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Freedman’s inequality is a supermartingale counterpart to Bennett’s inequality. This re-
sult shows that the tail probabilities of a supermartingale is controlled by the quadratic
characteristic and a uniform upper bound for the supermartingale difference sequence. Re-
placing the quadratic characteristic by Hy

k :=
∑k

i=1

(
E(ξ2i |Fi−1) + ξ2i 1{|ξi|>y}

)
, Dzhaparidze

and van Zanten (Stochastic Process. Appl., 2001) have extended Freedman’s inequality to
martingales with unbounded differences. In this paper, we prove that Hy

k can be refined to

Gy
k :=

∑k
i=1

(
E(ξ2i 1{ξi≤y}|Fi−1) + ξ2i 1{ξi>y}

)
. Moreover, we also establish two inequalities

of type Dzhaparidze and van Zanten. These results extend Sason’s inequality (Statist. Probab.
Lett., 2012) to the martingales with possibly unbounded differences and establish the con-
nection between Sason’s inequality and De la Peña’s inequality (Ann. Probab., 1999). An
application to self-normalized deviations is given.

Keywords: Freedman’s inequality; De la Peña’s inequality; exponential inequalities; tail
probabilities; martingales; self-normalized deviations
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1. Introduction

Exponential inequalities for tail probabilities of sums of independent real-valued random
variables and their extension to martingales have numerous important applications in
probability theory and statistics. See, for instance, De la Peña and Pang [4], Bercu and
Touati [2] and [8]. The classical Bennett inequality [1] gives a tail bound for sums of in-
dependent random variables with a bounded range. If (ξi)i≥1 are zero-mean independent
random variables, all bounded by some constant a so that |ξi| ≤ a for all i, then the
sum Sn =

∑n
i=1 ξi obeys the following Bennett inequality (see also Bernstein [3]): for all

x > 0,

P
(
Sn ≥ x

)
≤ B1(x, a, v) :=

(
v2

xa+ v2

) x

a
+ v2

a2

e
x

a (1)

≤ B2(x, a, v) := exp

{
− x2

2(v2 + xa/3)

}
, (2)

where v2 is the variance of Sn.
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Freedman have extended Bennett’s result to the case of discrete-time supermartingales
with bounded jumps. Let (ξi,Fi)i=1,...,n be a sequence of supermartingale differences.

Denote by Sk =
∑k

i=1 ξi and ⟨S⟩k =
∑k

i=1E(ξ2i |Fi−1). The well-known Freedman’s
inequality [9] for supermartingales states that: if ξi ≤ a for a positive constant a, then,
for all x, v > 0,

P
(
Sk ≥ x and ⟨S⟩k ≤ v2 for some k ∈ [1, n]

)
≤ B1(x, a, v) (3)

≤ B2(x, a, v). (4)

In particular, when (ξi)i=1,...,n are independent, the bounds (3) and (4) reduce to the
bounds of Bennett [1] and Bernstein [3], respectively. Moreover, Freedman’s inequality
implies that the bounds (3) and (4) not only hold for Sn but even hold for the maximum
of partial sums max1≤k≤n Sk.
Replacing the quadratic characteristic ⟨S⟩k by

Hy
k :=

k∑
i=1

(
E(ξ2i |Fi−1) + ξ2i 1{|ξi|>y}

)
,

Dzhaparidze and van Zanten [7] have established a generalization of Freedman’s inequal-
ity for martingales with unbounded differences: for all x, y, v > 0,

P
(
Sk ≥ x and Hy

k ≤ v2 for some k ∈ [1, n]
)

≤ B1(x, y, v). (5)

In particular, if |ξi| ≤ a for all i, it holds Ha
k = ⟨S⟩k , and then the inequality of Dzha-

paridze and van Zanten (5) reduces to Freedman’s inequality (3), implying inequality
(4).
However, if (ξi) are not bounded from below, inequality (5) does not imply Freedman’s

inequality (3) in general. To fill this gap, we propose replacing the random variable Hy
k

in inequality (5) by a smaller one Gy
k, where

Gy
k =

k∑
i=1

(
E(ξ2i 1{ξi≤y}|Fi−1) + ξ2i 1{ξi>y}

)
. (6)

Our Theorem 2.1 states that, for all x, y ≥ 0 and v > 0,

P
(
Sk ≥ x and Gy

k ≤ v2 for some k ∈ [1, n]
)

≤ B1 (x, y, v) . (7)

Since Gy
k ≤ Hy

k, inequality (7) implies the inequality of Dzhaparidze and van Zanten (5).
Moreover, if ξi ≤ a for all i ∈ [1, n] (may not be bounded from below), it holds Ga

k = ⟨S⟩k
for all k ∈ [1, n], and then (7) also implies Freedman’s inequality (3). This fills the gap.
In Theorem 2.2, we give a generalization of (5) to the supermartingales with non-

square-integrable differences. Write

Gn(β) =

n∑
i=1

(
E
(
|ξi|β|Fi−1

)
+ |ξi|β

)

2
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for a constant β ∈ (1, 2). Then, for all x, v > 0,

P

(
max
1≤k≤n

Sk ≥ x and Gn(β) ≤ vβ
)

≤ exp

{
−C(β)

(x
v

) β

β−1

}
, (8)

where C(β) = β
1

1−β

(
1− β−1

)
.

Under the additional assumption of conditional symmetry, Sason [12] gave an im-
provements of Freedman’s inequality (4). Sason proved that if (ξi,Fi)i≥1 is a sequence
of conditionally symmetric martingale differences with |ξi| ≤ a for a positive constant a,
then, for all x, v > 0,

P
(
Sk ≥ x and ⟨S⟩k ≤ v2 for some k ∈ [1, n]

)
≤ B0(x, a, v) := exp

{
−λx+

(
cosh(λa)− 1

a2

)
v2
}

(9)

and B0(x, a, v) ≤ B1(x, a, v), where

λ =
1

a
log

(√
1 +

x2a2

v4
+

xa

v2

)
.

In the spirit of Dzhaparide and van Zanten [7], we establish the following generalization
of Sason’s inequality (9). Define

My
k =

k∑
i=1

(
E(ξ2i 1{|ξi|≤y}|Fi−1) + ξ2i 1{|ξi|>y}

)
. (10)

Then, for all x, v > 0 and all y ≥ 0,

P
(
Sk ≥ x and My

k ≤ v2 for some k ∈ [1, n]
)

≤ B0(x, y, v), (11)

where, by convention,

B0 (x, 0, v) = lim
y→0+

B0 (x, y, v) = exp
{
− x2

2 v2

}
applied when y = 0. If |ξi| ≤ a for all i, then Ma

k = ⟨S⟩k for all k and (11) reduces to
Sason’s inequality (9). Notice that when y = 0, inequality (11) is known as De la Peña’s
inequality [5]. Hence, our bound establishes a connection between the inequalities of De
la Peña and Sason.
The paper is organized as follows. We present our main results in Section 2 and the

application to self-normalized deviations in Section 3, and devote to the proofs of the
main results in Sections 4 - 6.

2. Main results

Assume that we are given a sequence of real-valued supermartingale differences
(ξi,Fi)i=0,...,n defined on some probability space (Ω,F ,P), where ξ0 = 0 and {∅,Ω} =

3



May 9, 2016 Statistics: A Journal of Theoretical and Applied Statistics Inequalities*-*Revise

F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ-fields. So we have E(ξi|Fi−1) ≤ 0, i = 1, ..., n, by
definition. Set

Sk =

k∑
i=1

ξi, k = 1, ..., n. (12)

Then S = (Sk,Fk)k=1,...,n is a supermartingale. Let ⟨S⟩ be the quadratic characteristic
and [S] be the squared variation of the supermartingale S :

⟨S⟩k =
k∑

i=1

E(ξ2i |Fi−1) and [S]k =
k∑

i=1

ξ2i . (13)

The following theorem strengthens the inequality of Dzhaparide and van Zanten [7].

Theorem 2.1 Assume Eξ2i < ∞ for all i ∈ [1, n]. Then, for all x, y ≥ 0 and v > 0,

P
(
Sk ≥ x and Gy

k ≤ v2 for some k ∈ [1, n]
)

≤ B1 (x, y, v) (14)

≤ B2 (x, y, v) . (15)

where Gy
k is defined by (6) and

B1 (x, 0, v) = lim
y→0+

B1 (x, y, v) = B2 (x, 0, v)

applied when y = 0.

Since G0
k ≤ ⟨S⟩n + [S]n for all k ∈ [1, n], inequality (15) implies the following result:

for all x, v > 0,

P

(
max
1≤k≤n

Sk ≥ x and ⟨S⟩n + [S]n ≤ v2
)

≤ B1 (x, 0, v) . (16)

This result slightly refines an earlier inequality of Bercu and Touati [2], where they have
obtained the same bound on tail probabilities P

(
Sn ≥ x and ⟨S⟩n + [S]n ≤ v2

)
. Thus

the sum Sn has been strengthened to the maximum of partial sums max1≤k≤n Sk. A
similar refinement is applied to Delyon’s inequality [6], where he has established the
following result, for all x, v > 0,

P
(
Sn ≥ x and G0

n ≤ v2
)

≤ B2 (x, 0, v) . (17)

Consider the supermartingales with non-square-integrable differences. We have the
following large deviation exponential bound, which can be regarded as a generalization
of Delyon’s inequality (17) or the inequality of Dzhaparide and van Zanten (5).
Denote by x+ = max{x, 0} and x− = −min{x, 0} the positive and negative parts of

x, respectively.

Theorem 2.2 Assume E|ξi|β < ∞ for a constant β ∈ (1, 2) and all i ∈ [1, n]. Write

G0
k(β) =

k∑
i=1

(
E
(
(ξ−i )

β|Fi−1

)
+ (ξ+i )

β
)
, k ∈ [1, n].

4
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Then, for all x, v > 0,

P
(
Sk ≥ x and G0

k(β) ≤ vβ for some k ∈ [1, n]
)
≤ exp

{
−C(β)

(x
v

) β

β−1

}
, (18)

where

C(β) = β
1

1−β

(
1− β−1

)
. (19)

In particular, if ||Gn(β)||∞ = O(n) as n → ∞, then, for any x > 0,

P

(
max
1≤k≤n

Sk ≥ nx

)
= O

(
exp

{
− nCx(β)

})
, (20)

where Cx(β) > 0 does not depend on n.

It is also interesting to see that when β decreases to 1 in (18), the power β
β−1 is

increasing to infinity and the corresponding constant C(β) is decreasing to 0. This means
the larger the power, the smaller the corresponding constant.
One calls (ξi,Fi)i≥1 a sequence of conditionally symmetric martingale differences, if

E(ξi > y|Fi−1) = E(ξi < −y|Fi−1) for all i and any y ≥ 0. Motivated by the result of
Dzhaparide and van Zanten [7], we give a generalization of Sason’s inequality (9) to the
martingales with unbounded differences.

Theorem 2.3 Assume that (ξi,Fi)i≥1 is a sequence of conditionally symmetric martin-
gale differences. Then, for all x, v > 0 and all y ≥ 0,

P
(
Sk ≥ x and My

k ≤ v2 for some k ∈ [1, n]
)

≤ B0(x, y, v), (21)

where My
k is defined by (10).

If the martingale differences are bounded |ξi| ≤ a for a positive constant a, then
Ma

k = ⟨S⟩k and inequality (21) with y = a reduces to Sason’s inequality (9). As pointed
out by Sason [12], inequality (21) is the best possible that can be obtained from Chernoff’s
inequality P (Sn ≥ x) ≤ infλ≥0Eeλ(Sn−x) under the present assumption in a certain
sense. Indeed, if (ξi)i≥1 are i.i.d. random variables and satisfy the following distribution

P(ξi = y) = P(ξi = −y) =
v2

2ny2
and P(ξi = 0) = 1− v2

ny2
, (22)

then the bound (21) equals to limn→∞ infλ≥0Eeλ(Sn−x).
Since limy→0 λ = x

v2 and G0
k = [S]k, inequality (21) reduces to De la Peña’s inequality

[5] as y → 0: for all x, v > 0,

P
(
Sk ≥ x and [S]k ≤ v2 for some k ∈ N

)
≤ B0(x, 0, v). (23)

Thus inequality (21) establishes the connection between the inequalities of De la Peña
and Sason.

5
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3. Application to self-normalized deviations

As an application of Theorem 2.2, consider the self-normalized deviations for independent
random variables.

Theorem 3.1 Assume that (ξi)i=1,...,n is a sequence of independent and symmetric
random variables. Denote by

Vn(β) =
( n∑

i=1

|ξi|β
)1/β

for a constant β ∈ (1, 2]. Then, for all x > 0,

P

(
max
1≤k≤n

Sk/Vn(β) ≥ x

)
≤ exp

{
− C̃(β)x

β

β−1

}
, (24)

where

C̃(β) =
(β
2

) 1

1−β
(
1− β−1

)
. (25)

Proof of Theorem 3.1. Assume that (ξi)i=1,...,n are independent and symmetric. Set

Fi = σ {ξk, k ≤ i, |ξj |, 1 ≤ j ≤ n} .

Since ξi is symmetric, it is easy to see that

E
( ξi
Vn(β)

∣∣∣Fi−1

)
= E

(
ξi

∣∣∣|ξi|) 1

Vn(β)
= 0.

Therefore,
(
ξi/Vn(β),Fi

)
i=1,...,n

is a sequence of martingale differences. Notice that

1

Vn(β)β

k∑
i=1

(
E
(
(ξ−i )

β|Fi−1

)
+ (ξ+i )

β
)

≤ 1

Vn(β)β

n∑
i=1

(
E
(
|ξi|β|Fi−1

)
+ |ξi|β

)
=

2

Vn(β)β

n∑
i=1

|ξi|β = 2.

Applying Theorem 2.2 to
(
ξi/Vn(β),Fi

)
i=1,...,n

, we obtain (24). �

The power x
β

β−1 in (24) is the best possible for x in the moderate deviation and large
deviation ranges. Indeed, Jing, Liang and Zhou [10] have obtained the following self-
normalized moderate deviation result. Assume that

P(ξi ≥ x) = P(ξi ≤ −x) ∼ c

xα
hi(x), x → ∞,

where α ∈ (0, 2), c > 0 and hi(x)’s are slowly varying at ∞. Under certain conditions
on the tail probabilities of ξi (cf. Theorem 2.3 of [10] for details), for xn → ∞ and

6
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xn = o(n(β−1)/β) and β > max{1, α}, the limit exists

lim
n→∞

x
− β

β−1
n logP (Sn/Vn(β) ≥ xn) = −(β − 1)Cα(β), (26)

where Cα(β) is a positive constant depending on α and β. Equality (26) suggests that

the power x
β

β−1 in (24) is the best possible for moderate x’s. See also Shao [13] for
self-normalized large deviation result.

4. Proof of Theorem 2.1

Assume (ξi,Fi)i=0,...,n a sequence of square integrable supermartingale differences. For
any nonnegative numbers y and λ, define the exponential multiplicative martingale
Z(λ) = (Zk(λ),Fk)k=0,...,n, where

Zk(λ) =

k∏
i=1

exp
{
λξi − 1

2(λξi)
21{ξi>y}

}
E
(
exp

{
λξi − 1

2(λξi)
21{ξi>y}

}
|Fi−1

) , Z0(λ) = 1.

If T is a stopping time, then ZT∧k(λ), λ > 0, is also a martingale, where

ZT∧k(λ) =
T∧k∏
i=1

exp
{
λξi − 1

2(λξi)
21{ξi>y}

}
E
(
exp

{
λξi − 1

2(λξi)
21{ξi>y}

}
|Fi−1

) , Z0(λ) = 1.

Then for any nonnegative number λ, we have the following conjugate probability measure
Pλ on (Ω,F):

dPλ = ZT∧n(λ)dP. (27)

Lemma 4.1 For all y ≥ 0 and all λ > 0, it holds

E

(
exp

{
λξi −

1

2
(λξi)

21{ξi>y}

} ∣∣∣∣∣Fi−1

)
≤ exp

{(
eλy − 1− λy

y2

)
E(ξ2i 1{ξi≤y}|Fi−1)

}
,

where, by convention, eλy−1−λy
y2 = λ2

2 applied when y = 0.

Proof. Let y ≥ 0. If ξi ≤ y, since the function

g(x) =
ex − 1− x

x2

is increasing in x ∈ R (by convention g(0) = 1/2), we have, for all λ > 0,

eλξi − 1− λξi
(λξi)2

≤ eλy − 1− λy

(λy)2
. (28)

7
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If ξi > y, since exp
{
x− 1

2x
2
}
≤ 1 + x for all x ≥ 0, it follows that, for all λ > 0,

exp

{
λξi −

1

2
(λξi)

2

}
≤ 1 + λξi. (29)

Combining (28) and (29) together, we find that, for all y ≥ 0 and all λ > 0,

exp

{
λξi −

1

2
(λξi)

21{ξi>y}

}
≤ 1 + λξi +

(
eλy − 1− λy

y2

)
ξ2i 1{ξi≤y}.

Taking conditional expectations on both sides of the last inequality, we deduce that

E

(
exp

{
λξi −

1

2
(λξi)

21{ξi>y}

} ∣∣∣∣∣Fi−1

)
≤ 1 +

(
eλy − 1− λy

y2

)
E(ξ2i 1{ξi≤y}|Fi−1). (30)

Using the inequality 1 + x ≤ ex in the right-hand side of (30), we obtain the desired
inequality. �

Proof of Theorem 2.1. For any x, v > 0 and any y ≥ 0, define the stopping time T :

T (x, y, v) = min{k ∈ [1, n] : Sk ≥ x and Gy
k ≤ v2},

with the convention that min ∅ = 0. Then it follows that

1{Sk≥x and Gy
k≤v2 for some k∈[1,n]} =

n∑
k=1

1{T (x,y,v)=k}.

Denote by Eλ the expectation with respect to the conjugate probability measure Pλ.
Using the change of probability measure (27), we have, for all x, λ, v > 0 and all y ≥ 0,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

= Eλ

(
ZT∧n(λ)

−11{Sk≥x and Gy
k≤v2 for some k∈[1,n]}

)
=

n∑
k=1

Eλ

(
exp

{
−λSk +

λ2

2
[S]k(y) + Ψ̃k(λ)

}
1{T (x,y,v)=k}

)
, (31)

where

[S]k(y) =

k∑
i=1

ξ2i 1{ξi>y}

and

Ψ̃k(λ) =
k∑

i=1

logE

(
exp

{
λξi −

1

2
(λξi)

21{ξi>y}

} ∣∣∣∣Fi−1

)
.

8
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Since the function g(x) in increasing in x and g(0) = 1/2, we have

λ2

2
≤ eλy − 1− λy

y2
for all y, λ > 0.

Hence, by Lemma 4.1 and the last inequality,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

≤
n∑

k=1

Eλ

(
exp

{
−λSk +

λ2

2
[S]k(y) +

(
eλy − 1− λy

y2

)
⟨S⟩k(y)

}
1{T (x,y,v)=k}

)

≤
n∑

k=1

Eλ

(
exp

{
−λSk +

(
eλy − 1− λy

y2

)
Gy

k

}
1{T (x,y,v)=k}

)
, (32)

where ⟨S⟩k(y) =
∑k

i=1E(ξ2i 1{ξi≤y}|Fi−1). Therefore, by the fact Sk ≥ x and Gy
k ≤ v2 on

the set {T (x, y, v) = k}, inequality (32) implies that, for all x, λ, v > 0 and all y ≥ 0,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

≤
n∑

k=1

Eλ

(
exp

{
−λx+

(
eλy − 1− λy

y2

)
v2
}
1{T (x,y,v)=k}

)
≤ exp

{
−λx+

(
eλy − 1− λy

y2

)
v2
}
. (33)

The last inequality attains its minimum at

λ = λ(x) =
1

y
log
(
1 +

xy

v2

)
.

Substituting λ = λ(x) in (33), we obtain (14). Using the inequality

et − 1− t ≤ t2

2(1− t
3)
, t ≥ 0,

we get, for all x, v > 0 and all y ≥ 0,

inf
λ>0

exp

{
−λx+

(
eλy − 1− λy

y2

)
v2
}

≤ inf
λ>0

exp

{
−λx+

λ2v2

2(1− λy
3 )

}
≤ B2 (x, y, v) .

Thus (14) implies (15). This completes the proof of Theorem 2.1. �

5. Proof of Theorem 2.2

Assume E|ξi|β < ∞ for a constant β ∈ (1, 2) and for all i ∈ [1, n]. For any nonnegative
numbers λ, define the exponential multiplicative martingale Z(λ) = (Zk(λ),Fk)k=0,...,n,

9
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where

Zk(λ) =

k∏
i=1

exp
{
λξi − (λξ+i )

β
}

E
(
exp

{
λξi − (λξ+i )

β
}
|Fi−1

) , Z0(λ) = 1.

If T is a stopping time, then ZT∧k(λ), λ ≥ 0, is also a martingale, where

ZT∧k(λ) =
T∧k∏
i=1

exp
{
λξi − (λξ+i )

β
}

E
(
exp

{
λξi − (λξ+i )

β
}
|Fi−1

) , Z0(λ) = 1.

Then for any nonnegative number λ, we introduce the following conjugate probability
measure Pλ on (Ω,F):

dPλ = ZT∧n(λ)dP. (34)

Lemma 5.1 If E|ξi|β < ∞ for a constant β ∈ (1, 2), then, for all λ > 0,

E
(
exp

{
λξi − λβ(ξ+i )

β
} ∣∣∣Fi−1

)
≤ exp

{
λβE((ξ−i )

β
∣∣Fi−1)

}
.

Proof. It is easy to see that, for all x ∈ R and β ∈ (1, 2),

exp
{
x− (x+)β

}
≤ 1 + x+ (x−)β.

With x = λξi, we easily obtain, for all λ ≥ 0,

exp
{
λξi − (λξ+i )

β
}
≤ 1 + λξi + (λξ−i )

β. (35)

Taking conditional expectations on both sides of (35), we get

E
(
exp

{
λξi − λβ(ξ+i )

β
} ∣∣∣Fi−1

)
≤ 1 + λβE((ξ−i )

β
∣∣Fi−1).

Using the inequality 1 + x ≤ ex, we obtain the desired inequality. �

Proof of Theorem 2.2. For given x, v > 0, define the stopping time T :

T = min{k ∈ [1, n] : Sk ≥ x and G0
k(β) ≤ vβ},

with the convention that min ∅ = 0. Then we have

1{Sk≥x and G0
k(β)≤vβ for some k∈[1,n]} =

n∑
k=1

1{T=k}.

Denote by Eλ the expectation with respect to the conjugate probability measure (34).

10
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Using the change of measure (34), we get, for all x, λ, v > 0,

P(Sk ≥ x and G0
k(β) ≤ vβ for some k ∈ [1, n])

= Eλ

(
ZT∧n(λ)

−11{Sk≥x and G0
k(β)≤v2 for some k∈[1,n]}

)
=

n∑
k=1

Eλ

(
exp{−λSk + λβ

k∑
i=1

(ξ+i )
β + Ψ̂k(λ)}1{T=k}

)
, (36)

where

Ψ̂k(λ) =
k∑

i=1

logE exp
{
λξi − (λξ+i )

β
}
.

From inequality (36), by Lemma 5.1, it follows that, for all x, λ, v > 0,

P(Sk ≥ x and G0
k(β) ≤ vβ for some k ∈ [1, n])

≤
n∑

k=1

Eλ

(
exp{−λSk + λβG0

k(β)}1{T=k}

)
.

Since Sk ≥ x and G0
k(β) ≤ vβ on the set {T = k}, we obtain, for all x, λ, v > 0,

P(Sk ≥ x and G0
k(β) ≤ vβ for some k ∈ [1, n]) ≤ exp{−λx+ λβvβ}. (37)

The last inequality attains its minimum at

λ = λ(x) =

(
x

βvβ

) 1

β−1

.

Substituting λ = λ(x) in (37), we get the desired inequality. �

6. Proof of Theorem 2.3

Assume that (ξi,Fi)i=0,...,n is a sequence of martingale differences. For any nonneg-
ative numbers y and λ, define the exponential multiplicative martingale Z(λ) =
(Zk(λ),Fk)k=0,...,n, where

Zk(λ) =

k∏
i=1

exp
{
λξi − 1

2(λξi)
21{|ξi|>y}

}
E
(
exp

{
λξi − 1

2(λξi)
21{|ξi|>y}

}
|Fi−1

) , Z0(λ) = 1.

If T is a stopping time, then ZT∧k(λ), λ > 0, is also a martingale, where

ZT∧k(λ) =
T∧k∏
i=1

exp
{
λξi − 1

2(λξi)
21{|ξi|>y}

}
E
(
exp

{
λξi − 1

2(λξi)
21{|ξi|>y}

}
|Fi−1

) , Z0(λ) = 1.

11
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Then for any nonnegative number λ, we have the following conjugate probability measure
Pλ on (Ω,F):

dPλ = ZT∧n(λ)dP. (38)

Lemma 6.1 Assume that (ξi,Fi)i=0,...,n is a sequence of conditionally symmetric mar-
tingale differences. For all λ, y ≥ 0, it holds

E

(
exp

{
λξi −

1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)
≤ exp

{(
cosh(λy)− 1

y2

)
E(ξ2i 1{|ξi|≤y}|Fi−1)

}
,

where by convention cosh(λy)−1
y2 = λ2

2 when y = 0.

Proof. Let y ≥ 0. When |ξi| ≤ y, it follows that ξ2ki ≤ y2k−2ξ2i and that

cosh(λξi) ≤ 1 +
ξ2i
y2

∞∑
k=1

(λy)2k

(2k)!
= 1 +

ξ2i
y2

(
cosh(λy)− 1

)
. (39)

When |ξi| > y, since cosh(x) ≤ exp
{
1
2x

2
}
for all x ∈ R, it follows that, for all λ > 0,

(
cosh(λξi)

)
exp

{
−1

2
(λξi)

2

}
≤ 1. (40)

Combining (39) and (40) together, we find that, for all λ, y ≥ 0,

(
cosh(λξi)

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

}
≤ 1 + λξi +

(
eλy − 1− λy

y2

)
ξ2i 1{|ξi|≤y}.

Taking conditional expectations on both sides of the last inequality, we have, for all
λ, y ≥ 0,

E

((
cosh(λξi)

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)

≤ 1 +

(
cosh(λy)− 1

y2

)
E(ξ2i 1{|ξi|≤y}|Fi−1). (41)

Since (ξi,Fi)i=0,...,n are conditionally symmetric, it holds

E

((
exp{λξi}

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)

= E

((
exp{−λξi}

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)
. (42)

12
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Note that cosh(λξi) =
1
2(exp{λξi}+ exp{−λξi}). Hence (42) implies that

E

((
cosh(λξi)

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)

= E

((
exp{λξi}

)
exp

{
−1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)
.(43)

Combining (41) and (43) together, we obtain

E

(
exp

{
λξi −

1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣∣Fi−1

)
≤ 1 +

(
cosh(λy)− 1

y2

)
E(ξ2i 1{|ξi|≤y}|Fi−1).

Using the inequality 1 + x ≤ ex, we obtain the desired inequality. �

Proof of Theorem 2.3. For any y ≥ 0 and any x, v > 0, define the stopping time T :

T (x, y, v) = min{k ∈ [1, n] : Sk ≥ x and Gy
k ≤ v2},

with the convention that min ∅ = 0. Then it follows that

1{Sk≥x and Gy
k≤v2 for some k∈[1,n]} =

n∑
k=1

1{T (x,y,v)=k}.

Denote Eλ the expectation with respect to Pλ. Using the change of probability measure
(38), we have, for all x, λ, v > 0 and all y ≥ 0,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

= Eλ

(
ZT∧n(λ)

−11{Sk≥x and Gy
k≤v2 for some k∈[1,n]}

)
=

n∑
k=1

Eλ

(
exp

{
−λSk +

λ2

2
[S]k(y) + Ψ̆k(λ)

}
1{T (x,y,v)=k}

)
, (44)

where [S]k(y) =
∑k

i=1 ξ
2
i 1{|ξi|>y} and

Ψ̆k(λ) =
k∑

i=1

logE

(
exp

{
λξi −

1

2
(λξi)

21{|ξi|>y}

} ∣∣∣∣Fi−1

)
.

Since the function f(y) = cosh(λy)−1
y2 is increasing in y ≥ 0 and f(0) = λ2/2, we have

λ2

2
≤ cosh(λy)− 1

y2
for all y, λ > 0.

By Lemma 4.1, we find that

Ψ̃k(λ) ≤
(
cosh(λy)− 1

y2

)
⟨S⟩k(y),

13
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where ⟨S⟩k(y) =
∑k

i=1E(ξ2i 1{|ξi|>y}|Fi−1). Then, from equality (44), it follows that, for
all x, λ, v > 0 and all y ≥ 0,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

≤
n∑

k=1

Eλ

(
exp

{
−λSk +

λ2

2
[S]k(y) +

(
cosh(λy)− 1

y2

)
⟨S⟩k(y)

}
1{T=k}

)

≤
n∑

k=1

Eλ

(
exp

{
−λSk +

(
cosh(λy)− 1

y2

)
Gy

k

}
1{T=k}

)
. (45)

By the fact Sk ≥ x and Gy
k ≤ v2 on the set {T (x, y, v) = k}, inequality (45) implies that,

for all x, λ, v > 0 and all y ≥ 0,

P(Sk ≥ x and Gy
k ≤ v2 for some k ∈ [1, n])

≤ exp

{
−λx+

(
cosh(λy)− 1

y2

)
v2
}
. (46)

The last inequality attains its minimum at

λ = λ(x) =
1

y
log

(√
1 +

x2y2

v4
+

xy

v2

)
.

Substituting λ = λ(x) in (46), we obtain the desired inequality. This completes the proof
of Theorem 2.3. �
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