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Abstract

Given a sequence s = (s1, s2, . . .) of positive integers, the notion of inversion
sequences with respect to s, or s-inversion sequences, was introduced by Savage
and Schuster in their study of lecture hall polytopes. A sequence (e1, e2, . . . , en)
of nonnegative integers is called an s-inversion sequence of length n if 0 ≤ ei < si
for 1 ≤ i ≤ n. Let In be the set of s-inversion sequences of length n for s =
(1, 4, 3, 8, 5, 12, . . .), that is, s2i−1 = 2i − 1 and s2i = 4i for i ≥ 1, and let Pn
be the set of signed permutations on the multiset {12, 22, . . . , n2}. Savage and
Visontai conjectured that the descent number over Pn is equidistributed with the
ascent number over I2n. In this paper, we give a proof of this conjecture by using
P -partitions of type B. Lin independently obtained a proof based on recurrence
relations. Moreover, we find a set of signed permutations over which the descent
number is equidistributed with the ascent number over I2n−1. Let I ′n be the set of
s-inversion sequences of length n for s = (2, 2, 6, 4, 10, 6, . . .), that is, s2i−1 = 4i−2
and s2i = 2i for i ≥ 1. We also find two sets of signed permutations over which
the descent number is equidistributed with the ascent number over I ′n, depending
on whether n is even or odd.

Keywords: inversion sequence, ascent number, signed permutation, descent number,
P -partition of type B

AMS Subject Classifications: 05A05, 05A15

1



1 Introduction

The notion of s-inversion sequences was introduced by Savage and Schuster [4] in their
study of lecture hall polytopes. Let s = (s1, s2, . . .) be a sequence of positive integers.
An inversion sequence of length n with respect to s, or an s-inversion sequence of length
n, is a sequence e = (e1, e2, . . . , en) of nonnegative integers such that 0 ≤ ei < si for
1 ≤ i ≤ n. An ascent of an s-inversion sequence e = (e1, e2, . . . , en) is defined to be an
integer i ∈ {0, 1, . . . , n− 1} such that

ei
si
<
ei+1

si+1

,

where we assume that e0 = 0 and s0 = 1. The ascent number asc(e) of e is meant to be
the number of ascents of e.

The generating function of ascent numbers of s-inversion sequences can be viewed as a
generalization of the Eulerian polynomial for permutations, since the ascent number over
s-inversion sequences of length n for s = (1, 2, 3, . . .) is equidistributed with the descent
number over permutations on {1, 2, . . . , n}, see Savage and Schuster [4]. Savage and
Visontai [5] showed that for any sequence s of positive integers and any positive integer
n, the generating function of ascent numbers of s-inversion sequences of length n has
only real roots. In particular, by establishing a relation between the generating function
of ascent numbers of s-inversion sequence for s = (2, 4, 6, ...) and the generating function
of descent numbers of even-signed permutations, they proved the real-rootedness of the
Eulerian polynomial of type D as conjectured by Brenti [1].

We adopt the notation {1m1 , 2m2 , . . . , nmn} for a multiset in which i occurs mi times
for 1 ≤ i ≤ n. When s = (1, 1, 3, 2, 5, 3, . . .), that is, s2i−1 = 2i − 1 and s2i = i for
i ≥ 1, Savage and Visontai [5] showed that the descent number over permutations on
{12, 22, . . . , n2} is equidistributed with the ascent number over s-inversion sequences of
length 2n. Moreover, they posed an equidistribution conjecture for the descent number of
signed permutations on the multiset {12, 22, . . . , n2}. Recall that a signed permutation
on a multiset {1m1 , 2m2 , . . . , nmn} is a permutation on {1m1 , 2m2 , . . . , nmn} for which
each element is possibly associated with a minus sign. For example, 31̄23̄1 is a signed
permutation on the multiset {12, 2, 32}, where ī is identified with −i.

Conjecture 1.1 (Savage and Visontai [5]) The descent number over signed permuta-
tions on {12, 22, . . . , n2} is equidistributed with the ascent number over s-inversion se-
quences of length 2n with s = (1, 4, 3, 8, 5, 12, . . .), that is, s2i−1 = 2i− 1 and s2i = 4i for
i ≥ 1.

In this paper, we give a proof of Conjecture 1.1. Let Pn denote the set of signed
permutations on {12, 22, . . . , n2}, and let In denote the set of s-inversion sequences of
length n for s = (1, 4, 3, 8, 5, 12, . . .). Moreover, let Pn(x) denote the generating function
of descent numbers of signed permutations in Pn, and let In(x) denote the generating
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function of ascent numbers of inversion sequences in In. Savage and Schuster [4] deduced
that

I2n(x)

(1− x)2n+1
=
∑
t≥0

(t+ 1)n(2t+ 1)nxt. (1.1)

Using P -partitions of type B introduced by Chow [2], we show that Pn(x) satisfies the
same relation as I2n(x). Thus Pn(x) = I2n(x), and this proves Conjecture 1.1.

It should be noted that Lin [3] independently found a proof of Conjecture 1.1 by
showing that the coefficients of Pn(x) and I2n(x) satisfy the same recurrence relation.

Besides the equidistribution conjectured by Savage and Visontai, we also find a set
of signed permutations over which the descent number is equidistributed with the ascent
number over I2n−1. Let Un(x) be the generating function of descent numbers of signed
permutations on {12, 22, . . . , (n − 1)2, n}, and let Vn(x) be the generating function of
descent numbers of signed permutations on {12, 22, . . . , (n − 1)2, n} such that n always
has a minus sign. Similar to relation (1.1) for I2n(x), Savage and Schuster [4] deduced a
relation for I2n−1(x). We show that Vn(x) satisfies the same relation as I2n−1(x), which
implies that I2n−1(x) = Vn(x).

For the sequence s = (2, 2, 6, 4, 10, 6, . . .), that is, s2i−1 = 4i−2 and s2i = 2i for i ≥ 1,
let I ′n be the set of s-inversion sequences of length n, and let I ′n(x) denote the generating
function of ascent numbers of inversion sequences in I ′n. We obtain the equidistributions
I ′2n−1(x) = Un(x) and I ′2n(x) = Pn(x).

2 Proof of Conjecture 1.1

In this section, we present a proof of Conjecture 1.1. For n ≥ 1, we use Fn to de-
note the forest consisting of n rooted trees each of which has exactly two vertices. We
show that the generating function Pn(x) of descent numbers of signed permutations on
{12, 22, . . . , n2} equals the generating function Gn(x) of descent numbers of linear ex-
tensions of Fn with signed labelings under certain conditions. Using the technique of
P -partitions of type B, we deduce that Gn(x) satisfies the same relation (1.1) as I2n(x),
which implies that Gn(x) = I2n(x). Thus we reach the conclusion that Pn(x) = I2n(x),
and this proves Conjecture 1.1.

Let us begin with an overview of linear extensions of a poset. Let P be a poset on
the set {v1, v2, . . . , vn} with order relation ≤. As usual, we use the notation vi < vj to
denote that vi ≤ vj but vi 6= vj. A labeling of P is an assignment of positive integers
to the elements v1, v2, . . . , vn such that each positive integer cannot be used more than
once. A signed labeling of P is a labeling of P with each label possibly associated with a
minus sign. We adopt the notation (P,w) for a signed labeled poset, where w is a signed
labeling of P . For a signed labeled poset (P,w) and an element v of P , we use w(v) to
denote the label associated with v.
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In this paper, we will be concerned only with a special type of posets, namely, labeled
forests with each tree consisting of at most two vertices. Such a forest will be called a
simple forest. When viewed as a poset, a simple forest is endowed with the following
order relation. We say that u < v if u is a child of v. For example, Figure 2.1 illustrates
a simple forest P along with a signed labeling of P .

v1

v2

v3

v4

(a)

v1

v2

v3

v4

(b)

−1

3

6

−5

Figure 2.1: A simple forest along with a signed labeling.

Recall that a linear extension of a poset P is a permutation vi1vi2 · · · vin of the el-
ements of P such that vij < vik only if j < k, see Stanley [6]. However, by a linear
extension of a signed labeled poset (P,w) we mean a permutation w(vi1)w(vi2) · · ·w(vin)
of the labels associated with the elements of P , where vi1vi2 · · · vin is a linear extension
of P . Let L(P,w) denote the set of linear extensions of (P,w). For example, for the
signed labeled forest in Figure 2.1, we have

L(P,w) = {31̄5̄6, 35̄1̄6, 35̄61̄, 5̄31̄6, 5̄361̄, 5̄631̄},

where ī is identified with −i.

In this section, we shall further restrict our attention to simple forests for which each
component is a rooted tree with two vertices. More precisely, let Fn denote such a simple
forest with n trees T1, T2, . . . , Tn, where Ti is rooted at vi with ui being the only child. A
signed labeling w of Fn is said to be local if it satisfies one of the following conditions:

(1) w(ui) = 2i− 1 and w(vi) = 2i;

(2) w(ui) = 2i− 1 and w(vi) = 2i;

(3) w(ui) = 2i− 1 and w(vi) = 2i;

(4) w(ui) = 2i and w(vi) = 2i− 1.

We use L(Fn) to denote the set of local signed labelings of Fn. A linear extension of
Fn with a local signed labeling becomes a signed permutation on {1, 2, . . . , 2n}. As will
be shown in Theorem 2.1, the generating function Pn(x) of descent numbers of signed
permutations on the multiset {12, 22, . . . , n2} equals the generating function Gn(x) of
descent numbers of linear extensions of Fn with local signed labelings.
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Recall that the descent set of a signed permutation σ = σ1σ2 · · · σn is defined as

{i |σi > σi+1, 1 ≤ i ≤ n− 1} ∪ {0 | if σ1 < 0}, (2.1)

see Savage and Visontai [5]. However, for the purpose of this paper, we choose the
following alternative definition of the descent set of σ:

{i |σi > σi+1, 1 ≤ i ≤ n− 1} ∪ {n | if σn > 0}. (2.2)

The descent number desB(σ) of σ is referred to as the number of elements in the descent
set defined by (2.2). In fact, via the bijection

σ = σ1σ2 · · · σn 7−→ σ′ = (−σn)(−σn−1) · · · (−σ1),

we see that the descent numbers defined by (2.1) and (2.2) are equidistributed over the
set of signed permutations on {12, 22, . . . , n2}.

With the above notation, the generating function Gn(x) can be written as

Gn(x) =
∑

w∈L(Fn)

∑
σ∈L(Fn,w)

xdesB(σ).

We have the following equidistribution property.

Theorem 2.1 For n ≥ 1, we have

Gn(x) = Pn(x).

Proof. Define a map φ from the set ⋃
w∈L(Fn)

L(Fn, w) (2.3)

of linear extensions of Fn with local signed labelings to the set of signed permutations on
{12, 22, . . . , n2}. Let σ = σ1σ2 · · ·σ2n be a linear extension in L(Fn, w), where w ∈ L(Fn).
The construction of φ(σ) = τ = τ1τ2 · · · τ2n can be described as follows. For 1 ≤ i ≤ 2n,

assume that τi has the same sign as σi. Moreover, set |τi| = |σi|
2

if |σi| is even and set

|τi| = |σi|+1
2

if |σi| is odd. Since σ is a signed permutation on {1, 2, . . . , 2n}, it can be
easily checked that τ is a signed permutation on {12, 22, . . . , n2}.

To show that φ is a bijection, we construct a map ψ from the set of signed per-
mutations on {1, 2, . . . , 2n} to the set in (2.3) and we shall prove that ψ is the in-
verse of φ. Let τ = τ1τ2 · · · τ2n be a signed permutation on {12, 22, . . . , n2}. Define
ψ(τ) = σ = σ1σ2 · · ·σ2n by the following procedure. For each 1 ≤ i ≤ n, assume that ai
and bi (ai < bi) are the two positions of τ occupied by i or ī. Moreover, σai and σbi are
determined according to the following cases:
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(1) σai = 2i− 1 and σbi = 2i if τai = τbi = i;

(2) σai = 2i− 1 and σbi = 2i if τai = i and τbi = i;

(3) σai = 2i− 1 and σbi = 2i if τai = i and τbi = i;

(4) σai = 2i and σbi = 2i− 1 if τai = τbi = i.

So σ is a signed permutation on {1, 2, . . . , 2n}. Let w be a signed labeling of Fn defined
by w(ui) = σai and w(vi) = σbi . It is routine to check that w is a local signed labeling
of Fn. It is also straightforward to verify that σ is a linear extension of (Fn, w).

For any linear extension σ of Fn with a local signed labeling, by direct verification we
see that ψ(φ(σ)) = σ. This implies that ψ is the inverse of φ, and hence φ is a bijection.
Finally, by the construction of φ, it can be seen that j ∈ {1, 2, . . . , 2n} is a descent of σ
if and only if it is a descent of φ(σ). This completes the proof.

As the simplest example of the bijection φ, consider the case n = 1. For F1, there
are four local signed labelings and the set of linear extensions of F1 with local signed
labelings is {12, 12, 12, 2 1}. In this case, we have

φ(12) = 11, φ(12) = 11, φ(12) = 11, φ(2 1) = 1 1.

The next theorem shows that Gn(x) satisfies the same relation as I2n(x).

Theorem 2.2 For n ≥ 1, we have

Gn(x)

(1− x)2n+1
=
∑
t≥0

(t+ 1)n(2t+ 1)nxt. (2.4)

To prove the above theorem, recall the notion of a (P,w)-partition of type B intro-
duced by Chow [2]. Let P be a poset and w be a signed labeling of P . A (P,w)-partition
of type B is a map f from P to the set of nonnegative integers that satisfies the following
conditions:

(1) f(u) ≥ f(v) if u ≤ v;

(2) f(u) > f(v) if u < v and w(u) > w(v);

(3) f(v) ≥ 1 if w(v) > 0.

When w is a labeling with positive integers, a (P,w)-partition of type B reduces to an
ordinary (P,w)-partition defined by Stanley [6]. Substituting each element v ∈ P with
its label w(v), a (P,w)-partition of type B can be viewed as a map from the set of labels
of P to the set nonnegative integers. Chow [2] showed that (P,w)-partitions of type B
can be generated by linear extensions of (P,w). For a linear extension σ = σ1σ2 · · ·σn
of (P,w), a map g from {σ1, σ2, . . . , σn} to the set of nonnegative integers is called
σ-compatible if the following conditions are satisfied:
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(1) g(σ1) ≥ g(σ2) ≥ · · · ≥ g(σn);

(2) g(σi) > g(σi+1) if 1 ≤ i ≤ n− 1 and σi > σi+1;

(3) g(σn) ≥ 1 if σn > 0.

Notice that for two distinct linear extensions σ and σ′ of (P,w), any σ-compatible map
is not σ′-compatible.

The following theorem is due to Chow [2], which will be used to establish a relation
between the generating function for the number of (P,w)-partitions of type B and the
generating function for the descent number of linear extensions of (P,w).

Theorem 2.3 (Chow [2]) Let P be a poset with a signed labeling w. A map f from P
to the set of nonnegative integers is a (P,w)-partition of type B if and only if there exists
a linear extension σ of (P,w) such that f is σ-compatible.

For a nonnegative integer t, let ΩP (w, t) denote the number of (P,w)-partitions f of
type B such that f(v) ≤ t for any v ∈ P . We have the following relation.

Theorem 2.4 Let P be a poset with n elements, and let w be a signed labeling of P .
Then

1

(1− x)n+1

∑
σ∈L(P,w)

xdesB(σ) =
∑
t≥0

ΩP (w, t)xt. (2.5)

Proof. The proof is analogous to that of Stanley [6] for the case of an ordinary labeling.
For a linear extension σ = σ1σ2 · · ·σn of (P,w), let Ωσ(t) denote the number of σ-
compatible maps g such that g(σi) ≤ t for 1 ≤ i ≤ n. In view of Theorem 2.3, we see
that

ΩP (w, t) =
∑

σ∈L(P,w)

Ωσ(t).

Thus, to prove (2.5) it suffices to show that∑
t≥0

Ωσ(t)xt =
xdesB(σ)

(1− x)n+1
. (2.6)

To count Ωσ(t), we establish a bijection between the set of σ-compatible maps g with
g(σi) ≤ t for 1 ≤ i ≤ n and the set of partitions (λ1, λ2, . . . , λn) with λ1 ≤ t− desB(σ).
Recall that a partition is a sequence (λ1, λ2, . . . , λn) of nonnegative integers such that
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. For 1 ≤ i ≤ n, let di denote the number of descents of σ that
are greater than or equal to i, that is,

di = |{j | i ≤ j ≤ n− 1, σj > σj+1} ∪ {n | if σn > 0}|.
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Let g be a σ-compatible map with g(σi) ≤ t for 1 ≤ i ≤ n. It is easily checked that
by setting λi = g(σi) − di for 1 ≤ i ≤ n, we are given a partition (λ1, λ2, . . . , λn) with
λ1 ≤ t − desB(σ). It can be seen that this procedure is reversible. So we arrive at a
bijection. Notice that the number of partitions (λ1, λ2, . . . , λn) with λ1 ≤ t− desB(σ) is
equal to (

n+ t− desB(σ)

n

)
,

see Stanley [6]. It follows that

Ωσ(t) =

(
n+ t− desB(σ)

n

)
,

which implies (2.6). This completes the proof.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. By Theorem 2.4, we aim to prove the following equivalent form
of (2.4): ∑

w∈L(Fn)

ΩFn(w, t) = ((t+ 1)(2t+ 1))n . (2.7)

Recall that Fn consists of n components T1, T2, . . . , Tn, where Ti is a tree rooted at vi
with ui being the only child. Keep in mind that the left-hand side of (2.7) equals the
number of (Fn, w)-partitions f of type B such that f(ui) ≤ t and f(vi) ≤ t, where w is
a local signed labeling of Fn. Restricting f to the tree Ti, we obtain a map fi from Ti to
the set nonnegative integers. Similarly, restricting w to Ti gives a signed labeling wi of
Ti. Recall that wi is given by one of the following assignments:

(1) wi(ui) = 2i− 1 and wi(vi) = 2i,

(2) wi(ui) = 2i− 1 and wi(vi) = 2i,

(3) wi(ui) = 2i− 1 and wi(vi) = 2i,

(4) wi(ui) = 2i and wi(vi) = 2i− 1.

Clearly, fi is a (Ti, wi)-partition of type B satisfying the conditions fi(ui) ≤ t and
fi(vi) ≤ t. Conversely, f can be recovered from f1, f2, . . . , fn.

For a signed labeling wi of Ti induced by a local signed labeling of Fn, we now
compute the number ΩTi(wi, t) of (Ti, wi)-partitions fi of type B such that fi(ui) ≤ t
and fi(vi) ≤ t. We consider the above four cases.

Case 1: wi(ui) = 2i − 1 and wi(vi) = 2i. It is easily seen that in this case fi is a
(Ti, wi)-partition of type B if and only if

0 < fi(vi) ≤ fi(ui) ≤ t.
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So we have

ΩTi(wi, t) =

(
t+ 1

2

)
.

Case 2: wi(ui) = 2i− 1 and wi(vi) = 2i. Similarly, in this case, fi is a (Ti, wi)-partition
of type B if and only if

0 < fi(vi) ≤ fi(ui) ≤ t.

Thus,

ΩTi(wi, t) =

(
t+ 1

2

)
.

Case 3: wi(ui) = 2i− 1 and wi(vi) = 2i. We see that fi is a (Ti, wi)-partition of type B
if and only if

0 ≤ fi(vi) < fi(ui) ≤ t.

This implies that

ΩTi(wi, t) =

(
t+ 1

2

)
.

Case 4: wi(ui) = 2i and wi(vi) = 2i− 1. In this case, fi is a (Ti, wi)-partition of type B
if and only if

0 ≤ fi(vi) ≤ fi(ui) ≤ t.

Hence,

ΩTi(wi, t) =

(
t+ 2

2

)
.

Combining the above four cases, we see that for any 1 ≤ i ≤ n, the number of possible
configurations of (Ti, wi)-partitions of type B equals

3

(
t+ 1

2

)
+

(
t+ 2

2

)
= (t+ 1)(2t+ 1).

It follows that ∑
w∈L(Fn)

ΩFn(w, t) = ((t+ 1)(2t+ 1))n,

as required.

3 Signed permutations and I2n−1

In the previous section, we proved the conjecture of Savage and Visontai on the equidis-
tribution of the descent number over signed permutations and the ascent number over
s-inversion sequences in the set I2n. In this section, we find a set Vn of signed permu-
tations over which the descent number is equidistributed with the ascent number over
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the set I2n−1. Recall that I2n−1 is the set of s-inversion sequences of length 2n − 1 for
s = (1, 4, 3, 8, 5, 12, . . .). For an s-inversion sequence e = (e1, e2, . . . , en), an ascent of e
is defined as an integer i ∈ {0, 1, . . . , n− 1} such that

ei
si
<
ei+1

si+1

,

where we assume that e0 = 0 and s0 = 1. The ascent number of e is meant to be the
number of ascents of e. Define Vn(x) as the generating function of descent numbers
of signed permutations in Vn. Recall that I2n−1(x) denotes the generating function of
ascent numbers of inversion sequences in I2n−1. Savage and Schuster [4] showed that

I2n−1(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n(2t+ 1)n−1xt. (3.1)

We show that Vn(x) satisfies the same relation (3.1) as I2n−1(x). The proof is similar to
that of Conjecture 1.1. So we reach the conclusion that Vn(x) = I2n−1(x).

Let Un be the set of signed permutations on the multiset {12, 22, . . . , (n − 1)2, n}.
Define Vn to be the subset of Un consisting of signed permutations such that the element
n carries a minus sign. Set

Vn(x) =
∑
σ∈Vn

xdesB(σ).

We have the following equidistribution property.

Theorem 3.1 For n ≥ 1, we have Vn(x) = I2n−1(x).

Proof. In view of (3.1), we aim to show that

Vn(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n(2t+ 1)n−1xt. (3.2)

Let F ∗n be the forest obtained from Fn−1 by adding a single vertex vn as a component.
For example, Figure 3.2 illustrates the forest F ∗n for n = 3. Write L(F ∗n) for the set

v1

u1

v2

u2

v3

Figure 3.2: The forest F ∗n for n = 3.

of signed labelings w of F ∗n such that w(vn) = −(2n− 1) and the labels on Fn−1 form
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a local signed labeling of Fn−1. Let Qn(x) denote the generating function of descent
numbers of linear extensions of F ∗n with signed labelings w ∈ L(F ∗n), namely,

Qn(x) =
∑

w∈L(F ∗n)

∑
σ∈L(F ∗n ,w)

xdesB(σ).

Analogous to the bijection φ in the proof of Theorem 2.1, we can construct a descent
preserving map φ∗ from the set ⋃

w∈L(F ∗n)

L(F ∗n , w)

to the set Vn. Let σ = σ1σ2 · · ·σ2n−1 be a linear extension in L(F ∗n , w), where w ∈ L(F ∗n).
Define φ∗(σ) = τ = τ1τ2 · · · τ2n−1 as follows. For 1 ≤ i ≤ 2n− 1, assume that τi has the

same sign as σi. Then we set |τi| = |σi|
2

if |σi| is even and set |τi| = |σi|+1
2

if |σi| is odd.
Clearly, τ is a signed permutation in Vn. Moreover, one can construct the inverse of φ∗,
which is analogous to the inverse of φ. This proves that φ∗ is a bijection. So we obtain
that

Vn(x) = Qn(x). (3.3)

Thus (3.2) is equivalent to

Qn(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n(2t+ 1)n−1xt. (3.4)

By Theorem 2.4, the left-hand side of (3.4) can be written as

Qn(x)

(1− x)2n
=
∑
t≥0

∑
w∈L(F ∗n)

ΩF ∗n (w, t)xt.

Hence (3.4) is equivalent to∑
w∈L(F ∗n)

ΩF ∗n (w, t) = (t+ 1)n(2t+ 1)n−1. (3.5)

The proof of (3.5) is similar to that for (2.7). For completeness, a detailed proof is
presented. Recall that Fn−1 contains n − 1 components T1, T2, . . . , Tn−1, where Ti is a
tree rooted at vi with ui being the only child. Let T ∗n denote the component consisting
of the single vertex vn. By definition, the left-hand side of (3.5) equals the total number
of (F ∗n , w)-partitions f of type B such that f(v) ≤ t for any vertex v of F ∗n , where w is
a signed labeling belonging to L(F ∗n). Restricting f to Fn−1, we obtain a map f ′ from
Fn−1 to the set nonnegative integers. While, restricting f to T ∗n , we are led to a map f ′′

from T ∗n to the set nonnegative integers. On the other hand, restricting w to Fn−1 gives
a local signed labeling w′ of Fn−1, whereas restricting w to T ∗n gives a signed labeling
w′′ of T ∗n such that w′′(vn) = −(2n − 1). Obviously, f ′ is a (Fn−1, w

′)-partition of type
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B satisfying the condition that f ′(v) ≤ t for any vertex v of Fn−1, and f ′′ is a (T ∗n , w
′′)-

partition of type B such that f ′′(vn) ≤ t. It can be seen that the above procedure is
reversible. Hence we get∑

w∈L(F ∗n)

ΩF ∗n (w, t) = ΩT ∗n (w′′, t)
∑

w′∈L(Fn−1)

ΩFn−1(w
′, t). (3.6)

In the proof of Theorem 2.2, it has been shown that∑
w′∈L(Fn−1)

ΩFn−1(w
′, t) = ((t+ 1)(2t+ 1))n−1. (3.7)

To compute ΩT ∗n (w′′, t), we see that f ′′ is a (T ∗n , w
′′)-partition of type B if and only if

0 ≤ f ′′(vn) ≤ t.

Thus
ΩT ∗n (w′′, t) = t+ 1. (3.8)

Combining (3.6), (3.7) and (3.8), we are led to (3.5). This completes the proof.

4 Signed permutations and I ′n

In this section, we consider equidistributions of the descent number over signed permu-
tations and the ascent number over s-inversions sequences for s = (2, 2, 6, 4, 10, 6, . . .).
Recall that the set of such s-inversion sequences of length n is denoted by I ′n. It turns
out that we need to distinguish the parity of n.

First, we consider the case for I ′2n. Let I ′2n(x) be the generating function of ascent
numbers of inversion sequences in I ′2n. Savage and Schuster [4] obtained a relation for the
generating function of ascent numbers of s-inversion sequences for s = (1, 1, 3, 2, 5, 3, . . .),
that is, s2i = i and s2i−1 = 2i− 1 for i ≥ 1. This leads to a relation satisfied by I ′2n(x).
As will be seen, this relation coincides with the relation (1.1) for I2n(x), and so we get
I ′2n(x) = I2n(x). Since I2n(x) equals the generating function Pn(x) of descent numbers
of signed permutations on {12, 22, . . . , n2}, we are led to the equidistribution as stated
below.

Theorem 4.1 For n ≥ 1, we have Pn(x) = I ′2n(x).

To prove the above theorem, we recall two formulas of Savage and Schuster [4] on
the generating function of ascent numbers of s-inversion sequences of length n. For any
sequence s = (s1, s2, . . .) of positive integers, let f

(s)
n (t) denote the number of sequences

(a1, a2, . . . , an) of nonnegative integers such that

0 ≤ a1
s1
≤ a2
s2
≤ · · · ≤ an

sn
≤ t. (4.1)
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Savage and Schuster [4] deduced that

1

(1− x)n+1

∑
e

xasc(e) =
∑
t≥0

f (s)
n (t)xt, (4.2)

where e ranges over s-inversion sequences of length n. For the sequence

s = (1, 1, 3, 2, 5, 3, . . .),

Savage and Schuster [4] showed that

f (s)
n (t) = (t+ 1)d

n
2
e
(
t+ 2

2

)bn
2
c

. (4.3)

Proof of Theorem 4.1. Let
s = (2, 2, 6, 4, 10, 6, . . .)

and
s′ = s/2 = (1, 1, 3, 2, 5, 3, . . .).

By (4.1), we see that
f (s)
n (t) = f (s′)

n (2t).

Applying (4.3) to s′, we get

f (s)
n (t) = (t+ 1)b

n
2
c (2t+ 1)d

n
2
e. (4.4)

Let I ′n(x) be the generating function of ascent numbers of inversion sequences in I ′n. By
(4.2) and (4.4), we obtain that

I ′n(x)

(1− x)n+1
=
∑
t≥0

(t+ 1)b
n
2
c(2t+ 1)d

n
2
e xt. (4.5)

Replacing n with 2n in (4.5), we arrive at

I ′2n(x)

(1− x)2n+1
=
∑
t≥0

(t+ 1)n(2t+ 1)n xt. (4.6)

Comparing (4.6) with (1.1), we see that I ′2n(x) satisfies the same relation as I2n(x). This
implies that I ′2n(x) = I2n(x). Since Pn(x) = I2n(x), we conclude that Pn(x) = I ′2n(x).
This completes the proof.

We now consider the case for I ′2n−1. Recall that Un is the set of signed permutations
on {12, 22, . . . , (n− 1)2, n}. Let Un(x) be the generating function of descent numbers of
signed permutations in Un. Replacing n with 2n− 1 in (4.5), we find that

I ′2n−1(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n−1(2t+ 1)n xt. (4.7)

It will be shown that Un(x) also satisfies relation (4.7). So we have the following equidis-
tribuion property for I ′2n−1.
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Theorem 4.2 For n ≥ 1, we have Un(x) = I ′2n−1(x).

Proof. We proceed to show that

Un(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n−1(2t+ 1)n xt. (4.8)

As defined in the proof of Theorem 3.1, F ∗n denotes the forest obtained from Fn−1 by
adding a single vertex vn as a component T ∗n . We use L′(F ∗n) to stand for the set of signed
labelings w of F ∗n such that w(vn) = 2n− 1 or w(vn) = −(2n− 1), and the restriction of
w to Fn−1 forms a local signed labeling of Fn−1. Let

Hn(x) =
∑

w∈L′(F ∗n)

∑
σ∈L(F ∗n ,w)

xdesB(σ). (4.9)

Analogous to the construction of φ∗ in the proof of Theorem 3.1, we can establish a
descent preserving bijection from the set⋃

w∈L′(F ∗n)

L(F ∗n , w)

to the set Un. This yields that
Hn(x) = Un(x).

Therefore, (4.8) is equivalent to

Hn(x)

(1− x)2n
=
∑
t≥0

(t+ 1)n−1(2t+ 1)n xt. (4.10)

By Theorem 2.4, for each signed laleling w ∈ L′(F ∗n),

1

(1− x)2n

∑
σ∈L(F ∗n ,w)

xdesB(σ) =
∑
t≥0

ΩF ∗n (w, t)xt.

It follows that

1

(1− x)2n

∑
w∈L′(F ∗n)

∑
σ∈L(F ∗n ,w)

xdesB(σ) =
∑
t≥0

∑
w∈L′(F ∗n)

ΩF ∗n (w, t)xt.

In view of the definition of Gn(x) as given in (4.9), we obtain that

Hn(x)

(1− x)2n
=
∑
t≥0

∑
w∈L′(F ∗n)

ΩF ∗n (w, t)xt.

Hence (4.10) is equivalent to the following relation∑
w∈L′(F ∗n)

ΩF ∗n (w, t) = (t+ 1)n−1(2t+ 1)n. (4.11)
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The proof of (4.11) is similar to that of (3.5). Let w1 be the signed labeling of
T ∗n such that w1(vn) = −(2n − 1), and let w2 be the signed labeling of T ∗n such that
w2(vn) = 2n− 1. Then∑

w∈L′(F ∗n)

ΩF ∗n (w, t) =
(
ΩT ∗n (w1, t) + ΩT ∗n (w2, t)

) ∑
w∈L(Fn−1)

ΩFn−1(w, t). (4.12)

In the proof of Theorem 2.2, we have shown that∑
w∈L(Fn−1)

ΩFn−1(w, t) = ((t+ 1)(2t+ 1))n−1, (4.13)

whereas in the proof of Theorem 3.1, we deduced that

ΩT ∗n (w1, t) = t+ 1. (4.14)

Clearly, a map f from T ∗n to the set of nonnegative integers is a (T ∗n , w2)-partition of
type B if and only if 0 < f(vn) ≤ t. Thus

ΩT ∗n (w2, t) = t. (4.15)

Substituting (4.13), (4.14) and (4.15) into (4.12), we arrive at (4.11). This completes
the proof.
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