(·, t1)
ut(·, t1)

)∥∥∥∥
Ḣs′×Ḣs′−1

≤C lim sup
t1,t2→+∞

‖Ds′−1/2
x (−|u|p−1u)‖L4/3L4/3([t1,t2]×R3)

≤Cs′,p lim sup
t1,t2→+∞

(
‖u‖p−1

L2(p−1)L2(p−1)([t1,t2]×R3)
‖Ds′−1/2

x u‖L4L4([t1,t2]×R3)

)
= 0.

As a result, the pair SL(−t)(u(·, t), ut(·, t)) converges in the space Ḣs′ × Ḣs′−1(R3) as t→ +∞.
Since the argument above works for both s′ = 1 and s′ = sp, we know that there exists a pair

(u+
0 , u

+
1 ) ∈ (Ḣ1 ∩ Ḣsp)× (L2 ∩ Ḣsp−1) so that the limit

lim
t→+∞

∥∥SL(−t)(u(·, t), ut(·, t))− (u+
0 , u

+
1 )
∥∥
Ḣs′×Ḣs′−1(R3)

= 0
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holds for s′ ∈ {1, sp}. By a basic interpolation the limit above holds for all s′ ∈ [sp, 1]. This is
equivalent to our conclusion

lim
t→+∞

∥∥(u(·, t), ut(·, t))− SL(t)(u+
0 , u

+
1 )
∥∥
Ḣs′×Ḣs′−1(R3)

= 0.

4 Preliminary Estimates on Solutions

Lemma 4.1. (See also Lemma 6.12 of [18] for the 2D version) Let u be a solution to the linear
wave equation  ∂2

t u−∆u = F (x, t), (x, t) ∈ R3 × [0, T ];
u|t=0 = u0;
∂tu|t=0 = u1;

with radial data u0, u1 and F . Assume that (u0, u1) satisfy the inequalities

|u0(x)| ≤ A1|x|−1−α, if |x| > R;

∫
|x|>R

|x|1+2α|u1(x)|2dx ≤ A2
1;

|F (x, t)| ≤ B1|x|−3(|x| − t)−β , if t ∈ [0, T ], |x| > R+ t

with constants R,A1, B1 > 0 and 0 < α, β < 1/2. Then there exists a constant C = C(α, β) ≥ 1
such that the solution u satisfies

|u(x, t)| ≤ C|x|−1
[
A1(|x| − t)−α +B1(|x| − t)−β

]
, if t ∈ [0, T ] and |x| > R+ t.

Remark 4.2. In the proof of Lemma 4.1 (as well as Corollary 4.4 below) we always assume that
u is sufficiently smooth. Otherwise we can apply standard smooth approximation techniques.

Proof. Let us consider the function w : R+× [0, T ]→ R defined by the formula w(r, t) = ru(r, t).
One can check that the function w satisfies the following wave equation defined on R+ × [0, T ]

∂2
tw − ∂2

rw = rF (r, t).

An explicit formula for the solution to a one-dimensional wave equation shows that

w(r0, t0) =
1

2
[w(r0 − t0, 0) + w(r0 + t0, 0)] +

1

2

∫ r0+t0

r0−t0
∂tw(r, 0)dr

+
1

2

∫ t0

0

∫ r0+t0−t

r0−t0+t

rF (r, t) drdt, (10)

whenever r0 > t0 +R and t0 ∈ [0, T ]. Our assumptions on F and the initial data u0, u1 give the
upper bounds

|w(r0 − t0, 0)| ≤ A1(r0 − t0)−α; |w(r0 + t0, 0)| ≤ A1(r0 + t0)−α; rF (r, t) ≤ B1r
−2(r − t)−β ;

and ∣∣∣∣∫ r0+t0

r0−t0
∂tw(r, 0)dr

∣∣∣∣ =

∣∣∣∣∫ r0+t0

r0−t0
ru1(r)dr

∣∣∣∣
≤
(∫ r0+t0

r0−t0
r−1−2αdr

)1/2(∫ r0+t0

r0−t0
r3+2α|u1(r)|2dr

)1/2

.α (r0 − t0)−α

(∫
|x|>r0−t0

|x|1+2α|u1(x)|2dx

)1/2

≤ A1(r0 − t0)−α.
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We then plug the upper bounds above into the identity (10) and obtain

|w(r0, t0)| ≤ A1

2

[
(r0 − t0)−α + (r0 + t0)−α

]
+

1

2

∣∣∣∣∫ r0+t0

r0−t0
∂tw(r, 0)dr

∣∣∣∣
+
B1

2

∫ t0

0

∫ r0+t0−t

r0−t0+t

r−2(r − t)−β drdt

≤ CαA1(r0 − t0)−α +
B1

2

∫ r0+t0

r0−t0

∫ (r0+t0+s)/2

s

r−2s−β drds

≤ CαA1(r0 − t0)−α +
B1

2

∫ r0+t0

r0−t0
s−1−βds

≤ CαA1(r0 − t0)−α + CβB1(r0 − t0)−β .

Here we deal with the double integral by the change of variables (r, s) = (r, r − t). Finally we
recall w = ru, divide both sides of the inequality above by r0 and finish the proof.

Proposition 4.3. Assume 3 ≤ p < 5. Let (u0, u1) and A, ε be initial data and positive constants
as in Theorem 1.1. Fix any constant δ < min{ε, 1/6}. Then there exist constants B1 = B1(δ) > 0
and R = R(δ, ε, A) > 1, such that the solution u to (CP1) with initial data (u0, u1) satisfies

|u(x, t)| ≤ B1|x|−1(|x| − t)−δ, if t ≥ 0 and |x| > t+R. (11)

Proof. Let C = C(δ, 3δ) be the constant as in the conclusion of Lemma 4.1. We can always find
two small positive constants A1 = A1(δ) and B1 = B1(δ) < 1, such that

B1 > C(A1 +B3
1).

By Remark 1.3, Remark 1.4 and the assumption δ < ε, we can always find a large constant
R = R(A, ε, δ) > 1, such that if |x| > R, then

|u0(x)| < A1|x|−1−δ;

∫
|x|>R

|x|1+2δ|u1(x)|2dx < A2
1.

We claim that these constants B1 and R work. In fact, If t1 is sufficiently small, then the
restriction of solution u to the time interval [0, t1] can be obtained by a fixed-point argument
according to our local theory. More precisely, if we set ũ0 ≡ 0 and define

ũn+1(·, t) = SL,0(t)(u0, u1) +

∫ t

0

sin((t− τ)
√
−∆)√

−∆
F (ũn(·, τ))dτ,

where F (u) = −|u|p−1u, then we have

lim
n→∞

‖ũn − u‖
L

2p
p−3 L2p([0,t1]×R3)

= 0.

An induction argument immediately follows:

(I) The function ũ0 satisfies the inequality (11) if t ∈ [0, t1];

(II) If ũn satisfies (11) for t ∈ [0, t1], then we have

|F (ũn(x, t))| =
∣∣B1|x|−1(|x| − t)−δ

∣∣p ≤ B3
1 |x|−3(|x| − t)−3δ, if |x| > t+R and 0 ≤ t ≤ t1.

Here we can substitute p by its lower bound 3 since we have assumed B1 < 1, |x| > |x|−t >
R > 1. As a result, we can apply Proposition 4.1 and obtain

|ũn+1(x, t)| ≤C(δ, 3δ)|x|−1
[
A1(|x| − t)−δ +B3

1(|x| − t)−3δ
]

≤C(A1 +B3
1)|x|−1(|x| − t)−δ

≤B1|x|−1(|x| − t)−δ,

whenever t ∈ [0, t1] and |x| > t+R.
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In summary, ũn satisfies (11) for all n ≥ 0 and t ∈ [0, t1]. Making n → ∞, we conclude
that u satisfies (11) for t ∈ [0, t1]. Passing to a limit in L2p/(p−3)L2p usually gives an almost
everywhere inequality. In this particular case, however, we obtain a pointwise inequality by the
continuity of u, thanks to Corollary 2.8. In order to generalize this result from small time to
all time t ∈ [0, T ] we only need to iterate our argument above. More details about this “double
induction” argument can be found in Proposition 6.16 of the author’s joint work [18] with G.
Staffilani.

Corollary 4.4. Let (u0, u1) be initial data as in Theorem 1.1 and A, ε, δ, B1, R be constants
associated to it as above. Then there exist a function f : [R,∞)→ R with∫ ∞

R

s1+δ|f(s)|2 ds .A,ε,δ 1

so that for all t ≥ 0 and r > t+R the function w(r, t) = ru(r, t) satisfies

|wt(r, t) + wr(r, t)| ≤ f(r + t); |wt(r, t)− wr(r, t)| ≤ f(r − t). (12)

Proof. For simplicity we define z1(r, t) = wt(r, t)+wr(r, t) and z2(r, t) = wt(r, t)−wr(r, t). Since
z1, z2 satisfy the identities

∂

∂s
[z1(r + t− s, s)] = (r + t− s)F (r + t− s, s);

∂

∂s
[z2(r − t+ s, s)] = (r − t+ s)F (r − t+ s, s);

where the function F is defined as F (r, t) = −|u(r, t)|p−1u(r, t), we can integrate from s = 0 to
s = t by the fundamental theorem of calculus

z1(r, t) = z1(r + t, 0) +

∫ t

0

(r + t− s)F (r + t− s, s)ds;

z2(r, t) = z2(r − t, 0) +

∫ t

0

(r − t+ s)F (r − t+ s, s)ds.

Next we rewrite z1(r + t, 0), z2(r − t, 0) in term of u0, u1 by their definition and obtain

z1(r, t) = (r + t) [u1(r + t) + ∂ru0(r + t)] + u0(r + t) +

∫ t

0

(r + t− s)F (r + t− s, s) ds;

z2(r, t) = (r − t) [u1(r − t)− ∂ru0(r − t)]− u0(r − t) +

∫ t

0

(r − t+ s)F (r − t+ s, s) ds.

We claim that we can choose f(s) = s|u1(s)| + s|∂ru0(s)| + Cs−1−δ for a suitable constant
C = C(A, ε, δ). It follows Remark 1.3, Remark 1.4 and a couple of estimates on the integrals in
the expression of z1, z2 . For the first integral we have∣∣∣∣∫ t

0

(r + t− s)F (r + t− s, s) ds
∣∣∣∣ .∫ t

0

(r + t− s)
[
(r + t− s)−1(r + t− 2s)−δ

]3
ds

.(r + t)−2

∫ t

0

(r + t− 2s)−δ ds

.(r + t)−1−δ.

Here we need to use the point-wise estimate u(r, t) . r−1(r − t)−δ and our assumption

t > 0, r − t > R > 1, 0 < s < t⇒
{
r + t− s > r & r + t,
r + t− 2s > r − t > R > 1.
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The second integral can be dealt with in a similar way∣∣∣∣∫ t

0

(r − t+ s)F (r − t+ s, s) ds

∣∣∣∣ .∫ t

0

(r − t+ s)
[
(r − t+ s)−1(r − t)−δ

]3
ds

.(r − t)−δ
∫ t

0

(r − t+ s)−2 ds

.(r − t)−1−δ.

Remark 4.5. An instance of the “channel of energy” method has been used in the proof above.
Please see [11] to learn more about this powerful tool for the study of wave equations.

5 A transformation

Let u(x, t) be a global and radial solution to (CP1). We consider the function v = Tu defined
by

v(y, τ) =
sinh |y|
|y|

eτu

(
eτ

sinh |y|
|y|

· y, t0 + eτ cosh |y|
)
, (y, τ) ∈ R3 × R.

Here t0 is a negative number to be determined later. This transformation can be rewritten in

the form of (Tu)(y, τ) = sinh |y|
|y| eτu(T̃(y, τ)), where the geometric transformation T̃ : R3 × R→

{(x, t) ∈ R3 × R : t− t0 > |x|} is defined by

T̃(y, τ) =

(
eτ

sinh |y|
|y|

· y, t0 + eτ cosh |y|
)
.

In particular, T̃ maps the hyperplane τ = τ0 in the y-τ space-time to the upper sheet of the
hyperboloid (t− t0)2 − |x|2 = e2τ0 in the x-t space-time.

Radial expression The function v is still a radial function and can be given in term of polar
coordinates (s,Θ, τ) ∈ [0,∞)× S2 × R by

v(s,Θ, τ) =
sinh s

s
eτu(eτ sinh s ·Θ, t0 + eτ cosh s).

For simplicity we can omit Θ and write

v(s, τ) =
sinh s

s
eτu(eτ sinh s, t0 + eτ cosh s).

Differentiation Let us recall that the function w(r, t) = ru(r, t) satisfies the equation wtt −
wrr = −r|u|p−1u, we can rewrite the function sv(s, τ) in the form of

sv(s, τ) = w(eτ sinh s, t0 + eτ cosh s).

A simple calculation shows

(sv)τ = (eτ sinh s)wr + (eτ cosh s)wt; (sv)s = (eτ cosh s)wr + (eτ sinh s)wt. (13)
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The values of wr and wt here are taken at the point (eτ sinh s, t0 + eτ cosh s). Next we can
differentiate again and obtain 2.

(sv)ττ =(eτ sinh s)wr + (eτ sinh s)2wrr + (eτ sinh s)(eτ cosh s)wrt

+ (eτ cosh s)wt + (eτ cosh s)(eτ sinh s)wtr + (eτ cosh s)2wtt;

(sv)ss =(eτ sinh s)wr + (eτ cosh s)2wrr + (eτ cosh s)(eτ sinh s)wrt

+ (eτ cosh s)wt + (eτ sinh s)(eτ cosh s)wtr + (eτ sinh s)2wtt.

Therefore we have (let us recall r = eτ sinh s)

vττ − vss −
2

s
vs =

1

s
[(sv)ττ − (sv)ss] =

e2τ

s
[wtt − wrr] = −e

2τ

s
r|u|p−1u

=−
( s

sinh s

)p−1

e−(p−3)τ

∣∣∣∣ sinh s

s
eτu

∣∣∣∣p−1
sinh s

s
eτu

=−
( s

sinh s

)p−1

e−(p−3)τ |v|p−1v.

In other words, v(y, τ) satisfies the non-linear wave equation

vττ −∆yv = −
(
|y|

sinh |y|

)p−1

e−(p−3)τ |v|p−1v, (τ, y) ∈ R× R3. (CP3)

Finally a basic calculation gives the following change of variables formula for integrals of radial
functions

dx dt = 4πr2dr dt = 4πe4τ sinh2 s ds dτ = e4τ

(
sinh |y|
|y|

)2

dy dτ. (14)

6 Proof of the Main Theorem

Let us consider a solution u to (CP1) as given in Theorem 1.1 with the constants A, ε. We
first fix a number δ = min{ε/2, 1/10} and let B1, R be the constants as given in Proposition
4.3. In addition, we define t̄ =

√
R2 + 1 + 1. Please note that all these constants δ, B1, R

and t̄ are determined solely by A and ε. Next we fix a negative time t0 = −t̄ and perform the
transformation v = Tu as described in the previous section. We claim

Lemma 6.1. There exists a time τ ∈ [−1, 0], so that the energy

E(τ) =

∫
R3

[
1

2
|∇yv(y, τ)|2 +

1

2
|vτ (x, τ)|2 + e−(p−3)τ

(
|y|

sinh |y|

)p−1 |v(y, τ)|p+1

p+ 1

]
dy

< C(A, ε).

Here C(A, ε) is a finite constant determined solely by the constants A and ε.

Remark 6.2. This actually means that E(0) < C(A, ε) <∞ by monotonicity of the energy.

6.1 Proof of Lemma 6.1

First of all, we observe that∫
R3

e−(p−3)τ

(
|y|

sinh |y|

)p−1 |v(y, τ)|p+1

p+ 1
dy .1

∥∥∥∥∥
(
|y|

sinh |y|

)p−1
∥∥∥∥∥
L6/(5−p)(R3)

‖v(·, τ)‖p+1
L6(R3)

.1 ‖v(·, τ)‖p+1

Ḣ1(R3)

2Here we temporarily assume that the functions involved are sufficiently smooth. Otherwise we can apply the
standard smoothing approximation techniques

17



Therefore it suffices to show that there exists τ ∈ [−1, 0] so that

E0(τ) =

∫
R3

[
1

2
|∇yv(y, τ)|2 +

1

2
|vτ (x, τ)|2

]
dy < C ′(A, ε).

Next we use the fact that v is radial and rewrite E0(τ) in term of polar coordinates

E0(τ) =

∫ ∞
0

2π
[
|vs(s, τ)|2 + |vτ (s, τ)|2

]
s2ds.

We split the integral into two parts: the integral over (s0(τ),∞) and the integral over (0, s0(τ)].

E0(τ) =

∫ ∞
s0(τ)

+

∫ s0(τ)

0

.
= E

(1)
0 (τ) + E

(2)
0 (τ).

The radius s0(τ)
.
= cosh−1(t̄ · e−τ ) > cosh−1

√
2 corresponds to the value of time t = t0 +

eτ cosh s0 = eτ cosh s0 − t̄ = 0.

Large radius part First of all, we observe the identities

r + t = t0 + eτes; r − t = −t0 − eτe−s.

In the large radius part we have s > s0(τ). This implies

(i) t = t0 + eτ cosh s = eτ cosh s− t̄ ≥ 0.

(ii) r − t = −t0 − eτe−s = t̄− eτe−s ≥ t̄− eτe−s0 =
√
t̄ 2 − e2τ > R.

As a result, we can apply the inequalities regrading u, wr, wt given in Proposition 4.3 and
Corollary 4.4 to obtain

|wt + wr| ≤ f(t0 + eτes); |wt − wr| ≤ f(−t0 − eτe−s); (15)

|u| .A,ε (eτ sinh s)−1 =⇒ |v| .A,ε s−1. (16)

Here f is the function introduced in Corollary 4.4. All the values of u, wr and wt above are
taken at the point (r, t) = (eτ sinh s, t0 + eτ cosh s). We combine the identities (13) with the
inequalities (15) and obtain

2|(sv)τ | = 2 |(eτ sinh s)wr + (eτ cosh s)wt| = eτ
∣∣es(wt + wr) + e−s(wt − wr)

∣∣
≤ eτ+sf(t0 + eτes) + eτ−sf(−t0 − eτe−s);

2 |(sv)s| = 2 |(eτ cosh s)wr + (eτ sinh s)wt| = eτ
∣∣es(wt + wr)− e−s(wt − wr)

∣∣
≤ eτ+sf(t0 + eτes) + eτ−sf(−t0 − eτe−s).

A basic calculation shows

E
(1)
0 (τ) = 2π

∫ ∞
s0(τ)

[
|vs(s, τ)|2 + |vτ (s, τ)|2

]
s2ds

≤ 2π

∫ ∞
s0(τ)

[∣∣∣∣∂(sv)

∂s
(s, τ)− v(s, τ)

∣∣∣∣2 +

∣∣∣∣∂(sv)

∂τ
(s, τ)

∣∣∣∣2
]
ds

≤ 4π

∫ ∞
s0(τ)

[
|(sv)s|2 + |(sv)τ |2 + v2

]
ds.

We substitute |(sv)τ |, |(sv)s|, |v| by their corresponding upper bounds given above and obtain

E
(1)
0 (τ) .A,ε

∫ ∞
s0(τ)

[
e2τ+2s |f(t0 + eτes)|2 + e2τ−2s

∣∣f(−t0 − eτe−s)
∣∣2 + s−2

]
ds.
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Finally we recall the assumptions τ ∈ [−1, 0], s > s0(τ) > cosh−1
√

2, observe the inequality

eτes .1 e
τ sinh s = r ≤ r + t = t0 + eτes

and obtain a universal upper bound on E
(1)
0 (τ):

E
(1)
0 (τ) .A,ε

∫ ∞
s0(τ)

eτ+s(t0 + eτes) |f(t0 + eτes)|2 ds+

∫ ∞
s0(τ)

eτ−s
∣∣f(−t0 − eτe−s)

∣∣2 ds
+

∫ ∞
s0(τ)

s−2ds

.1

∫ ∞
R

ξ1 |f(ξ1)|2 dξ1 +

∫ −t0
R

|f(ξ2)|2 dξ2 + 1

.A,ε 1.

Here we need to apply the change of variables ξ1 = t0 + eτes = r + t > R, ξ2 = −t0 − eτ−s =
r − t > R. In the final step we use the assumption on the function f in Corollary 4.4∫ ∞

R

ξ1+δ|f(ξ)|2dξ .A,ε 1.

t

x𝛕=0

𝛕=-1

(t-t0)2-|x|2=e2𝛕

t0

K

Figure 1: Illustration of region K

Small radius part Now we need to consider the upper bound of inf
τ∈[−1,0]

E
(2)
0 (τ), which can

be dominated by the integral of E
(2)
0 (τ) over the time interval [−1, 0]:

inf
τ∈[−1,0]

E
(2)
0 (τ) ≤2π

∫ 0

−1

∫ s0(τ)

0

[
|vs(s, τ)|2 + |vτ (s, τ)|2

]
s2ds dτ

=
1

2

∫ 0

−1

∫ s0(τ)

0

e−4τ
( s

sinh s

)2 [
|vs(s, τ)|2 + |vτ (s, τ)|2

]
4πe4τ sinh2 s ds dτ.
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Let us recall our definition of v and differentiate:

vτ =
sinh s

s
eτu+

sinh s cosh s

s
e2τut +

sinh2 s

s
e2τur;

vs =
s cosh s− sinh s

s2
eτu+

sinh2 s

s
e2τut +

sinh s cosh s

s
e2τur.

As a result we have∣∣∣ s

sinh s
vτ

∣∣∣ ≤ {|u|+ (t− t0)|ut|+ r|ur|}(r,t)=(eτ sinh s,t0+eτ cosh s) ;∣∣∣ s

sinh s
vs

∣∣∣ ≤ {|u|+ r|ut|+ (t− t0)|ur|}(r,t)=(eτ sinh s,t0+eτ cosh s) .

Our assumption s ∈ (0, s0(τ)] also implies r < t− t0 < |t0|. Plugging these upper bounds in the
integral above and applying the change of variables formula (14), we obtain

inf
τ∈[−1,0]

E
(2)
0 (τ) .1

∫∫
K

(1 + |t0|2)
(
|ut|2 + |∇u|2 + |u|2

)
dx dt

≤ (1 + |t0|2)

∫ 0

t0

∫
B(0,|t0|)

(
|ut|2 + |∇u|2 + |u|p+1 + 1

)
dx dt

.1 (1 + |t0|2)|t0|4 + (1 + |t0|2)|t0|Ẽ .A,ε 1.

Here the region K = {(x, t) : e−2 ≤ (t − t0)2 − |x|2 ≤ 1, t0 < t ≤ 0} ⊆ B(0, |t0|) × [t0, 0], as
illustrated in figure 1. The letter Ẽ represents the energy of solution u, whose upper bound has
been given in Remark 1.4. Combining the small radius part with the large radius part, we have

inf
t∈[−1,0]

E0(τ) ≤ sup
t∈[−1,0]

E
(1)
0 (τ) + inf

t∈[−1,0]
E

(2)
0 (τ) .A,ε 1,

thus finish the proof of Lemma 6.1.

6.2 A global integral estimate

Now v is a radial solution to (CP2) with a finite energy E(0) .A,ε 1. Proposition 3.4 immediately
gives a Morawetz inequality∫ ∞

0

∫
R3

e−(p−3)τ |y|p−1 cosh |y|
sinhp |y|

· |v(y, τ)|p+1dy dτ .1 E(0) .A,ε 1 (17)

We claim that another global space-time integral estimate holds:

I ′
.
=

∫ ∞
0

∫
R3

e−(p−3)τ

(
|y|

sinh |y|

)p−1

|v(y, τ)|2(p−1)dy dτ .A,ε 1. (18)

Proof. First of all, the monotonicity of energy implies E(τ) .A,ε 1 for all τ ≥ 0. Since v(·, τ)

are radial Ḣ1(R3) functions, we can apply Lemma 2.7 and obtain

|v(y, τ)| .1

‖v(·, τ)‖Ḣ1(R3)

|y|1/2
.1

(E(τ))1/2

|y|1/2
.A,ε

(
cosh |y|
sinh |y|

)1/2

.

As a result, we have (Please note that 3 ≤ p < 5)

|v(y, τ)|p−3 .A,ε

(
cosh |y|
sinh |y|

)(p−3)/2

≤ cosh |y|
sinh |y|

.
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We combine this with the Morawetz inequality (17) and finally obtain

I ′ =

∫ ∞
0

∫
R3

e−(p−3)τ

(
|y|

sinh |y|

)p−1

|v(y, τ)|p−3 · |v(y, τ)|p+1dy dτ

.A,ε

∫ ∞
0

∫
R3

e−(p−3)τ

(
|y|

sinh |y|

)p−1
cosh |y|
sinh |y|

· |v(y, τ)|p+1dy dτ .A,ε 1.

6.3 Completion of the proof for the main theorem

We have already known that the solution is well-defined for all time t ∈ R. According to
Proposition 3.8 and the time-invertible property of wave equations, it suffices to show

I
.
=

∫ ∞
0

∫
R3

|u(x, t)|2(p−1)dx dt .A,ε 1.

We first break the integral into two parts

I =

∫ ∞
0

∫
|x|>t+R

|u(x, t)|2(p−1)dx dt+

∫ ∞
0

∫
|x|<t+R

|u(x, t)|2(p−1)dx dt

≤
∫ ∞

0

∫
|x|>t+R

|u(x, t)|2(p−1)dx dt+

∫∫
Ω

|u(x, t)|2(p−1)dx dt
.
= I1 + I2.

Here the region Ω = {(x, t) : |x|2 < (t− t0)2 − 1, t > t0} satisfies (Please see figure 2. Recall the
definition t0 = −

√
R2 + 1− 1)

• Ω contains the region {(x, t) : |x| < t+R, t ≥ 0};

• Ω corresponds to the positive-time part of the y-τ space-time. In other words we have
Ω = T̃({(y, τ) : τ > 0}).

It is clear that I1 .A,ε 1 since the inequality u(r, t) .A,ε r−1(r− t)−δ (when r > t+R and t ≥ 0,
see Proposition 4.3) implies that

I1 .A,ε

∫ ∞
0

∫ ∞
t+R

[r−1(r − t)−δ]2(p−1)r2 drdt =

∫ ∞
R

∫ ∞
s

r−2(p−2)s−2(p−1)δ drds .A,ε 1.

Here we need to use the change of variables (s, r) = (r− t, r). In order to deal with I2, we apply
the change of variables formula (14).

I2 =

∫ ∞
0

∫
R3

(
e−τ

|y|
sinh |y|

)2(p−1) ∣∣∣∣ sinh |y|
|y|

eτu(T̃(y, s))

∣∣∣∣2(p−1)

· e4τ

(
sinh |y|
|y|

)2

dy dτ

=

∫ ∞
0

∫
R3

e−2(p−3)τ

(
|y|

sinh |y|

)2p−4

|v(y, τ)|2(p−1)dy dτ.

The last expression of I2 is different from the left hand of (18) (i.e. the integral I ′) only in the
first two exponents. A simple comparison shows that I2 ≤ I ′ .A,ε 1. This finishes the proof of
our main theorem.
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