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1.

Exponential inequalities for tail probabilities of sums of independent real-valued random
variables and their extension to martingales have numerous important applications in
probability theory and statistics. See, for instance, De la Pena and Pang [4], Bercu and
Touati [2] and [8]. The classical Bennett inequality [1] gives a tail bound for sums of in-
dependent random variables with a bounded range. If (&;);>1 are zero-mean independent
random variables, all bounded by some constant a so that |§;| < a for all 7, then the
sum S, = Y I, & obeys the following Bennett inequality (see also Bernstein [3]): for all
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x>0,

P(Sn > x) < Bi(z,a,v) = <”2)z+“262

22
< Ba(w,a,v) :=exp {_WW} ;

where v? is the variance of S,,.
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Freedman have extended Bennett’s result to the case of discrete-time supermartingales
with bounded jumps. Let (&, Fi)i=1,...n be a sequence of supermartingale differences.
Denote by Sp = SF & and (S), = ¥ E(¢?|Fi_1). The well-known Freedman’s
inequality [9] for supermartingales states that: if & < a for a positive constant a, then,
for all x,v > 0,

P(Sk >z and (5), < v? for some k € [1,n]) < Bi(z,a,v) (3)
S BQ(CL’,UJ, U)‘ (4)

In particular, when (&;)i=1,. » are independent, the bounds (3) and (4) reduce to the
bounds of Bennett [1] and Bernstein [3], respectively. Moreover, Freedman’s inequality
implies that the bounds (3) and (4) not only hold for S;, but even hold for the maximum
of partial sums maxi<g<y Sk-

Replacing the quadratic characteristic (5), by

k

1Y = 3 (BEIFi) + €10e )

=1

Dzhaparidze and van Zanten [7] have established a generalization of Freedman’s inequal-
ity for martingales with unbounded differences: for all z,y,v > 0,

P(Sk >z and HY < v? for some k € [1,n]) < Bi(z,y,v). (5)

In particular, if |§;] < a for all 4, it holds Hf = (S),., and then the inequality of Dzha-
paridze and van Zanten (5) reduces to Freedman’s inequality (3), implying inequality

(4).

However, if (§;) are not bounded from below, inequality (5) does not imply Freedman’s
inequality (3) in general. To fill this gap, we propose replacing the random variable HZ
in inequality (5) by a smaller one GY, where

k
Gl =), (E(ffl{eiSy}’fi*l) * 5@'21{509}) ' ©

i=1
Our Theorem 2.1 states that, for all ,y > 0 and v > 0,
P (Sp >z and GY < v* for some k € [L,n]) < Bi(z,y,v). (7)

Since G}, < Hy, inequality (7) implies the inequality of Dzhaparidze and van Zanten (5).
Moreover, if & < a for all i € [1,n] (may not be bounded from below), it holds G¢ = (S),,
for all k& € [1,n], and then (7) also implies Freedman’s inequality (3). This fills the gap.

In Theorem 2.2, we give a generalization of (5) to the supermartingales with non-
square-integrable differences. Write

n

Gu(8) = Y (B(&11Fi) + 1l

=1
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for a constant 8 € (1,2). Then, for all z,v > 0,

p < max Sy >z and Gu(8) < uﬂ> < exp {—0(5) (f) o } , (8)

1<k<n

where C(8) = ,Bﬁ (1-p571).

Under the additional assumption of conditional symmetry, Sason [12] gave an im-
provements of Freedman’s inequality (4). Sason proved that if (§;, F;)i>1 is a sequence
of conditionally symmetric martingale differences with |£;| < a for a positive constant a,
then, for all z,v > 0,

P (S, >z and (S), < v? for some k € [1,n])

< Bo(w,a,v) = exp {—)\x + <C°Sh(2§)_1> u2} )

and By(z,a,v) < Bi(z,a,v), where

1 242
Azlog( 1+$Z+x§>.
a v v

In the spirit of Dzhaparide and van Zanten [7], we establish the following generalization
of Sason’s inequality (9). Define

k

MY =3 (B el Fim) + €1 o1 (10)
=1

Then, for all z,v > 0 and all y > 0,
P (Sk >z and MY < v? for some k € [1,n]) < By(z,y,v), (11)

where, by convention,

: z?
By (z,0,v) = yg(l)lJrBO (x,y,v) = exp{ 22}2}
applied when y = 0. If |§] < a for all 4, then Mj, = (S), for all £ and (11) reduces to
Sason’s inequality (9). Notice that when y = 0, inequality (11) is known as De la Pena’s
inequality [5]. Hence, our bound establishes a connection between the inequalities of De
la Pena and Sason.
The paper is organized as follows. We present our main results in Section 2 and the
application to self-normalized deviations in Section 3, and devote to the proofs of the
main results in Sections 4 - 6.

2. Main results

Assume that we are given a sequence of real-valued supermartingale differences
(&, Fi)i=o0,...n defined on some probability space (€2, F,P), where § = 0 and {0, Q} =
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Fo C ... C F, C F are increasing o-fields. So we have E(&|F;—1) <0, i = 1,...,n, by
definition. Set

k
Sk=> &, k=1..n (12)
=1

Then S = (Sk, Fk)k=1,..n is a supermartingale. Let (S) be the quadratic characteristic
and [S] be the squared variation of the supermartingale S :

k

k
($), =Y E(EF1) and  [Sli=) & (13)
=1

i=1
The following theorem strengthens the inequality of Dzhaparide and van Zanten [7].

THEOREM 2.1  Assume E&? < oo for alli € [1,n]. Then, for all x,y > 0 and v > 0,

P (Sk >z and G} < v? for some k € |1, n)) By (x,y,v) (14)

<
< B (.’E,y,’l)) . (15)
where GY, is defined by (6) and

Bi (z,0,v) = lim Bj(x,y,v) = Bs (z,0,v)
y—0+

applied when y = 0.

Since GY < (S)
for all x,v > 0,

+ [S],, for all k € [1,n], inequality (15) implies the following result:

n

P <1Iil]§L<X Sy > x and (S), + [S], < v2) < Bj(x,0,v). (16)

This result slightly refines an earlier inequality of Bercu and Touati [2], where they have
obtained the same bound on tail probabilities P (S, > z and (S),, + [S], < v?). Thus
the sum S, has been strengthened to the maximum of partial sums maxi<gp<y, Sk. A
similar refinement is applied to Delyon’s inequality [6], where he has established the
following result, for all z,v > 0,

P (S, > z and G < v2) < By (z,0,v). (17)

Consider the supermartingales with non-square-integrable differences. We have the
following large deviation exponential bound, which can be regarded as a generalization
of Delyon’s inequality (17) or the inequality of Dzhaparide and van Zanten (5).

Denote by 7 = max{z,0} and 2= = —min{x,0} the positive and negative parts of
x, respectively.

THEOREM 2.2 Assume E|&|° < oo for a constant § € (1,2) and all i € [1,n]. Write

O =Y (BUE1F) +(€)), kel

=1
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Then, for all x,v > 0,

P (Sk >z and GR(B) <P for some k € [1,n]> < exp {—C(B) <x>[£1} , (18)
where

c(B)=pr5 (1-p71). (19)

In particular, if |Gy (8)||cc = O(n) as n — oo, then, for any = > 0,

P ( max Sy > m> - O(exp{ - nC’I(B)}>, (20)

1<k<n

where C;(5) > 0 does not depend on n.

It is also interesting to see that when S decreases to 1 in (18), the power % is
increasing to infinity and the corresponding constant C([3) is decreasing to 0. This means
the larger the power, the smaller the corresponding constant.

One calls (&;, F;)i>1 a sequence of conditionally symmetric martingale differences, if
E(& > y|Fi1) = E(& < —y|Fi—1) for all i and any y > 0. Motivated by the result of
Dzhaparide and van Zanten [7], we give a generalization of Sason’s inequality (9) to the
martingales with unbounded differences.

THEOREM 2.3 Assume that (&, F;)i>1 s a sequence of conditionally symmetric martin-
gale differences. Then, for all x,v >0 and all y > 0,

P (S, >z and M}, <v? for some k € [L,n]) < By(z,y,v), (21)

where MY, is defined by (10).

If the martingale differences are bounded [§;| < a for a positive constant a, then
# = (S5), and inequality (21) with y = a reduces to Sason’s inequality (9). As pointed
out by Sason [12], inequality (21) is the best possible that can be obtained from Chernoft’s
inequality P (S, > z) < infy>g Ee 522 ynder the present assumption in a certain
sense. Indeed, if (&;);>1 are i.i.d. random variables and satisfy the following distribution

2 2

v
= d P&=0)=1-—

(22)

then the bound (21) equals to lim,,_, infy>g EeMSn—2),
Since limy ;0 A = -5 and GY = [S], inequality (21) reduces to De la Pefia’s inequality
[5] as y — 0: for all z,v > 0,

P (Sp >z and [S]; < v? for some k € N) < By(z,0,v). (23)

Thus inequality (21) establishes the connection between the inequalities of De la Pena
and Sason.
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3. Application to self-normalized deviations

As an application of Theorem 2.2, consider the self-normalized deviations for independent
random variables.

THEOREM 3.1 Assume that (§)i=1,.n is a sequence of independent and symmetric
random variables. Denote by

= 1/8
va(®) = (X ll°)
i=1
for a constant § € (1,2]. Then, for all x > 0,
P (mkx S/ ValB) > x) < exp{ _B(B)as } (24)

where

Proof of Theorem 3.1. Assume that (§;)i=1,.. n are independent and symmetric. Set

Since &; is symmetric, it is easy to see that

E(Vf(zﬁ) i71> = E(ﬁz‘ |£Z’>an(6) =0.

Therefore, (éi /Van(B), .7-"1‘)%1 _,, Is a sequence of martingale differences. Notice that

ey

1 k 1 n
7 2 (B 1F) +€)) < 5 L Z( (1611 Fie1) + 1617
i=1 n
2 N
— Vu(BP 2; =
Applying Theorem 2.2 to (&/Vn(ﬁ),ﬂ)i:Lwn, we obtain (24). [ |

The power xﬁ% in (24) is the best possible for x in the moderate deviation and large
deviation ranges. Indeed, Jing, Liang and Zhou [10] have obtained the following self-
normalized moderate deviation result. Assume that

P >x)=P( < —x) ~ ;hi(x)a T — 00,

where a € (0,2), ¢ > 0 and h;(x)’s are slowly varying at co. Under certain conditions
on the tail probabilities of & (cf. Theorem 2.3 of [10] for details), for x,, — oo and
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z, = o(nB=1/B) and B > max{1, a}, the limit exists

__8_
nlgrolo T " log P (Sn/vn(ﬁ) > xn) - _(6 - 1)0(1(6)7 (26)
where C,(f3) is a positive constant depending on « and . Equality (26) suggests that
B3

the power 277 in (24) is the best possible for moderate x’s. See also Shao [13] for
self-normalized large deviation result.

4. Proof of Theorem 2.1

Assume (&;, F;)i=o0,...n a sequence of square integrable supermartingale differences. For
any nonnegative numbers y and A, define the exponential multiplicative martingale
Z(A) = (Zk(N), Fi)k=o.,....,n, Where

b 2
exp {A& — 3(AG)*Leo) } Zo(N) = 1
Vs pet0amentiny A0

If T is a stopping time, then Zpag(A), A > 0, is also a martingale, where

ﬁ“ exp {A& — 3(A&)* 1>y )

Zrpe(A) = E (exp {)\¢ — )@)21{5 >y}} | Fic1)’

Zo(\) = L.

Then for any nonnegative number A, we have the following conjugate probability measure
P, on (Q,F):

APy = Zrpn(N\)dP. (27)

LEMMA 4.1 For all y > 0 and all A > 0, it holds

M —1- )\
IS BNTEER -
eM—1-)\y

where, by convention, —p = %2 applied when y = 0.

E <exp {)\fi — ;()‘gi)zl{éiw}}

Proof. Let y > 0. If §; < y, since the function

et —1—=x

9(z) = —

is increasing in € R (by convention ¢g(0) = 1/2), we have, for all A > 0,

i — 1)\ e —1- )y
2 < 2
(X&) (Ay)
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If & > y, since exp {x — %xz} <1+ z for all x > 0, it follows that, for all A > 0,

exp {)\& — ;()@)2} <1+ X (29)

Combining (28) and (29) together, we find that, for all y > 0 and all A > 0,

1 e —1-\
exp {)\57; - 2(/\§i)21{§i>y}} <T4+AG+ <y2y> (e, <y)-

Taking conditional expectations on both sides of the last inequality, we deduce that

1 e —1— )\
B <exp {A& - 2<A5i>21{@>y}} fH) <14 <y2y> B(1(¢ <3| Fi1). (30)

Using the inequality 1 + x < e” in the right-hand side of (30), we obtain the desired
inequality. [ ]

Proof of Theorem 2.1. For any x,v > 0 and any y > 0, define the stopping time 7"
T(v,y,v) = min{k € [1,n] : Sx > z and G}, < v*},

with the convention that min ) = 0. Then it follows that

n
I{Skzx and G¥<v? for some ke[i,n]} ~ Z L7 (a,y,0)=k}-
k=1

Denote by E) the expectation with respect to the conjugate probability measure P.
Using the change of probability measure (27), we have, for all z, \,v > 0 and all y > 0,

P(S; > x and G, < v* for some k € [1,n])

-1
= E)\ <ZT/\n(/\) 1{Sk2x and G¥<v? for some ke[l,n]}>

n AQ B
= Z E, <exp {_)\Sk =+ ?[S]k(y) + \Ilk()‘)} 1{T(x,y,v):k:}> ) (31)
k=1
where
k
[STk(y) = Zﬁl{gpy}
i=1
and

k
B0 = 3o toe (oxp {6~ J06 1 e |71 )
=1
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Since the function g(x) in increasing in z and g(0) = 1/2, we have

e —1- )y

<

)\2
5 for all y, A > 0.

Hence, by Lemma 4.1 and the last inequality,

P(S; > x and G, < v* for some k € [1,n])

n 22 e —1-—\
< ) E, (eXP {—)\Sk + ?[S]k(y) + <y2y> <S>k(f‘/)} 1{T(w,y,v)=k}>
k=1
" e —1—\
< ZE)\ (exp {—)\Sk + (y2y> GZ} 1{T(z,y,v)k}) ) (32)
k=1

where (S)i(y) = Zle E({?l{&gy}\fi_l). Therefore, by the fact S, > z and G} < v? on
the set {T'(z,y,v) = k}, inequality (32) implies that, for all z, A\,v > 0 and all y > 0,

P(S; > x and G, < v?* for some k € [1,n])

n e)\y — 1=\
< ZE,\ (exp {—)\33 + <2y> 02} 1{T(ﬂf,y,v)’f}>
k=1 Y
A1\

The last inequality attains its minimum at

xy)
v/’

Substituting A = A(z) in (33), we obtain (14). Using the inequality

1
A:A(:z:):ilog(1+

t2

t
et—1—t< —— |
2(1-%)

t>0,

we get, for all ,v > 0 and all y > 0,

Ay 1- )\ )\2 2
inf exp {—)\:c + <€2y> v2} < infexp{ —Azr+ 71})\
A>0 y A>0 2(1-4)
< BQ (.%‘, Y, U) :
Thus (14) implies (15). This completes the proof of Theorem 2.1. [ ]

5. Proof of Theorem 2.2

Assume E|&|? < oo for a constant 8 € (1,2) and for all i € [1,n]. For any nonnegative
numbers A, define the exponential multiplicative martingale Z(\) = (Zk(X), Fi)k=0,... ns
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where

k
W] ow e 087}

E (exp {\ — ()P Fiq)’ Zo(\) = 1.

i=1

If T is a stopping time, then Zp,r(A), A > 0, is also a martingale, where

B Thk exp {)\fz — (Afj)ﬁ}
Zrar(N) = Hl E (exp (A& — (AP | Fi)

Zo(\) = 1.

Then for any nonnegative number A, we introduce the following conjugate probability
measure Py on (2, F):

APy = Zrpn(N\)dP. (34)
LeMMA 5.1 IfE[&|P < oo for a constant B € (1,2), then, for all X > 0,
E( exp { A& — M(€) H]—" 1) <exp{A5E &)°|Fin) }
Proof. Tt is easy to see that, for all x € R and 8 € (1,2),
exp {:v - (m+)6} <l+z+(27)P
With z = A¢;, we easily obtain, for all A > 0,
exp {06 — (A7} <146+ (35)
Taking conditional expectations on both sides of (35), we get
B(exp (A& - V() H}‘ 1) <1+ XE(E)°|F)

Using the inequality 1 + x < e®, we obtain the desired inequality. [ ]

Proof of Theorem 2.2. For given z,v > 0, define the stopping time T :
T = min{k € [1,n] : S} > z and G(B) < v7},

with the convention that min® = 0. Then we have

1{Sk236 and G9(8)<v# for some ke[i,n]} = Z Lir=py-
k=1

Denote by E the expectation with respect to the conjugate probability measure (34).

10
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Using the change of measure (34), we get, for all 2, \,v > 0,

P(S). > z and GY(B) < v” for some k € [1,n])

-1
= E, (ZT/\n()\) 1{Sk>x and GO(,B)<1)2 for some ke[l,n]})

— Y (e Askmzﬁ + TN L ro ). (36)

k=1

where
k
=Y logEexp {)\& — (Agj)ﬁ} .
i=1
From inequality (36), by Lemma 5.1, it follows that, for all z, \,v > 0,

P(S; >z and GY(3) < v” for some k € [1,7])

< Z E,\(exp{—)\Sk + )\ﬁGg(B)}l{T:k})
k=1

Since Sy, > z and GY(3) < v” on the set {T = k}, we obtain, for all z, \,v > 0,
P(S) > z and GY(B) < v” for some k € [1,n]) < exp{—Az + N\v"}. (37)

The last inequality attains its minimum at

1

A= Az) = (;1)5)‘3

Substituting A = A(z) in (37), we get the desired inequality. [ |

6. Proof of Theorem 2.3

Assume that (&, F;)i=o,...n is a sequence of martingale differences. For any nonneg-
ative numbers y and )\ define the exponential multiplicative martingale Z(\) =
(Zk(A); Fk)k=o0,....n, Where

k

exp { A& — 5(A&)* Lyje >4 }

\) = Zo(\) = 1.
: 1_11:E (exp {A& — A&)21{|@|>y}}\ﬂ 1)’ o)

If T is a stopping time, then Zp,r(A), A > 0, is also a martingale, where

Zrak(N) =

TNk
H exp {A& — 5(A&)* 1qje >y } Zo(A) = 1.

E (exp {\& — )‘fl)Ql{lé sy} 1Fie1)

11
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Then for any nonnegative number A, we have the following conjugate probability measure
P, on (Q, F):

APy = Zypn(N)dP. (38)

LEMMA 6.1 Assume that (&, Fi)i=o,..n 1S a sequence of conditionally symmetric mar-
tingale differences. For all A,y > 0, it holds

]-"i—1> < exp{ (C()Sh()‘y)_l) E(€31{|€i|<y}‘fi—l)},

y2

E <exp {)\éi - ;()\fz‘)zl{éiby}}

. — 2
where by convention (msh(y# = )‘7 when y = 0.

Proof. Let y > 0. When [&] < y, it follows that ¥ < y?¢=2¢2 and that

é- 0 2k 62
cosh(Ag;) <1 —2 Z =1+ (cosh(/\y) - 1). (39)
k=1
When [§;| > y, since cosh(z xp {322} for all z € R, it follows that, for all A > 0,
<cosh AE; ) exp { (&) } (40)

Combining (39) and (40) together, we find that, for all A,y > 0,

eN—1— )y

1
(cosh(A&)) exp {—Q(A&)?l{siby}} ST+AG+ <yQ> &1 e <y

Taking conditional expectations on both sides of the last inequality, we have, for all

Ay >0,
1 2
E ((COSh(x\&)) exp {—2()\&) 1{|§i|>y}} fz‘—l)

h(\y) — 1
<1+ <COS(;§)) E(& e, <y Fic1). (41)

Since (&, Fi)i=o,...,n are conditionally symmetric, it holds

}—il)

=E ((exp{—/\ﬁi}> exp {—;(Afi)ﬁ{&by}} Fi

E ((exp{)\&}> exp {—;()@)21{&|>y}}

1) . (42)

12
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Note that cosh(A;) = 3(exp{A\&} + exp{—A&}). Hence (42) implies that

]:z‘—1>

- E ((exp{)\&}) exp {—;(/\fz‘)zl{l&by}}

E ((cosh(kfi)) exp {—;(/\fz‘)zl{&-by}}

Fi_1> .(43)

Combining (41) and (43) together, we obtain

1 cosh(Ay) — 1
E <exp {)\fz - 2()‘§i)21{§i|>y}} fi—l) < 1+ <(yQy)> E(fz 1{|£i|§y}‘fi—1).

Using the inequality 1 4+ x < e®, we obtain the desired inequality. [ |

Proof of Theorem 2.3. For any y > 0 and any x,v > 0, define the stopping time 7"
T(z,y,v) = min{k € [1,n] : Sx > z and G}, < v*},

with the convention that min® = 0. Then it follows that
n

1{Sk2x and G¥<v? for some kefl,n]} — Z L1 (2,y,0)=k}-
k=1

Denote E) the expectation with respect to Py. Using the change of probability measure
(38), we have, for all z, \,v > 0 and all y > 0,

P(Sy > x and G, < v? for some k € [1,n])

-1
= E, (ZTAn(A) 1{Sk236 and G¥<v? for some ke[m]})

n 22 o
= Z E, (exp {—/\Sk + ?[S]k(y) + \I]k()‘)} 1{T(5’3’y7”):k}> ’ (44)
k=1
where [S]k(y) = Zf:l £i21{|§i\>y} and

y b 1
B = Yo t0e (o0 {26~ S8 1 et |7t )
=1

cosh(Ay)—1
y2

Since the function f(y) = is increasing in y > 0 and f(0) = A\?/2, we have

2 _
A coshy) =1 y, A > 0.
2 Y2
By Lemma 4.1, we find that
~ cosh(A\y) — 1
V(A < — 0 (S)k(y),

13



May 9, 2016

Statistics: A Journal of Theoretical and Applied Statistics Inequalities*-*Revise

where (S)x(y) = Zle E(&1j¢, ;>3 Fi—1). Then, from equality (44), it follows that, for
all z, \,v > 0 and all y > 0,

P(S; > x and G, < v? for some k € [1,n])

< éEA <exp {—)\Sk + /\22[S]k(y) + <COSh(;\g)_l> <5>k(y)} 1{T:k})
< éEA (exp {—ASk + (C‘)Sh(;,f)‘l) GZ} 1{T:k}> : (45)

By the fact S, > z and G¥, < v* on the set {T'(z,y,v) = k}, inequality (45) implies that,
for all , \,v > 0 and all y > 0,

P(Sk >z and G, < v* for some k € [1,n])

< exp {—)\x + (COSh(;”)_l> 112} : (46)

The last inequality attains its minimum at

1 27,2
A= Az) = - log 1+‘TU—?A{+%

Y

Substituting A = A(x) in (46), we obtain the desired inequality. This completes the proof
of Theorem 2.3. [ |

Acknowledgements

We would like to thank Igal Sason for his helpful remarks and suggestions.

References

[1] Bennett, G., 1962. Probability inequalities for the sum of independent random variables. J. Amer. Statist.
Assoc. 57, No. 297, 33-45.

[2] Bercu, B. and Touati, A., 2008. Exponential inequalities for self-normalized martingales with applications.
Ann. Appl. Probab. 18(5): 1848-1869.

[3] Bernstein, S. N., 1927. Theorem of Probability. Moscow.

[4] De la Pefia, V. H., Pang, G., 2009. Exponential inequalities for self-normalized processes with applications.
Electron. Commun. Probab. 14: 372-381.

[5] De la Pena, V. H., 1999. A general class of exponential inequalities for martingales and ratios. Ann. Probab.
27, No. 1, 537-564.

[6] Delyon, B., 2009. Exponential inequaties for sums of weakly dependent variables. Electronic J. Probab. 14,
No. 28, 752-779.

[7] Dzhaparidze, K. and van Zanten, J. H., 2001. On Bernstein-type inequalities for martingales. Stochastic
Process. Appl. 93, 109-117.

[8] Fan, X., Grama, I. and Liu, Q., 2015. Exponential inequalities for martingales with applications. Electron.
J. Probab. 20, no. 1, 1-22.

[9] Freedman, D. A., 1975. On tail probabilities for martingales. Ann. Probab. 3, No. 1, 100-118.

[10] Jing, B. Y., Liang, H. Y. and Zhou, W., 2012. Self-normalized moderate devioations for independent random
variables. Sci. China Math. 55(11), 2297-2315.
[11] Raginsky, M. and Sason, I., 2013. Concentration of measure inequalities in information theory, communi-

cations, and coding. Foundations and Trends ® in Communications and Information Theory 10, no. 1-2,
1-246.

14



May 9, 2016 Statistics: A Journal of Theoretical and Applied Statistics Inequalities*-*Revise

[12] Sason, I., 2013. Tightened exponential bounds for discrete-time conditionally symmetric martingales with
bounded jumps. Statist. Probab. Lett. 83, 1928—1936.
[13] Shao, Q. M., 1997. Self-normalized large deviations. Ann. Probab. 25(1): 285-328.

15



