Page 1 of 29

©CoO~NOUTA,WNPE

CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT NON-100744.R1

Standing Wave and Global Existence to a Nonlocal Nonlinear

Schrodinger Equations: The Two-Dimensional Case

. . %
Zaihui Gan 12
1 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2 College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, China

Abstract: In this paper, we consider the standing waves and the global existence
for two-dimensional nonlocal nonlinear Schrédinger equations. It is a coupled sys-
tem which describes the spontaneous generation of a magnetic field in a cold plasma
under the static limit. The main difficulty in the proofs lies in exploring the inner
structure of the equations due to the fact that the nonlocal terms violate the inner
scaling invariance, which may cause the non-zero energy for the ground state. For
this reason, we first make a proper use of the inner structure of the equations to
establish the existence of standing waves, and then we apply an energy scaling to
obtain the instability of standing waves. Finally we show a sharp threshold for the
global existence of solutions to the nonlocal nonlinear Schrédinger equations by a
variational method, which depends again on the inner structure of the equations
under consideration.

Key words: Nonlocal nonlinear Schrodinger equations, Standing wave, Global
existence, Instablity

AMS(2010): 35A15, 35Q55

1 Introduction

In 1971, Stamper et al. in [30] found that large quasi-steady magnetic fields were
created in laser-produced plasmas. Later, Bezzerides et al. in [6] showed that the
generation of magnetic fields is due to a solenoidal current j given by

BW*Q

i= =[VA(EAE), (A-1)

g
16mmwg

where w* is the plasma frequency, m the electron mass, —e the electron charge, E
the complex conjugate of E, and E the slowly varying complex amplitude of the high-
frequency (wg) electric field E:

B- %{E(r, =0t 4 ¢.c). (A—2)
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Following the idea of introducing two time-scales which refer to the fast electron
motion on a time-scale corresponding to the plasma frequency w and to the ion motion,

respectively [35], Thornhill and Ter Haar in [32] derived the following coupled system:

iOE + Sw 2V (V E)—li[VA(VAE)]—lw*EE—F " BAB, =0, (A—3)
t 9% 1D 2 w* 27 no 2me s
VZ’EP
— 2An. = A—4
s — ¢ Ang = T, ( )
. *2
AB, - —< _[VA[VAEAE]+ 2 B, =0. (A—5)

dmew* 2
In the above system they used a two-fluid description of the plasma, which contains the
equations of continuity, the equations of motion, and the Maxwell equations. Here M is
the ion mass, cs the ion-sound velocity with ¢ ~ T,./M, T, the electron temperature, vp
the Debye redius, ng the equilibrium density of electron, ng the fluctuation of electron
density from its equilibrium and B the self-generation magnetic field in a cold plasma.

Normalizing equations (A-3)-(A-5), one gets

i0E+ AE —nE +i(EAB) =0, (A—-6)
&gtn—An: A’E’Z, (A—7)
AB - in(VA(VA(EAE)))—6B =0, (A—38)

where n = ng, B = Bg, 7 > 0 and § > 0 are two dimensionless physical parameters.
The system (A-6)-(A-8) describes the so-called spontaneous generation of a magnetic
field in a cold plasma, in which E represents the slowly varying complex amplitude of
the high-frequency electric field [8, 9, 10, 16, 35, 36]. We note that if one solves B from
the equation (A-8) and substitutes it into the equation (A-6), one finds a differential
-integral (nonlocal) equation for E.

In order to illustrate the effects of the self-generation (induced) magnetic fields on
dynamics of a cold plasma, we consider here a simplified version of the system (A-6)-
(A-8). We restrict ourselves to the static limit( when the ion-sound speed cs is large
so that one can neglect the term dyn in (A-7)), and obtain the generalized vector

nonlinear Schrodinger equations for E:
iE; + AE + |E|’E +i(EAB) = 0, (A—-9)

AB —inV xV x (EAE) - 6B = 0. (A —10)

In this paper we shall study the two-dimensional case of the above system. For E €
H'(R?), after a Fourier transform of the equation (A-10), one obtains B(E) € L?(R?)
and '

n
€17 +6

B(E)=F"! (EAN(ENF(EAE)))], (A—11)
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where F and F~! denote the Fourier transform and the Fourier inverse transform,
respectively (see [19] [21] [22] [23]). Due to the rotation invariance of equations (A-
9)-(A-10), and in the two dimensional case, we may assume E = (E1, E»,0) and £ =
(£1,&2,0) in previous discussions. Then equations (A-9)-(A-10) are equivalent to the

following nonlinear Schrédinger system with nonlocal terms:

0By +AB + (1B |2 + o) By 1)
LB, F [ F(EFs — ElEQ)} —0, '
10i By +AFEy + (|E1’2 + ’EQ‘Q)E (1 2)

2 P _
+BF S FEE - B )| =0,

where (E1, E) : (t,z) € Rt x R? — C x C,  and § are two constants with 7 > 0 and
§ > 0, E; denotes the complex conjugate of E; (i = 1,2). For equations (1.1)-(1.2), the

initial data are taken to be:
F1(0,z) = E%x), F»(0,z) = E9(z), = € R% (1.3)

Our main interest here is to understand the influence of the self-generation magnetic
field on the solutions of (1.1)-(1.2). Let E1(t,z) = e™tu(x), Es(t,z) = e™tv(z) with
w > 0. Here, (u(x),v(x)) is a pair of complex-valued functions, which satisfies the

following nonlocal nonlinear elliptic equations:

—wu  +Au+ (Ju? + |[v]?)u

+oF1 [|77||§J|r5]-"(u@)} —pF ! [ nlél® .F(ﬂv)} =0, z € R?

—wv +Av+ (Ju? + |v*)v

FuF | F )| - uF | A =0, 2 e R

Here the nonlocal operator F ! \g||24|r5]: has the symbol o(§) = |g\‘2§f5 (see [13, 25, 26]).
For related studies on these nonlocal nonlinear Schrodinger equations (1.1)-(1.2), we
refer to our earlier works [11, 12]. In particular, we note the following conservation

laws for the mass and energy:
Je2 (B + | Bof?)dx = [eo (| BT + | ES|?)da, (1.5)

H(E1, E2) = [p2(|VEL] + |[VE2*)dx
—%fRQ |E1|* + | Ea|YYdz — [go | E1|?|E2?dx
- ‘gg% (IF(B\E2)? + | F(B1 o) [?) de (1.6)
+Re [g |§\2+5]:(E1E2)]:(E1E2)d5
= H(EY, EY).
For the classical nonlinear Schrodinger equations without nonlocal terms, there have

been many works on the local and global existence, finite time blowup and instability of
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standing waves (see [1, 15, 14, 27, 28, 20, 33, 37, 38]). For equations (1.1)-(1.2), howev-
er, the existence and instability of standing waves do not seem to be a trivial issue, and
the sharp sufficient conditions of global existence in R? are far from well-understood.

First of all, the presence of the nonlocal terms eliminates the invariance of inner
scaling with respect to the space variables which is often a useful fact in known argu-
ments. Secondly, the nonlocality may yield the non-zero energy of the ground states,
which leads to new difficulties in establishing the instability of the standing waves for
the nonlocal nonlinear Schrédinger equations (1.1)-(1.2). Based on some a priori es-
timates on these nonlocal terms and several new techniques, we obtain the existence
and instability of the standing waves (Theorem 2.1, Theorem 3.1) as well as the sharp
sufficient condition of global existence for the equations (1.1)-(1.2) in R? (Theorem
4.1).

In contrast to the case of nonlinear Schrédinger equations without any external
field effect, the nonlocal term due to the self-generation of magnetic field complicates,
in particular, the applications of the virial identities (see the proof of Theorem 4.1).
Moreover, from a physical point of view, self-generation magnetic field may alter the
energy of the ground state and it may, in particular, become positive (Proposition 3.2).
Hence it could lead to an additional force to act on the position (the orbit center) of
this particle like solution. The latter may be a reason for the orbital instability of
standing waves to occur (Theorem 3.1).

Our analysis may provide some preliminary understandings of the effect of the self-
generation magnetic field in a cold plasma through this very specific static limiting
case.

The following remark on the parameter J is elementary but it is helpful to under-
stand various arguments.

Remark 1.1. For 6 > 0, let E;(t,z) = 6¢;(6%t,6x), (i = 1,2), we can scale the pa-
rameter ¢ in equations (1.1)-(1.2) to unity, that is, ¢;(¢,z) (i = 1,2) solves the Cauchy

problem below:

ipp1 +AY1 + ([¢ | + 2?9 (1.7)
+ihp F [ F(yr1i —¢1¢2)] =0, |
iOphe +A¢s + (|91]? + |1h2]*) 1 (1.8)

o F [ F s — v =0,

P1(0,2) = 3EY(5),  2(0,2) = 3E3(5), (1.9)
where (¢1,%2) @ (t,z) € RT x R? — C x C. In addition, we keep in this paper the
parameter ¢ still in the equations (1.1)-(1.2) so that the perturbation or regularization
nature would be clear. a

This paper is organized as follows. The existence of standing wave for (1.1)-(1.2)
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is shown in Section 2. The orbital instability of the standing wave is established in
Section 3. At the last section, we derive a sharp sufficient condition of global existence
to the Cauchy problem (1.1)-(1.3). Throughout this paper, we denote various positive

constants by C, and employ the standard notations:

H}(R?) = {u, radially symmetric functions on R?,

ull 1 g2y = (o [Vul2da + [ [ul?dz)? < oo},

L?(R?) = {u, radially symmetric functions on R?

lull 2z = (fpa lulPde)? < o).
2 Existence of Standing Waves

For n > 0,6 > 0 and (u,v) € H}(R?) x H}(R?), we define two functionals J(u,v)

and I(u,v) as follows:
J(u,0) = 3 fao(IVu® + [VoP)de + § [ (Jul? + [v]?)da, (2.1)

I(u,0) =} fga([ul* + [o[")dz + 5 [go [ul*|v]*dw
+4 oo S (1F () ? + | F (@0) 2)dg (2.2)
—1Re [, L F(um) Fluv)de.
We further define a set B by

B = {(’LL, v) € HS(R2) X HS(RQ%I(UJJ) = 1} ) (2.3)
and a constrained variational problem by

d:= (u}qngB J(u,v). (2.4)
From (u,v) € H}(R?)x H}(R?), n > 0, § > 0, the Sobolev’s embedding theorem and the
related properties of Fourier transform, it follows that functionals J(u,v) and I(u,v)
are both well defined. The result on the existence of standing wave for (1.1)-(1.2) is
the following.
Theorem 2.1. For n > 0 and § > 0, there exists (@, P) € B such that (Q, P) is a
solution of the elliptic equations (1.4) and (E(t,z), E>(t,z)) = (e™'Q(z), e P(x)) is
a standing wave solution to (1.1)-(1.2). In addition, (Q(x), P(x)) are functions of |x|
alone with exponential decay at infinity.
The main tools that we will need in order to show Theorem 2.1 are Holder’s in-
equality and the following lemma.
Lemma 2.1 [31, 34]. For 1 < o < oo, the embedding H}(R?) — L7 (R?) is compact.
g
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Proof of Theorem 2.1. Let {(un,v,) € H}(R?) x H}(R?),n € N} be a minimizing
sequence for (2.4), that is, I(up,v,) =1 and

J(up,vp) = inf J(u,v) =d as n — oo. (2.5)
(u,v)EB

This implies that ||un| g1 ®2) and [|vn | g1 g2y are both bounded for all n € N. Thus,
there exists a subsequence {unx, k € N} C {u,,n € N} such that as k — oo,

Upk — Uso weakly in Hﬁ (R?), Unp, — Uoo G.e. in R,

On the other hand, for a subsequence {v,x, k € N} C {v,,n € N}, there also exists a

subsequence {vykm, m € N} C {v,, k € N} such that as m — oo,

Vpkm — Voo Weakly in H(R?), vppm — Vo a.e. in RZ, (2.6)
Meanwhile as n — oo,

Upkm — Uso Weakly in HTI(RQ), Ungm — Uoso a.e. in R2. (2.7)

Then we can extract a subsequence {(Unkm, Vnkm ), m € N} from {(uy, vy,),n € N} such
that (2.6) and (2.7) hold. We represent {(unkm, Unkm), m € N} by {(un,v,),n € N} for

simplicity. Hence as n — oo,

Up = Uso, Up — Voo Weakly in H} (R?), (2.8)
Up —> Uso, Up — Uso a.€. 1IN R2. '
In view of Lemma 2.1 and (2.8), there then holds that as n — oo,
Up = Uso, Up — Voo strongly in LE(R?). (2.9)

Furthermore, n > 0, § > 0, (2.6), (2.7) and Hélder’s inequality yield the following
estimates:
UR2(|UH|2‘UTL|2 - \uoo\2|voo|2)dx‘
< fR2 Hunmvn‘Q - ‘uoowvoo,z‘ dx
= 2 [[unl*([vn]* = [00?) + [voo[* (|un]* — [uco]?)| dz
< fR‘z |un|2 “Un|2 - |U<><>|2| dx + fR'z ’Uoo,Q “Un|2 - |U00|2‘ dx
1 2 L
< (Juo lunldn)® (Ji llonl? = oucl?[? )
1 2 1
+ (o el ) (Je [anl? = uoe PP )

1

1
< (Jie lunl*d) * (o llon] + [oscl I [0a] = Jvoc]* da) (2.10)
1 1
+ (e 1oool ) (fio tnl + ool tn] = Jtoc]? )

1 1 1
< (fye lunl*dw)? (fga loal + ol do) * (Jio l1on] = Jvocl [* dz)
1 1

S [ 7 L A 2 9 [ e 7

1

)
< (e et da)* (Js 1ol + ol ) (o o0 = vl o)
)

1 1
o (fie Nooel ) ® (o Ilun] + il |* ) * (fio lin = el ) *

N

PN

6
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‘fR2 |Un|4d$ - fRE |uoo|4d$}
= UR2 (’un|2 + ’UOOP) (‘“n,z - ‘UOO‘Q) da?‘
< Jeo [l + luco | | un]? — uco|?| dz

1 1
i1 < (s lf? o bl ) * (o = e )
13 < (fRa | |? + |uoo|2\2dx)5 (2.11)
15 (U Il =+t lun] = o] * )
17 < (foo llunl? + uc | )

1 1
19 (S ]+ ol dr) * (fes am = o )

©CoO~NOUTA,WNPE

N

23 | e 12555 (P ()2 — |1 F (uoct)2) ]
o <0 fge |1 F (un) [P — | F (uoctoc) ] d€
2 =1 Jr | )| + | (50| 1 a5)| — | (o) ||

% <0 (fo |1 nt)] + | F (o) | ) *
. (e 1P ) — Fluo) )
32 = 1 (oo I ()] + | F (aoc) | )
34 < © (o |17 ()| |7 (o) | ) 1
- (Jie im0 — TPl + foo [0c] ttn — oo |*der) 2

a7 < C (i 17 )|+ 17 () 2 ) { (e )

39 (o [T — Tl )2 + (fo [To0]d) 2 (fo [t — 11| *d)

D=

)5 (2.12)

( 2 [UnTn — uosToo|” da

1
2

SIS
N|=

}

[€]2+6

45 SC(ngH.F(unvn)!—i—!f(uoovoo 12 d§) {(Jeo 1] dr) 2 (2.13)

8 ’ (fR2 [on — v°°|4dx)§ + (f]Rz ’voo’4dl') (f]R2 [w, — @’461517)%}

3 e 255 (17 (men) 2 — | F (woac) ) |

Dl
N
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‘Re fR2 e F(unvn)F unvn) — F(UooUo0) F (Uno Voo ) > dé‘

§°+3

< ﬁfRz F(unvn

(
=10 Jp2 | F(

+1 Jge

<17 (f]R2 | F (unn)| dg)% <fR2

+n < Jr2 |F

) F (unvn)

UpTUn )( (Unvyn) — F (UooVoo

uoo'voo)‘
1
2

=1 (fRQ [unTn]? dx)

+n ( 2 [ooveo|? d

1

<C (fRQ |unﬁ]2 dw)

|z

(»7: (Unvn) —
Fltinove) (Flunn) = Fluocc)) | d€

(@Uoo

F ))
+F () (FlunT0) = Flusetic))|
<1 Jpo |F(unvy) F )

— FuocVoo) F (u oovw)‘dg

d
)| de

)" (e 1073 — Flunt) P )
( o [Tvn — Tagoo|? dx)
)7 (S T — ool )

= 1 (s Pl de) * (f (o — v
)

1
+n (fR2 ‘@UOOIZ dr )’ <f]R2 |un (

+C (fRQ ]@vm\Q dx);

’ [f]Rz | (
< O (st ) [(Jos i ds)”

+ (fR2 ‘Uw‘4dx)é (fR2 ‘%—%‘4dm);] ’
¢ (fn@ ’@UooF dl’); |:(f]R2 ‘“n‘ diﬁ) (fR2 |Vn, — Uoo’ diU);
(fRQ |voo| d$) (IRQ |ty — uoo\A‘da:)%]Q

Estimates (2.9)-(2.14) yield that

lim/ un]2|vn|2dx:/ |uoo|2|voo|2da:,
n—oo RQ R2

hm/ nl¢|?
n—oo Jp2 [£]2 46

-,

lim Re

n—oo

J

n|¢|?
JEE+o

nl¢|?
TR +0

1

2 3
(unon —]:(@voo)‘ d§>

NI

D=

) + Voo (T — Tss)|? d:c)

1
Tn — Uso) + Vog (Un — uoo)\zd:c) ’

1
O = voe)| 4 + [ [V (1 — )| da |

1

e R A L I ¥

<IR2 |, — voo|4 alar:)é

(IF (unT)[? + | F (@avn) [*)d€

(IF (tosTs0) |* + [ F (Tocveo )| *)d,

F (unTp)F(

N|=

(2.14)

(2.15)

(2.16)
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nlél?
R []* + 6

= Re F (UooVoo ) F (Too Voo ) dE. (2.17)

It is easy to check

I oo, Voo) = lim I(up,v,) =1,

n—o0
J(Uoo, Voo) < lim J(up, vy) = d.
n—oo
We then achieve that
J(Uooy Vo) =d = min J(u,v). (2.18)
(u,v)EB

Therefore, there exists a positive Lagrange multiplier A such that
8o (oo, Voo) = A (Uso, Voo),  Os— (Uso, Voo) = Adig—1 (Uso, Voo), (2.19)

where &, T (u,v) = 2T (u+ 76'u,v)|,—o. Furthermore, the following identities hold:

+3 Jae |§||2EJ‘F5F(UOOUOO)]:(Uoovoo)df (2.20)
2
= %f]l@ F! [gz\él f(“oovoo)} Uco Voo d

41
3 g2 F

uoovoo)} oo Voo dE,

2
§|'§‘+5!F<@voo)!2d§
Uoo Voo d§
1 —1 [ nlél® =— —
3 F [\§|2+5~7:(uoovoo)} UooUood§ (2.21)
g

£ 57 (Uooloo) | Uoooodd

‘£|2+5~F(@Uoo) Uoo@dé

Taking 6'lie = s, 0'To0 = g, We get

— Ao +wiies = A {[tio| oo + Uoo|VUs0|?

2 2
o )| ot P @2)
—AUsotwis = A {|Uoo|2uoo + voo]uoo]2
2 2
R = | B [ =M

Direct calculation, (2.22) and (2.23) yield that

3 Jr2 (Voo ? + [V P)dw + § [ra(Juso]? + [veo|)da
= A{ gz [3 (ool + [vool*) + [uoo|? Voo ] da
4 Jie 55 (1F (uocTo0) |2 + | F (Tsovoo) )
~Re fyn 1B F (sctoe) F oot )€ |

(2.24)

9
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Then I (s, V) = 1 implies that A > 0. Putting @ = A%uoo, P = A%voo, thanks to
(2.22) and (2.23), one obtains that (Q, P) solves

—wQ+AQ + (IQ + |P*)Q
2 2
e {57\72@5 )] Pr- {gﬁr 57 (QP)] =0, (2.25)
—wP + AP+ (|Qf + |P]*)P
2 2
w7 @) - [ G ren] <o e

In addition, it is evident that (Q(z), P(z)) are functions of |x| alone. By [4, 5], we
obtain that (Q(x), P(x)) has exponential decay at infinity.
The proof of Theorem 2.1 is fulfilled. |

3 Orbital Instability of Standing Waves

We tackle here the orbital instability of the standing wave with ground state (Q(x), P(x))

for (1.1)-(1.2) in R2. We first establish two key propositions.

Proposition 3.1. For (@, P) in Theorem 2.1, n > 0 and § > 0, there holds that
H(Q, P) > 0, where the energy functional # is defined by (1.6).

Proof. Since (@, P) is a solution of (1.4), it solves

—wQ + AQ + (IQF +|P)Q

e L
+PFL _\Jﬁ 5F(QP) _pF! _57‘72@6;(@]3)_ o -
—wP + AP+ (|QF +|P]*)P
e o
+Qr | R @) - o | Fan <o (32)

Multiplying (3.1) by #VQ and (3.2) by 2V P, then integrating with respect to = on R?

and taking real part for the resulting equations, we obtain

Re fRZ(_WQl’VQ — wPxVP)dz
+Re [4o(AQEVQ + APzVP)dx
+Re [o(1Q] + |P]*)(QeVQ + PzVP)dx
+Re [po PzVQF~! :@%}" QF): dx (3.3)
+Re [, QuVPF! | L F(QP)| da
—Re [4 PrVQF | 5 P)| dx
~Re [, QuVPF [{ELF(QP)| dw = 0.

10
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Direct calculation yields the following identities:

Re/ (—wQrVQ — wPzVP)dzx = w/ (IQ* + |P|*)dx
R? R?

Re/ (AQzVQ + APxVP)dx = 0,
RQ

Re/ Q12 + |PR) QYT + PrVP)dz
R2

1
=5 [+ 1Pids = [ 1@r1PRas,

——1 | nlél ¥5)
Re /R PzVQF [IéP +5HQP)] d
2
+Re | QaVPF! L g7|’2‘£|+ 5;(@13)} da

2
= /R |£7|72|€|+ 5 (FQP)F + | F(@P)P)de

+5/ : 77’5‘2 (‘]:(Qf)|2+|]:(@P)\2)dfa
RQ

(1€ +6)2
-1 77\5|2 -
Re/RQ PaVQF LHQMHQP)} d
2
e | QaVPF! L 572£‘||— 5?(@13)} da

2
— _Re /R . énﬂ = F(QP)F(QP)dg

2
+3Re /R T ﬂ”ﬂ 5 F(@PIFQP)ds.

Putting (E-1)-(E-5) into (3.3), one gets

wf]R2 |Q’2 + \P[z)dw
=3 Ja(1Q1 4 |PI1)d — o [QF|PPde
~3 Jpo \QL% F(QP)? + | F(@P)|?)de
+5 Jre @8 L (1F(QP) + | F(@P))de
+Re [y |g“§f5f<c;?>ﬁdf
—0Re [p» \£|2+5 sz F(QP)F(QP)dE = 0.

(B-1)

(F-2)

(B -3)

(B —4)

(3.4)

On the other hand, multiplying (3.1) by Q and (3.2) by P, then integrating with respect

to z on R?, we get

—w [o2(IQP + [PP)dz — [ (IVQJ* + [V P|*)dx

+ Ja2 QI + [PI*)de +2 foa | QP PPPd
+ Jpe S (F QPP +1F@P)P)de

—2Re [, R F(QP)F(@QP)dg = 0.

11
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(1.6), (3.4) and (3.5) then yield that

2
HQP)+3 [ A (F@PIP + 1 F@P) P

(1% + )2
5he nlél? ST B
SRe | e oy T (@PIF@P)AE =0, (3.6)

It is easy to check

nl¢l? TR
Re /R 2 (7]-“(QP)]-“(QP)d§

€17+ 6)?
<5 | el QP £ 1F@P) s 37)
~ 2 Jre (€7 +0)?
which together with n > 0, § > 0, (3.6) and (3.7) implies that H(Q, P) > 0.
This completes the proof of Proposition 3.1. O

Proposition 3.2. For (@, P) in Theorem 2.1, there exists A\g = A\g(Q, P) > 1 such
that H(M\o@Q, \oP) = 0. Moreover,

HNQ,AP) <0 for A>Xo; HOQ,AP) >0 for A< ).

Here, H(Q, P) is defined by (1.6).
Proof. By (1.6), it is easy to write the expression of H(AQ, AP) as follows:

H(A\Q, \P)
=\ [o2(IVQ]? + |VP?*)dx
X (5 [ (1Q* + [P[Y)dz + [go |Q|P2dx
+1 fro S (IF(@P)P + | F@P) ) de (3.8)
—Re [z |2\‘§f5f(QF)WP)df)
= N2A(Q,P) - \*D(Q, P)
= N2[A(Q, P) — \’D(Q, P)],

where
A(Q, P) = [(IVQI* + |V P)dz
D(Q,P) = (5 fea(1QV" + |PI")da + fy |QP| PPPda
+3 Jre S (IF QP + | F(@P) ) dg
~Re fy 95 F(QP)F(@QP)dg)
Since

2 R p—
‘Re /R . g‘g’ﬂ ~F(QP)F(QP)d¢

1[0 nlgP s
=3 /R e 1o @PIF +IF@P)F)de,
one has D(Q, P) > 0 by (Q, P) # (0,0). On the other hand, one has

A(Q7P)—)\2D(Q,P)%A(Q,P)—D(Q,P):%(Q,P)Z()as)\—)l,

12
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and
A(Q,P) — X\’D(Q,P) <0 as A\ — oo.

Hence, there always exists \g = A\o(Q, P) > 1 such that
A(Q, P) — X¢D(Q, P) = 0.
One can also check that
A(Q,P) — X*D(Q, P) < 0 for A > Ao,

A(Q, P) — X*D(Q, P) > 0 for A < Ag.

By (3.8), we finish the proof of Proposition 3.2. O
According to Proposition 3.1 and Proposition 3.2, we claim the following instability

result of the standing wave for (1.1)-(1.2).

Theorem 3.1. Let n > 0 and d > 0. For A\g in Proposition 3.2, and for arbitrary

e > 0, there exists (EY, EY) € H}(R?) x H!(R?) with

1EY = MQlmre) <&, B2 = XoPlmme) <e, (3.9)

such that the solution (E(t,x), E2(t,x)) to the Cauchy problem (1.1)-(1.3) exists on
[07 T)a (El(ta .CL‘), EQ(t7 IL’)) € C([Oa T)a Hv} (R2) X H}(R2)) and

T ([ Bl 2y + [ Ball 1y (g2)) = +o0- (3.10)

Here, (Q, P) € B is given by Theorem 2.1.
Proof. Let (E1, Ey) € H}(R?) x H!(R?) be a solution to the equations (1.1)-(1.2) with
initial data (EY, E9) on [0,7T). Put

J(t) = /R 22| Er]? + | Ba[?)da. (3.11)

A direct calculation gives that

L J(t) =8 fra([VEL[? + |V Eo[?)dx
—4 [p2(|Ex|* + | Ba|*)dz — 8 [go | Er|*|Eo|?)da
4 g gﬁig (1F(BAE)P + | F (BB dt
—46 [go (|s|2+a 2 (| F(EL1ER)|? + | F(ELE2)|?) d§
+8Re [ s M]-"(ElEz)]-"(ElEg)dg (3.12)
+85Re [ e +5)2]-"(E1E2)f(F1E2)d§
= 8H(EY, EO)
—49 [go (|§|2+5 7 ([ F(BLEs)* + | F(EVE2)|?) dE

+83Re [p sy +‘6)2f(E1E2)f(E1E2)d§.

13
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(3.7) together with n > 0 and ¢ > 0 then implies

d2
23 (1) < 8H(Eno, ). (3.13)

Let
EY(x) = MAoQ(x)), E3(x) = AAoP(x)), A> 1. (3.14)
Then

H(EY, E9) = [p(IVEYP® + [VES|?)dx

_%IRQ ‘E0|4 4 |E0 4 dr — f]RQ |E0’2|E0‘2) T
5 Jio 785 (1F(BYED)P? + | F(BYES) ) d

+Re [0 5L F(BYES) F(EVES) de

= N { (V@) + V(M P)[*)dz

=32 Jea (1M0Q[* + [N Pl*)dz — A% [pa [NoQ*| Ao P|*da
—IN [a L (1FOBQP)2 + |FOQP)R) de
+ MR fy 9 FO3QP) F(GQP)ds |

(3.15)

Combining (3.15), Proposition 3.2 with (3.7) yields that

H(EY, ES) < A2H(MQ, Ao P) = 0. (3.16)
In addition, Theorem 2.1 implies

(lz|EY, || E3) € L(R?) x L}(R?). (3.17)

Thus (3.10) follows from (3.13).
On the other hand, for arbitrary £ > 0, we can always take A\ > 1 such that

IEY = 20@Ql 1 r2y = (A — DM@ 1 re2) < €

1B — XoPllmirz) = (A = DIIAoP| ey < €.

The proof of Theorem 3.1 is accomplished. a
Theorem 3.2. For n > 0 and 6 > 0, let (EY, EY) € H}(R?) x H}(R?) with

EY(z) = pQ(z),  Ej(x) = pP(), (3.18)

where (@, P) € B is given by Theorem 2.1,

1
0<pu< 19122 o2 2 (3.19)
1 )
2(1 + ) max{||Ql|72ge), 1 Pll72 g2y}

and ¢ is the ground state solution of the equation
Au—u+ud=0, uec H(R?). (3.20)

14
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Then the Cauchy problem (1.1)-(1.3) admits a global solution.

Proof. We first recall an interpolation estimate in [34]:

N

2
1 lsgey < CLal VF Baey | 3oy Cro= (e | . (3:21)
(R?) (R?)
1612 e,

where ¢ is the ground state solution of (3.20). (1.5),(1.6) and (3.21) yield that
Jea(IVE? + |V Ea?)da < H(EY, EY)
+3 Jea(Bal* + | Ba|Y)da + fo |1 | EafPda
3 fe ,gﬂ% (IF (B BR) 2 + | F(BABy)?) de
—Re fyo 2L F(B\Bp) F(Br Ba)de
SH(EY, BY) + (1 +1) [pa(|E1|* + | Bo|*)da
< H(EY, BY) + (1+mChy (1EY22 ) IV B 222, (3.22)
1B oy IV B2 252
< H(E?, ES) +(1+ U)CilQ maX{HEOHL2 (R2) HEOHL2 R?) }-
(IVEL 22 g2y + IV Eal2 e )
< H(E?,Eg) +(1+ W)CfQN maX{HQHm (R2)" HPHLz R2) }
(1B 3 g + HVEQHLQ(RQ))

Then one has

max{[|Q[Z2(z2), | P72}

;o 20+ n)u’
161172 ey

(IVE 2 o) + IV Eal3 ey ) < H(ES, ES).
This together with (3.19) manifests that
(HVElH%W) + HVEzH%z<Rz>) < CH(EY, E9) < C, (3.23)

where C' is a time-independent constant. Combining (1.5) with (3.23) implies that the
Cauchy problem (1.1)-(1.3) admits a global solution (Ey(t,z), Ea(t,z)) in H}(R?) x
H(R?). O
Remark 3.1. For )\g in Theorem 3.1, let

1612 e, b
201+ M mad1Q1 gy, 1P e
Then the instability of the standing waves for (1.1)-(1.2) is sharp. But for

191122 g :
< )\07
2(1 + n)p® max{[| Q|72 g2y 1P 117 2 2y }

2
H¢”L2(R2)
2(“‘7])#2 max{HQ”iZ(RQ)7||P||§12(R2)}

(etQ(x), et P(x)) for (1.1)-(1.2) is stable or not is unclear to our best knowledge. O

3
on the interval { } ,)\0> , whether the standing wave

15
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4 A Sharp Threshold for Global Existence in R?

In this section, we first establish the local well-posedness of the Cauchy problem
(1.1)-(1.3), and then derive the variational structure for (1.4), through which we set up
a sharp threshold for global existence to the Cauchy problem (1.1)-(1.3) motivated by
the works [2, 3].

4.1 Local Well-posedness

The Cauchy problem (1.1)-(1.3) is equivalent to the integral equations:
¢
E(t) = U(t)E’(z) + z/ Ut —7)[(|E1] + |E2))E + K(E)|(r)dr,  (4.1)
0

where U(t) = exp{itA} is the unitary semigroup generated by the free Schrédinger
equation iE; + AE = 0 in the Hilbert space H*(R?) (with s € R), E = (E4, E»),
E’ = (E(1)7 Eg)v

K(E) = (K1(E), K2(E))

B [ mlgl = = [ omlgl?
_ (ng [Ié‘!Q (B, - ElEg)] E\F L’EP 5

Let E/ = (E{, E%) ( = 1,2) be two solutions of the integral equation (4.1), K/(E) =
(K1(E), KJ(E)) = (K,(E7), K»(E)). By a direct calculation, we have

F(Er By — E1E2)]> .

Kl (E) - K{(E) = K| (E') — K{(E?)

2 e 2 — T
= BV P |8 F(BLE] - BIEY)| - B3 | 5L F(BYE - BIES)
2 )
= (B} - E3)F ' [ 255 F(BIE] - E{E})] (4.2)
2 el I
+E3F { 2B F (Bl - B} ER + EY(ET - B3)

~E(F} - B}) + B}(E} - E)| }.

The expression for K1(E) — K3(E) = Ky(E') — K5(E?) can be obtained similarly.

nl¢|?
€2 +0

Cauchy problem (1.1)-(1.3) in H'(R?) x H'(R?) by employing contraction mapping
principle for the integral equation (4.1) (see [15, 17, 18, 21, 22, 23, 24, 29] ). More
precisely, we have

Proposition 4.1. For 7 > 0 and § > 0, let (EY, EY) € H'(R?) x H'(R?). Then the
Cauchy problem (1.1)-(1.3) admits a solution (E1, Eq) € Xi,loc ([0,T)) x Xi,loc ([0,77))
for some positive time T = T(EY, EY), and for any 0 < 71 < Ty < T, the map-
ping (EY, E9)(e H'(R?) x H'(R?)) — (E1, E2)(t) (€ X} ([T1, To)) x X; ([T1, T3))) is

continuous. Moreover, there holds that either T'= 400, or T' < 400 with

Since <nbyn>0andd >0, one can establish the local well-posedness of the

fy (1 ey + Bl ) = 420

16
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1

2

3 Here, for any interval I C R, 0 < % 1-— % <1, seR,

4

5

6 Xg(I) = (CNL>)(I; H*) N LI(I; Hy),

; X5 10eI) ={u; we X5(J), VJcCCI},

9 Hy = Js(L?), Jy=(I—-A)"3

10

11 Proof. We omit the details since the essential arguments will be repeated for the
ig analysis of the corresponding classical nonlinear Schrédinger equations. One may verify
14 them according to the proof of Theorem 1.4 in Chapter 12 in [21]. O
ig In view of Proposition 4.1, using some ideas in [7, 15, 17, 18, 19, 24, 29], we can
17 establish the local well-posedness for the Cauchy problem (1.1)-(1.3): For n > 0,6 >0
ig and (E{(z), E(z)) € HY(R?) x H'(R?), the Cauchy problem (1.1)-(1.3) admits a
20 solution (Ey, E) € C ([0,T); H'(R?) x H'(R?)) for some T € (0,+00) with T = 400
g;' or T < 400 Wlth th_)l’rjl_I (HE1HH1(R2) —+ HE2HH1(R2)) = +400. O
23

24 4.2 Variational Structures

25

26 For (u,v) € H}(R?) x H!(R?), we define two functionals S(u,v) and R(u,v) as

27

28 2

29 S(u,v) =% [pe(|Vul? + |Vo|?)dz (4.3)
30

g; R(u,v) =% [po(lul* + |[v]*)da

33 i fn@ (ful* + vl dz = 5 fgo [ul|vf*dz

34 i e gﬂia P )P + | F () )d "
36 -1 fR2 |§|2+5)2 (IF (u)|? + | F (uv)|?)dg

g; +3Re [ \Z'zlgf(uv) (uv)dg

ig +3 LS Re fRQ |§‘2+5)2]:(uv).7:( uv)dg.

a1 We further define a set M by

42

43 M = {(u,v) € H}(R*) x H}(R*)\ {(0,0)}, R(u,v) = 0} . (4.5)
44

jg According to (4.3),(4.4) and (4.5), we construct a constrained variational problem

47

48 dy = inf S(u,v). (4.6)
49 (u,w)eM

50

51 Note that (u,v) € H}(R?) x H}(R?), n > 0, § > 0, and the Sobolev’s embedding
52 theorem, we know that the functionals S(u,v) and R(u, v) are both well defined. In (4.3)
gj and (4.4), (u,v) is a pair of complex-valued functions for the purpose of understanding
55 the relation between the solution (u,v) to (1.4) and the solution (E1, F2) to (1.1)-(1.2).
gs We then achieve the following propositions and lemmas.

58 Proposition 4.2 For > 0 and ¢ > 0, there holds that d; > 0.

59

60

17
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Proof. By (4.3)-(4.7),7 >0, 6 > 0 and (u,v) € M, one has

% Jpe(Jul? + [v]*)dz
if[@ lul* + [v[)dz + 3 [oo |ul?|v|?dx
4 1 Jm2 ‘g'ﬂrfg | F(uwv)|? + | F(uv)|?)dé
+ 9 Jge % (|F (o) |* + | F (uv)|*)d¢
~ 3Re fpo \?P‘Hf (um) Flav)de
— 16Re fy o F () Flaw)de
< C [pa(Jul* + [v[*)dz
< C Jpa(lul + o)z - foa(|Vul® + [Vo]*)de

This concludes that
1
/ (Va2 + [Vo2)dz > ~ > 0.
R2 C

O
Proposition 4.3. For n > 0 and § > 0, there exists (Q, P) € M such that
S(Q,P)=d S 4.7
@ P)=di = min S(u.v). (4.7)
The following lemma is key to the proof of Proposition 4.3.
Lemma 4.1 For n > 0 and 6 > 0, the minimization problem
di = inf S(u,
! (u,g)lEM (’LL U)
— inf {S(u,v) : Ru,v) = 0, (u,v) € H B x HAED\{(0,0)}},  (48)
is equivalent to
dy = inf {S(u,v) : R(u,v) <0, (u,v) € HR?) x HTI(RQ)\{(O,O)}} . (4.9)

Proof of Lemma 4.1. We choose (ug,v) € H}!(R?) x H!(R?) such that R(ug,vy) < 0.
Let uy(z) = A ug(A\z), va(z) = A ug(Az) with A > 1. We then have

R(ux(x), ()

=A% Jae(luof® + [vol*)dx
_ %)\*2 fRQ (|uol* + |vo|*)dz — 1)\*2 fR2 |uo|?|vo|dz:
- lx-ﬂuﬁp el (1F (ugo) 2 + | F (Tovo) [2)dg

IN2 foo sy (1 (uoT0) [ + | F (Fowo) )
1)\ 2Re [po /\2|;‘|§f5f(uovo)f(uovo)df

+30"2Re [ by F (uoto) F(ovo)dé }

= A" R} (uo, vo).

(4.10)

Note that Rj}(uo,v0) = R(ug,v9) < 0 for A = 1, and Rj(uo,v0) = ¥ [ge(|uol* +
|vg|?)dx > 0 for A\ tends to oo, by continuity, there exists u € (1,00) such that

18
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R (ug,v9) = 0. (4.10) then yields R(uy,v,) = 0 (i.e., (uy,vy) € My). In addition,

for p € (1,00) one achieves

S, vp) = 5172 Jpa(IVuol® + [Voo|?)da

< 3 Ja(IVuo|* + [V |*) da (4.11)
= S(u()v UO)-
Therefore, (4.8) and (4.9) are equivalent. O

We are now in the position to prove Proposition 4.3.
Proof of Proposition 4.3. Combining (4.3) with (4.4) and (4.5) yields that S(u,v) >
0 on M. Let {(un,vy),n € N} C M be a minimizing sequence of (4.8), that is,

S(tp,vn) — (ujivr)lgMS(u,v) =dj as n — 0. (4.12)
Put .
M= |5 (lunlFage + loalame))] (4.13)
Qn(x) = upn(Apx), Pp(z) = vp(Anz), for A, € [1,00), (4.14)
and
Qn(r) = up(x), Py(z) = vp(x), for A, € (0,1). (4.15)

We now claim the following conclusion (Lemma 4.2) according to (4.13)-(4.15).
Lemma 4.2 Let n > 0 and § > 0. Then
(1) (Qn(x), Py(x)) is still a minimizing sequence for (4.8);
(2)  [|Qullf:(r2) and || Py 1 (r2) are both bounded for any A, € (0, 00).
Here, (Qn(z), P,(z)) is defined by (4.14) and (4.15).
Proof of Lemma 4.2. We prove this lemma by dividing the proof into two cases:
Case 1: )\, €[l,00); Case 2: \, € (0,1).
We first consider Case 1: )\, € [1,00). In this case, let

Qn(z) = upn(Apx), Pu(x) = vy(Anx). (4.16)
We then have
. Hun”%2 R2 2
1@nll2 oy = Az 2llunll3 sy = — . ) <Z, (4.17)
¢ (IlunlZpe + lonll2s gy )
[[onl|7 2(R2 2
| PallZz ey = A llonlZae) = - = <= (4.18)
% (llunlZaae, + lonllZs gy )
It is easy to check that
S(Qn(z), Po(z))
= S(un(Anx), vn()\naz)) (4.19)

19
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R(Qn(z), Pa(x))
= R(up(Apx), vp(Anz))
= %)‘;2 fR2(|“n|2 + [on]?)dx
_2 fR2 |un|4 + |Un‘4)dx - %)‘;2 fRQ |Un|2|vn‘2dx
22 fr ;75|'§'+6 (1 )2+ 1 ) ) (20)
2fR2 W (IF (unn)|* + |F (@nvn)|*)dé
n2R ng %}“(unvn)}"(unvn)df
+ g/\;QRe Jre Tt T () F (o ).
Let G\n) = szitiles + ool = “aiamar - We have G'(\) = iy > 0,

and thus G(\,,) is an increasing function with respect to A, € [1,00). Note that

A2 g2 SA2 €12 — \NT= N
‘Re fRQ <>\%|nf|\§2l+5 + ()\2|£‘L£|_5)2) ]:(unvn)f(unvn)dg

A2 s2lep i B (4.21)
<3 oo (s + ool ) (1 () 2+ | F (@va) ).
Combining (4.21) with n > 0, 6 > 0 and (4.20) yields that
R(Qn(x), Pu(z)) < A\ 2R(un, vy) = 0. (4.22)

Hence, {(Qn, P,,)} is still a minimizing sequence for (4.9) by Lemma 4.1. From (4.14),
(4.17) and (4.18) it follows that [|Qnl| g1 (r2) and || Py g1 (r2) are both bounded for all
n € N.

We next consider Case 2 : A, € (0,1). Let Qn(z) = up(x), Po(x) = vp(x). (4.15)
implies that

2 2
1Qnll2r2) < o’ [ Pnllp2(re) < o (4.23)
This together with (4.14) completes the proof of Lemma 4.2. O

We now continue to prove Proposition 4.3.
By Lemma 4.2, it follows that there exists a subsequence {Q,x,k € N} C {Qn,n €
N} such that as k — oo,

Qunr — Qoo weakly in HS(R2), Qni — Qs a.e. in R2. (4.24)

Now for { Pk, k € N} C {P,,n € N}, there also exists a subsequence {Pyxm, m € N} C
{Puk, k € N} such that as m — oo,

Pojm — Pso weakly in H}(R?), Py — P ae. in R% (4.25)
Naturally, we can also verify that as m — oo,
Quikm — Qoo weakly in HY(R?),  Quim — Qoo a.c. in R% (4.26)

Therefore, we can extract a subsequence {(Qnkm, Prkm),m € N} from {(Qn, P,),n €
N} such that (4.25) and (4.26) hold. We still denote {(Qnim,Prkm), m € N} by

20
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{(Qn, Py),n € N} for simplicity. That is, as n — oo,

Qn — Qoos Py — Px weakly in H}(R?),

4.27
Qn = Qoo, P, — Ps a.e. in R2. (4.27)
Combining Lemma 2.1 with (4.27) yields that as n — oo,
Qn = Qoo, P, — Ps strongly in L}(R?). (4.28)
By ) (\?lZE'; ’(lg‘irgl@iigl;ﬂs’ < npwithn > 0and d > 0, one gets following estimates:
T [ Q!+ Pds = [ (1@l + 1P|, (4.20)
Jm [ QPP Pz = [ 1@ PP, (430)
i [ (R QP+ @ P
n—oo Jpa [£]2 40
= [ QP + 1F @) P (4.31)
r2 [§| + 9 7
nlé|?

lim —¢

2
dim =3 | e o P (@l +1F(@n Py)|)de

=5 [ e FQuPR + P @ PP (42)
s e [ QP F@u e
=Re | ‘£’|72|§|: 5F(me)md5. (4.33)
lim ~dRe /R N 5‘2‘5'2) F(QuPo)F(QuPa)de
~—ore [ (,5‘”2‘5'2) F(QuuPo) F(Qoe Poc) . (4:34)

In light of (4.17), (4.18) and (4.23), one has

0<¥ / (1Qul? + |Pu?)da < 2,

which implies that there exists 0 < ¢ < 2 such that
w
2/ (1Qnl? + |Pa?)dz = c. (4.35)
R2
Combining (4.22) and (4.23) with (4.29)-(4.35) then yields that

b Ja2 (1Qool® + [Poc)d + 5 fis | Qoo | Poc |2 die
+1 Je |g\‘§'j5<|f<c2w )2+ [ F(Qoo Poo) )
+8 for 1o (1 F Qoo Poo)|? + [ F(Qoo Poc) ) (4.36)
—3Re [ g“imczoo Pog) F(Qoo Poc)d€
_%5—36 f]R2 (\572|J‘r5 5 F(Qoo P ) (Qioo o )dE > c.

21
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Note that for 6 € {1,2}, >0 and § > 0,

2 _
‘Re /R? uggiwf (QooPoc) F(Qoo Poc)dé

1 Nl 2 2
<5 L T (F QP + I F(@ P P

which together with (4.36) yields that (Qee, Pao) % (0,0). Let
Q) = Qulpr),  Pla) = Pr(pe), with p 21 (1.37)
According to (4.22) and (4.23), we have R(Q, P) < 0 and
S(QuP) = S(Qux(a), Po(ia)) = 5 [ (9 Qucf? + [VPx[)a

(QOO, ) < hm S(an n) = dl- (438)

Collecting Lemma 4.1 and (4.38) together yields that

S(Q,P)=dy = min S(u,v), (4.39)
(u,v)eM
which accomplishes the proof of Proposition 4.3. O

4.3 Sharp threshold of Global Existence
For (u,v) € H}(R?) x H}(R?) we define an auxiliary functional H;(u,v) as

Hi(u,v) 2 ng (|Vul? + |Vu|?)dz + ¢ ng (Ju|? + |v]?)dx
—1 1 S (Jul* + v de — § [go [uf?|v]da
1 Joo LS (1F (o) ? + | F(av) %) de

2
+3Re [ |g||§J‘r5]:(uv) (uv)dE.

(4.40)

We then have
Theorem 4.1. For n > 0 and § > 0, let (EY(x), EY(x)) € H}(R?) x H}(R?) satisfy

H1(EY, ES) < dy. (4.41)

Then we have
1. If (|:U|E?, |x\E8) = L%(RQ) X L%(RZ) and

R(EY,EY) <0, (4.42)

then the solution (Ei(t,z), E2(t,z)) to the Cauchy problem (1.1)-(1.3) blows up in
finite time.
2. If
R(EY, E9) > 0, (4.43)
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then the solution (Fi(t,z), Ea(t,z)) to the Cauchy problem (1.1)-(1.3) exists globally
on t € [0,4+00). Moreover, (E1(t,z), Eao(t, z)) satisfies

HVEIH%%]}@) + HVEQH%Q(RQ) < 2d;. (4.44)

Here, R(u,v) and d; are defined by (4.4) and (4.5), respectively.
The following proposition plays an important role for the proof of Theorem 4.1.

Proposition 4.4 For > 0 and § > 0, let
Ky = {(u,v) € H}(R?) x H}(R?), R(u,v) > 0,H1(u,v) < di}

Ky = {(u,v) € H'(R?) x H}(R?), R(u,v) < 0,H1(u,v) < di}.

Then K7 and K are two invariant manifolds generated by the Cauchy problem (1.1)-
(1.3).

Proof. Let (EY(z), EY(z)) € K; and (Ey(t), E2(t)) be the solution to the Cauchy
problem (1.1)-(1.3). By (1.5) and (1.6), one has

H1(EL(t), Ex(t)) = Hi(EY, EY), te[0,T). (4.45)
H1(EY, EY) < d; then implies that
H1(Ei1(t), Ea(t)) < di, te€[0,T). (4.46)
We now need to prove that for t € [0,T),
R(E1(t), E2(t)) > 0. (4.47)
Otherwise, note that n > 0, 6 > 0 and for § = 1,2

2
’Re /R 2 (nma]—"(ElEg)}"(ElEg)d{

€2 + )
2 _
= % /R (gﬁ'ié)e (IF(EVE)” + | F(ELB,) ) de, (4.48)

(4.3), (4.4) and (4.41) yield that
S(El, Eg) + R(El, EQ) < Hl(El, EQ) < dj. (449)

On the other hand, in view of R(EY, EQ) > 0, by continuity, there would exist a t* > 0
such that
R(E;(t"), Eo(t")) =0, (4.50)

which implies that (E(t*), E2(t*)) € M. From (4.46), (4.49) and (4.50) it follows that

S(E(t*), Bs(t)) < dy  with (Ey(t%), Eo(t*)) € M. (4.51)
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This is contradictory to (4.6), Proposition 4.2 and Proposition 4.3. Thus, K; is an
invariant manifold generated by the Cauchy problem (1.1)-(1.3).
Similarly, we can prove that Ks is also an invariant manifold generated by the
Cauchy problem (1.1)-(1.3). O
We are now in the position to prove Theorem 4.1.
Proof of Theorem 4.1.
From (4.40) and (4.41) it follows that (E?, ES) € Ky. Then (E1(t), Ea(t)) € Ko for
t € [0,T) by Proposition 4.4, that is,

R(El(t), Eg(t)) <0, Hl(El(t),Eg(t)) <d;, te [0, T), (4.52)

where (E1(t), E(t)) is the solution to the Cauchy problem (1.1)-(1.3). Since (|z|EY, |z|ES) €
L3(R?) x L2(R?), by Ginibre-Velo [15], we get (|x|E1,|z|E2) € L2(R?) x L2(R?).
A direct computation then yields that

dt2 RQ(’x‘ ’E1’2+ m ‘Eﬂ )dx
=8 [p2(IVEL|? + |[VE,? )da:
—4 [p2(|Er|* + | Ba|Y)dx — 8 [go |E1|?| B 2da
4 [ L (|]-'(E1E2)!2 + | F(E B [?) de (4.53)
—40 [po (|57|72ia (IF(ELE2)|? + | F(E1E,)|?) dé
+8Re [p2 i +5]—"(E1E2).7-"(E1E2)d§

+83Re [p sy T F (B Bo) F(Br Ba)de.

Combining (1.6) with (4.53) gives that

2
Lo [z (lz|*| B2 + ||| Eo|*)dx
—46 [go % (|F(E1Es)|? + | F(ELE)|?) d§

+80Re [ b +'5)2f(E1E2)f(E1E2)d5.

(4.54)

On the other hand, (4.4), R(EY, E9) < 0,7 > 0,6 > 0 and

‘Re fR2 \§|2+5F(E1E2)md§’

<5 fon @55 (IF(BNER) 2 + | F(BAES)P) de,

(4.55)

yield that there exists 0 < A < 1 such that R(AEY, AE9) = 0, that is,

& J2(IEYP + | E9?)da
0 a(BY 4 BRI — 2 o BV B8P
9 i .
302 foe 8y (1F(ESED) + | F(BTES) )
_g/\Q fRQ nl¢|? (|F(EOEO)|2 + |f(EOE0)| )d§

(4.56)
(1€[2+9)2
+3N2Re [ 7|g|'§‘+ < F(EYEQ)F(EVEY)d¢

+3X2Re [ |§‘2+6)QF(EOE0)]-"(E7?ES)d§ =0.
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From (4.3), (4.4), (4.6), Proposition 4.2 and Proposition 4.3 it follows that
S(AEY \EY) > dy. (4.57)

On the other hand, H;(E?, ES) < dy and (4.57) imply S(AEY, A\E9) > H;(E?, EY),

which is equivalent to

A [oe(IVEY|? + |[VES|?)dx
> fR2 IVEY|2 + |VES?)dz + w [go (|EY|2dx + |ES|?)dx
2 re(| BV + [ES|Y)dx — [oo |ED | B[P dx (4.58)
— 4 Jio 19855 (IF(BRED) + | F(BOED)P ) de

AN
+ Re [ P55 F(BYES) F(EYES)de.

That is,

(V2 = 1) fea(IVELP + [VES?)da
> e w(BYP + |ES)do
5 Jra(IES + B3 )dr — feo |ESP? S P (459)
2 — -
3 o 355 (1F(BSED + | F(ETED)I?) de

) e —
+ Re [ |§||§‘+5f(E?ES)f(E?ES)d£.

(4.56) and (4.59) then yield that

@“4[&MVWP+NEwa
—3 Jae (1B + [ B dz — [po | EDPP| ESPde
zwﬁ%OfWWWHﬂﬁﬂﬂﬂé

+Re fi 1255 F(EVED) F(BYES) |

iﬂv&rﬁLOHWWWHﬂﬂﬂﬂﬂf

£]%+06)2
—X%Re [ 2JE(EOEO)JT(E?Eg)dg.

(4.60)

2 |£\2+5)
From 6 > 0, n > 0, (1.6), (4.48) and (4.60) it follows that (A2 — 1)H(EY?, ES) > 0.
Thus, H(EY, E9) < 0 for A € (0,1). In view of (4.54), (4.55), § > 0 and i > 0, one gets
that [po(|z[?|E1]? 4 |2]*|E2|*)dz being a positive function of ¢ can’t verify (4.54) with
H(EY, EY) < 0 for all time. Hence, it must be the case that T < +o0 and

lim (1B |y sy + 1Bl g ) = -+oc.

This accomplishes the proof of 1 of Theorem 4.1.

Next, we verify 2 of Theorem 4.1.

(4.40) and (4.42) conclude that (EY, ES) € K;. By Proposition 4.4, one sees that
for t € [0,T), (Ey, Ey) € Ky and

R(E1, E2) >0, Hi(E1,Ep) <di, (4.61)

25



©CoO~NOUTA,WNPE

CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT NON-100744.R1

where (E1, E9) is the solution to the Cauchy problem (1.1)-(1.3). By (4.3), (4.4) and
(4.49) we have
/ (IVE|* + |VEs|?)dz < 2dy, (4.62)
R2

which together with (1.5) yields the boundedness of (Ey, F2) in H!(R?) x H}(R?)
for t € [0,T). So it must be T' = +o0, i.e.,(Eq, E2) exists globally on ¢t € [0,+00).
Furthermore, (4.62) yields the estimate (4.43).

This completes the proof of Theorem 4.1. a
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