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Abstract

Our purpose is to motivate an analytical characterization aimed at predict-
ing patterns for general reaction-diffusion systems, depending on the spatial
distribution involved in the reaction terms. It is shown that there must be
a pattern concentrating around the local minimum of the chemical potential
distribution for small diffusion coefficients. A multiple concentrating result
is also established to illustrate the mechanisms leading to emergent spatial
patterns. The results of this paper were proved by using a general variational
technique. This enables us to consider nonlinearities which grow either super
quadratic or asymptotic quadratic at infinity.
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1 Introduction and main result

In this paper we describe a unified abstract setting for strongly indefinite singular
limit problems. As applications a special attention is paid to concentrating patterns
of reaction-diffusion systems.

General reaction-diffusion systems have been used to study mechanisms lead-
ing to emergent spatial patterns. They arise naturally in a variety of models from
theoretical physics, chemistry and biology (see for example [20, 26] and refer-
ences therein). A reaction-diffusion system consists of two or more coupled non-
linear partial differential equations (PDEs), which describe reactions and diffusion
of chemicals or morphogens.
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In its most general form a reaction-diffusion model describing the time varia-
tion of two chemical concentrations U and V' due to reaction and diffusion can be
written in the form

(1.1

8U = DyAU + f(U,V)
atv = DVA:EV + g(U> V)

where Dy and Dy are the diffusion coefficients setting the pace of diffusion for
chemicals U and V, respectively. The dynamics of the model is determined by
the reaction kinetics f(U, V') and g(U, V'), which are nonlinear functions of the
concentrations. Specifically for a positive diffusion coefficients, let us consider the
first equation in (1.1) as an example, Dy A, U is the diffusion term which specifies
that U will increase in proportion to the Laplacian of U. When the quantity of U
is higher in neighboring areas, U will increase (this follows the Fick’s first law).
The nonlinear terms, f and g, are the reaction terms modeling chemical reaction
with a replenishment or diminishment. These terms can be derived from chemical
reaction formulae by using the law of mass action and other physical conditions.
The parameters within f and g will generally govern the patterns in the model.

Alan Turing showed in 1952 that a simple system of coupled reaction-diffusion
equations could give rise to finite wavelength spatial patterns due to a mechanism
called diffusion-driven instability [27]. These so-called Turing patterns and other
related chemical systems have ever since been under intensive theoretical studies
and similar pattern forming mechanisms have been connected to various physical
systems. Due to the large applicability of pattern generating mechanisms in several
research fields, understanding the relationship between reaction-diffusion param-
eters and specific patterns becomes essential. So, the present work is intended as
an attempt to motivate an analytic characterization aimed at predicting patterns for
general reaction-diffusion systems, depending on the spatial distribution involved
in the reaction terms. We will illustrate these ideas with some general pattern-
generating reaction-diffusion systems involving variational structure.

For such, we will consider the following 2 -component reaction-diffusion
system

(1.2) { Ou = e2Agu —u — V(z)v + 0, H (u,v)

o = —2Apv + v+ V(z)u — 0, H(u,v)

in spatial domain R", where (u,v) : R x RV — RM x RM models the con-
centration field of different chemicals. In such system the function V : RV — R
determines a relative spatial distribution of a chemical potential, and the nonlinear
part (determined by the function H : R™ x RM — R) gives a external physico-
chemical force. It is worth noting that, in the second equation of (1.2), the diffusion
coefficient is negative, which represents the phenomenon referred as the uphill dif-
fusion (occurs during phase separation, a situation where the transport of particles
in a medium occurs towards regions of higher concentration). This type of prob-
lems arises in a wide variety of applications. Specifically, the important feature of



these systems for our purpose is the competition between different temporal growth
rates and spatial ranges of diffusion for different chemicals in the system. For ex-
ample the very simple 2-component equations for the concentrations (¢, x) and
v(t,x) of two reaction and diffusion chemicals, the expressions (1.2) have been
interpreted in terms of the interaction of an inhibitor u and an activator v (see for
example Murrary [23]). The function H models the nonlinear response of intense
electromagnetic waves propagating in various types of media. And this nonlin-
earity leads to equations for the envelope of the waves, in the form of “nonlinear
Schrédinger” type equations.

It turns out that in the coupled system (1.2), the nonlinear function H is op-
erated in such a way that different spatial modes of the electromagnetic fields are
excited and parameters can be adjusted so that spatial patterns will appear. Hence,
here in this context, we will focus on the asymptotic behavior of the solutions to
(1.2) with small diffusion coefficients (that is the performance of these solutions
as ¢ — 0). This presents a sort of concentricity of the patterns generated by the
reaction-diffusion process and its dependence on the parameters and the spatial
distributions.

There is not much work on solutions of systems similar to (1.2). Brézis and
Nirenberg [5] considered the 2-component system

{8tu = Agu —v° + f(x)

(1.3) in (0,7) x Q,

o = —Agv —ud + g(z)
where Q C R is a bounded domain and f, g € L>(£2). Subject to the boundary
conditions u(t,z) = v(t,z) = 0 on (0,7) x 90 and u(0,2) = v(z,T) = 0 on
€, the authors obtained a solution (u, v) with u € L* and v € LO of (1.3) by using
Schauders fixed point theorem. In [8], Clément, Felmer and Mitidieri considered
the problem (unbounded Hamiltonian systems)

Opu = Agu + |v|7 %0
(1.4)

L, in(=T,T) xQ,
0w = —Ayv — |ulP"u

where () is a smoothly bounded domain in RY and NL+2 < % + % < 1. By
variational arguments, they proved that there exists 7 > 0 such that for each
T > Ty, (1.4) has at least one positive solution satisfying the 0-boundary condition:
u(t, )|on = 0 = v(t,-)|aq forall t € (=T,T), and the periodicity condition:
u(=T,-) = w(T,-), v(-T,-) = v(T,-). Moreover, by passing to the limit as
T — oo, they showed that (1.4) has at least one positive solution defined on R x 2
satisfying the 0-boundary condition and

lim w(t,z) = lim v(t,z) =0 uniformly inz € Q.
t—o00 t—o0

For later developments, we mention that Bartsch and Ding [3] investigate the fol-

lowing 2M -component (infinite dimensional Hamiltonian control [18, 24]) system
Oru = Apu — V(x)u+ O, H(t, x,u,v

(1.5) ‘ * (@) +0u,H( ) nRxRV.
0w = —Azv+ V(x)v — 0, H(t, x,u,v)



The authors established a proper variational framework and proved the existence
and multiplicity of solutions of homoclinic type to (1.5) under appropriate condi-
tions on the nonlinearities (see also [12, 14]).

The model (1.2) is different from the above mentioned ones and we are inter-
ested in finding the pattern generalizing (mechanisms) dependence on the varying
parameters and the spatial distributions of chemical potentials (to our best knowl-
edge, we are not aware of an earlier work where such topic is considered). To
give a better description of our framework, a few words regarding terminology are
necessary. Let us first introduce for » > 1 the Banach space

B"(R x RN R*M) .= whr (R, L" (RN, R*M)) n L" (R, W7 (RN, R?M))

equipped with the norm

1/r
(1.6) |z|lgr = <// (]z\r + [Op2]" + \sz|r> d:vdt) .
RxRN

In the sequel, when no confusion can arise, we will use B” for short. First we
formulate the hypotheses on the potential V' as

(V') Vislocally Hélder continuous and max |V'| < 1.

In order to get asymptotic results, it is necessary to put some restrictions on H. It
is required that the nonlinear function H : RM x RM — R has the form H(¢) =

G(¢]) = (F‘ g(s)sds. We shall make the following assumptions on g under
consideration.

(Hy) g € C[0,00) N C(0,00) such that g(0) = 0, ¢’(s) > 0, ¢’(s)s = o(s) as
s — 0, and

g (s) < CsUNI/N forall s > 1, some C > 0.

(H2) The function s — g(s) + ¢’(s)s is increasing on [0, c0).

(Hs) (i) There exists 3 > 2 such that 0 < 3G(s) < g(s)s?if s # 0;
(ii) there exist @ > 0 and p € (2,2(NN + 2)/N) such that g(s) < asP~2
forall s > 1.

Probably (H>) can be replaced by other hypotheses on the growth of V2H (¢) at
both the origin and the infinity, however, we find the monotonicity is essentially re-
lated with our proofs. Assumption (H3) is a super quadratic condition on G. Such
an assumption can be replaced by the following asymptotic quadratic condition.
With the notation G/(s) := 39(s)s*> — G(s), we introduce

(H4) (i) There exists b > 1+ sup |V such that g(s) — bas s — 003
(ii) G(s) > 0if s > 0and G(s) — +oo as s — oc.
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Let us mention that our listed above assumptions admit elements of
1. H(&) = c|§|P with p € (2,2(N + 2)/N) for the super quadratic case,
2. H(&) = bl¢)2(1 - m) for the asymptotically quadratic case,

as well as finite summations of them.
Involving the assumptions introduced above, our result comes as follows.

Theorem 1.1. Assume that (V'), (H1), (H2) and either (H3) or (Hj) are satisfied.
If A C RY is an open bounded set such that

(1.7) c:=minV <minV,
A oA

then for ¢ > 0 small problem (1.2) has a solution z. = (us,v:) € B"(R x
RN R2M) for all r > 2 such that

(1) there exists a family of points {yc} in A with lim._,o V (y:) = ¢ such that

lim inf €N/ / Z:|*dzdt > 0 forevery p >0
R Bsp(ys)

e—0
and
lim 1Ze(t, ) Loo RN\ B.g(ye)) = 0 for every t € R;
e—=0
(ii) the transition sequence we(t,x) = Z.(t,ex + y.) converges in B*(R x

]RN, RQM), as € — 0, to a ground state solution of

Ou = Agu —u— cv+ 0, H(u,v),
0w = —Agv +v+cu— 0, H(u,v).

The important point to note here is no restriction on the global behavior of V'
is required other than (V'), particularly, the behavior of V' outside A is irrelevant.
Due to this observation, we have an immediate consequence of our Theorem 1.1:

Corollary 1.2. Assume that (V'), (Hy), (H2) and either (H3) or (H%) are satisfied.
If there exist mutually disjoint bounded domains Aj, j = 1,...,k, and constants
c1 < co < -+ < cp such that

(1.8) cj=minV <minV,
A DA,
then for e > 0 small problem (1.2) has at least k solutions Z = (ul,vl)

B"(R x RN, R?M) (j = 1,....k) for all r > 2 such that



() for each A;j there exists a family of points {yg} in Aj with lim._ V(yg) =
c; such that

liminng/ / |2 dxdt > 0 for every p > 0
R J Bep(y2)

e—0

and A
}lij{}o H'Eg(ta ')HLoo(RN\BER(yg)) =0 foreveryt € R;

e—0

(i1) each transition sequence wl(t,z) = . (t,ex +yl) converges respectively in
B2(R x RN , R2M ), as € — 0, to a ground state solution of

Oru = Agu —u — ¢jv + 0, H(u,v)
0w = —Agv + v+ cju — 0, H(u,v).

Our results provides a natural and intrinsic characterization of the pattern gen-
eralizing dependence on the varying parameters and the spatial distributions of
chemical potentials. The theorems express that there must be a pattern concen-
trating around the local minimum of the chemical potential distribution for small
diffusion coefficients, moreover, it is the emergence of such local minimum that
guarantees the existence of such concentrating phenomenon. Furthermore, if there
exists distinguished regions of local minima, there will exist multiple patterns with
different shapes concentrating separately in the very region the local minimum lies
in.

Mathematically, problems like (1.2) with small coefficient is referred as singu-
lar perturbation problems. Such problems are generally characterized by dynamics
operating on multiple scales. The researches of singular perturbation problems in-
volving variational methods goes back to the semi-classical analysis on nonlinear
Schrddinger equation arising in the non-relativistic quantum mechanics:

(1.9) 2Aw —V(r)w + f(w) =0 we H'(R").

Initiated by Rabinowitz [25], the existence of positive solutions of (1.9) for small
h > 0 is proved whenever

liminf V(z) > inf V(x).

|z|—o00 FISING
And these solutions concentrate around the global minimum points of V when 7 —
0, as was shown by Wang [28]. It should be pointed out that M. Del Pino and P.
Felmer in [10] firstly succeeded in proving a localized version of the concentration
behaviour of semi-classical solutions. In [10], assuming inf V' = V5 > 0 and
(1.7) for some bounded domain A, the authors showed the existence of a single-
peak solution which concentrates around the minimum points of V' in A. Their
approach depends on a penalization argument and Mountain-pass theorem. Note



that, since the Schrodinger operator —A + V' is bounded from below, techniques
based on the Mountain-pass theorem are well applied to the investigation. See also
[1,2,6,7,9, 11, 16] and their references for further related results.

There are at least three difficulties in extending the quoted results (on the ellip-
tic case) to the system (1.2). Firstly, no uniqueness results seem to be known for
the limit problem”

inR x RY

Ou = Agu —u— v+ 0yH(u,v)
v =—Av~+v+u—90,H(u,v)

and this is in some cases a crucial assumption in the single elliptic equation case
(compare e.g. with [9, Assumption (f5)], [11, Assumption (f4)]). Secondly, as
we will see in Section 3, the variational structure of system (1.2) is of strongly
indefinite type (the energy functional is neither bounded from above nor from be-
low, even on subspaces of finite dimension or codimension). Differ from the single
elliptic equation case, the quadratic part of the energy functional has no longer a
positive sign. At a technical level, this causes some difficulties; for instance, the
penalization arguments as used in [10, 11] can not be applied to our problem; we
have to provide a more delicate analysis. Moreover, from a conceptual point view,
in the case of a system we also have to face the fact that the method based on the the
Mountain-pass theorem breaks down. As a consequence, we need a deep insight
into the linking structure of strongly indefinite functional. This difficulty was by-
passed in [3, 12, 14], where a direct approach was proposed. In these papers either
the case V' (x) = 1 or the periodic case V' is T}j-periodic in zj for j = 1,--- | N
are considered.

We mention that in the papers [21, 22] the Hamiltonian elliptic type system-
s are considered. Such systems also have the indefinite character of the energy
functional, by a reduction argument, the authors showed multiple spike-layered so-
lutions concentrating around the local minimum points of the potential functions.
However in this context, when the parabolic system is considered, we have to face
the ¢-Anisotropic Sobolev spaces B"(R x RY R2?M) and the interpolation space
between B2(R x RY, R?M) and L?(R x RN, R?M) (see the functional settings in
Section 3). At this point, it is not clear whether the the cut-off method as used in
[21, 22] can be applied to our problem.

The rest of the paper is devoted to the proof of Theorem 1.1 and Corollary
1.2. In the next section, we briefly introduce an abstract critical point theorem
which can be applied to the study of indefinite functionals. The specific proof of
the abstract critical point theorem will be presented in Section 4. Section 3 falls
naturally into two parts which devotes to give a full proof of Theorem 1.1: the first
part constitutes sufficient preparation to apply the abstract theorem; the second part
provides the delicate analysis on the concentrating solutions to system (1.2). Due
to the strongly indefiniteness, we have to recover a compactness condition at some
certain minimax levels. All we do is to build a modification of the energy functional
associated to (1.2). In such a way, the functional is proved to satisfy a compactness



condition defined in Section 2. And then, for € sufficiently small, a critical point
associate to the modified functional is indeed a solution to the original system (1.2)
thanks to some priori estimates of parabolic equations. The modification of the
functional corresponds to a penalization technique “outside A”, and this is why no
other global assumptions are required for V. Finally, in the Appendix we collect
some embedding and regularity results which are used in this paper.

2 An abstract critical point theorem

Before stating the main results of this section we shall introduce some notations
and definitions. We denote by E a real Hilbert space, by (-, -) the scalar product
in £, by || - || the norm in E. The dual of E is denoted by E*. By C*(E,R) for
k > 1 we denote the space of k-times Frechét differentiable functionals from £
to R. We shall denote by -Z(E) the space of bounded linear maps from E to E,
endowed with the uniform operator norm, and by .%;(F) the same space endowed
with the strong operator topology. The adjoint of A in .Z(F) is denoted by A*,
and by self-adjoint we mean A = A*. The space E,, is the space £ endowed
with its weak topology. We denote weak convergence of a sequence in F with the
symbol —. Let G be a Lie group and let .7 : G — U(FE) be a representation of
G on the group of the unitary linear transformations on F. We set ¥ = .7 (G) and
sometimes, when no ambiguity is possible, we will use ¢ instead of G to stand for
the Lie group.

Definition 2.1. A subset M C FE is called ¢-invariant if g(M) = M for every
g € 4. A functional ® on FE is called ¢-invariant if $ o g = ® forevery g € 4. A
map h from E to F is called ¥-equivariant if h o g = g o h forevery g € 4.

Let {Ac}es0 € Z(F) be a family of ¢-equivariant self-adjoint operators.
Let {¥.}.~0 C C?(E,R) be a @-invariant family, and set 1. := V¥, : £ —
E. Considering a given splitting £ = X @ Y of F into ¥-invariant orthogonal
subspaces X and Y with associated bounded projections P* and PY, we write
2% = PXzand 2¥ := PYz for z € E. In the sequel, we are interested in finding
critical points of the functionals

1

. E—-R, P(z2):= 5

1
(=502 = 1271%) + 5 (Aez,2) = Ve(2)
for e small. Let Ay € Z(F) be a ¥-equivariant self-adjoint operator and ¥ be a
%-invariant C? functional, and set ¢g := V¥, : E — E. Consider

1

Op: E >R, Py(z):= 5

1
(=1 = 1271%) + 5 (Aoz, 2) = Po(2),
as singular limit functional.
Since we are interested in the situation when ¢ is small, by setting £ = [0, 1],
we will be concerned with {®. }cce := {Po} U {Pc}oe(0,1)- Now we collect some
hypotheses on {®. }.c¢ which we will impose in the various results:



(A1) There exists 6 € (0,1) such that sup_¢ (g 1] [|Ae[| < 0.
(A2) A — Agin Zs(FE)ase — 0.

(N1) For each e € £, W, is non-negative and convex, and ¢ : E,, — E, is
sequentially continuous.

(N2) Foreach z € E, 1.(z) = ¢o(z) in Ease — 0.
(N3) There exists k € C(RT,RT) (R* = [0, 00)), independent of &, such that
W2 (2)[v, w]| < s(llz]) - floll - [lwl]
for z,v,w € Fande € .

(N4) Foralle € €and 2 € E\ {0}, U.(2) == 10 (2)z — U.(2) > 0, and
V. : B, — Ris sequentially lower semi-continuous.

(N5) Given arbitrarily ¢ € &, forevery z € E'\ {0} and w € E it holds that

(\I/g(z)[z, z] — \I!;(z)z) + 2(\11'5’(2)[2,11)] — \I/'a(z)w) + 0/ (2)[w,w] > 0.

Remark 2.2. Condition (A2) and (/N2) are quite natural in singular perturbation
problems. Both are satisfied in the scaled equations when the parameter varies.
Condition (N3) and (/N4) are rather harmless, also (/N5) holds under rather gen-
eral assumptions on the nonlinearity. They are technical assumptions which are
deeply related to the proof of our results, and they will be easily checked if growth
conditions on the nonlinearity are given.

We shall emphasis here the functionals ®. for € € £ are “’strongly indefinite”,
that is X and Y are both infinite-dimensional, as it occurs in the study of solutions
of unbounded Hamiltonian systems. Recall that a sequence {z,} C FE is called to
be a (PS).-sequence for functional ® € C*(E,R) if ®(2,) — cand ®'(z,,) — 0,
and is called to be (C').-sequence for ® if (z,) — cand (1 + ||z, |)P’(z,,) — O.
It is clear that if {z,} is a (P.S).-sequence with {||z,||} bounded then it is also
a (C).-sequence. We remark that if ® is ¥-invariant then {g,2,} is also a (C').-
sequence (resp. (PS).-sequence) for any {g,} C ¥ provided {z,} is a (C).-
sequence (resp. (PS).-sequence).

Definition 2.3. A ¢-invariant functional ® € C!(E,R) is said to satisfy the ¥-
weak (C').-condition if for each (C).-sequence {z,} there exists correspondingly

{gn} C ¥ such that {g,,z,} possesses a subsequence converge weakly to a point
in £\ {0}.

Next, we will be concerned with the functionals {®.}.c¢ satisfying the as-
sumptions mentioned above.

Theorem 2.4. Suppose the family {®. }.ce satisfies (A1)-(A2), (N1)-(N5) and



(I1) there exist p,7 > 0, both independent of ¢ € &, such that <I>5’ px =0
r
and (I)E‘SX > 7 where By = B,NX = {2z € X : [}z < p} and
)
Sy =0B) = {ze X : |z = p};

(12) forany e € X \ {0} set E. = RTe @Y, either sup,. g, Po(z) = +o0 or
®y(z) - —occas z € E and ||z|| — oo (here RT = [0, c0)).

If . satisfies the G-weak (C').-condition for each ¢ € R\ {0} and € # 0 and

co = Inf sup Py(z) < +o0
0 66)(')2«65)(3 0()

is a critical value for @, then

(1) forall e small, . admits a critical value

¢ = inf sup D.(2);
EGX ZEEe

(2) ce is the ground state energy of ®. and c. < co + o(1) ase — 0.

The proofs of Theorem 2.4 is quite technical and self-contained, so we will
first give the applications to the singular perturbation problem of reaction-diffusion
system and then show the proofs in Section 4.

Remark 2.5. Theorem 2.4 is the first unified abstract result concerned with strong-
ly indefinite singular limit problem. The assumptions (1) and (I2) are geomet-
rical assumptions, which imply a linking structure of the strongly indefinite func-
tionals. (12) generalizes the requirements in [13, 15] when treating nonlinear Dirac
equations, which allows to deal with a larger class of nonlinearities including the
asymptotic quadratic ones.

Remark 2.6. In Theorem 2.4 the assumption cg is a critical value of ®( is not
difficult to verify in application. In fact the singular limit equation is, after the
scaling transform, a autonomous equation such that the corresponding functional
® is invariant under actions of some Lie group containing ¢ as a proper subgroup.
Then the existence and characterization of ¢y can be derived from standard varia-
tional methods ( [12], see also Section 3). The second conclusion in Theorem 2.4
seems to be optimal and essential in the study of singular perturbation problem (for
Schrodinger equations see [10, 16] and references therein). and for Dirac equations
see [13, 15])

Remark 2.7. As we mentioned above, ® is ¢ -invariant but we can not expect P
to satisfy the &-weak (C').-condition since there exists another Lie group ¢’ such
that ¥ G 4’ and ®¢ is &'-invariant. As a matter of fact, in the applications, one
will see that Theorem 2.4 is nontrivial since we are dealing with the situation @
does not satisfy the ¢-weak (C').-condition as ®. for € > 0. And hence, the proof
is not simply passing to the limit as € vanishes.
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3 Applications to singular perturbation problem of non-
linear reaction-diffusion systems

Now we consider the reaction-diffusion system (1.2) where V', H satisfy the as-
sumptions (V'), (Hi), (Hz) and (H3) (or (Hj)). Making the change of variable
x — ex, (1.2) becomes

31 Oou = Agu —u — Ve(x)v+ Hy(u,v)
' —0w = Agv — v — Ve(x)u + Hy(u,v)

where A, denotes the Laplacian acts on the space variable x and V. (z) = V (ex).
Setting

J = <? 01) , Jo = G é) and A = Jo(=Az + 1),
and let L := J0; + A. Then (3.1) can be rewritten as
JOiz =—Az —Vo(x)z+g(|2])z for z = (u,v),
or in a more abstract representation
(3.2) Lz 4+ V.(x)z = g(|]z])z for z = (u,v).

In this way, (3.1) can be regarded as an infinite dimensional Hamiltonian system.
Here and subsequently, we fix the potential V' and a bounded nonempty open set
A C R such that

3.3) c=minV < minV.
A oA

Without loss of generality we can assume that the boundary of A is smooth, and
that 0 € A.
3.1 Functional settings

We initially introduce some functional spaces we shall need in the sequel. If 1 <
q < oo we set L9 := LI(R x RY R?M) and by | - |, we denote the usual norm
defined on L9. Denoted by (-, -)2 the usual L2-inner product.

Now we consider L acts on the Hilbert space L? := L?(R x RY R2M) It is
quite standard to see that L is a self-adjoint operator with domain

D(L) = B* := W (R, L*(RY, R*M)) n L* (R, W>*(RY, R*M)).

Let o(L) and o.(L) be respectively the spectrum and essential spectrum of L, we
have the following result (cf. [12, Lemma 8.7]).
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Proposition 3.1. o(L) = 0.(L) C R\ (—1,1), moreover, (L) is symmetric with
respect to (.

As a direct consequence of Proposition 3.1, the space L? possesses the orthog-
onal decomposition:

(3.4) LP=LToL", z=2t+:",

so that L is positive definite (resp. negative definite) in L™ (resp. L™). In order to
construct the energy functionals whose critical points are the solutions of (3.2) we
introduce E := D(|L|'/?) be equipped with the inner product

(21,22) = (\L|1/221, !L\l/ZZQ)Q

and the induced norm ||z|| = (z, 2) /2 where |L| and |L|'/? denote respectively the
absolute value of L and the square root of |L|. As an interpolation space between
B? and L?, F (being a Hilbert space) has the decomposition

E=E*®E~, where E* = ENnL*

which is orthogonal with respect to both (-, -)2 and (-, -). We write z = 2+ + 2~ for
z € FE according to this decomposition and introduce the following bilinear form

a(z1,z2) = <zl+,z§r> — <zf,z;> for z1, 29 € E.

The bilinear form a(-, -) is symmetric and continuous in E. Observe that if 21, zp €

BQ
a(z1,22) = // Lz - z9 dzdt.
R JRN

Under the assumption (H1 ), we see that there are positive constants c1, ¢ such that
IVH(2)| < c1]z] + ol 2| VIV for any z € R?M.

Remark that F is continuously embedded in L” for r € [2,2(N +2)/N]if N > 2,
and compactly embedded in L] . for r € [1,2(N + 2)/N)if N > 2 (cf. [12,

loc
Lemma 8.5]). Standard arguments show that the functional

1 1
Jg(z):2a(z,z)+2// Vg(x)|z]2da:dt—// G(|#|) dzxdt, z€E
R JRN R JRN

is 2-times Frechét differentiable and that its critical points correspond to the solu-
tions of (3.2) (see Lemma A.5 in Appendix).
Since o(L) C R\ (—1,1), one has

(3.5 |22 < ||z|*> forallz € E.

The decomposition of F induces also a natural decomposition of L", hence there
is d, > 0 such that

(3.6) dy|zEm < || forall z € E.
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It is to be expected that critical points of .J. can be found by applying Theorem
2.4, and that the asymptotic behaviour (which can be characterized by concentra-
tion phenomenon) of these critical points will follow subsequently. However, one
may find the abstract theorem can not apply directly to J. due to the lack of ¥-
weak (C').-condition. In what follows, let us initially give a modification of J.
which guarantees that the assumptions in the abstract theorem are all satisfied.

Choose so > 0 be the value at which g(so) + ¢'(s0)so = % Let us
consider § € C[0,00) N C*(0, o) such that

; g(s) +g(s)s if s < so,
—(9(s)s) =9 1= V|
ds( ) ‘2‘/‘ if s > sp.

Such g exists thanks to our assumptions (/) and (H3). Define

f(@,s) = xa(@)g(s) + (L — xa(@))3(s).

where A € RY is the bounded domain fixed to satisfy (3.3) and ya denotes its
characteristic function. One should keep in mind here that A has to be rescaled
when we consider the rescaled system (3.1). Write

F(x,s) :/0 f(z,7)Tdr and F(z,s)= %f(:v,s)s2 — F(z,s).

It is standard to check that (H;) and (H2) implies F' : [0,00) — [0,00) is a
Caratheodory function satisfying

(F1) fs(x,s) > 0 exists every where, and f(x,s)s = o(s) uniformly in x as
s —0;

(F2) 0< f(x,8)s < g(s)sforall z € RN and s > 0;
(F3) 0 <2F(x,5) < f(x,8)s% < %s%’orallw & Nand s > 0;

(F4) (i) if (H3) is satisfied, then 0 < BF(z,s) < f(x,s)s® forall x € A and
5> 0,

(i) if (HY) is satisfied, then F(z,s) > 0forall s > 0;
(F5) L(f(z,s)s) >0forallzands > 0;
(F6) either (Hs) or (H}) is satisfied, ﬁ(a:, s) — 00 as s — 0o uniformly in x.

For simplicity of notation, we let f.(z,s) and F.(x,s) stand for f(ez,s) and
F(ex, s) respectively. Now, let us define the modified functional &, : £ — R

as
// (z)|z|? dadt — // x, |z|) dzdt
=50 =11 + 5 [ [ Vel dodt - 9 2),

13
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Then, we see that . € C?(E,R) and critical points of ®. correspond to solutions
of
Lz 4+ V.(x)z = fe(z,]|2])z.

Taking the singular limit into account, we find that the limit system is
Lz +Voz = g(|2])2,

where Vj := V/(0) and that the associated functional is

Dp(2) = fazz // |z|2d:vdt—// G(|z]) dzdt
RN

V
=50 =1+ 5 [ [ e et = wo(2)

To apply the abstract theorem stated in the preceding section we now analyze
the relevant properties of the variational functionals involved. As introduced above
we have £ = ET @ E~, and let A. denote the self-adjoint operator defined by
2+ |L|7'V.(+)z for z € E. Analogously, Ay can be defined by z — |L|~!Vpz2. It
is all clear we have ®. and @ are in the forms that we introduced in Section 2, so
our strategy is to check all the assumptions appeared in Theorem 2.4 are satisfied.

3.1.1 The group action

Denote by « the action of ¢ := R on E that arises from translation: for z € E and
g € 9 define (gx2z)(t, 2) = z(t—g, ). From the fact V and H are independent of
t that we have ®. is ¥-invariant for all ¢ > 0. Moreover, if denote by * the action
of 4" := R x RN on E by (¢'*2)(t,z) = 2(t — g1, 2 — g2) for ¢ = (g1, 92) € ¥,
we soon have @ is invariant under the action of ¢’.

3.1.2 The quadratic part
Recall the definitions of A., Ay € Z(F). By virtue of (3.5), we easily have
[Acll = sup { (Acz,2) s w € E, ||z[| = 1}
—sup { (Ve()2),: 2 € B, 2] = 1)

< \V\Oo-sup{(z,Zb tz€E, 2| = 1}
< |Vleo < L.

This guarantees the condition (A1l). To check (A2), that is the convergency of
{A.} in the strong operator topology of Z(E), let us remark that V.(z) — Vp
uniformly on bounded sets of z as ¢ — 0. Therefore, for each z € F we deduce

14



that
[Acz — Apz|| = sup ((Ae — Ao)z,w)

[[w][=1

= sup ((Va() —Vb)z,w)

2
[[wl=1

< sup [(Va() = Vo)z], - [wlo

as € — 0. And thus we obtain (A2).

3.1.3 The nonlinear part

The required properties (see (N1)-(N5)) of the nonlinear part will be checked
based on (F'1)-(F'6). Recall the notation £ := [0, 1]. Firstly, by (/'2), we observe
that

|2l

|2l
G(|z]) = /0 g(s)sds > ; fe(z,8)sds = F.(x,|z|),
which implies Wy(z) > W¥.(z) > 0 for all z € E. Note that %(g(s)s) > 0 and
4 (f.(z,s)s) > 0forall z € RN, we have U/ (2)[w,w] > 0 for z,w € E and
eeé.

Recall the assumptions we have required on H (see (H1), (Hz3) or (Hj)). Also
recall the embeddings F <— L" forr € [2,2(N +2)/N). It holds that if z, — zin
E then {z,} is bounded in L" and converges to z in L], for r € [1,2(N +2)/N).
Moreover, recall we have assumed that 0 € A, we infer that xa(ex) — 1 a.e.
on RV as e — 0. Therefore it is easy to check (N1) and (N2) are satisfied for
U_, ¢ € £. One should keep in mind here that the map |L|~! : E* — E is the
isomorphism induced from the Riesz representation theorem.

(N3) is much more obvious. Indeed, the modified nonlinearities satisfy

|[fe(@,9)] < [xalex)g(s)] + (1 = xa(e2))g(s)]
< lg(s)| + 19(s)]

for all z € R*M. Therefore, by (H;) and the embedding £ — L>N+2/N e
have
W2 (2)[v, w]] < Crllol| - llw]l + Call =N - o] - Jlwl]

and (N3) is satisfied.

It remains to prove (/N4) and (N5). The verification for ¥y is similar to and
simpler than that for ¥, ¢ > 0, so we only check the latter. First note that (F'3)
and (F'4) implies

~ 1
F(z,s) := §f(x,s)s2 — F(z,5) >0 forallz € RY and s > 0.

15



An easy calculation shows

// ffg z2D)|2)? = Fe(x, |2]) dzdt > 0

provided z # 0, and the sequentially lower semi-continuity comes from Fatou’s
lemma. Next, to see that (IN'5) holds, we remark that

= [ [l wdsd
and
QQAkaiééNﬁ@vmww+@ﬁ@vma1fflfm&
for any z,v,w € E. Then, we deduce that
(W(2)[z 2] — W(2)2) + 2(WY(2) [z 0] — WL(2)w) + (), ]
OP = [t ol + 0.t el (] + ) o

And by (F'1), we soon obtain (N'5) from the above formula.

3.1.4 The geometric structure and -weak compactness

Recall the assumption (H;) and the definition of F', we remark that there exists
C > 0 such that

1—1V]sw
(3.8) IG(]2])] < LMZ + C|z[2(N+2)/N
and
1— V]
(3.9) Pz, |2])] < L‘Z‘Q O PN

for all (z,2) € R x R?2M, Hence, we have:

Lemma 3.2. There are p, T > 0, both independent of ¢ € £, such that .| Bf >0
and (I)€|S,j' > T where

Bf :=B,NE" ={z€ E": |z|| > p},

Sti=0BF = {c E*: |z = p}.

16



Proof. For convenience set 2* = 2(NN + 2)/N. Notice that |z]|o« < C|z]| for
2 € E by the embedding E < L?". The conclusion follows easily because, for

z e ET,
1 2y 2
B(z) = Ll + ) |#f2 ddt — w.(2)
\V\ — Vi -
>3 || I” - OO| 3 - |+ Clels
— |V
Z | |OOHZH2_C/ P 2
4

with C, C" > 0 independent of ¢. O

The preceding lemma shows (1) is satisfied for the family {®.}.cc. The
proof of (12) will be separated into the following two lemmas.

Lemma 3.3. For the super quadratic nonlinearity, that is (H3) is satisfied, for
e € ET\ {0}, ®y(z) — —oc provided z € E, and ||z|| — oo (recall E.
Rte® E7).

Lemma 3.4. For the asymptotically quadratic nonlinearity, that is (Hy) is satis-
fied, either sup,cp ®o(z) = +00 or 8o(2) — —oc0 as z € E. and ||z|| — oc.

Proof of Lemma 3.3. First remark that (H; ) and (H3)(4) implies that for any 6 > 0
there exists c5 > 0 such that
G(|z]) > cs)2|? — 8]z|* forall z € R2M,

Lete € ET \ {0}, by virtue of (3.6), we have for z = se + v € E,
1 1
Dy(2) = §H3€HQ—§HU”2 / / (z)|se 4 v|* dzdt — ¥o(se + v)

2
] 1
< Sl = S0l + V12 s 4 013 + dlse + 0 — esfse + v

14|V 26 Voo —
< PVt B oo LWl 220,

By noting that 3 > 2, let § be chosen small enough, we have the assertion proved.
O

2 _ .8
| — css \e\ﬁ.

Proof of Lemma 3.4. Let us first assume sup, .z $o(2) = C < oo. Itis clear that
C' > 0 (by Lemma 3.2). Suppose contrarily, for some sequence {z,} C E. with
|zn|| — o0, there exists Cy > 0 such that ®y(z,) > —C for all n. Then, setting

Un, = zn/||2nl, we have o, || = 1, v, = v, v, = v7, v} — vt € Rteand
(3.10) — < — vt - +—=

17



Remark that v+ # 0. Indeed, if not, it follows from (3.10) that

1- ’V|oo
2

1+ [Vieo
2

Co
|2l

v |12 < o |1% + —0 asn — oo,

which is a contradiction.
First, a direct calculation shows for A > 0

B (hun) = L Bo(hun) () =

= %(2@0@%) ~2F5(Avn))

2¢ 2 ~
<= _Z .
<5 A//]RXRN G(A|vy|) dzdt

Meanwhile, for 6 > 0 small, we infer

G.11) > // G(\|vn|) dwdt
{(t,x) ERXRYV: |u, | >5}

> Gs(\) - meas{(t,z) € R x RY : |u,| > §},

where G's()\) := inf {@(|z|) : 2z € R*M |2 > A6 }. We claim that meas{(t,z) €
RxRY : |u,| > 6 } > rg with some ¢ > 0 for all n provided 0 is fixed small
enough. Indeed, if such r¢ does not exist, we then have v,, — 0 in E.. However,
this contradicts with the fact v™ # 0. Now, from (3.11) and (H})(ii), we deduce
that G's(\) — 400 as A — oo and

d 2C Gs(\)
I < =
d)\‘I’o(/\Un) S )\ 27‘0 )\
2C 3C
< - =
A A
__¢
A

for all n and A > Ag, some Ay > 0 large. Thus we have

lznll g
Bo(z) = Bollzallen) = [ GBo0wn)
(A
<@ou) + [ =S ax
o A
<C-C —d\ — —0o0
oA

as n — oo, which is absurd. O
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The next lemma will be devoted to show the ¥-weak compactness of the mod-
ified functional ®. for each ¢ > 0. We remark that, by virtue of (F'4)(7),
- -2
(3.12) F(z,s) > %f(:n 5)s% > 57
forall z € A and s > 0 provided (H3)(7) is satisfied. This jointly with (H3)(i7)
yields (written 0 = p/(p — 1))

F(z,s) >0

(3.13) (f(z,8)s) <aif(z,s)s* < asF(z, s)

for all |z| > r; and = € A, where r; is chosen small enough such that
1—-1|V

(3.14) |f(z, )] SL|O° forall s < ry, z € RY.

Lemma 3.5. Foreache > 0, c € R\ {0}, ®. satisfies the -weak (C).-condition.

Proof. We begin by proving any (C). sequence of ®. is bounded in E. In fact, let
{zn} be a sequence such that

S (z,) —c and (1+ [|zn])PL(2n) = O

as n — oo, the representation of ®. implies that there is C' > 0 such that

(3.15) C>d(z,) — <I>' (zn)2n = // x, |zn|) dzdt > 0
RN

and

o(1) = P (zn) (2

=
.16 =l [ [ Velw)z - (et - =) dad
_// fa($,|2’n‘)2’n : (Zg _Zg)dl‘dt
R JRN

Case 1. The super quadratic nonlinearity
By the definition of F' and (3.16), we soon obtain

\ZnIIQ—IVoo// 20| - |2 — 2| dadt
R JRN
S// fe(z,|zn])|2n| - ]zf{—z;\dmdt—ko(l)
R JRN
< [ [ s ledlzalIsf = ol dode
R JA.
1-— o 3
+’V|// |zn| - |2 — 2, | dxdt + o(1),
2 R JRN

19
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where A, := {x € RV : ez € A}. Thus, from (3.13) and (3.14), we easily check
that

1— V]
4

{(t,x)ERXAc: |zn|>T1}

1/o
< <// (fg(:n,|zn\)|zn|)admdt) |z;f—z;|p—|—0(1).
{(t,x)ERXAc: |zn|>T1}

It follows from (3.13), (3.15) and F embeds continuously into LP, we find

2w

1- ‘V|oo

1 lzall® < Cullzall + 0(1).

Then {z,} is bounded in E as desired.

Case 2. The asymptotically quadratic nonlinearity

Assume contrarily that ||z,| — oo as n — oo and set v, = z,/||2|. Then
|vn|3 < Co and |v,[3. < C3, where 2* := 2(N + 2)/N. It follows from (3.5) and
(3.16) that

o) = aalP(oal?+ [ [ Vetwon - (v = v

- [ [ oo 0 = ) doat)
R JRN
>Nl (1= V1) = [ [ g folbon (i = o) deat ).
R JRN

And thus
(3.18) liminf/ / (@ [2n)on - (o — o) dadt > €= 1 — [V]so.

n—oo R JRN
To get a contradiction, let us first set

d(r) := inf {ﬁ(m,s) : 2 € RY, and s > 7},

Qu(p,r) :={(t,z) eR x RY : p < |za(t,2)] < r},

and

F
cz::inf{(z’s): reRVN, andpgsgr}.
s

By (F'6), d(r) — oo as r — oo and by definition

Fe(z,|zn(t,2)]) = chlza(t,2)[> forall (t,z) € Qu(p, 7).
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From (3.15), we have

C > // Flex, |zn|) dadt + ¢ // |2 |? daxdt
n(0,p) Qn(p,r)

d(r) - meas{Qy(r,c0)}.

Remark that the above estimate shows meas{2,,(r,00)} < C/d(r) — 0asr — oo
uniformly in n, and for any fixed 0 < p < r

v, |? dadt = // |2 |? daxdt < —0
// (o) | nH2 Qu (o) ||Zn\|2

asm — oo.
Now let us choose 0 < ¢ < £/3. By (F'1) there is ps > 0 such that
o
fg(.’E,S) < 62

for all z € RN and s € [0, ps]. Consequently,

// 2, Jzal)on] - [0 — v | dwdt < 2 Jonl2 < §
n0p5 02

for all n. Recall that, by (H1), (H3)(4) and the definition of I, there exists C>0
such that 0 < f(z,z) < C for all (z, z). Using Hlder inequality we can take 7

so large that
/] 2, |zl - o — vy | dadt
Qi (rs,00

é’// |vn\ o — v, | dzdt
T57
<C

~ )}1/ (N+2)

-meas{Qn(r(g, 00 Nopla - ot — vy fos

< C" - meas{, (15, 00)}/ N2 < 5

for all n. Moreover, there is ng such that

/] 2. |zl - o — vy | dadt

Q (P(S,T(S)

<C’// [og| - v — vy, | dadt
Qn(ps,s)

) 1/2
<é. |vn|2<// ]vn|2d:ndt> <5
Qn(PéJ’é)

for all n > ng. Therefore, for n large enough, we have
/ / £(@, |2l vn] - o — v | dedt < 35 < ¢,
R JRN
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which is impossible. Hence, the boundedness of {z, } is verified.

The next step is concerned with the ¢-weak compactness of the (C').-sequence
{#n}, ¢ # 0. Keep in mind that £ > 0 is now fixed (which implies A is a bounded
domain in RY), let us choose ¢ € C2°(R™) such that A. C supp ¢ and

[ 1 zeA,,
4,0(30)—{ 0 ngl(Kf)v

where Ni(A.) := {z € RY : dist(z,A.) < 1}. Denote by 2/, = ¢ - z,,, we have
{z/,} is a bounded sequence in E since {z,} is bounded. We claim that there exist
{gn} C ¥ := R and ty, dp > 0 such that

gn+t0
(3.19) / |2 | dedt > 6y foralln > 1.
Ni(Ae)

gn—to

Then, from the compact embedding £ — leoc, we have the new sequence {g,,*z, }
possesses a subsequence converge weakly to a point in £ \ {0} (here we used the
inequality |z,,| > |2} ]).

To prove (3.19), let us assume by contradiction that

n—oo QGR

g+r
lim sup/ / |2/ |* dxdt = 0 for any 7 > 0.
g—r JNi(Ae)

Since A. is bounded, jointly with the definition of z],, we see that {z], } is vanishing.
By Lion’s concentration compactness principle [19], we have \z;]q — 0 for all
q € (2,2(N + 2)/N). By virtue of (3.14), (3.16) and the definition of F’, we have

1-— ’V|oo
4

= // fe(x,|zn])|2nl - 125 — 2, | dxdt + o(1)
{(t,x)ERXAc: |zn|>r1}

< / / fol, |2 2h] - |t — 2 dadt + o(1).
{(t0)€Rx Ny (Ke): 2421}

Remark that the above estimate holds for both super and asymptotic quadratic non-
linearities, moreover, there must exist Cy > 0 and pg € (2, 2(N +2)/N) such that

2 ”

|f(z,5)| < CosPo2 forall z € RY and s > ry.

Indeed, one may choose pg = p for the super quadratic nonlinearity and pg = ¢
for any ¢ € (2,2(N + 2)/N) for the asymptotic quadratic nonlinearity. Then,
by Holder inequality and the fact |2,|, — 0 for all ¢ € (2,2(N + 2)/N), we
have z, — 0in E as n — oo which implies ®.(z,) — 0. This contradicts our
assumption: {z,} is a (C).-sequence with ¢ # 0. O
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3.1.5 The autonomous limit system

What remains is to check under the assumptions (H;), (H2) and either (H3) or
(Hj), the functional @ admits a critical value

co= Inf sup ®g(2) < ©
0 o) 2R P00

where E, = RTe® E~.
In what follows, let us consider the autonomous system

Ou = Agu—u — uv + Hy(u,v
(3.20) = S o By (u, )
-0 = Ayv — v — pu+ Hy(u,v)

for 4 € (—1,1). Remark that H(§) = Om g(s)sds for € € R?M it is evident that

(3.20) can be rewritten as
Lz + pz = g(|2])2

for z = (u,v). The solutions to (3.20) are critical points of the ¢’-invariant energy
functional

1 _ Iz
T = —(||Z+H2 — ||z ||2) + / / |z]2dxdt — Uy(z)
2 2 R JRN

defined for z = 2+ + 2~ € E = ET @ E~. Itis obvious, for the case p = Vj, we
have .7, coincide with ®(. For notation convenience, let us denote

Hy={ze E\{0}: F,(2) =0} and ~,:=inf{J,(2): z € A}

We state, in the two following propositions, some known results about the existence
of solutions of (3.20) that will be used in the sequel.

Proposition 3.6. Ler (Hy) and (Hs) hold. Then the super quadratic nonlinear
system (3.20) has a nontrivial solution z which lies in B"(R x RN R?M) for all
r > 2.

Proposition 3.7. Let (H;) and (HY) hold. Then the asymptotic quadratic nonlin-
ear system (3.20) has a nontrivial solution z which lies in B" (R x RN R?M) for
all r > 2.

Proposition 3.6 and Proposition 3.7 are obtained just collecting the results in
[12] (see e.g. Theorem 8.1 and Theorem 8.6). The proofs of the above two propo-
sitions can be done, by applying the linking theorems associate with the strongly
indefinite functionals.

For fixed v € Et, let ¢, : E~ — R be defined by ¢, (w) = 7, (v + w). We
infer

1+ |l

621) ooty < LB oz - LIt
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Moreover, we have, for any w, z € £,

ez = Nl =g [ [ | dodt = W+ )z, 2
<~ bl

This is due to the fact that ¥ is convex. A direct consequence of (3.21) and (3.22),
there exists a unique bounded C'! mapping Zu: ET — E~ such that

(3.22)

Tu(v+ Fu(v) = max Fu(v +w).

wekb~

We omit the proof for the boundedness and C! property of 7, since a specific
proof under more abstract settings will be presented in Section 4.
Let us consider a new functional defined by

By BY R, Bu(v) = Tulv+ Fu(0)).

We remark that critical points of %,, and .7, are in one-to-one correspondence via
the injective map v — v + _#,(v) from E* into E (this will also be proved in
Section 4). Denoted by

Iy={veC(0,1,E"): v(0) =0, Z.(v(1)) < 0},
and consider the minimax schemes

1 _ 2 _ :
d‘u - Z/lenl—fu tgl[éa,}li} %M(V(t)) and du B UEEI'I"}{{O} I?Zal]}(%u(tv)’

we have the following useful result.

Lemma 3.8. For the autonomous system (3.20), assume (Hy), (H2) and either
(Hs) or (H}), there holds:

(1) yu > 0 is attained, and ~,, = di = di;
(2> if 1 > po, then Vx> Vpo-

Proof. To show (1), let {2,} C ., such that J},(2,) — 7. Clearly {z,} is a
(C)~,,-sequence, and hence is bounded.

Claim. inf{||z|| : z € Z,} > 0.

Indeed, for z € .%;, we have

0=|z|*+ u/ / z- (27 —27) dadt — Uo(2) (2T —27).
R JRN
Using (Hy), for 6 > 0 small,

(1= Dzl < Po(2)(z" = 27) < d]2[3 + Clz[3-
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where 2* = 2(N + 2)/N. This implies ||z[|> < C§||z[|*>" or equivalently C§ <
|| 2||%" ~2, and hence the claim is proved.

It is quite standard to check ~y,, > 0, and if -y, = 0 we soon have

623) (=l < Vo)t =) = [ [ allzul)zn i =) dat,
and
B2 o) = Tuan) = Tulen) ~ 3T en)en = [ [ Gl ot

2 R JRN

For the super quadratic nonlinearity, argue similarly as Lemma 3.5 (see Case 1),
we have

1—
4|:u| Hzn”2

1/c
< (// (g(!znn\zn,)odxdt) 2 — 2 lp + ol1)
{(t,®)ERX Ac: |20 |>71}

< C(/R/RN G(lzal) d:cdt) Y el 4 o(1).

Together with (3.24), we deduce ||z, || — 0 as n — oo which is a contradiction. For
the asymptotic quadratic nonlinearity, it follows from (3.23) and inf,,;>1 ||z, || > 0
that {z,} is non-vanishing. Since .7, is ¢’-invariant, up to a translation, we can
assume z, — zg € . Since, by assumption (H3), G(|z]) > 0forall z € R2M
one has (by Fauto’s lemma) | G (|z0]) dxdt = 0. This contrary to that zp # 0.

The proof above gives that {z,} is an non-vanishing sequence in .}, such that
T.(zn) — 7. By the concentration-compactness principle and the ¢’-invariance
of .7,,. a standard argument shows y,, is attained.

By noting that 7, is also the ground state energy of %, it is not difficult to
check that v, < di < di. To prove di < 7, we note that: for v € ET \ {0},
the function ¢t — Z,,(tv) has at most one nontrivial critical point ¢t = t(v) > 0
which (if exists) will be the maxima point (this fact will be proved in Lemma 4.6
in Section 4). So, denoted by

My = {t(v)v: ve ET\ {0}, t(v) < oo},
we have ./, # () due to ~, is attained. Meanwhile, we notice

di: inf 2%, (v).

veEM),

Remark that, for z € %, with .7,,(z) = ~,, we soon have %, (tz") — —oo thanks
to Lemma 3.3 and Lemma 3.4 and 2" € .#), with Z(z") = ~,. Therefore, we
deduce d2, < Z(z") = .
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Finally (2) comes directly because, let z € %}, be such that .7, (2) = v,,,
we obtain z ™ is a critical point of %Z,,, and v,,, = %Z,,, (1) = maxy>0 Z,,, (tz7).
Let 7 > 0 be such that %, (T2") = maxy>0 %, (tz), we deduce

2T) = max %M (tz1)

Sz
jun (
(TZ +/ﬂ2 T2t )
o (

M1 — 2 2
T2t + I (T2 )) + T‘TZJF + /M(Tzﬂb

H1 — p2 2
o (t21) + T‘TZ+ + s (TZ+)’2

which ends the proof. O
Remarkably, the definition of _¢,, implies
Aulte) = T(te+ Fu(te)) = max 7, (te +w)
and therefore

sup Z,(te) = sup max J,(te + w) = sup J,(2).
t>0 t>0 wek~ z€Ee

By taking infimum with respect to e € E™ \ {0}, we have

= inf sup &
M= eB (o) sepe " u(z).

And therefore, for the case y = Vj, we have &y admits the critical value

co= inf sup Py(z) < 00
e€ET\{0} 2cEe

as required.

3.2 Proof of Theorem 1.1

From the arguments in the preceding subsection, applying Theorem 2.4, we obtain
the following proposition:

Proposition 3.9. Assume (V'), (H1), (Hs) and either (Hs) or (H}). Foralle > 0
small, the modified functional ®. admits a critical value which can be character-
ized by

c. = inf sup O,
ecE+\{0} zelge (2).

Moreover, c. is the ground state for each ®. and c. < ¢y + o(1) as € — 0 with

= f sup ¢
@ = 0l Sup Dol2)
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Next, we shall devote to show the concentration phenomenon with additionally
assuming

c=minV(z) < min V(z).
zEA x€OA

It is worth pointing out that the method of proving Proposition 3.9 carries more
information on the ranges of c.. In fact the proof strongly depended on the as-
sumption that 0 € A, and however, the value of V(0) is irrelevant. Let {z.} be
a family of points in A, so chosen that V.(x.) = ¢, and consider the associated
equation

(3.25) Lz4 Ve(x)z = fo(z + 2, |2])2

with energy functional &, : £ — R being written as

N 1 - 1 N
Bo(z) = S (|17 — 17 17) + 2 / / Vo ()] 2[2 dudt
2 2 R RN

—//NFg(a:—i-xg,]z\)dxdt
R JR

where V. (z) = V(e(x + x.)). Noting that let z. € E be the solution to
Lz + V. (x)z = f(x,|2])z

with energy ®.(z.) = ¢ and set w.(t,z) = z-(t,z + z¢), it is a simple matter
to see that w, solves (3.25) with @E(wa) = ®.(z.) = c.. Remark that ‘75(56) —
Vz(x¢) = c uniformly on bounded sets of x as ¢ — 0, it is clear that Theorem 2.4
works for the new family {®.}.~o U {.7.}. Summarizing, we have the following
characterization on the ranges of c..

Lemma 3.10. Let c. be given in Proposition 3.9. There holds
limsup c: < .
e—0 -

Thanks to the above observation, there is no loss of generality in assuming
Vo := V(0) = c. For ease of notations, let us denote

He={z€ E\{0}: ®.(2) =0}, L :={z€: ®.(2) =c},
and
o ={xel:V(z)=W}
Then we have:
Lemma 3.11. Under the assumptions of Theorem 1.1, for all € > 0 small and z. €
Z., the time-dependent process |z:(t,-)| possesses a (global) maximum x. € A,

such that

lim V(ex.) = c..
e—0

Moreover, by setting w:(t,x) = z:(t,x + x), we must have |w,| decays uniformly
at infinity and {w.} converges in B>(R x RN, R?M) t0 a ground state solution to

Lz+cz=g(|z|)z.
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Proof. Our proof starts with the observation that the family {z.}.~o is bounded
(see an argument of Lemma 3.5). In what follows, the proof will be divided into
SiX steps.

Step 1. {2} is non-vanishing.

Suppose contrarily that

t+R
sup / / |ze|*dxdt — 0 ase —0
(t,r)eRXRN Jt—R JBg(z)

for all R > 0. Then, by Lion’s concentration compactness principle [19], we have
|zelqg = Oforall g € (2,2(N +2)/N). Noting that, as argued in Lemma 3.5, there
must exist Cy > 0 and py € (2,2(N + 2)/N) such that

|f(z,s)| < CosP2 forall z € RY and s > r;

for 71 > 0 fixed small enough. We soon have

1-|V )
L'“H%HQ < // Fo(@, |2e])|ze| - |2 = 20| = o(1),
{(t,2) ERXRN: |zc|>r1 } —

which implies ®.(z.) — 0, a contradiction.
Step 2. {Xa. - 2} is non-vanishing, that is: there exist (t.,z.) € R x A, and
constants R, d > 0 such that

te+R 5
/ / X, - 22 = 6.
te—R BR(IE)

Indeed, if {x,. - z-} vanishes, by virtue of Step 1 we have {(1 — xa.) - 2c} is
non-vanishing. Then there exist (¢;,z.) € R x (RY \ A.) and constants R,§ > 0

such that
te+R
/ / 22> 6
te—R Br (xg)

Let us denote by w. (¢, x) = z:(t,x + x.), then w;, satisfies
(3.26) Lwe 4+ Vo(2)we = fo(z + 2, |we|)we

where V() := V (e(z + .)). Additionally, w. — w # 0in E and w. — w in
Ll forq e [1,2(N+2)/N). Remark that {x,. - z- } vanishes implies x», -z — 0
in L7 for all ¢ € (2,2(N + 2)/N). Now assume without loss of generality that
V(ex.) — Vo, using ¢ € CX(R x RN R?M) as a test function in (3.26), one

gets

0= lim / / (Eawe + Velwywe — folar + e, Juwelywe ) 46 dads
R JRN

e—0

B /R/RN (Lw + Voow — (1 - xoo)é(\wl)w) - dwdt
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where Y is either a characteristic function of a half-space of R"V provided

lim sup dist(z¢, OA:) < +00

e—0

or Xoo = 0 (since A is an open set with smooth boundary, this can be see by / the
fact x((- + x.)) converges pointwise a.e. on RY to xoo(-) and z. € RV \ A).
Hence w solves

(3.27) Lw + Veow = (1 — Xo0)(|w])w

However, using the test function w* — w™ in (3.27), we have (with (F'3))

0:Hw||2+Voo// w- (wh —w”) dedt
//Rleoo (lfyw - (w* —w™) dadt

V]

o N s LT
1-1|V

= 12 Moo 2

Therefore, we have w = 0 a contradiction.
Step 3. Let . € RY and R, ¢ > 0 be such that

/ / IXa. - 2| dadt > 6.
R JBgr(ze)
Then cx, — .

First, by virtue of Step 2, we can conclude such z. do exist and we can choose
ze € Ac (i.e. ex. € A). Suppose that, up to a subsequence, ex. — zo € A as
e — 0. Again, set w.(t,x) = z.(t,x + x.), we have w. — w # 0in F and w
satifies

(3.28) Lw+V(zo)w = fool(z, |w|)w

where foo(z,s) = Xoog(s) + (1 — Xoo)g(s) and x is either a characteristic
function of a half-space of R"V provided

lim sup dist(z., OA.) < +00

e—0

Or Xoo = 1 (this is because x. € A.). Denote by S, the associate energy func-
tional to (3.28):

Soe 1= L (1412 = 171 + L1 v,

l\D\H

where

/ Foo(x, |2|) daxdt.
RN
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By noting that U, (z) < Wq(z) (thanks to the definition of §), we have

V(zo) — Vo

So(2) 2 Foteny(2) = Fig () + %

|z|2 forall z € E.

Remark that ¥, is convex, and furthermore, as argued in the preceding subsection,
forz € £\ {0} and w € E we have

(\I/go(z)[z, z] — \II’OO(z)z) + 2(\I/go(z)[z,w] — \I/go(z)w) + W (2)[w,w] > 0.
Let us define (as in proving Lemma 3.8) hoo : ET — E~ and I, : ET — R by

Soo (v + hoo(v)) = max S (v + 2),

z2€EE

Ioo(v) = Soo (v + hoo (V).

Since we already have w # 0 is a critical point of Sy, we then infer w™ is a critical
point of I, and I (w™) = max>( I (tw™) (the proof is similar to the case in
Lemma 3.8). Let 7 > 0 be such that 2y, (Tw™) = max;>¢ %y, (tw™), we deduce

— +y — +
Soc(w) = Ing(w )fr{lzagdoo(tw )

Io(Tw™) = Seo (T + hoo(Tw0™))
Soo (TwJr + /VO(TU)+)) > T (7'wJr + _Zv, (Tw+))
(3.29) + M’Tw-i- + 7y (Tw—&-)’;

2
Vi(xg) — V&
=Ry, (TU)+) + 7( 0; 0|

V(zo) — Vo
2

2

Twt 4+ v (Tw+)}2
2

> Yy, + ‘Tw”L + /V0(7w+)’2.

On the other hand, by Fatou’s lemma, we find

o o Lo
h?;%lf Ce = lllarl}g)lf <<I>a(z6) — Q(Ps(ze)zg)

:liminf// Fua, |2.]) dudt
e—0 R JRN

zliminf// Fo(z + zc, |w.|) dadt
R JRN

e—0

Z// ﬁoo(x,w)dxdt
R JRN

1
= Soo(w) — iséo(w)w = Soo(w),
where ﬁoo(x, $) 1= 3 foo(®, 8)s% — Fuo(z, 5) for (z, s) € RN x R*. Therefore, to-
gether with (3.29), we have liminf._,o c. > vy, and liminf._,o c. > vy, provided

V(zo) # Vb. Recall we have assumed that V{ = ¢, and from the fact ¢, < v.+0(1)
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as € — 0, we soon conclude that ¢ — y,, and moreover, o € &/ and X0 = 1
(thatis foo(z, s) = g(s)).

Step 4. Let w, be defined in Step 3, then w. — w in E.

It suffices to prove that there is a subsequence {w, } such that w., — w in E.
Recall that, as the argument shows, w is a ground state solution to

(3.30) Lw + Vyw = g(Jw|)w

and

lim// ﬁs(x+x5,|w€|)da:dt:// G(lw]) dwdt.
e=0 Jr JRN R JRN

Let n : [0,00) — [0,1] be a smooth function satisfying n(s) = 1if s < 1,
n(s) = 0if s > 2. Define w;(t,z) = n(2|(t,z)|/j)w(t,z) (here, and in the
sequel, by |(t, )| we mean the Euclid norm on R x RV). One has

(3.31) |w; —w| =0 and |w0; —w|lg =0 asj— oo
for g € [2,2(N +2)/N]. Set Bq := {(t,z) e Rx RY : |(t,z)| < d} ford > 0.

We have that there possesses a subsequence {w, ].} such that: for any 6 > 0 there
exists rs > 0 satisfying

lim sup // |we; |* dedt <6
j—oo JJBj\B,

for all » > rs (see an argument of [12, Lemma 5.7]). Here we shall use

p for the super quadratic case,
1= 2 for the asymptotically quadratic case,

where p € (2,2(N + 2)/N) is the constant in condition (H3). Denote v; =
we; — W, we remark that {v;} is bounded in £ and

nm]// Fey(a+ aey, e ) = By (o 4 2, o))
R JRN

(3.32) e
- o+ i) o] —
and
lim ‘ / / [fgj (2 + 2, Jwe; Nwe; — fe; (x4 2, [v5])v;
(3.33) 77l R RN

— fe,(x + 2, \u?j|)ﬁ)j} -@dxdt‘ =0

uniformly in ¢ € E with [|¢[| < 1 (analysis similar to that in the proof of [12,
Lemma 7.10]). Using the decay of w and the fact that V., (z) — Vo, F¢,(z +
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Te,, |w|) = G(|lw]) as j — oo uniformly on any bounded set of x, one checks
easily the following

// Vsj(ac)wsj-d)jdxdt%// Vo - |w|? dzdt,
R JRN R JRN

// st(:c+x5j,]ﬁ)j|)dxdt%/ G(|w)) ddt.
R JRN R JRN

Recall that we; solves
(3.34) Lwe, + Ve, (2)we, = fo(x + 2e, |w2, | )we,,

denote (i)e to be the associate energy functional of (3.34), we obtain

A

q>ej(vj) i)s] wsj ) — Soo(w)
// 3] x—i—xgj,\ngD 6](x+$€]?’v]’)

(z + z¢;, [105]) dredt + o(1)
—0(1)

as j — oo, which implies that &, ;(vj) = 0. Similarly,

(I), // fej +$€]7|w€]|)wsj fsj( +m8j7|vj|)

= foy @ + ey, 0513 | - pdadt + o(1)
=o(1)

as j — oo uniformly in ||| < 1, which implies @’EJ (vj) — 0. Therefore,
o 14 ~
(3.35) o(1) = D, (vj) — §CI)‘/€J' (vj)vj = /]R/]RN F, (ac + e, lvj|) dadt.

Owning to (Fg) and the regularity result (see Corollary A.4 and Lemma A.5), one
has {|vj|s} is bounded and for any fixed » > 0 there holds

/ / ﬁsj (z + e, |vj]) dodt > C, // oy 2 ddt
R JRN {(t,2)ERXRN: |v;|>r}

for some constant C,. depends only on r. Hence

// vj|? dwdt — 0
{(t,I)ERx]RN: |'Uj|21”}

32



as j — oo for any fixed r > 0. Notice {|v;| } is bounded, as a consequence, we
get

(1= Wl < oy + / / Ve oy - (0 = 07)

_q)’ )
// fe; (x + ae;, |vj])v; (v< —v;)
<oft) + LV 2
o | / oy - oF
(t,x) ERXRN: [v;|>r}
<oft) + LVl e,

that is, [|v;]| — 0 as j — co. Together with (3.31) we get we; — w in E.

Step 5. w. — win B2(R x RY R*M) as ¢ — 0.

To prove this, we only need to show that |L(w. —w)|2 — 0 as ¢ — 0 (this can
be seen from that |Lz|, for z € B? defines a equivalent norm on B?). By (3.30)
and (3.34), we obtain

L(w€ - w) = fa(ﬂf + x, |wa’)w£ - g(‘wa - (‘A/a(x)wf - wa)

Using the result in Step 4 and the uniform L°° estimate, it is easy to check that
|L(we —w)|2 — 0ase — 0.

Step 6. we(t,x) — 0 as |(t, )| — oo uniformly for all small e.

To show this, let us remark that: for w. = (w},w?) : R x RY — R?M solves
(3.34), if denoted by @, (t, z) = (wl(t, ), w?(—t, m)), it is clear that @, satisfies
a equation of the form

0. — Nyl + W. = fo(t,z) inR xRV,

By virtue of Lemma A.5, we have ﬁ € L% for all ¢ > 2. According to Step 5 and
the interpolation theory, we have w. — w in B"(R x RY, R?M) for all ¢ > 2. So,
an easy calculation shows ﬁ — ﬁ) in L9 for some fj and all ¢ > 2. Then an trivial
application of Corollary A.4 shows that |w. (¢, x)| — 0 as |[(¢,z)| — oo, which
yields the uniformly decay property of {w, } as required.

Now, by collecting all the results proved in Step /-6, we have the lemma
proved. O

Now, we are ready to prove our main results.

Proof of Theorem 1.1. We follow the notation used in Lemma 3.11 and define

Ze(t,x) = ze(t,z/e) and vy, = ex..
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Then Z. = (1, ?) is a solution of

O = 2 Agu — u — V(x)v + f(z,|2|)v
—Ow =e?Agv —v —V(z)u+ f(z,|2|)u
z = (u,v) € B(R x RN, R?M)

for € small. Since ¥, is the maximum point, and due to the fact

T[22 (8, )| 2o w3\ Br(as)) = 0

e—0

we have

(3.36) Jim |2 (2, )| oo ®V\ B, g (32)) = O-

e—=0

Noting that y. — & as € — 0, the assumption

minV < minV
A A
and (3.36) implies: for € > 0 sufficiently small, there holds |z (¢, z)| < s¢ provid-
ed z ¢ A (here sy > 0 is so chosen that g(sg) + ¢'(s0)sg = %). Therefore,
by the definition of F', we have F'(x, |2:|) = H(Z:) when € > 0 is small enough.
Note that we have actually proved that Z. is a solution to (3.1) for all small ¢, and
consequently the proof of the theorem is thereby completed by combing (3.36)
with Lemma 3.11. ]

4 Proof of the abstract theorem

In this section, we devote to prove Theorem 2.4, and assume in the proofs that all
the hypotheses in Theorem 2.4 hold. Observe that ¥.(z) > 0 for all z € F and
that (N'1) yields

U (2)w,w] >0 foranyw € E.

This can be seen by the fact . € C?(E,R) and W, is convex for each ¢ € €.
Note that by (/1) we have ®.(0) > 0, which means ¥.(0) = 0. And condition
(N3) implies

1t
(4.1) U (z) = / / U (s2)[2, 2] dsdt < C(, ||2|)|2]|?, Vze€E
0 JO

where C'(k, ||z]|) > 0 is a constant depending only on the function  and ||z||.
Consider € € £ being fixed, we define the nonlinear functional ¢, : Y — R by

bp(w) = ®.(v+w) forve X.
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Notice that (A1) and (A2) implies sup,.¢ || A|| < 6 < 1, we infer

1+0 0
——llvll* - 7llw\l2

(4.2) Po(w) <
Moreover, by taking derivatives, we have

s(w)z, 2] = =121 + (Aez, 2) = ¥ (v + w)[z, 2]

4.3) v
—(1-0)|]z)?

for any w,z € Y.

As a consequence of (4.2) and (4.3), ¢, is strictly concave and ¢, (w) — —o0
as ||w|| — oo. It follows from the weak upper semi-continuity of ¢, that there is
unique strict maximum point h.(v) for ¢, which we can easily confirm to be the
only critical point of ¢, on Y. The uniquely defined map h. : X — Y can be seen
as a reduction of ®. on X satisfying

(4.4) P (0 + he(v) = $u (he(v)) = max 6, (w) = max (v + w).
It follows from (4.4)
0 <P (v+ he(v)) — P(v)
= — SR+ 5 (el he(w)), v+ helw)) = Te(o + he(v))

_ % (A, v) + U (v)

1 0
< — S + ke (o) +

for v € X. Hence

0 0
Sl + ol + e (o)

2 2y 2

|he(0)]? < T gl + =5 %)

and the boundedness of W, (see (4.1)) implies that of h.. If v € X and g € ¥, we
have by invariance of ®. and by (4.4)

P (gv + he(gv)) = (v + g he(gv)) < @ (v + he(v))

:@(gv—i—gh )gq)(gv—i-h gv)
Therefore, we conclude
P, (gv + ghe(v)) = @ (gv + he(gv))

which together with (4.4) implies that g o h, = h. o g, i.e. h. is ¥-equivariant.
Nextwedefinem: X XY — Y by

m(v,w) =P oRo®L(v+w) =P oVd.(v+w)
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where PY is the projection and R : E* — FE denotes the isomorphism induced
from the Riesz representation theorem. Observe that, for every v € X, we derive
from the definition of h.:

0= %(hs(v))w = @g(v + hs(v))w forany w € Y.
This implies
(4.5) m(v,he(v)) =0 forve X.

Notice that 9, 7(v,w) = P¥ o R o ®/(v + w)|,, is a bounded linear operator on
Y. And from (4.3), we infer 0,7 (v, w) is an isomorphism with

1
(4.6) H@ww(v,w)_lH < 1-¢ Vv e X.
Therefore (4.5) and (4.6) together with the implicit function theorem yield the u-
niquely defined map h. : X — Y is C'' smooth with

h.(v) = —0wm (v, he(v)) 0 Oym (v, he(v)), Vv € X

where 0,7 (v, w) = P¥ o R o ®”(v + w)|X.
Now set
L:X =R, I(v)=®(v+h(v)).

We have I. € C'(X,R) is ¢-invariant. And we can conclude from the above
arguments that:

Proposition 4.1. Suppose (A1)-(A2), (N1) and (N3) are satisfied. Then I. €
CY(X,R) for each € € £ and critical points of I. and ®. are in one-to-one cor-
respondence via the injective map v — v + hg(v) from X to E. Moreover, if
{vn} C X isa (C).-sequence of I, then {vy, + h:(vy)} is a (C).-sequence of ..

Remark 4.2. The second part of the above proposition may seen to be not so
obvious, however, by taking the derivative of I. we have

IL(v)w = @L(v + he(v)) (w + hL(v)w)
= O (v + he(v)) (w +y)

forall v,w € X and y € Y. And hence ||I.(v)||x- = ||®L(v + hg(v))HE* which
implies nothing but the second conclusion in Proposition 4.1. Let us mention here
that a reduction of a strongly indefinite functional to a functional on E* is well
known under strong differentiability condition, see for example [21, 22]. In [21, 22]
a reduction in two steps has been performed: first to £+ and then to a Nehari
manifold on E. However, since we are interested in the geometric situation (12),
the so-called Nehari manifold is not defined for all direction in E, this context
requires somewhat different arguments.
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In order to state our next result, we shall give another observation. Due to the
fact h.(v) is the unique critical point of ¢, on Y that, by setting z = w — h.(v)
forw € Y and I(t) := ®. (v + ho(v) + tz), we have [(1) = (v + w), [(0) =
@ (v + he(v)) and I'(0) = 0. So, by I(1) — 1(0) = [/(1 — 5)I"(s) ds, we deduce

P (v+w) — P (v+ he(v))

1
= /0 (1= 8)®7(v+ he(v) + s2)[2,2] ds

1

[ a=s)0z12 = Az ) s
1
_/0 (1= )T (v + he(v) + 52) [z, 2] ds.

Consequently, we have

P (v+ he(v)) — Pe(v + w)
@.7) ]
= %HZW - % (Acz,2) +/0 (1—5)W” (v + he(v) + s2)[2,2] ds

forallve Xandw €Y.

Lemma 4.3. Suppose (A1)-(A2) and (N1)-(N3). Then h.(v) — ho(v) inY as
e = 0forve X.

Proof. For ease of notations, set z. = v + he(v), w = v+ ho(v) and ve = 2. — w.
It sufficient to show [|vz|| — 0 as e — 0.
Taking into account that

B.(2) = Bo(2) + % (A — Ag)z,2) — (Valz) — Wo(2), Vze E

we infer
(Be(2e) = @(w)) + (2o(w) — Do(z))

@8) = (A — Ao)z, ) — 5 ((Ac — Aoy, w) + (Vo(z) — Vo(w))
- (W) = .w))

Remark that

1
49)  Wylz) — Wo(w) = o(w)v. + /0 (1 — )Wl (w + sv.)[oe, v.] ds,

1
@10)  Wo(z) — Uo(w) = U (w)v. + / (1= )0 (w + 50.)[ve, v.] ds,
0
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and by (4.7)

Do (w) — Po(ze)

4.12) T 1 )
= 5”“&” — 5 (Aove, ve) +/ (1—s5)Ty (w + sve)[vg, ve] ds.
0

2

We derived from (4.8)-(4.12) and the fact W, is convex for all ¢ € £ that

1
”ngQ - 5 <(Aa + AO)Uayva>

1 1
< B ((Ae — Ao)ze, 2e) — 3 ((Ae — Ag)w, w) + Y (w)ve — UL(w)ov,
1
= B ((Ae — Ao)ve, ve) + ((Ae — Ao)w, ve) + \Ilg(w)’ug - \I//e(w)va-
This implies

[ve]|* = (Acve, ve) < ((Ae = Ao)w, ve) + (Yo(w) — Ye(w), ve)
and, from (A2) and (N2), we have
(1= O)llvel* < o(1)]lvell,

and thereby the proof is completed.

O]

As a corollary of Lemma 4.3, we shall give a first relationship between I, for

€ > 0 and I that is:

Corollary 4.4. Suppose (A1)-(A2) and (N1)-(N3) are satisfied. I.(v) — Ip(v)

ase — O0forv e X.

Proof. As in the proof of Lemma 4.3, we set z. = v + h-(v), w = v + ho(v) and

ve =2z, —w forv € X.

Recall the definition of I, for ¢ € &, by virtue of Lemma 4.3, we only need to

show that W, (z.) — ¥o(w) as € — 0. This can be seen by the fact
(Acze, ze) = (Aow, w) + ((Az = Ag)w, w) + O([[vel])

and ||vc|]| = o(1) as e — 0.

From (4.1), we have

1 1t
(4.13) U (z) = / Ul (tz.)z-dt = / / U (s2.)|ze, 2] dsdt,
0 0o Jo
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1 1t
(4.14) Uo(w) = / Ui (tw)w dt = / / U (sw)[w, w] dsdt.
0 o Jo
By virtue of (N3), we easily conclude the family { f; }, where

fe:00,1] = R, fo(t) = UL(tz)ze,

is uniformly bounded and equicontinuous. Then, by Arzela-Ascoli theorem, the
family { f.} is compact in C[0, 1]. Notice that z. — w in E as ¢ — 0, a standard
argument shows f-(t) — fo(t) pointwise on [0, 1] as ¢ — 0. Hence we have f.
converges to fo in the C[0, 1] topology as ¢ shrinks. This together with (4.13) and
(4.14), we see that W.(z.) converges to ¥o(w) as e — 0. O

Next we shall give geometric structures of I for € # 0. Recall that we assumed

4.15 co = inf sup Pg(z),
@19 0= ey SR o)

to be a critical value for ®, then our result will be:

Proposition 4.5. Under the assumptions of Theorem 2.4, for € > 0 small enough,
I, possesses the mountain-pass structure:

(1) I.(0) = 0 and there exist v > 0 and T > 0 (both independent of <) such that
IE|S£( 2 T.

(2) there exists vy € X (independent of ) such that ||vo|| > r and I.(vy) < 0.

Moreover,

/.
(4.16) c. = yléllfs tlél[g% I (v(t))

is a critical value for I, where
I.={vecC(0,1],X): v(0)=0, I.(v(1)) <0}.

Before giving the proof of Proposition 4.5, we shall give some equivalent char-
acterizations of the critical value of ®( defined in (4.15) which are essential in our
proofs. Set

0 = inf Iy(v(t)),
= inf max o(v(t))
and
¢y = inf suply(te),
0= Moy 1op o)
where I'g := {v € C([0,1], X) : v(0) =0, Io(v(1)) < 0}.

Lemma 4.6. Suppose (A1)-(A2), (N1)-(N5) and (I11)-(12) are satisfied. If co <
00 is a critical value of @y, then ¢y = ¢, = c{j.

39



Proof Obviously, by (I2) and ¢y < oo, it follows from the definition of I that
¢ < ¢ < ¢o. So, in what follows, we shall prove ¢y < ¢f,.

Claim 1. If v € X \ {0} satisfies I})(v)v =0, then I}(v)[v,v] <O0.

In order to verify Claim 1, we fist do some basic calculations. Recall that hy(v)
is the unique critical point of ¢, on Y for v € X, we have
(4.17) = (ho(v),y) + (Ao(v+ ho(v)),y) — ¥4 (v + ho(v))y =0 Vy €Y.
Set z = v + ho(v) and w = hj(v)v — ho(v), then

Iy(w)v = [ = (ho(v), hy(v)v) + (Ao (v + ho(v)), v + hy(v)v)
— U4 (v + ho(v)) (v + ho(v)v)
=lv]|* + (Ao (v + ho(v)),v) — 4 (v + ho(v))v
=[[v]|* = (ho(v), 2" +y) + (Ao (v + ho(v)), 2 + )
= Uo(v+ ho(v))(z+y)
=04(2)(2 +y)

forall y € Y. Since (4.17) is valid for all v € X, by taking derivative with respect
to v, we deduce

(4.18)

0= - <—h6(v)v,y> + <A0(U + hé)(v)v)vy>
- \Ifg (v + ho(v)) [(v + ha(v)v),y]

forall y € Y. So, choose y = z¥ 4+ w = h{(v)v in (4.19), we infer

4.19)

I§ (v)[v, 0] = [v]* + (Ao (z + w), v) = VG (2)[z +w, v]
=[lol® = 12" +wll* = (Ao (z + w), 2 + w)
—U5(2)[z + w, z + w)
=0(2)[z + w, 2 + w].
Taking into account that ®((z)z = I{(v)v = 0 (which follows from (4.18)), we
can conclude
I ()[v, v] = ®G(2)[z + w, 2 + w]
= 0q(2)[z, 2] + 22(2) [z, w] + @G (2) [w, w]
=[12%11 = 1127117 + (Aoz, 2) — LG (2)[2, 2]
+2(_ <zyaw> + <A027w> \I/,(z)[,Z,w])
+ (= llwl? + (Aow, w) — TG (2)[w, w])
= (¥p(2)z — ¥ ()2, 2]) + 2(¥o(2)w — VG (2)[z, w])
= U5 (2)[w, w] — [Jw]* + (Agw, w)
<0
due to (IV5) and z # 0.

Z,2
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Let v € X \ {0}, we find the function ¢ — Iy(tv) has at most one nontrivial
critical point ¢ = ¢(v) > 0 which (if exists) will be the maxima point. Denoted by

M = {t(v)v:ve X\ {0}, t(v) < +oo},
we have .# # () since ¢y is a critical value of ®y. We also observe that

Z .
CO 21611'% 0 (Z) ’

moreover, by (I3) and .#Z # (), we infer Ty # ().
Claim 2. ¢{j = .

Let e € ./, then ®((e + ho(e))|, = O (recall E, = Rte & Y). Hence
co < max,ep, Po(z) = Ip(e), which implies ¢y < ¢fj.

Claim 3. ¢ < ¢,.

We only need to show that given v € T’y there exists ¢ € [0, 1] such that
v(t) € 4. Assuming contrarily we have v([0, 1]) N .# = (). As aresult of (I1),

I(v(#)v(t) >0 fort > 0 small.

Since the function ¢ — I(v(t))v(t) is continuous and I (v(t))v(t) # 0O for all
t € (0,1], we have

Ii(v(t)v(t) >0 forallt e [0,1].
Then we find by (N4)

Io(w(t)) = S Io(w(E)(t) + To (v(t) + ho(w(1)))

N — DN

> —To(v(t))v(t) >0

for all t € (0, 1] which is absurd.
Combing Claim 1, Claim 2 and Claim 3, we have the assertion proved. O

Proof of Proposition 4.5. Since we have I.(v) > ®.(v) forall v € X, (1) follows
easily from (17).

To check (2), let w = w* +w¥ € E = X &Y be a critical point of ®; with
®o(w) = co. Then, by virtue of Proposition 4.1, we have w¥" = ho(w*). A direct
consequence of Lemma 4.6 is

co = Io(w™) = rgagc[o (tw™),

and, by (I2), we can conclude there exists to > 0 (large enough) such that

Iy (to’u)X) < —1.
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As aresult of Corollary 4.4, we have
I (tow™) = Ip(tow™) + o(1)

1
< _5 +0(1)

as € — 0. Therefore, there is 9 > 0 such that I (tow™) < 0 for all e € (0, ).

As a consequence of the mountain-pass structure, we obtain a (C).. -sequence
for I denoted by {v]'}7,. By Proposition 4.1 and ¢-weak (C')., -condition for
®., we conclude that there exists v. # 0 such that I’ (v.) = 0. Moreover, from
(N4), we have

¢ = lim (L(v —71’ ) 6)
= lim (<I>e(v Fha(ul) = B+ he(o) (o0 + he(ul))
@200 = i QUL 4B () (o hel) — e ol + he(eD)))

= lim \/I\’E(U + he (V] )) > (I\Ja(va‘i‘hE(Us))

n—oo

=I.(vs) — §Ié(v5)v5 = I.(ve) > 0.

Now set
/!

c. ;= inf supl.(te
e eEX\{U}t>E) ( )

and recall we have already defined in Theorem 2.4 that

c.:= inf sup®
cedoy SR <)

Let us repeat the proof of Claim 1 in Lemma 4.6, from which we can conclude:
lete € X \ {0}, the function ¢t — I.(te) has at most one nontrivial critical point
t = t(e) > 0 which (if exists) will be the maximum point.

Noting that (4.20) and v. € X \ {0} is a critical point of I implies

c <sup I (tv.) = I.(v.) < ¢l < 0.
t>0

And on the other hand, it is not difficult to check ¢, < ¢. Hence we have ¢. = ¢/.
Meanwhile, ¢. = ¢ is much obvious since the definition of . implies

I.(te) = ®.(te + he(te)) = max . (te + w)
we
and therefore

sup I (te) = sup max ®.(te + w) = sup P.(2).
>0 t>0 weY z€Ee

By taking infimum with respect to e € X \ {0}, we have c. = ¢, = /.
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Due to the above observation, if we have proved
4.21) I(ve) >

then we can conclude I.(v.) = ¢, immediately from (4.20).
In fact, let us set

Mz = {t(v)v: ve X\ {0}, 0<t(v) < oo such that I (t(v)v)v = 0},

we infer that

/! .
= f I .
ce = inf L(2)

Since v. € 4., (4.21) is obviously valid. And the proof is thereby completed. [J
As a by-product of the proof of Proposition 4.5 we have

Lemma 4.7. Let ¢ € (0, £9] be such that Proposition 4.5 is valid. Then c. = c. =
¢! characterize the ground state energy of ..

To complete our proof of Theorem 2.4, in what follows, we need to show the
asymptotic behaviour of the critical values found in Proposition 4.5.

Lemma 4.8. Let ¢ € (0,¢0] be such that Proposition 4.5 is valid. Then c. <
co+o(l)ase — 0.

Proof. Again, Let w = w* +wY € E = X ® Y be the critical point of ®y such
that ®g(w) = Iy (wX) = ¢p. Set tg > 0 such that I, (towX) < —1. By virtue of
Lemma 4.6 and Lemma 4.7, it sufficient to prove

4.22) I (tw™) = Ip(tw™) + o(1) uniformly in ¢ € [0, ¢o]

ase — 0.
To this end, we only need to show the family {f.} C C[0, ¢o]

fe(t) == L (tw™)

is uniformly bounded and equicontinuous. This can be seen from Corollary 4.4
that if { f- } is compact in the C|0, to] topology then (4.22) is valid.

Clearly, f- € C' and the uniformly boundedness of {f.} and {f.} on [0, #o]
comes easily from (A1)-(A2) and (N3). So, by Arzela-Ascoli theorem, we have
{f} is compact in the C[0, to]. And therefore, by (4.22), we conclude

ce <sup I (tw™) = sup L (tw*)= sup Ip(tw™)+ o(1)

t>0 t€[0,to] t€[0,to]
= sup Jo(tw™) + o(1) = In(w™) + o(1)
>0
=co +o(1)
ase — 0. u
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Now, combining Proposition 4.5, Lemma 4.7 and Lemma 4.8 we summarize
the following result which together with Proposition 4.1 gives the complete proof
of Theorem 2.4.

Proposition 4.9. Under the assumptions of Theorem 2.4, for € > 0 small, 1. pos-
sesses a nontrivial critical value which can be characterized by

c. = inf supl.(te).
© T ceX\(0) 1oh «(te)

Moreover, c. < ¢y + o(1) as e — 0.

A Appendix

We devote this appendix to some embedding results of t-Anisotropic Sobolev s-
paces and regularity results that were used in the text. For the following embedding
theorem, we refer the readers to [29, Theorem 1.4.1].

Definition A.1. A domain  C RY is said to have the property of uniform inner
cone, if there is a finite cone C' such that every point x € 2 is the vertex of a finite
cone (', congruent with C.

We remark that C', need not to be obtained from C' by parallel translation, but
simply by rigid motion.

Before stating the embedding theorem, for given 77 < T5, 1 < r < oo and
Q c RN we define Q := (T1,T») x Q and

B"(Q) == W' ((T1,T), L" () N L"((T1, Tz), W>"(2))

endowed with the usual norm

1/r
Iy = ([ (1l + o0+ 19+ 3 o) o)

1<ij<N
By C*%/2(Q), 0 < o < 1, we mean the space of all the functions on Q such that

|u(ty, z1) — u(ta, x2)]
|ullcaarzioy == sup |u(t,z)| + sup < 00,
cee@) (t,)€Q (o) (nareq d*((t1, 1), (t2, 22))
(t1,21)#(t2,z2)

where d(-, -) is the parabolic distance on R x R” defined by
d((tl,xl), (t2,$2)) = Imax {\xl — 1‘2|, ’tl — t2‘1/2}.

Theorem A.2 (t-Anisotropic Embedding Theorem). Let @ C RN be a bounded
domain and 1 < r < oo.

44



(i) If Q has the property of uniform inner cone, then, whenr = (N + 2)/2,
B"(Q) = LYQ), 1<g<o
and for any u € B"(Q)
ullLa(@) < C(N,q,Q)[lullprg), 1<q<oc;
whenr < (N +2)/2,

2
r@o v, 120s S50
and for any u € B"(Q)
(N +2)r

”uHLq(Q) <C(N,r, Q)HUHBT(Q)a 1<¢< Ni2_o

(13) If O) is appropriately smooth, then, whenr > (N + 2)/2,

N +2
r

BT(Q) = C*/2(Q), 0<a<2—

and for any u € B"(Q)

N +2
el oz < N7, Q) lull gy, 0<a <2 ==

Next we recall a regularity result which can be found in [17]. For this purpose
we set B, := {z € RY : |z]| < p} forany p > 0.

Theorem A.3 (Parabolic interior estimates). Let 1 < r < oo, p > 0 and set
Q, = (—p?,0] x B,. Ifu € L"(Q,) is a (weak) solution to

Ou—Au+u=f inQ,
with f € L"(Q,). Then, forany 0 < o < p,
lullgr(q.,.,) < C(N,p,0)- (Iflr@,) + lullirq,));
where Qg5 := (— (p— 0)%,0] X By_g.
Together with the embedding theorem, we have the following consequence.

Corollary A.4. Let % <r < oop > 0andset Q, = (—p?,0] x B,. If
u e L"(Q),) is a (weak) solution to

Ou—Aut+u=f inQ,
with f € L"(Q,). Then, for any 0 < o < p,
[ullgaara gy < C(NL 1, py0) - (1 fllzr@,) + lullr@,))

where0<a§2—¥.
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Next, recall
B" = W (R, L"(RY,R*)) n L™ (R, W" (RN, R*M))  forr > 1

denotes the Banach space equipped with the norm || - || gr defined in (1.6) and
L := L"(R x RN, R2M) is equipped with the usual L™ norm. The operator L is
defined by L = J0; + A in Section 3. In order that the above mentioned regularity
results are applicable to the present text, we shall give the following fundamental
result in the study of the system in the form of (3.1). Recall E := 2(|L|*/?) is
the Hilbert space equipped with the norm || - || where L = J0; + A. Denote
AMonrx2nm (R) by the space of all 2M x 2M real matrixes equipped with the usual
vector norm.

LemmaA.S. Let M € L (RxRY, #orrwon(R)) and H : Rx RN xR*M — R
satisfy

(A1) IV H(t,z,2)| < |2| +c|zP7!
for some ¢ > 0andp € (2,2(N +2)/N). If z € E is a weak solution to
(A.2) Lz+ M(t,x)z =V H(t, z,z),
then z € B" forallr > 2 and
Izl5- < C (1Moo, lI2ll; €, p,7).

Proof. Since the proof is quite similar to the proof of Lemma 8.6 on page 149 in
[12], we just give a sketch here. Remark that, from [4], we have the following
embedding result:

2
N +2°

S|

(A.3) B" — L41is continuous for r > 1 and 0 < <

Q| =

Set
(r) = (N+2)r/(N+2-2r) if1<r<¥7
AT ifr > N2
Then B" — L9 for 1 < r < g < ¢(r) and also for ¢ = ¢(r) if (r) < occ.

Now let z € FE be a weak solution of (A.2) and set w = —M(t,x)z +
V.H(t,z,z). We rewrite (A.2) as

z=L"1w=L"(~M(Etz)z+V.H(tzz).
Define x. : R x RV — R by

|2(

if |z(t, x)
if |z(t,

| <1,
)| > 1.

O =

X=(t, ) = {

and let
wi(t,z) = —M(t,z)z + V.H(t, z,x:(t, z) - 2(t, z))
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and
w(t,z) = Vo H (t,z, (1 — x:(t, 2)) - 2(¢,2)).

Then w = w; + wo and it follows from the assumptions on M and H that
jwi(t, )| < Cilz(t, )]
with C; depending on || M ||« and
wa(t,z)| < Colz(t,z) P~

with C depending on the constant ¢ in (A.1). Since £ embeds continuously into
L% for q € [2,71] where 1y = 2(N + 2)/N, we have wy € L" for r € [2,71] and
wy € L" forr € [1,q1] where g1 = r1/(p — 1). Here we used that

meas{(t,x) € R x RY ¢ |z(t,z)| > 1} < // 12)? < ||2||? < oo.
RxRN
Now use the fact L : B” — L" is an isomorphism for > 1, we obtain

21 := L 'wy € B" forr € [2,71],
29 := L 'wy € B" forr € [1,q1].

Case 1. Let us consider q; > % which may occur only when N < 3.
In this situation, we have zo € L? for all ¢ > ¢; as a consequence of (A.3).
By interpolation we get zo € L? for all ¢ > 2. Noting that 7y > ¢;, we similarly

obtain z; € LY for all ¢ > 2.

Case 2. Let us consider ¢ < % In this case we define inductively 7,41 =
©(qr) and gx1+1 = rig+1/(p — 1). Suppose z; € B for r € [2,7;] and 2z € B”
for r € [2, g]. Then we deduce that z; € L" for r € [2,p(ry)] and z2 € L for
r € [2,0(qr)]. Soz = z1+29 € L" forr € [2,rp41] since o(r) > rpr1 = ¢(qk)-
We claim that there exists kg > 1 such that g, > (N + 2)/2. Then we can go
back to Case 1 and obtain z € L9 for all ¢ > 2.

In order to proof the claim, by induction, we observe that

2(N +2)(p—2)
(p—DFH(N(p—2) —4) +4

Tk =

Since 2 < p < 2(N 4 2)/N =2+ 4/N, we see that there exists ko > 1 such that
Tk, > 0 and either 7,41 = 00 or 7,41 < 0. This implies that g5, > (N + 2)/2
as required. O
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