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Abstract

Let p(n) denote the partition function and let A be the difference operator respect to n.
In this paper, we obtain a lower bound for A%log "/p(n —1)/(n — 1), leading to a proof

of the conjecture of Sun on the log-convexity of { {/p(n)/n},>60. From the log-convexity of

both { ¥/p(n)/n}n>60 and { /n},>4, we are led to a proof of another conjecture of Sun on

the log-convexity of { {/p(n)},>26. Using the same argument, it can be shown that for any

real number «, there exists an integer n(a) such that the sequence { {/p(n)/n},>n(a) is

log-convex. Moreover, we show that lim ns A2 log ¥/p(n) = 37/+/24. Finally, by finding
n—+o0

n—1/"7—"
an upper bound of A?log "/p(n — 1), we establish an inequality on the ratio %n)l).
e
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1 Introduction

The objective of this paper is to study the log-behavior of the sequences {/p(n) and {/p(n)/n,
where p(n) denotes the number of partitions of a nonnegative integer n. A positive sequence
{an }n>0 is log-convex if it satisfies that for n > 1,

a2 — ap_1an+1 <0,
and it is called log-concave if it satisfies that for n > 1,

2
ay, — ap—1an+1 > 0.

Let r(n) = {/p(n)/n and let A be the difference operator respect to n. Sun [I1] conjectured
that the sequence {r(n)}n>60 is log-convex. Desalvo and Pak [5] noticed that the log-convexity
of {r(n)}n>60 can be derived from an estimate for A%logr(n — 1), see [5, Final Remark 7.7].
They also remarked that their approach to bounding —A?log p(n — 1) does not seem to apply
to A%?logr(n — 1). In this paper, we obtain a lower bound for A?logr(n — 1), leading to a
proof of the log-convexity of {r(n)},>60-



Theorem 1.1 The sequence {r(n)}n>60 is log-convez.

The log-convexity of {r(n)}n,>e0 implies the log-convexity of { {/p(n)}n>26, because the
sequence { /n},>4 is log-convex [I1]. It is known that 1irJ1rl V/p(n) = 1. For a combinatorial
- n—-+0o0

proof of this fact, see Andrews [I]. Sun [11] proposed the conjecture that { {/p(n)},>¢ is strictly
decreasing, which has been proved by Wang and Zhu [I2]. The log-convexity of { £/p(n)}n>26
was also conjectured by Sun [II]. Tt is easy to see that the log-convexity of { %/p(n)}n>2
implies the decreasing property.

It should be noted that there is an alternative way to prove the log-convexity of { {/p(n) }n>26-
Chen, Guo and Wang [3] introduced the notion of a ratio log-convex sequence and showed that
the ratio log-convexity implies the log-convexity under a certain initial condition. A sequence
{an}n>k is called ratio log-convex if {a,4+1/an n>k is log-convex, or, equivalently, for n > k+1,

log ant2 — 3logani1 + 3loga, —loga,—1 > 0.

Chen, Wang and Xie [4] showed that that for any » > 1, one can determine a number n(r) such
that for n > n(r), (—1)""!A"logp(n) is positive. For r = 3, it can be shown that for n > 116,

A3logp(n — 1) > 0.
Since
A3logp(n — 1) =logp(n +2) — 3logp(n + 1) + 3log p(n) —logp(n — 1),

it is evident that {p(n)}n>116 is ratio log-convex. So we are led to the following assertion.
Theorem 1.2 The sequence { {¥/p(n)}n>26 is log-convez.

Moreover, as pointed out by a referee, we may consider the log-behavior of {/p(n)/n® for
any real number «. To this end, we obtain the following generalization of Theorem [I.1] and
1.2

Theorem 1.3 Let « be a real number. There exists a positive integer n(«) such that the

sequence { {/p(n)/n},>n(a) is log-conver.

"y/p(n—1)

We also establish the following inequality on the ratio — o)
p(n

Theorem 1.4 Forn > 2, we have

V/p(n) 3 "y/p(n—1)
s T <1+ \/ﬂnE’/?) > ey (1.1)

Desalvo and Pak [5] have shown that the limit of —n3A2 log p(n) is 7/v/24. By bounding
A?log ¥/p(n), we derive the following limit of n3 A2 log {/p(n):

lim n3A2log V/p(n) = 3m/V24. (1.2)

n—-+00

From the above relation (|1.2), it can be seen that the coefficent % in ([1.1]) is the best possible.
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2  The Log-convexity of r(n)

In this section, we obtain a lower bound of A2logr(n — 1) and prove the log-convexity of
{r(n)}n>60. First, we follow the approach of Desalvo and Pak to give an expression of
A2logr(n — 1) as a sum of A2B(n — 1) and A2E(n — 1), where A2B(n — 1) makes a ma-
jor contribution to A%logr(n — 1) with A2E(n — 1) being the error term, that is, A2§(n -1)
converges to A?logr(n — 1). The expressions for B(n) and E(n) will be given later. In this
setting, we derive a lower bound of A2B (n —1). By Lehmer’s error bound, we give an upper
bound for |A2E(n —1)|. Combining the lower bound for A2B(n — 1) and the upper bound for
A2E(n — 1), we are led to a lower bound for A2logr(n — 1). By proving the positivity of this
lower bound for A?logr(n — 1), we reach the log-convexity of {r(n)},>eo.

The strict log-convexity of {r(n)},>60 can be restated as the following relation for n > 61,
logr(n+ 1)+ logr(n —1) — 2logr(n) > 0,

that is, for n > 61,
A?logr(n —1) > 0.

For n > 1 and any positive integer N, the Hardy-Ramanujan-Rademacher formula (see

[2, 6, [7, 10]) reads
k
+ <1 + > e
u

d & k
p(n) = — A*n[(l—)e
( ) Mg kz_l k( ) L
where d = %, p(n) = gv24n — 1, Aj(n) = kf%Ak(n), Ag(n) is a sum of 24th roots of unity
with initial values Aj(n) = 1 and Ay(n) = (=1)", Ra(n, N) is the remainder. Lehmer’s error
bound (see [8,9]) for Re(n,N) is given by

|Rs(n, N)| < mN [<N>3sinh'u 4L (N)2] . (2.2)

e
==

} + Ry(n,N), (2.1)

V3 I N 6 I

Let us give an outline of Desalvo and Pak’s approach to proving the log-concavity of {p(n)}n>25.
Setting N = 2 in (2.1)), they expressed p(n) as

p(n) =T(n)+ R(n), (2.3)
where
n) — d b h(n) (_Dne”(g")

T = e | (1= ) 2+ e 24
O VA U WP | S | AU T GRS B
Ao = o () - S ma t e () e

(2.5)
They have shown that
B R(n—1) ,7{(\)/%
‘A2logp(n— 1) — A%log T(n — 1)‘ = ‘A2log <1+ T(n—1)>| <e 10V, (2.6)
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and
_nvon
<e 10V3, (2.7)

d 1
A%logT(n — 1) — A%log <1 — ) eh(n=1)
‘ (n=1) GRS Gy

It follows that A? log W‘il)g (1 — ﬁ) e(=1) converges to A2 log p(n—1). Finally, they use

—A?log u(n‘il)g (1 — M(nl_l)) eMn=1) to estimate —AZlog p(n — 1), leading to the log-concavity
of {p(n)}n>25.

We shall use an alternative decomposition of p(n). Setting N = 2 in ({2.1]), we can express
p(n) as

p(n) = T(n) + R(n), (2.8)

e Tn) = - (i)2 (1 - M(lm) eh(m), (2.9)
R = | (4 )+ S (- )

+ (_\gn (1 + M(Qn)> e#(;)} + Ro(n, 2). (2.10)

Based on the decomposition (2.8)) for p(n), one can express A?logr(n — 1) as follows:

A?logr(n —1) = A’B(n— 1) + A2E(n — 1), (2.11)
where
B(n) = %logf(n) - %logn, (2.12)
U = R(n)/T(n), (2.13)
B(n) = %log(l ). (2.14)

The following lemma will be used to derive a lower bound and an upper bound of AQE(n— 1).

Lemma 2.1 Suppose f(x) has a continuous second derivative for x € [n — 1,n + 1]. Then
there exists ¢ € (n — 1,n + 1) such that

"

A2f(n—1) = f(n+1)+ f(n—1) - 2f(n) = ["(¢). (2.15)
If f(x) has an increasing second derivative, then
f"(n—1) < A%f(n—1) < f'(n+1). (2.16)
Conversely, if f(x) has a decreasing second derivative, then

f"(n+1) < A%f(n—1) < f'(n—1). (2.17)



Proof. Set ¢(x) = f(x +1) — f(x). By the mean value theorem, there exists a number
¢ € (n—1,n) such that

fln+1)+ f(n—1) =2f(n) = p(n) —p(n —1) = ¢ (§).
Again, applying the mean value theorem to ¢ (£), there exists a number 6 € (0,1) such that
P =FE+1) = f'€)=F(6+0)
Let ¢ = & + 6. Then we get -7 which yields (2.16]) and - |

In order to find a lower bound for A%logr(n — 1) and obtain the limit of n3 A2 log V/p(n),
we need the following lower and upper bounds for A% log T'(n — 1).

Lemma 2.2 Let

27 4log(pu(n — 1))
B = — 2.18
1) = D) @an 1 23)72 (n—13 (2.18)
27 4log(p(n + 1)) 5
B = — . 2.19
2(0) = T 2an — 25)72 (n+1)3 n—1)3 (2.19)
For n > 40, we have
1 ~
Bi(n) < A2n — logT(n — 1) < Ba(n). (2.20)
Proof. By the definition , we may write
lo T
50 Zfz,
where
_ nl(n)
fl(n) - n 5
3log pu(n)
f2(n) - n )
log(p(n) — 1)
f3(n) n )
logd
fa(n) = —
Thus
Azt Clog T(n —1) = ZAQfln—l). (2.21)
n—
Since
f/// (n) N T _% 864 % . i
! © n(24n — 1)3/2 n o 2dn—1 n?2 n3)’



we see that for n > 1, ff, (n) < 0. Similarly, it can be checked that for n > 4, fé” (n) > 0,

fs (n) <0, and f, (n) > 0. Consequently, for n >4, f,' (n) and fs (n) are decreasing, whereas

fé’ (n) and f, (n) are increasing. Using Lemma for each i, we can get a lower bound and
an upper bound for A2f;(n — 1) in terms of f; (n — 1) and f; (n + 1). For example,

filln+1) < A2fi(n—1) < fi (n —1).
So, by we find that

AP log Tn—1)> fi(n+1)+ fo(n—1)+fs (n+1)+ f1 (n—1), (2.22)
and
1 -~ 1 1 1 "
N L ogT(n—1) < f{(n =1+ fin+ D+ fln-D+ [n+1),  (223)
where
" 727 127 m
= — 2.24
L) = o — 192~ n22dn — 12 3u(2dn — 1) (224)
i 6log p(n) 72 864
=— 2.2
f2(n) B (24n — 1)n? * n(24n —1)%’ (2:25)
" 42 2log(p(n) —1)
Js() == ey T2 @i = n n3
_ a7 _ 247 (2.26)
(u(n) —1)v/24n —1n2  (u(n) —1)(24n — 1)3/2n’ '
iz 210gd
fa(n) =—35—. (2.27)
n
According to (2.24)), one can check that for n > 2,
" 727 127
1) > — . 2.28
S ) > e G 1 23)72 (£ 1)2(24n £ 23)372 (2.28)
An easy computation shows that for n > 3,
2
p(n) —1> gu(n —2). (2.29)
Substituting ([2.29)) into (2.26)) yields that
" 2log(pu(n+1) —1) 540 36
1 — — . 2.30
Jsn+1)> (n+1)3 (24n — 25)2(n— 1)  (24n — 25)(n — 1) (2:30)

Using (2.25)) and (2.30), we find that

"

fr(n=1)+ fy(n+1)

2log(u(n +1) —1)  Glog(p(n —1))
(n+1)3 (n—1)3




324 36

T DA =252 " (n— 1)2(24n — 25) (2:31)
Apparently, for n > 2,
2 2 12
1P m-1P (-
so that
2log(u(n+1) —1)  Glog(pu(n —1))
(n+1)° (n—1y
2log(u(n +1) 1)  2log(u(n+1)—1)  4log(u(n — 1))
(n+1)° (1) (n—1y
- 1210g((/;(i ;i) —1) 410%7(Zu_(711)—3) D) 032
Since, for n > 2,
(n— 1)(?;24%1 e s 1)2(35471 ~%) - e (2:33)
utilizing and yields that for n > 3,
foln—1)+ fi(n+1)> —410?:1“_(711;{ D), & _2 il 1210g((‘;(741r)1) —D 2
Using (2.27)), and (2.34), we deduce that
fin+1)+fy(n—1)+ f5(n+1)+ fy (n— 1) — By(n)
2(1+logd) 127 _ L2log(u(n+1) — 1) 2.35)
(n—1)3 (n + 1)2(24n + 23)3/2 (n —1)4

Let C(n) be the right hand side of (2.35]). To prove ([2.22]), it is enough to show that C(n) > 0
when n > 40. Since logx < x for z > 0, and for n > 3

pn+1)—1< %/2411 —24, (2.36)
we get
121 1)—1 12 1)—1 24
_ Rlog(u(n+1) 1)  12(un+1)-1) 3v24r ‘ (2.37)
(n—1)4 (n—1)4 (n—1)7/2
Note that for n > 2,
- L2m S CLL (2.38)
(n + 1)2(24n + 23)3/2 48(n —1)7/2
Combining (2.37) and (2.38) gives for n > 2,
2(1 41 1/48)+/24
Cln) > 21t loed)  (B+1/ 8)v24m (2.39)

(n—1)3 (n—1)7/2



It is straightforward to show that the right hand side of (2.39) is positive if n > 490. For
40 < n < 489, it is routine to check that C'(n) > 0, and so C(n) > 0 for n > 40. It follows

from ([2.35)) that for n > 40,
1

AQ

. log T(n—1) > By(n).

To derive the upper bound for A2 log T (n—1), we obtain the following upper bounds which

can be verified directly. The proo?s_ ;re omitted. For n > 2,
filn=1) < (n— 1)[2742;— 25/
frln+1) <~ 610(%5”1; . 2(n : 1)’
fyln=1) <~ (u(n — 1))2(;47:— 25)(n — 1) 210%&—(”1)_3 =
4 24m

p(n —1)v24n — 25(n — )2 p(n — 1)(24n — 25)3/2(n — 1)’

" " 3 12log(u(n+1)) 4log(u(n + 1))
f2(n+1)+f3(n—1)<(n_1)3+ (n— 1)1 Tt 1p

1

Combining the above upper bounds, we conclude that for n > 40,
Am=1)+fs(n+1)+ f5(n—=1)+ fi (n+1) < Bs(n).

This completes the proof. |

The following lemma gives an upper bound for |[A2E(n — 1)].

Lemma 2.3 Forn > 40,

~ 5 m\/24n—25
A’E(n - 1)) < 16_72118 2 (2.40)
Proof. By (2.14]), we find that for n > 2,
- _ _ 2 _
A’E(n—1) = —log(1+n1) + — = log(1 + Fn+1) — —log(1 + Tn), (2.41)

where ~ N
Yn = R(n)/T(n).

To bound \AQE (n — 1)|, it is necessary to bound y,. For this purpose, we first consider E(n),
as defined by (2.10). Since d < 1 and p(n) > 2, for n > 1 we have

o () () ()
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p(n)

< l—i-eT-i-l).

o
p(n)?
For N =2 and n > 1, Lehmer’s bound ({2.2]) reduces to

4w
|R2(n,2)\<4(1+u(n)36 2 >

By the definition of R(n),

~ 1 #(n) 4 #(n) 9 wu(n)
R(n <<1+e2+1)+4<1+62><5+e2. 2.42
N u(n)? WP 242
Recalling the definition (2.9)) of T (n), it follows from (2.42)) that for n > 1,
il < 0 (Bt 90 ) (2.43)
Observe that for n > 2,
(5u(n)2e*2“§”> n 96*%) <0, (2.44)
and
d(p(n) — 1)\
(%) > 0. (2.45)
Since
_ 2u(40) _un0)  d(p(40) — 1)
B5u(40)e 5 4 9e e <« T T )
40) (10)
using (2.44)) and ([2.45)), we deduce that for n > 40,
_2u(n) _utm) d(p(n) —1)
5u%(n)e” "5 +9¢ 6 < . 2.46
(n) o (2.46)
Now, it is clear from (2.43) and ([2.46) that for n > 40,
G < e "5 (2.47)
In view of ([2.47)), for n > 40,
1
1G] < e 57 < = (2.48)

)
It is known that log(l +z) <z for 0 <z < 1 and —log(l1 4+ z) < —z/(1 + ) for —1 <z < 0.
Thus, for |z| < 1,
|z

log(1 < 2.4
log(1 +2)] < (2.49)
see also [5], and so it follows from (2.48]) and (2.49) that for n > 40,
N onl 5~
log(1 4+ y,)| < — < —|Yn|. 2.50
o (1 +7)| < 121 < {1 (250)
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Because of (2.41)), we see that for n > 2,

1 1
log(14+7,_
llog(1+1p, 1)\+n+1

~ " 2 .
A2B(n-1)| < — log(1+ 41|+ log(1+7)].

Applying (2.50) to (2.51f), we obtain that for n > 40,

~ 5 (|Un—1] . |Uns1| . 2|n]
A’E(n —1 ‘<f .
‘ (n )_4<n—1+n+1+ n

Plugging (2.47)) into (2.52)), we infer that for n > 40,

5 (o u(n;l) e_u(n3+1) 26_@
A2E(n —1 ‘ <= .
’ (n ) 4 n—1 * n+1 + n

p(n)

But %e_T is decreasing for n > 1, it follows from ([2.53) that for n > 40,

~ 5 (n-1)
‘AQE(n—l)’ < n—le_u ol

This proves (|2.40]).

(2.51)

(2.52)

(2.53)

With the aid of Lemma [2.2| and we are ready to prove the log-convexity of {r(n)}n>60-

Proof of Theoremm To prove the strict log-convexity of {r(n)}n>60, we proceed to show that

for n > 61,
A%logr(n —1) > 0.

< logn>1//
— > 0.

Evidently, for n > 40,

By Lemma 2.1}
n
A2 log(n — 1) - _log(n—1) 7
n—1 n—1
that is,
log(n — 1) 2log(n —1) 3
— A? - .
n—1 = n—1pF =17

It follows from ([2.12)) that

A’B(n—1) = A2

1 ~ log(n — 1)
logT(n—1)— A2—=2— 2,
n—1 o T(n ) n—1

Applying Lemma and (2.54) to the above relation, we deduce that for n > 40,

_ 2log(n—1) 3

A2B(n —1) > Bi(n) 1P TP

that is,

A2B(n—1) > 27 4log[pu(n —1)]  2log(n —1) 3

10

(n+1)(24n+23)32  (n—1)3 n—13 ' (n—1)3

(2.54)

(2.55)



By (2.11) and Lemma we find that for n > 40,

A%logr(n —1) > A’B(n —1) — - E 16_@. (2.56)
It follows from (2.55) and (2.56|) that for n > 40,
A?logr(n — 1)
- 27 _ dloglp(n —1)]  2log(n —1) 3.5 2
(n+1)(24n + 23)3/2 (n—1)3 (n—1)3 (n—1)3 n-1

Let D(n) denote the right hand side of the above relation. Clearly, for n > 5505,

27 S 3m S 1 (2.57)
(n+1)(24n +23)3/2 7 \/24(n+1)5/2 ~ (n—1)5/2 :
To prove that D(n) > 0 for n > 5505, we wish to show that for n > 5505,
4loglu(n —1)]  2log(n —1) 3 5 _xy/ZIn=3 1
— — - > . 2.58
(n—1) n-1° " mn-1p n-1= " oz (25
Using the fact that for 2 > 5504, logz < z'/*, we deduce that for n > 5505,
4log[p(n — 1)] <44u(n—1) AT 24n—24< 6 (2.59)
(n—1)3 (n—1)3 (n—1)3 (n —1)23/8° '
and
2log(n —1) _ 2(n—1)/4 2
. 2.60
) N R N (SR (200
Since e® > 25/720 for x > 0, we see that for n > 2,
1 7w24117817-25< 1 J\%Tn< 2094 < 2094 (2.61)
—e . .
n_1° n—1 nd(n—1)  (n—1)4
Combining (2.59), (2.60) and (2.61)), we find that for n > 5505,
4loglp(n —1)]  2log(n —1) 3 5 P iz
(n—1)3 (n—1)3 (n—13 n-1
S 6 2 n 3 10470
(n—1)2/8 (n—-1)4 (n—-1)3 (n—1)*
6 2
> J— —
(n—1)2/8  (n—1)11/4
ot
(n —1)5/2

This proves the inequality (2.58). By (2.58) and (2.57)), we obtain that D(n) > 0 for n > 5505.
Verifying that A%logr(n — 1) > 0 for 61 < n < 5504 completes the proof. 1
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Clearly, Theorem is a generalization as well as a unification of Theorem and In
fact, it can be proved in the same manner as the proof of Theorem

Proof of Theorem Let a be a real number. When « < 0, it is clear that
It follows from Theorem that {/p(n)/n® is log-convex for n > 26.

We now consider the case o > 0. A similar argument to the proof of Theorem shows
that for n > 40,

A’log "/p(n—1)/(n—1)°

is log-convex.

1
n/na

1 1 log(n — 1)
_ A2 2 A2
=A n_llogT(n)+A n_llog(1+yn_1) alA —
S 27  4log[p(n —1)]  2alog(n —1)
(n + 1)(24n + 23)3/2 (n—1)3 (n—1)3
3 5 7/2An—25
— - . 2.62
oo w1 " (2:62)
It is easy to check that for n > max { [%} + 2, 5505},
3.5 . 2 - 3a 10470 >0
n—1)3 n-1 (n—1)3 (n—1)4 ’
and for n > max{[(2a + 3)%] + 2, 5505},
4log[pu(n —1)]  2alog(n —1) 6 2 1
— — > — - > — :
(n—1)3 (n—1)3 (n—1)2/8  (n—1)11/4 (n —1)5/2
Let
3490
n(a) = max{ [a] +2,[(2a 4+ 3)Y + 2, 5505} .
It can be seen that for n > n(a),
4loglu(n —1)]  2alog(n —1) 3 5  _rnv/2An—38 1
- - - BTG )
(n—1)p 17 o a1t " T Tmone 8
Combing (2.57) and (2.63)), we deduce that the right hand side of (2.62)) is positive for n > n(a).
So we are led to the log-convexity of the sequence { {/p(n)/n},>n(q)- 1
. . . "x/p(n—1)
3 An inequality on the ratio Ry~
p\n

In this section, we employ Lemma and Lemma [2.3 to find the limit of n3A2 log {/p(n).
1
Vp(n—1)

Then we give an upper bound for A“log ™~ . This leads to the inequality (1.1]).
Theorem 3.1 Let = 3mw/v/24. We have
lim n2A2 log v/p(n) = 5. (3.1)

n—-+o0o
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Proof. Using (2.8)), that is, the N = 2 case of the Hardy-Ramanujan-Rademacher formula for
p(n), we find that

1
log V/p —logT + —log(1 + Un),
n

where T'(n) and vy, are given by (2.9) and (2.13). By the definition (2.14) of E(n), we get

1 - -

A%log "V/p(n —1) = — logT(n—1) + A’E(n —1). (3.2)

Applying Lemma we get that

5 1 ~
li —1)2A° logT(n —1) = . :
Jim (n—1)2A%——logT(n—1) =8 (3:3)
From Lemma [2.3] we get

lim (n—1)3A2E(n— 1) = 0. (3.4)

n——+o00

Using (3.2), (3.3) and (3.4]), we deduce that
lim n3A2 log /p(n) =3,

n——+o00
as required. |

To prove Theorem we need the following upper bound for A%log "=/p(n — 1).

Theorem 3.2 Forn > 2,

A%log "V/p ) <

—_— 3.5
\ﬁn5/2~|—37r (3.5)

Proof. By the upper bound of AZﬁ log T(n — 1) given in Lemma the upper bound of
A’E (n — 1) given in Lemma and the relation (3.2), we get the following upper bound of

A?log "/p(n — 1) for n > 40,

_ 27 5 4log[p(n + 1)] 5 _xy2n=35
A?log "V/p(n —1) < - B
o8 " VPN =) < e T as T (n -1y 1P n-i°

To prove (3.5)), we claim that for n > 2095,

27 n 5  dloglu(n+1)] n 5 NS 3 (3.6)
(n—1)(24n —25)3/2  (n—1)3 (n+1)3 n—1 V24n5/2 + 375~

First, we show that for n > 60,

727 B 3 < 1
(n—1)(24n —25)3/2  \/24p5/2 + 3x ~ (n—1)3’

13



ForO0<z < ﬁ, it can be checked that

3 3
In the notation 8 = 37/1/24, we have
72
T - b (3.9)

(n—1)(24n —25)3/2  (n—1)n3/2(1 — 22)3/2

Setting = = %, we have z < é for n > 60. Applying (3.8 to the right hand side of (3.9)), we
find that for n > 60,

3
B B 75 3 (25)\2
14— — 3.10
(n—1)n3/2(1 — 22)3/2 So—Un2 | T e T8 \2am) | (3.10)
so that for n > 60,
27 _ 3T
(n—1)[24n — 25]3/2  \/24n5/2 4 3x
3
3 3 3 75 3/925\?
< - — + == . 3.11
(n—1)n32 /24152 4 3r - (n—1)n3/2 | 48n * 8 \ 24n (3:11)
To prove (3.7)), we proceed to show that the right hand side of (3.11]) is bounded by ﬁ
Noted that for n > 2,
5 s 8 ) g
(n—1)n32  24n5/2 +3x (0524 B)(n—1)  (n%2 4 B)(n — 1)n3/2’
and n%/% 4 B > (n — 1)%?2, together with n%/2 > (n — 1)%/2, we have that
B 3m B s
- < . 3.12
(n—1)n32  /24n52 437~ (n—1)7/2 + (n—1)° (312
Applying (3.12) to (3.11)), we obtain that for n > 60,
2T _ 3T
(n —1)[24n — 25]3/2  \/24n5/2 4 31
3 82 3 75 3/25\?
— — . 3.13
< (n—1)7/2 - (n—1)° * (n —1)n3/2 8 R <24n> (3:13)
3
Since 478—571 <-Z-and 2 (22)2 < m for n > 2, it follows from ({3.13)) that for n > 60,
2T _ 3T
(n—1)[24n — 25]3/2  \/24n>/2 + 37
s B 26 g
R E N IR e E R E
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Using the fact that 8 < 2, we see that

353 B2 B 6 4 2
=2 1P -1t S -2 o1 T oD

(3.14)

For n > 60, it is easily checked that the right hand side of (3.14) is bounded by ﬁ This

confirms (3.7)).

To prove the claim (3.6)), it is enough to show that for n > 2095,

1 4loglp(n+1)] 5 5 eI (3.15)
(n—1)3 (n+1)3 (n—1)3 n-1 ' '

From ({2.61)) it can be seen that for n > 2095,

5 7/24n—25 5
o _— 1
—€ B < 1) (3.16)

Since 4 log[u(n + 1)] > 18 for n > 2095, it follows from (3.16)) that for n > 2095,

4log[p(n + 1)] ) 5 — =V/2Hn=35
- - e
(n+1)3 (n—1)3 n-1
18 10 1

T 1P (m—1p (n-1)p

So we obtain (3.15)), which yields (3.6). For 2 < n < 2094, the inequality (3.5)) can be easily
checked. This completes the proof. |

We are now in a position to finish the proof of Theorem
Proof of Theorem[I.4] It is known that for « > 0,

T
— < log(1 ,
1+ og(l + )

so that for n > 1,
3

3m
—_—<log 1+ —~ ).
V24n5/2 + 31 & < v 24n5/2)

In light of the above relation, Theorem [3.2] implies that for n > 2,

3T
2 n—1
A“log \/]9(77,—1) < log (1+\/W> )

that is,
n n— 37T n
Vo 01 < (14 ) (V)
as required. |

We remark that § = 37/v/24 is the smallest possible number for the inequality in Theorem
Suppose that 0 < v < 8. By Theorem [3.I] there exists an integer N so as to for n > N,

n®2A%log "/p(n —1) > .
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It follows that

A?log "V/p(n—1) > %/2 > log (1 + %/2) ,
n n
which implies that for n > N,

n

y "3/p(n —1)
+n5/2)< o

p(n) (1
n+1 /p(n+ 1)
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