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Abstract. The blowup is studied for the nonlinear Schrödinger equation iut+
∆u + |u|p−1u = 0 with p is odd and p ≥ 1 + 4

N−2
(the energy-critical or

energy-supercritical case). It is shown that the solution with negative energy

E(u0) < 0 blows up in finite or infinite time. A new proof is also presented for
the previous result in [9], in which a similar result in a case of energy-subcritical

was shown.

1. Introduction. The Schrödinger equation is the fundamental equation in quan-
tum mechanics. Its general form is

iut + ∆u− V u = 0, (1)

where V denote the potential and |u|2/‖u‖2L2(RN ) is the probability density that the

particle appears at the point (x, t). The solution u is called wave function. In this
paper, we study the following well-known focusing nonlinear Schrödinger equation{

iut + ∆u+ |u|p−1u = 0, (x, t) ∈ RN × R,

u(x, 0) = u0(x), x ∈ RN .
(2)

This equation received a great deal of attention from mathematicians, in particular
because of its applications to nonlinear optics, see for examples, Bergé [1], Sulem
and Sulem [21]. For (2), the potential V = −|u|p−1. Notice that V depends on the
wave function u. This give the term nonlinear. The potential V becomes negative
very large when the probability density |u|2/‖u‖2L2(RN ) is very large. This property
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brings another term focusing. The equation (2) has very important scaling invariant
symmetry:

uλ(x, t) = λ
2
p−1u(λx, λ2t), (3)

in the sense that both the equation and the Ḣsc-norm are invariant under the scaling
transformation, where

sc =
N

2
− 2

p− 1
. (4)

This gives the notation critical regularity , the lowest regularity assumption that
the equation (2) is well-posed. If the critical regularity of the problem (2) is

higher/lower than s, we call the problem Ḣs-subcritical/supercritical. In view of
this, the Schrödinger equation (2) is called energy-subcritical when p < 1 + 4

N−2 ,

which is equivalent to sc < 1 (in particular, it is called the mass-critical when
p = 1 + 4

N or sc = 0); it is called energy-critical when p = 1 + 4
N−2 , which is

equivalent to sc = 1; and it is called energy-supercritical when p > 1 + 4
N−2 , which

is equivalent to sc > 1.
The solution of equation (2) obeys the mass, momentum and energy conservation

laws, which read as

M(u(t)) :=

∫
|u(x, t)|2 dx = M(u0),

P (u(t)) := Im

∫
u(x, t)∇u(x, t) dx = P (u0),

E(u(t)) :=

∫
|∇u(x, t)|2 − 2

p+ 1

∫
|u(x, t)|p+1 dx = E(u0).

(5)

The local well-posedness for the initial data problem (2) with u0 ∈ H1(RN ) was
studied in Cazenave and Weissler [3] in the energy-subcritical/critical cases. It was
also shown in [12] that the problem (2) in the energy-supercritical case is locally
well-posed under some assumptions on the dimension N and the power p. A natural
question is whether the local solution exists globally. In the mass-subcritical case,
it follows easily from the Gagliardo-Nirenberg inequality that the global solution
exists. From the global theory for small data, we know that if the Sobolev norm
(Hsc-norm) of the initial data is sufficiently small, then there exists a unique global
solution to (1.1). However, for large initial data, under suitable smoothness and
decay assumptions, the virial identity guarantees that finite time blowup may occur.
In particular, Glassey [7] proved that if initial data satisfies xu0 ∈ L2(RN ) with
negative energy, then the corresponding solution blows up in finite time.

After this result, many attempts have been made to remove/relax the finite vari-
ance assumption. Especially, in the energy-subcritical case, Ogawa and Tsutsumi
[18] removed the finite variance assumption in the radial symmetry case (see [11] for
the energy-critical case). The radiality condition was relaxed to some nonisotropic
ones by Martel [15]. In the 1D mass-critical case (p = 5), Ogawa and Tsutsumi [19]
completely removed the finite variance assumption. As a remark in the famous pa-
per [14], Merle and Raphael showed that in the mass-critical case, if the mass of the
initial data is close to the mass of the ground state, then the solution with negative
energy blows up in finite time. The similar result was obtained by Raphael and
Szeftel [20] for the radial quintic nonlinear Schrödinger equation in any dimension:

iut + ∆u+ |u|4u = 0, (x, t) ∈ RN × R.
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Besides the finite time blow-up criterion, the other interesting topic is to see
what happens if one only assumes that the initial data has negative energy. In [5],
Glangetas and Merle proved that in the mass-critical/mass-supercritical, energy
subcritical cases with E(u0) < 0, the solution blows up in finite or infinite time, in
the sense of

sup
t∈(−T−(u0),T+(u0))

‖u(t)‖H1 = +∞,

where (−T−(u0), T+(u0)) is the maximal lifespan of the solution with the initial data
u0. The method is a geometrical approach. See also Nawa [17] in the mass-critical
case. In particular, when N = 3, p = 3, a similar but more general result was estab-
lished by Holmer and Roudenko [9] using the concentration-compactness argument,
see also [2, 8] for some related results by using the argument in [9]. However, it’s
not clear how to generalize the argument to the energy-critical/energy-supercritical
cases. In this paper, we give a new argument to prove it. Our argument is suitable
for the energy-critical/energy-supercritical cases, and gives a similar result about
it.

Here comes our theorem, which is about energy-critcal/energy-supercritical cases.
For the sake of simplicity, we only focus our attention on the odd values of the power
p.

Theorem 1.1. Suppose that p is odd, p ≥ 1 + 4/(N − 2), N ≥ 3, and s > sc.
Let the initial data u0 ∈ Hs(RN ) with E(u0) < 0, and let u be the corresponding
solution with the lifetime [0, Tmax). Then one of the following two statements holds
true,

• Tmax <∞, that is, the solution blows up in finite time. Moreover,

lim
t↑Tmax

‖u(t)‖Hs =∞.

• Tmax =∞, and there exists a time sequence {tn} such that tn →∞, and for
any q > p+ 1,

lim
tn↑∞

‖u(tn)‖Lq =∞.

A similar result remains true for negative time.

Remark 1. Roughly speaking, Case 1 refers to the finite time blow-up, Case 2
refers to the infinite time blow-up (one may certainly substitute Lq-norm to Hs-
norm in this case, by Sobolev’s embedding). At this stage, it is not clear whether
Case 2 could be ruled out, or it would indeed happen.

Thanks to the Galilei transformation, we may extend the negative energy condi-
tion to the following.

Corollary 1. Theorem 1.1 still holds true when the condition E(u0) < 0 is reduced
to

E(u0) < P (u0)2
/
M(u0). (6)

Besides the energy-critical and energy-supercritical cases, our method also could
be used in the energy-subcritical case, that is, p < 1 + 4/(N − 2). Let Q be the
ground state of the nonlinear elliptic equation

−Q+ ∆Q+ |Q|p−1Q = 0, Q = Q(x), x ∈ RN . (7)

As mentioned above, Holmer, Roudenko [9] and Guo [8] proved the following result.
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Theorem 1.2. Let 1 + 4
N < p < 1 + 4

N−2 , u be the solution of (2) with the lifetime

[0, Tmax), and let the initial data u0 ∈ H1(RN ). Then if

M(u0)1−scE(u0)sc < M(Q)1−scE(Q)sc , ‖u0‖1−scL2 ‖∇u0‖scL2 > ‖Q‖1−scL2 ‖∇Q‖scL2 ,

(8)
then one of the following two statements holds true,

• Tmax <∞, and

lim
t↑Tmax

‖∇u(t)‖L2 =∞.

• Tmax =∞, and there exists a time sequence {tn} such that tn →∞, and

lim
tn↑∞

‖∇u(tn)‖L2 =∞.

Remark 2. Using energy conservation, it’s easy to see that in Theorem 1.2 the
blow-up norm ‖∇u(t)‖L2 could be improved to ‖u(t)‖Lq for any q ≥ p+ 1. But this
is not the case in the energy-supercritical.

In this paper, we give a simplified proof, which will be presented in Section 3.
To prove the main theorems, we adopt the idea of Glassey [7]. Because in our

case, the initial data may not have finite variance, we shall deal with localized virial
identities. There are some technical difficulties, which could be overcome by one
observation and two techniques borrowed from scattering theory. The observation
is that the gradient part in the localized virial identities could be controlled by the
gradient part in the energy. The first technique is the small L2-estimate in the
exterior ball. It holds true in the relatively long time, which depends on the radius
of the ball. The second is the following elementary estimate. Suppose f ∈ L1, then∫

|x|<R
|x|k|f | dx = o(Rk), as R→∞.

Note that one may not expect that the small L2-estimate in the exterior ball keeps
being right all the time. However, the time period, in which the small L2-estimate
holds true, is long enough to complete the proof.

This paper is organized as follows. In section 2, we give the proof of Theorem
1.1 and Corollary 1. Finally we prove Theorem 1.2 in Section 3.

2. Proof of Theorem 1.1. The major part of this section is the following theorem:
Theorem 2.1, one corollary of which is Theorem 1.1. Before stating this theorem,
we introduce some quantities. Let the quantity

K(u) :=

∫
|∇u(x)|2 dx− N(p− 1)

2(p+ 1)

∫
|u(x)|p+1 dx, (9)

then it is well-known as the virial identity that for the solution u of the equation
(2),

d2

dt2

∫
|x|2|u(t, x)|2 dx = 8K(u(t)).

It implies by Glassey’s argument (see [7]) that the solution u blows up in finite time
if xu0 ∈ L2(Rd) and there exists β0 < 0 such that

sup
t∈[0,Tmax)

K(u(t)) ≤ β0 < 0. (10)
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Theorem 2.1. Let N, p, s be the same as in Theorem 1.1 or Theorem 1.2. Then
if there exists β0 < 0 such that (10) holds, there exists no global solution u ∈
C(R+;Hs) with

sup
t∈R+

‖u(t, ·)‖Lqx <∞, for some q > p+ 1. (11)

2.1. The local theory. In this subsection, we establish the following local result
on the problem (2).

Proposition 1 (Local existence). Let s ≥ sc, and N, p, sc be as in Theorem 1.1.
Then for any u0 ∈ Hs(RN ), there exists a unique local solution u ∈ C([0, T );
Hs(RN )) of (2). Moreover, if s > sc, the lifetime T is only dependent on ‖u0‖Hs .

Proof. Since the argument is standard, see c.f. [3], [12], we give the proof much
briefly. More generally, we may consider p > s or p is odd. Let I = [0, δ], for some
small δ > 0 decided later. According to the Duhamel formula, for F (u) = |u|p−1u,
we define

Φ(u(t)) = eit∆u0 +

∫ t

0

ei(t−τ)∆F (u(τ)) dτ.

Let the Strichartz space

SNs =
⋂

(ρ,γ,σ)∈Λs

LρtW
σ,γ
x (I × RN ), Λs = {(ρ, γ, σ) :

2

ρ
+
d

γ
− σ =

d

2
− s, 2 ≤ ρ, γ,≤ ∞}.

Making using of Strichartz estimates (see [6], [10]) and Sobolev inequality, we have

‖Φ(u)‖SNs ≤ ‖eit∆u0‖SNs + ‖|∇|sF (u)‖
L
q′0
t L

p′0
x (I×RN )

,

where 2
q 0

+ N
p0

= N
2 , 2 ≤ q0 ≤ ∞, 2 ≤ p0 <∞. Then the proposition follows by the

standard fixed point theory (in which for the sake of convenience one may choose
the weaker norm LρtL

γ
x(I×RN ) , for some (ρ, γ, 0) ∈ Λs to be the distance, in order

to avoiding differentiating), once we establish

‖|∇|sF (u)‖
L
q′0
t L

p′0
x (I×RN )

≤ C‖u‖SNs‖u‖
p−1
SNsc

. (12)

Indeed, it easily follows from the chain rule and Hölder’s inequality for the regular
case, thus we only consider the case when 0 < p − [s] < 1, where we also need
additional tool of the fractional chain rule (see [12, Lemma 2.6] for example). In
this case,

‖|∇|sF (u)‖
L
q′0
t L

p′0
x (I×RN )

≤ C
∥∥∥|∇|s−[s]

(
∇[s]F (u)

)∥∥∥
L
q′0
t L

p′0
x (I×RN )

≤ C
∥∥∥|∇|s−[s]

(
F1(u) F2(u)

)∥∥∥
L
q′0
t L

p′0
x (I×RN )

, (13)

where F1(u) is a combination of the terms typing as

∂α1u · · · ∂αJu·∂β1 ū · · · ∂βK ū,
for α1 + · · ·+αJ + β1 + · · ·+ βK = [s], 0 ≤ |αj |, |βk| ≤ [s] for 1 ≤ j ≤ J, 1 ≤ k ≤ K;
and F2(u) is a Hölder continuous function of order p − 2[p2 ] > s − [s]. Then by
Hölder’s inequality and the fractional chain rule,

(13) ≤C
∥∥|∇|s−[s]F1(u)

∥∥
L
q1
t L

r1
x
‖F2(u)‖Lq2t L

r2
x

+ C‖F1(u)‖Lq3t L
r3
x

∥∥|∇|s−[s]F2(u)
∥∥
L
q4
t L

r4
x

≤C‖u‖SNs‖u‖
2[ p

2
]−1

SNsc
·‖u‖p−2[ p

2
]

SNsc
+ C‖u‖2[ p

2
]

SNsc
·‖|∇|αu‖

s−[s]
α

L
q5
t L

r5
x
‖u‖p−2[ p

2
]− s−[s]

α

L
q6
t L

r6
x

≤C‖u‖SNs‖u‖
p−1
SNsc

,
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where
1

q′0
=

1

q1
+

1

q2
=

1

q3
+

1

q4
,

1

p′0
=

1

r1
+

1

r2
=

1

r3
+

1

r4
,
(
(p−2[

p

2
])q2, (p−2[

p

2
])r2, 0

)
∈ Λsc ;

and(
2[
p

2
]q3, 2[

p

2
]r3, 0

)
∈ Λsc ,

s− [s]

p− 2[p2 ]
< α < 1, (q5, r5, α) ∈ Λs, (q6, r6, 0) ∈ Λsc .

This proves (12) and thus finishes the proof of the proposition.

2.2. The proof of Theorem 2.1. Roughly speaking, Theorem 2.1 says that there
exist no global solutions whose Lq norms are uniformly bounded in time. We prove
the Theorem 2.1 by contradiction argument. Assume the contrary, then we have

C0 := sup
t∈R+

‖u(t)‖Lq < +∞.

Then we can show that there exists 0 < C0 = C0(C0,M(u0), E(u0)) < ∞, such
that

C0 = sup
t∈R+

‖∇u(t)‖L2 .

Indeed, it is first bounded for Lp+1-norm by interpolation between Lq and L2. Then
the boundedness of Ḣ1-norm follows from the energy conservation law.

Consider the local Virial identity and let

I(t) =

∫
φ(x)|u(t, x)|2 dx, (14)

then by direct computations (see for examples [7], [11]), one has

Lemma 2.2. For any φ ∈ C4(RN ),

I ′(t) =2Im

∫
∇φ·∇uū dx; (15)

I ′′(t) =4Re

N∑
j,k

∫
∂j∂kφ·∂ju∂kū dx− 2

p− 1

p+ 1

∫
∆φ|u|p+1 dx−

∫
∆2φ|u|2 dx. (16)

If φ is radial, then one may find that

I ′(t) = 2Im

∫
φ′
x·∇u
r

ū dx, (17)

I ′′(t) =4

∫
φ′

r
|∇u|2 dx+ 4

∫ (φ′′
r2
− φ′

r3

)
|x·∇u|2 dx

− 2
p− 1

p+ 1

∫ (
φ′′ + (N − 1)

φ′

r

)
|u|p+1 dx−

∫
∆2φ|u|2 dx,

(18)

here and in the sequel, r denotes |x|.

2.2.1. Virial identity-I and L2-estimate in the exterior ball. Fix some large constant
R > 0, which will be decided later, and choose φ in (14) such that

φ =

{
0, 0 ≤ r ≤ R/2,
1, r ≥ R, (19)

and

0 ≤ φ ≤ 1, 0 ≤ φ′ ≤ 4

R
.
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Let ‖u0‖L2 = m0, then by (17),

I(t) = I(0) +

∫ t

0

I ′(t′) dt′

≤ I(0) + t‖φ′‖L∞ sup
t′∈[0,t]

(
‖u‖L2 ‖∇u‖L2

)
≤
∫
|x|≥R/2

|u0|2 dx+
4m0C0t

R
.

Observe that ∫
|x|≥R/2

|u0(x)|2 dx = oR(1),

and ∫
|x|≥R

|u(t, x)|2 dx ≤ I(t).

To summarize, we obtain that

Lemma 2.3. Fixing η0 > 0, then for any t ≤ η0R/(4m0C0), we have∫
|x|≥R

|u(t, x)|2 dx ≤ η0 + oR(1). (20)

Remark 3. Roughly speaking, the lemma above means that the solution has the
almost finite speed of propagation. To the authors’ best knowledge, the property
was first discovered by Lin and Strauss [13] for the defocusing equation, and widely
used in the scattering theory since then. The readers may refer [4, 16] for detailed
introduction.

2.2.2. Virial identity-II. We rewrite I ′′(t) in (18) as

I ′′(t) = 8K(u(t)) +R1 +R2 +R3, (21)

and

R1 =4

∫
(
φ′

r
− 2)|∇u|2 dx+ 4

∫ (φ′′
r2
− φ′

r3

)
|x·∇u|2 dx,

R2 =− 2
p− 1

p+ 1

∫ (
φ′′ + (N − 1)

φ′

r
− 2N

)
|u|p+1 dx,

R3 =−
∫

∆2φ|u|2 dx.

(22)

Roughly speaking, R1, R2, and R3 are the error terms from the localization. We
choose φ such that

0 ≤ φ ≤ r2, φ′′ ≤ 2, φ(4) ≤ 4

R2
, (23)

and

φ =

{
r2, 0 ≤ r ≤ R,
0, r ≥ 2R.

(24)

Then we have

Lemma 2.4. There exist two constants C̃(s, p,N,m0, C0) > 0, θq > 0, such that

I ′′(t) ≤ 8K(u(t)) + C̃‖u‖θqL2(|x|>R).
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Proof. We first claim that

R1 ≤ 0. (25)

To prove it, we divide the space RN into two parts:{φ′′
r2
− φ′

r3
≤ 0
}

and
{φ′′
r2
− φ′

r3
> 0
}
.

If φ′′

r2 −
φ′

r3 ≤ 0 it is obviously true since φ′ ≤ 2r. If

φ′′

r2
− φ′

r3
≥ 0,

then since φ′′ ≤ 2,

R1 ≤4

∫
(φ′′ − 2)|∇u|2 dx ≤ 0.

So we have proved (25). Moreover, since

supp(φ′′ + (N − 1)
φ′

r
− 2N) ⊂ [R,∞),

by interpolation there exists 0 < θq ≤ 1, such that

R2 ≤ C‖u‖
1−θq
Lq(|x|>R)‖u‖

θq
L2(|x|>R) ≤ CC

1−θq
0 ‖u‖θqL2(|x|>R), (26)

where C > 0, is only dependent on p, s,N . Furthermore,

R3 ≤ CR−2‖u‖2L2(|x|>R). (27)

Thus, combining (21) with (25)–(27), one obtains that for R > 1,

I ′′(t) ≤ 8K(u(t)) + C̃‖u‖θqL2(|x|>R),

where the constant C̃ = C̃(s, p,N,m0, C0) > 0. The lemma is now proved.

2.2.3. The proof of Theorem 2.1.

Proof of Theorem 2.1. Applying (20) and Lemma 2.4, one finds that for any t ≤
T := η0R/(4m0C0),

I ′′(t) ≤ 8K(u(t)) + C̃
(
η
θq
0 + oR(1)

)
.

Integrating from 0 to T , and using (10), one gets

I(T ) ≤I(0) + I ′(0)T +

∫ T

0

∫ t

0

(
8K(u(t′)) + C̃η

θq
0 + oR(1)

)
dt′dt

≤I(0) + I ′(0)T +
(

8β0 + C̃η
θq
0 + oR(1)

)
· 1
2
T 2.

Choosing η0 such that

C̃η
θq
0 = −β0,

and taking R large enough, then for T = η0R/(4m0C0) one has

I(T ) ≤ I(0) + I ′(0)η0R/(4m0C0) + α0R
2, (28)

where the constant

α0 = β0η
2
0/(4m0C0)2 < 0.

We note here that α0 is independent of R. Now we need the following two claims:

I(0) = oR(1)R2, I ′(0) = oR(1)R. (29)
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Indeed,

I(0) ≤
∫
|x|<
√
R

|x|2|u0(x)|2 dx+

∫
√
R<|x|<2R

|x|2|u0(x)|2 dx

≤Rm2
0 +R2

∫
|x|>
√
R

|u0(x)|2 dx

=oR(1)R2.

A similar argument can be used to obtain the second estimate and thus proves (29).
Together (28) with (29), and choosing R large enough, one obtains that for

T = η0R/(4m0C0),

I(T ) ≤ oR(1)R2 + α0R
2

≤ 1

2
α0R

2.

Since α0 < 0, one finally gets

I(T ) < 0.

But this is a contradiction with the definition, the proof of Theorem 2.1 is now
completed.

2.3. The proof of Theorem 1.1.

Proof of Theorem 1.1. From the local theory Proposition 1, we could define the
maximal lifespan Tmax. There are two cases,
(i) Tmax <∞. This yields

lim
t→Tmax

‖u(t)‖Hs =∞.

Otherwise, there exists a sequence {tn}n such that tn → Tmax, such that

sup
tn

‖u(tn)‖Hs <∞.

Using Proposition 1 with the initial data of tn, we get a contradiction with Tmax
for large n.
(ii) Tmax =∞. We first observe that

K(u(t)) ≤ E(u0) < 0, for any t ∈ R.

Thus (10) always holds with β0 = E(u0) under the assumption in this theorem.
Now using Theorem 2.1, we prove that there exists a time sequence {tn} such that
tn →∞, and for any q > p+ 1,

lim
tn↑∞

‖u(tn)‖Lq =∞.

This concludes Theorem 1.1.

At the end of this section, we give the proof of Corollary 1.

Proof of Corollary 1. From the Galilean transformation,

ũ(t, x) = eix·ξ0e−it|ξ0|
2

u(t, x− 2ξ0t). (30)

If u is the solution of (2), then so is ũ. Moreover, taking ξ0 = − P (u0)
M(u0) , then

E(u0)− P (u0)2
/
M(u0) = E(ũ0).

Therefore, the conclusion follows by considering ũ instead.
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3. The proof of Theorem 1.2. To this end, we shall firstly check that (8) implies
(10), that is, there exists some strictly negative constant β0, such that

sup
t∈[0,Tmax)

K(u(t)) ≤ β0 < 0.

This was essentially obtained in [9], however we also give the proof here for com-
pleteness (with a different argument).

First, we claim that the hypothesis (8) implies that for any t ∈ [0, Tmax),

‖u(t)‖1−scL2 ‖∇u(t)‖scL2 > ‖Q‖1−scL2 ‖∇Q‖scL2 . (31)

Indeed, suppose not, then by continuity, there exists t̃ ∈ (0, Tmax), such that

‖u(t̃)‖1−scL2 ‖∇u(t̃)‖scL2 = ‖Q‖1−scL2 ‖∇Q‖scL2 . (32)

Then by (32) and the sharp Gagliardo-Nirenberg inequality (see [22]),

‖u‖p+1
Lp+1 ≤ CGN ‖∇u‖

N(p−1)
2

L2 ‖u‖2−
(N−2)(p−1)

2

L2 , (33)

where

CGN = ‖Q‖p+1
Lp+1

/
‖∇Q‖

N(p−1)
2

L2 ‖Q‖2−
(N−2)(p−1)

2

L2 ,

one obtains that

M(Q)
1−sc
sc E(Q) > M(u(t̃))

1−sc
sc E(u(t̃))

= ‖u(t̃)‖
2(1−sc)
sc

L2 ‖∇u(t̃)‖2L2 −
2

p+ 1
‖u(t̃)‖

2(1−sc)
sc

L2 ‖u(t̃)‖p+1
Lp+1

≥ ‖u(t̃)‖
2(1−sc)
sc

L2 ‖∇u(t̃)‖2L2

− 2

p+ 1
CGN ·‖u(t̃)‖

2(1−sc)
sc

+2− (N−2)(p−1)
2

L2 ‖∇u(t̃)‖
N(p−1)

2

L2

= ‖u(t̃)‖
2(1−sc)
sc

L2 ‖∇u(t̃)‖2L2 −
2

p+ 1
CGN ·

[
‖u(t̃)‖

1−sc
sc

L2 ‖∇u(t̃)‖L2

]N(p−1)
2

= ‖Q‖
2(1−sc)
sc

L2 ‖∇Q‖2L2 −
2

p+ 1
CGN

[
‖Q‖

1−sc
sc

L2 ‖∇Q‖L2

]N(p−1)
2

= M(Q)
1−sc
sc E(Q).

(34)
This gives a contradiction and thus proves (31).

By the definition (5) and (9), one has

K(u(t)) =
N(p− 1)

4
E(u(t))−

(N(p− 1)

4
− 1
)
‖∇u(t)‖2L2 , (35)

thus, by (31) and (8), one gives that

K(u(t)) < 0, for any t ∈ [0, Tmax).

This together with (33), and noting that N(p−1)
2 > 2, yields that there exists some

small ε0 > 0 such that

‖∇u(t)‖L2 > ε0. (36)

Now we further claim that there exists δ0 > 0 such that for any t ∈ [0, Tmax),

K(u(t)) < −δ0‖∇u(t)‖2L2 . (37)
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Indeed, suppose not, there exists a time sequence {tn} ⊂ (0, Tmax) such that

−δn
(N(p− 1)

4
− 1
)
‖∇u(tn)‖2L2 < K(u(tn)) < 0,

where δn → 0 as n→∞. Then by (35), one has

E(u(tn)) > (1− δn)
(

1− 4

N(p− 1)

)
‖∇u(tn)‖2L2 .

Therefore, by (31), one finds that

M(u(tn))1−scE(u(tn))sc > (1− δn)sc
(

1− 4

N(p− 1)

)sc
M(Q)1−sc‖∇Q‖2scL2 .

Recall that from the Pohozaev identities, K(Q) = 0. That is,

E(Q) =
(

1− 4

N(p− 1)

)
‖∇Q‖2L2 .

Hence we obtain

M(u(tn))1−scE(u(tn))sc > (1− δn)scM(Q)1−scE(Q)sc .

Thus taking n→∞ and making use of the mass and energy conservation laws, we
prove that

M(u0)1−scE(u0)sc ≥M(Q)1−scE(Q)sc .

But this is contradicted with the hypothesis (8) and thus proves (37). Combining
with (36), we obtain (10).

Now by Theorem 2.1, there exists no global solution u ∈ C(R+;H1) with (11).
Then using Sobolev’s embedding, one may replace Lq-norm by H1-norm in (11),
and thus proves Theorem 1.2. �
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