ORBITAL STABILITY OF SOLITARY WAVES FOR DERIVATIVE
NONLINEAR SCHRODINGER EQUATION

SOONSIK KWON AND YIFEI WU

ABSTRACT. In this paper, we show the orbital stability of solitons arising in the cubic
derivative nonlinear Schrédinger equations. We consider the zero mass case that is not
covered by earlier works [8, 3]. As this case enjoys L? scaling invariance, we expect the
orbital stability in the sense up to scaling symmetry, in addition to spatial and phase
translations. For the proof, we are based on the variational argument and extend a similar
argument in [21]. Moreover, we also show a self-similar type blow up criteria of solutions
with the critical mass 4.

1. INTRODUCTION

We study the orbital stability of soliton solutions arising in the nonlinear Schrodinger
equation with derivative (DNLS):

{i@tu+0§u:z’0x(\u|2u), teR,z €R,

(1.1)
u(0,z) = up(z) € HY(R).
The well-posedness for the equation (1.1) is intensive studied. Especially, it was proved
by Hayashi and Ozawa [9, 10, 11, 16] the local well-posedness in H!(R) and the global well-
posedness when the initial data satisfies [; |ug(z)|? dz < 2m. The results are analogous to
that for the focusing quintic nonlinear Schrodinger equation. There are many low regularity
local and global well-posedness results [17, 18, 4, 5, 12, 7, 14, 13]. Recently, Wu [20, 21]
showed that global well-posedness holds as long as [p [ug(z)|? dz < 47. In [21] the author
observed that the threshold 47 corresponds to the mass of a ground state. This observation
draws our attention to study the orbital stability or instability of soliton solutions with the
critical mass 4.
As is shown in [8, 3|, the equation (1.1) has two parameter family of solitons of the form

. .c 3. rx+tct
Uw,c(t, JT) = ¢w,c(l‘ + Ct)€IWt_Z§(I+Ct)+ZZf*°° 9.l dy’

where (w,c) € R x R, and ¢, is a ground state solution to the elliptic equation

c? c3 3 5
- m¢+(fﬂ—z)¢+ §¢ _T6¢ =0, (1.2)

If ¢ < 4w, then ¢, shows an exponential decay:

oel) = (2L [cosh(y/ (= ) — ])—;7

w — c?
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and the mass of ¢, . is given by

Viw + ¢

||¢w,c||%2 = 8tan ! m < A4r.
The orbital stability of those solitons was proved in [8] for ¢ < 0 and ¢? < 4w and in [3] for
any ¢ < 4w. Here, the orbit is given by the phase and spatial translation. See [15] for the
related studies.
In this work, we consider the endpoint case, ¢? = 4w. It is called the zero mass case in view
of (1.2). Let W be a ground state of the elliptic equation

3
— B, + D3 — E®5 =0. (1.3)

Then, W,(z) = C%W(ca:) is also the ground state solution to

& 3
—d 3 — =% =
and we have X
W(z) =22 (122 +1)72, W[} = [ We|}> = 4r.
The corresponding solitary wave solution to (1.1) with 47 mass is
x+2 . .
R(t,z) = eit2a W@ dy—it—izyy o 4 op). (1.4)

We recall the mass, energy and momentum conservation laws:

— [ o) .

u(®) = [ 1O + S Imlu(®)Pu(t)is® + 5 ul)* da,

—Im/ Yug (t —/|u )| d.

One may observe that F(R) = P(R) = 0 and M (R) = 4x. Similarly, we denote R) (t x) =

A3 R(M\t,Az). Then R, is also a solution to (1.1). As opposed to the case of ¢ < 4w,
the conservation laws do not restrict rescaling of solutions. Thus, our main theorem of the
orbital stability includes scaling parameter, in addition to the phase and spatial translation.

Theorem 1. For any ¢ > 0, there exists a § = d(g) such that if
luo = R(O) ||z <6, (1.5)

then for any t € I = (=T, T*) (the mazimal lifespan), there exist 0(t) € [0,2m),y(t) € R,
and \(t) € [N, 00) for some constant Ao > 0, such that

lu(t) = e“Ra(t, — )l < e

Moreover, from an extension of our argument we can also show a self-similar type blow-up
criteria of solutions with the critical mass, which is equal to that of the ground state W'.

Theorem 2. Let ug € HY(R) with |lug| 2 = [|W| 2. Suppose that the solution u to (1.1)
blows up in the finite time T, then there exist 6(t) € [0,27),y(t) € R, such that when
t— T%,

e*ie(t)u)\(t) (t, -+ y(t)) — R(t) =0, strongly in H'(R),

where uy(t, ) = )\%u()\gt,)\x), and \N(t) = ||0:W || 12/ 0xv(t)| 2-
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The proof of the theorems are based on the following variational result. Let the quan-
tities
1 6
el (1.6)
K(w) =6|jwl[74 — [lw]Fs. (L.7)

We note that K (W) = 0. Then we have the following rigidity of W.

1
S(w) =llwslf + 3 lwls -

Proposition 1. Let g € H'(R). For any ¢ > 0, there ewists g, such that if
S(9) = S(W)| + |K(g)| < eo, (1.8)

then

1 0 L ‘
(9@%&2”9 W=y <e

We provide the proof of Proposition 1 in Section 2. We use the fact that W is an optimal
function of a sharp Gagliardo-Nirenberg inequality (see [1]),

8 1
1fllze < Conllfll7all fall 72, (1.9)

where we denoted Cgy to be the sharp constant: Coy = 3%(270_%. Roughly speaking,
Proposition 1 tells that if a function closely attains the equality of the sharp Gagliardo-
Nirenberg inequality (1.9), then it is close to W up to the symmetries of spatial, phase
translation and scaling.

The strategy to prove Theorem 1 and Theorem 2 is a variational argument. In addition, we
combine it with the argument in [21]. To do this, we use the following gauge transformation.
Let

v(t,x) = e e |u(t’y)|2dyu(t,x), (1.10)
then from (1.1), v is the solution of
. t T o 3
10 + 02v = §|v\221x - 51121)5,; ~ 16 v[*v, teR,zeR, (111)

v(0,x) = vo(x),

3, re
where vg(z) := e 1t |u°‘2dyu0. We first show that there exists g such that § < ¢ < ¢,
and

|v(t)|| s > €0 for any ¢ € I.

This is done by a rigidity theorem (Proposition 1). Under this fact, we use a similar
argument in [21] to show that f(t) := [[v(t)[|3./[lv(t)[|36, is close to y/5m. This almost fix

the ratio between ||v(t)|| ;4 and |[v(¢)|| 6. Then we use the conservation laws, to establish the
relationships between [[v(t)|| za, [|v(¢)||Ls and ||vg(t)| 2. Then after suitable transformations,
the solution almost attains the equality of the sharp Gagliardo-Nirenberg (1.9). Using
Proposition 1, we conclude main theorems.

In Section 2, we prove Proposition 1 and in Section 3, we prove Theorem 1 and 2.

2. PROOF OF PROPOSITION 1

First, we recall the uniqueness of the non-trivial solution for (1.3). Indeed, the non-
trivial solution for (1.3), which vanishes at infinity, is uniqueness up to the rotation and the
spatial transformations.
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Lemma 1. If w € HY(R) \ {0} is a solution for (1.3), then there exists (0,xq) such that

w(z) = W (x — x0).
Proof. See for example Berestycki and Lions [2] for the standard argument. O

If w is the solution of (1.3), we have K(w) = 0. Indeed, it follows from integrating
against %w — z0,w on the both side of (1.3) and then integration. Furthermore, set

d:=inf{S(¢): ¢ € H(R)\ {0}, K(¢) = 0}. (2.1)

Then d < S(W) due to K(W) = 0.
Moreover, using the fact K(¢) = 0, we claim that d > 0. If we assume that d = 0, then
there exists a sequence {g,,}2>; C H'(R) \ {0}, such that

K(gn) =0, and S(gn) — 0.
This gives
1 2 1 6
K(gn) + S(Qn) = HawgnHLZ + @HgnHLG — 0.

12
Hence, by interpolation, there exists Ny, such that n > Ny,

lgnllzee < 1.
Now by the definition of K, for n > Np,

0= K(g) = / (6lgn]* — |gu[°) dz = / 190 (6 — [gn[?) da
Z/Ign]4(6—1) dx:5/]gn4da?.

That is, [ |gn|* dz = 0. This implies that g, = 0. This contradicts with g, # 0. Hence, we
conclude d > 0.

Next, we shall prove that W is the unique minimizer (up to symmetries) which attains
d. First of all, we prove the existence of the minimizer.

Proposition 2. For any sequence {g,} C HY(R) satisfying that
S(gn) = d, K(gn) =0, asn— oo,
there exists a function G, such that
gn — G in H'(R).
In particular, S(G) = d, and K(G) = 0.

Proof. By the profile decomposition with respect to H' Sobolev embedding (see [6] for

* {x%}jof’n:l, {RL} such that, up to a subsequence,

example), there exist sequences {V7 fali

for each L
L

gn=> VI(-—a})+RE, (2.2)
j=1

where |27, — 2F| — 00, as n — c0,j # k, and

Jim | i (IR onzs] =0 (23)
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Moreover,

L .

lgnllze =D IVIN 74 + I REII74 + 0a(1), (2.4)
j=1
L .

lgnll3s = D IV NIGs + I RENIs + 0n(D), (2.5)
j=1
L .

lgnllZ =D V%0 + IRE 3 + 0n(1)- (2.6)
j=1

From (2.4)-(2.6), we have

L

S(gn) =Y S(VI) + S(RE) + on(1), (2.7)
j=1
L

f«%):EjKa”»+Ku%>+mxn. (2.8)

<
Il
-

Now we need the following lemma.

Lemma 2. Let f € HY(R) \ {0}, suppose that

1
1 £172 + Gl < d (2.9)

then K(f) > 0.

Proof. We prove by contradiction. Assume that there exists a function f € H'(R) \ {0}
satisfies (2.9), but K(f) < 0. Then for

VBl
1£176
we have A < 1 and K(Af) = 0. Then from the definition of d, we have S(\f) > d. However,
1 1
IMellze + GIM I = SO = (s KO) = d.
Since A < 1, this contradicts with (2.9). Thus we obtain the lemma. O

Now we finish the proof of proposition. We first observe that
1
10xgnll72 + g”gn\|‘i4 —d, asn — oo. (2.10)

Since S(gn) — d, K(gn) — 0, we obtain
1, .4 1
10ugall 2 + gllgallls = $(9) — 15K (ga) > .
Moreover, by (2.4) and (2.6), we have
1 - 1 1
10ugnll2s + Sllonllds = D (10712 + LIVIIL) + (19:REIZ: + gIREI) + oa(1).

j=1
(2.11)
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Taking the limits lim lim on both sides, we have
L—o00n—00

. 1. ’
10: V7|72 + gHVjH‘}} <d, foranyj=12---.

Thus, by Lemma 2, we have
K{V9) >0, forj=1,2,---. (2.12)

Now taking the limits Llim lim on the both two sides of (2.8), and by (2.12) we have

o0 oo
K(V7)=0, foranyj=1,2,--. (2.13)
Then by the definition of d, we deduce that for any j =1,2,--- |
either S(V/) >d, or V’/=0.
However, S(g,) — d and d > 0, so there exists exactly one j, say j = 1, such that
SV =d,

and V7 = 0 for other j > 2. Since K(V!) = 0, we obtain the minimizer G = V! which
attains d. Moreover, from (2.10) and (2.11), we find that the remainder term R, (since
L =1, we may omit the superscript L),

nh_)ngo | Rnll o = 0.
Thus we close the proof of the proposition. O
As mentioned before, d < S(W). In fact, we have the equality.

Lemma 3. d = S(W).

Proof. Consider the set
M= {6 € H\®)\ {0} : $(6) = d, K(0) = O}. (2.14)

Then by Proposition 2.1, M # (). By the Lagrangian multiplier, there exists A, such that
for any ¢ € M, such that

S'(¢) = AK'(¢). (2.15)
Testing a function ¢ = %qb — x¢,, we have
S' (@)Y = AK' ()¢ (2.16)

On one hand, since S'(¢) = 2(—0z00 + |¢|*¢ — 2|0|*®), we have
!\l — _ 2, B4
S0 = 2Re [ (~6us+ 190 — 1gl0l'6)i da

— 5 [0l ~ 167 do = SK o)

Thus S'(¢)1 = 0 for any ¢ € M. On the other hand, K'(¢) = 24|¢|>¢ — 6|¢|*¢, gives that
K'(0)0 = 6Re [ (1166 - |o['6) do
R
— [asioft ~ ajol*)do =6 | |of de
R R
Thus, for any ¢ € M, K'(¢) = —6 [ |¢|*dz # 0. Therefore, from (2.16), we obtain

that A\ = 0. Thus, (2.16) yields that S’(¢) = 0. Hence, using Lemma 2.1, we obtain that
¢ = W (- — ) for some 6,z € R and thus d = S(W). This proves the lemma. O
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From the proof of Lemma 3, we obtain
M= {p € H'(R)\ {0} : S(¢) = S(W), K(¢) = 0}
= {eW (- —20): 0 € R, 29 € R}.

This rigidity implies that the function G obtained in Proposition 2 is equal to e”’W(‘ — )
for some 6, zg € R. Therefore, we conclude Proposition 1 from Proposition 2.

3. PROOF OF THEOREM 1 AND THEOREM 2

We first prove Theorem 1. Instead of proving Theorem 1, we give a slightly more
general result. This will be more useful in the proof of Theorem 2. To this end, we study
the solution to (1.11). We rewrite conservation laws in terms of v(¢) variable.

M(v(t) = [lo(®)lI2s = M(vo), (3.1)
P(o(t)) == ;Im/ You(t) da + = /\v (0)[* dx = P(vo), (3.2)
Bo(t)) 1= 5 len(®)I; — 55 Io(0) e = Bwo). (3.3)

Theorem 3. For any e > 0, there exists a 6 = §(g) such that if
E(vg) = 0(6), P(vg)=0(0), and M(vg)=MW)+ O(9), (3.4)

then the result in Theorem 1 holds.

It is obvious that (1.5) implies (3.4). Hence Theorem 1 is a consequence of Theorem 3.
Let € > 0 be given. We first claim the following important lemma.

Lemma 4. Let ¢ be the constant in Proposition 1. Under the assumption in Theorem 3,
for sufficiently small § > 0, we have

lo(®)ll e = €o-

Before giving the proof of the lemma, we provide a preliminary setting. To simplify notations
regarding to the functional S, we set

EO = E(’Uo), P(] = P(Uo), MO = M(’Uo).
Then under the assumption (3.4), we have
Ey, Py = 0(5), and My = M(W) + 0(5), (35)

where O(0) — 0 as 6 — 0.
We define the function w by

w(t,x) == e Ty (t, x — 2t), wy = €. (3.6)
Then the assumption (1.5) becomes

|lwo — W ||z < 6. (3.7)
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Again, we can rewrite conservation laws in w(t,z) variable. The mass, momentum and
energy conservation laws (3.1)—(3.3) are changed as follows:

M(w(t)) = w(t)|72 = Mo, (3.8)

-qm/ Buwa(t) do — w(t)|2, + = /ﬁuywx—%, (3.9)

E(w(t)) = s ()2, — 2Im / w(Ewa(t)d -+ [w(t)3 — 2o o)y = Bo.  (310)

We also find that
S(w) = E(w(t)) + 2P(w(t) + M(w(t)) = Eo + 2P + Mo.
Thus by (3.5), we have

= S(W) + O(9). (3.11)
Proof of Lemma 4.
Fix t € I. Note that
lw®)l[rs = llo@®)llras  Nw@)llzs = o)l e

Thus, we have
lw(®)llza < w2 w7 < v/ Mollw(®)[|7e.

Assume that there is a time ¢, such that ||v(¢)| 6 < 0. Then we have
K (w(t))] = [6]lw(t)]|7a — [[w(®)[|Fe] < 6+/Moeh — e < <.

Combining this with (3.11), and using Proposition 1, we have

Jw(t) — e®W (- —y)||z <e
for some (0, y) € R?. Moreover, by the mass conservation law and (3.4), we have

@)1z = [WII72 = O().
By choosing § small enough, we have

|w(t) — W (- — y)HH1 < 2e.
It implies that

1
[o®)l[zs = llw(@)llzs = §||W||6L6,

which leads the contradiction with ||v(t)||zs < eo.

Now we consider the relationship between ||v(t)||za and ||v(t)||zs. We denote

@,
0= L,

We first prove that

Proposition 3. For anyt € 1,
8
‘f(t)Q - gﬂ < 0(9).

To prove this proposition, we adopt the argument in [21]. We sketch the proof when the
argument is highly similar to [21]. Firstly, we have
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Lemma 5. For anyt eI,
_9
2C,x5 +0(0) < f(t) < v/ M.

Proof. From the Holder’s inequality, we have

l®7a < O 2 o)z = v Mollv(®)]76,

F(t) < /M.

On the other hand, by using the similar argument in [21], we have

F(t) > 2053 +(0),

and thus

where

W=

3
s @12 = (Jlo(®)lSs +1650)
e(t) :=2C,% T
(o)1 + 165, ) *

By the Mean Value Theorem, Ey = C§, and ||v(t)||z¢ > €0 by Lemma 4, we have
e(t) = CEollv(t)ll e = O(9).

This proves the lemma. O

Proof of Proposition 3.
We define

(t,z) = e"*u(t, ),

where the parameter o depends on ¢, and is given below. Then we have
E(¢) = E(v) + 2alm/v v dz + a?||v]|3..

By the mass, energy conservation laws (3.1) and (3.3), (1.9), we have for any a > 0,

_ 1
—2aIm/U(t, x) v (t,x) dx < (E -5 (t)_4>|lv(t)||6L6 + o® My + Ej,
or
L1 —18 £\ —4 6 1 1
- <515 - — F,. .
Im/ (t,2) vp(t, ) dz (16 Co8f(t) >||v(t)HL6+ SaMo+ o-Ep. (3.12)

By the momentum conservation law (3.2), we estimate

1 4 A —18 g\ —4 6 1 1
Ok < o (3 — Cal O™ )@l + 5aMo + 5 Fo + By (3.13)
Next, we claim that for any ¢t € I,
(5~ CaR 1O ™) ol > 5. (3.14)

To prove (3.14), for a contradiction, we assume there exists a time t( such that the negation
of (3.14) holds. Then choosing o = +/|Ey|, we have

1
ZHU(tO)HLﬁ < VIEo| + Py = O(5)
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But by Lemma 5, |[v(t)| 4 is on the level of ), so suitably narrowing J§, we reach the
contradiction.
Now, we choose

1) = V" (5 ~ Gl O

y (3.13) and (3.14), we estimate a(t) > 1/ My | Eo| and

IOl /Mo (1~ 166550 *) ROIEs + 207 B + 47

g\/M0(1 —16CL 3 f(t 4) [v(t)[|36 + O(9). (3.15)

Since ||v(t)||ze > €0, by (3.15), we find that

f< \/M0(1 ~16CGN ) +0(0).
By Lemma 5, we obtain
fO < Mof* — 16MoCrpd + O(6). (3.16)
Note that the equation
X? — MoX? + 16MoC5pP <0
admits only one solution X = §7r when My = 4w. Thus when My = 47 + O(0), by the
continuity argument, we have f2 = 37r + O(9). O

Now we use the scaling argument, let A(t) = ||W{|z6/||v(t)|| 6, and
1
2

oa(t, ) = A2v(M\%t, Ax).
Then from Lemma 4, A\ < g¢||W|| 6, and
lox®)ll7s =IW|7s = 967;. (3.17)
Since f(t) is scaling invariant, i.e. H Xl )”iz = f(t), we have
lox®Iza =fOIW 26 = 167 + O(8) = [W|za + O(). (3.18)
Let w(t, z; A) be defined as
w(t,z; \) = e Ty, (t,z — 2t). (3.19)
Then
M(w(N) =M(vy) = M(v) Mo; (3.20)
P(w(X)) =P(v)) = AP(v) = ARy; (3.21)
E(w(\) =E(vy) = A?E(v) = A2Ey. (3.22)

From P in (3.9), we have
1
Im/ W(t; \)Oyw(t; N) dr = |Jw(t; N[22 — 4/ lw(t; N)|* dz + \Pp.
R “ R
Note that A < g5 ||W|| 6, combining this with (3.18), we have

Im/ w(t; \)Oyw(t; N) de = O(9). (3.23)
R
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Inserting (3.23) into E(wy) in (3.10), and applying (3.17), we have

1
18z0(t; A1 72 ZQIm/w(t% Nzw(t; A) da — [[w(t; A7 + 16 lw( MIfe + X*Ey;
=21 + O(5). (3.24)

Therefore, by (3.17), (3.18) and (3.24), we have

S() =1 3 + Sl — el

16
=47+ 0(0) = S(W) + O(d);
E(w(X) =6[wN)|1s = lwV)ll7s = O().
By Proposition 1, we get

i 0 o _
ot ) = W=y <

By the mass conservation law, we further obtain

ot [0 = W=y <.

Thus, by (3.19) and (1.10), we prove that
lu(t) = e“Ra(t, —y)llmr < e
This proves Theorem 3.

Proof of Theorem 2.
Set A(s) = ||[0:W || 12/ ||0zv(s)]| 12, and

v () = A(s)20(A(s)%t, A(s)). (3.25)
Then by the conservation laws of v, we have
E(vig(t)) =E(v5(0)) = A(s)* E(vo),
P(ugg(t)) =P(vi(0)) = A(s)*P(vo),

M (vig(t)) =M (v[5)(0)) = M (vo).

So under the assumption of Theorem 2, if the solution v to (1.11) blows up in the finite
time T, then ||0,v(s)||f2 — o0 as s — T*. Thus, we have

A(s) =0, as s — T™.
Hence, when s — T,
E(U[s](O)), P(U[S}(O)) — 07 and M(U[S] (0)) = M(W)

This implies from Theorem 3 that there exist 04(t) € [0,27),ys(t) € R, and As(£) € [Ag, )
such that when s — T,

U[g] (t) — €i95 (t)R~

ot — () = 0 in H'(R),

uniformly in t. Moreover, Xs(s) = 1. In particular, when ¢ = s, we have
ug(s) — €% R(s, - — yy(s)) = 0 in H'(R).

In view of (3.25), we finish the proof of Theorem 2.
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