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Abstract. Here, we obtained the explicit representation and criteria for some

stability results of jump processes with uniformly finite range upward based

on the theory of minimal nonnegative solution and approximation procedure.
In this setting, several new recursive sequences were put forward, which play

a crucial role in all aspects of our results. Moreover, we give some examples to

verify the validity of our results.

1. Introduction. Consider a continuous-time and homogeneous Markov chain
{X(t) : t ⩾ 0} on a probability space (Ω,F ,P) with the transition probability
matrix P (t) = (pij(t)) on the countable state space Z+ := {0, 1, 2, · · · }. In this
paper, we assume that the considered transition rate Q-matrix Q = (qij) is totally
stable and conservative, which means qi := −qii =

∑
j ̸=i qij <∞ for all i ∈ Z+.

Given a Q-matrix, if there exists such a positive integer m that for all i ⩾ 0,

qi,i+m > 0, qij = 0, j > i+m,

we call it a Q-matrix with uniformly finite range upward; by contrast, if for all
i ⩾ m,

qi,i−m > 0, qij = 0, 0 ⩽ j < i−m,

it is called a Q-matrix with uniformly finite range downward. In particular, in the
case of m = 1, the Q-matrix is also called a single birth Q-matrix and single death
Q-matrix, or skip-free upwardly one and skip-free downward Q-matrix, respectively.
For simplicity, we call them m-birth Q-matrix and m-death Q-matrix respectively.
For systematic results on single birth and single death processes, refer to [1–3, 12,
13, 17, 18, 20]. In applications, the structure of m-birth processes is similar to that
of level-dependent GI/M/1-type Markov chains with m phases in each level, where
matrix-analytic methods usually play a crucial role. For this model and related
ones, see [4, 5, 8, 10,11,14,15].
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Over the past few decades, single birth processes, due to them being single exit,
have become one of the largest class of Markov processes for which explicit criteria
on stability can be expected. The m-birth process (where m is a positive integer),
as a natural extension of single birth process, is widely used in probability models
and has thus attracted significant attention. The stability theory mainly involves
uniqueness and recurrence, moments of the first hitting time, ergodicity, and strong
ergodicity, among others. Recently, [19] investigated the uniqueness and recurrence
of m-birth and m-death processes and obtained their explicit criteria. For moments
of the first hitting time and ergodicity, recall that in the single birth case, the
minimal nonnegative solution theory plays a central role in the proof; see [3] for
reference. However, under generalized circumstances, unlike in the single birth
case, it is hard to achieve our goal since the linear equations corresponding to the
moments of the first hitting time may not be easy to explicitly solve.

To overcome this difficulty, we turn another way. Considering that for m-birth
processes evolving in finite state space the explicit representation is easily obtained,
we choose to start with a finite state space case and then gradually transfer to the
countable case. The construction of the Q-process on the finite state space and the
method of converting its result into what we expect are two key aspects throughout
this paper. The main method remains the minimal nonnegative solution theory
with a limiting approximation procedure. We also have to mention that [9] and [18]
provided some methods for constructing augmented truncation Q-matrices, whose
ideas have significantly benefited us. Moreover, the same approximation has been
used in [16] to investigate inverse problems for ergodicity. As a byproduct, several
recursive sequences are produced during this work.

Throughout the paper, we consider only the m-birth Q-matrix Q = (qij). We
begin with some basic notations. Define the first hitting time

τi := inf{t > 0 : X(t) = i}, i ⩾ 0,

and the first returning time

σi := inf{t > η1 : X(t) = i}, i ⩾ 0,

where η1 is the first jumping time.
For a given function b = (bij)i,j∈Z+

(to be fixed in all sections, and then to be
specified case by case), the following sequences are used the paper:

q̄(k)n = q(k)n − bnk :=

k∑
j=0

qnj − bnk, 0 ⩽ k ⩽ n+m− 1,

F̄
(k)
k = 1, F̄ (k)

n =
1

qn,n+m

n−1∑
j=k

q̄(j+m−1)
n F̄

(k)
j , n > k ⩾ 0,

c0 = 0, c
(ℓ)
i =

1

qi,i+m

(
−qiℓ +

i−1∑
k=0

q
(k+m−1)
i c

(ℓ)
k

)
, i ⩾ 1, 1 ⩽ ℓ ⩽ m− 1,

d0 = 0, di =
1

qi,i+m

(
1 +

i−1∑
k=1

q
(k+m−1)
i dk

)
, i ⩾ 1.

In what follows, we omit the superscript ‘−’ in F̄ and q̄ once b ≡ 0, and use the

convention that
∑

∅ = 0. In addition, we define c
(m)
i := F

(0)
i for all i ⩾ 0. For

any given matrix A, let det(A) be the determinant of A throughout the paper. All
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vectors and matrices used in this paper are of adaptive size. We also denote by 1{·}
the indicator function of the set A ⊂ Z+.

The paper is organized as follows: Section 2 consists of the main results of the
paper. The proofs of Theorem 2.1 and Theorem 2.3 are given in Section 3. In
Section 4, some examples are given to illustrate the validity of our results.

2. Main results. Define an m × m matrix A(n) = (a
(n)
iℓ : 1 ⩽ i, ℓ ⩽ m) and an

m-dimensional column vector b(n) = (b
(n)
1 , b

(n)
2 , · · · , b(n)m )T, with elements given by

a
(n)
iℓ =



n−m+1∑
k=0

c
(ℓ)
k , if i = 1, 1 ⩽ ℓ ⩽ m;

c
(ℓ)
n−m+2, if i = 2, 1 ⩽ ℓ ⩽ m;

−qn−m+i,ℓ +
n−m+1∑
k=0

q
(k+m−1)
n−m+i c

(ℓ)
k , if 3 ⩽ i ⩽ m, 1 ⩽ ℓ ⩽ m− 1;

n−m+1∑
k=0

q
(k+m−1)
n−m+i c

(m)
k , if 3 ⩽ i ⩽ m, ℓ = m,

(1)

and

b
(n)
1 =

n−m+1∑
k=0

dk, b
(n)
2 = dn−m+2, b

(n)
i = 1 +

n−m+1∑
k=0

q
(k+m−1)
n−m+i dk, 3 ⩽ i ⩽ m.

(2)
We also denote the matrix that replaces the k-th column of A(n) with the column

vector b(n) by A
(n)
k for each 1 ⩽ k ⩽ m. Here is the first main result, which presents

the explicit formula for the first moment of the first hitting time.

Theorem 2.1. Assume that the m-birth Q-matrix Q = (qij) on Z+ is irreducible
and the corresponding process is recurrent. The following statements hold.

• It follows that as n→ ∞,

det(A
(n)
k )

det(A(n))

x Ekτ0 := Bk, k = 1, 2, · · · ,m,

and

Ejτ0 =

m∑
k=1

(
j−m∑
i=0

c
(k)
i

)
Ekτ0 −

j−m∑
i=0

di, j ⩾ m+ 1. (3)

• The process is ergodic if and only if Bi < +∞ for all i = 1, 2, · · · ,m.
• The process is strongly ergodic if and only if

sup
n⩾1

(
m∑

k=1

(
n∑

i=0

c
(k)
i

)
Ekτ0 −

n∑
i=0

di

)
< +∞. (4)

Actually, for the last conclusion, the recurrence assumption can be replaced by the
uniqueness assumption.

Remark 2.2. Let V be a non negative function and not identically equal to zero
on Z+. The associated integral-type functionals for m-birth processes are defined
as follows:

ξ0 =

∫ τ0

0

V (X(t))dt. (5)
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If the starting state is 0, sometimes the upper limit of the above integral may be
replaced by σ0 according to the context. If we alter the definition of the sequence
(di)i⩾0 slightly in the following way:

d0 = 0, di =
1

qi,i+m

(
V (i) +

i−1∑
k=1

q
(k+m−1)
i dk

)
, i ⩾ 1,

then the results for the moments of integral-type functionals are also obtained in
Theorem 2.1 with Eiτ0 replaced by Eiξ0 for all i ⩾ 1. The proof is similar to that
of Theorem 2.1.

For any given λ > 0, let q̃
(j)
i := q

(j)
i + λ for 0 ⩽ j < i and let q̃

(j)
i := q

(j)
i for

i ⩽ j ⩽ i+m− 1. Correspondingly, we define the following notations.

F̃ (n)
n = 1, F̃

(n)
i =

1

qi,i+m

i−1∑
k=n

q̃
(k+m−1)
i F̃

(n)
k , 0 ⩽ n < i,

c̃0 = 0, c̃
(ℓ)
i =

1

qi,i+m

(
−qiℓ +

i−1∑
k=0

q̃
(k+m−1)
i c̃k

)
, i ⩾ 1, 1 ⩽ ℓ ⩽ m− 1.

d̃0 = 0, d̃i =
1

qi,i+m

(
λ+

i−1∑
k=0

q̃
(k+m−1)
i d̃k

)
, i ⩾ 1.

We also define c̃m := F̃
(0)
i for all i ⩾ 0 and one m ×m matrix as follows: H(n) =

(h
(n)
iℓ : 1 ⩽ i, ℓ ⩽ m), where

h
(n)
iℓ =



n−m+1∑
k=0

c̃
(ℓ)
k , if i = 1, 1 ⩽ ℓ ⩽ m;

c̃
(ℓ)
n−m+2, if i = 2, 1 ⩽ ℓ ⩽ m;

−qn−m+i,ℓ +
n−m+1∑
k=0

q̃
(k+m−1)
n−m+i c̃

(ℓ)
k , if 3 ⩽ i ⩽ m, 1 ⩽ ℓ ⩽ m− 1;

n−m+1∑
k=0

q̃
(k+m−1)
n−m+i c̃

(m)
k , if 3 ⩽ i ⩽ m, ℓ = m,

(6)

and define one m-dimensional column vector s(n) = (s
(n)
1 , s

(n)
2 , · · · , s(n)m )T :

s
(n)
1 =

n−m+1∑
k=0

d̃k, s
(n)
2 = d̃n−m+2, s

(n)
i = λ+

n−m+1∑
k=0

q̃
(k+m−1)
n−m+i d̃k, 3 ⩽ i ⩽ m.

(7)
We also denote the matrix that replaces the k-th column of H(n) with the column

vector s(n) by H
(n)
k for 1 ⩽ k ⩽ m. The Laplace transform of the first hitting time

is also obtained in the next theorem.

Theorem 2.3. Assume that the m-birth Q-matrix Q = (qij) is irreducible and
the corresponding process is recurrent. Then the Laplace transform of τ0 has the
representation that as n→ ∞,

det (H
(n)
i )

det (H(n))

x 1− Eie
−λτ0 =: ψi0(λ), 1 ⩽ i ⩽ m,

and

ψi0(λ) := 1− Eie
−λτ0 =

m∑
ℓ=1

(
i−m∑
k=0

c̃
(ℓ)
k

)
ψℓ0(λ)−

i−m∑
ℓ=0

d̃ℓ, i ⩾ m+ 1.
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Remark 2.4. Similarly, as in Remark 2.2, the results for the Laplace transforms
of integral-type functionals are also obtained in Theorem 2.3 with Eie

−λτ0 replaced
by Eie

−λξ0 for all i ⩾ 1 if we alter the definition of the sequence (d̃i)i⩾0 slightly in
the following way:

d̃0 = 0, d̃i =
1

qi,i+m

(
λV (i) +

i−1∑
k=1

q̃
(k+m−1)
i d̃k

)
, i ⩾ 1.

3. Proof of the main results. First, the following simple result for the solution
to a class of linear equations can be inductively proven.

Lemma 3.1. The solution (hi)i⩾0 to the recursive equations

hi =
1

qi,i+m

fi + ∑
ℓ⩽k<i

q̄
(k+m−1)
i hk

 , i ⩾ ℓ ⩾ 0,

can be represented as

hi =

i∑
k=ℓ

F̄
(k)
i fk

qk,k+m
, i ⩾ ℓ ⩾ 0. (8)

Proof. In fact,

hℓ =
fℓ

qℓ,ℓ+m
=

ℓ∑
k=ℓ

F̄
(k)
ℓ fk

qk,k+m
.

Assume that the assertion holds until i− 1 ⩾ ℓ. Then

hi =
1

qi,i+m

fi + i−1∑
j=ℓ

q̄
(j+m−1)
i hj


=

1

qi,i+m

fi + i−1∑
j=ℓ

q̄
(j+m−1)
i

j∑
k=ℓ

F̄
(k)
j fk

qk,k+m


=

fi
qi,i+m

+

i−1∑
k=ℓ

fk
qk,k+m

· 1

qi,i+m

i−1∑
j=k

q̄
(j+m−1)
i F̄

(k)
j

=
F̄

(i)
i fi

qi,i+m
+

i−1∑
k=ℓ

F̄
(k)
i fk

qk,k+m

=

i∑
k=ℓ

F̄
(k)
i fk

qk,k+m
.

By induction on i, the assertion holds.

Remark 3.2. In particular,

F
(n)
i =

1

qi,i+m

i−1∑
k=n

q
(k+m−1)
i F

(n)
k =

1

qi,i+m

q(n+m−1)
i +

∑
n+1⩽k⩽i−1

q
(k+m−1)
i F

(n)
k


for all i ⩾ n + 1 ⩾ 1. Then from Lemma 3.1, by letting b ≡ 0 and fi =

q
(n+m−1)
i for all
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i ⩾ n+ 1, it follows that

F
(n)
i =

i∑
k=n+1

F
(k)
i q

(n+m−1)
k

qk,k+m
, i ⩾ n+ 1 ⩾ 1.

Meanwhile, note that for all i ⩾ 1 and 1 ⩽ ℓ ⩽ m− 1,

c
(ℓ)
i =

1

qi,i+m

(
−qiℓ +

i−1∑
k=1

q
(k+m−1)
i c

(ℓ)
k

)
, di =

1

qi,i+m

(
1 +

i−1∑
k=1

q
(k+m−1)
i dk

)
.

So we get that

c
(ℓ)
i = −

i∑
k=1

F
(k)
i qkℓ
qk,k+m

, di =

i∑
k=1

F
(k)
i

qk,k+m
, i ⩾ 1, 1 ⩽ ℓ ⩽ m− 1.

Similarly, by letting bik = −λ1{k⩽i−m} and fi = q̃
(n+m−1)
i for all i ⩾ n + 1, then

q̄
(k+m−1)
i = q̃

(k+m−1)
i and we derive via Lemma 3.1 that

F̃
(n)
i =

i∑
k=n+1

F̃
(k)
i q̃

(n+m−1)
k

qk,k+m
, i ⩾ n+ 1 ⩾ 1.

The next two equations hold in the same way.

c̃
(ℓ)
i = −

i∑
k=1

F̃
(k)
i qkℓ
qk,k+m

, d̃i = λ

i∑
k=1

F̃
(k)
i

qk,k+m
, i ⩾ 1, 1 ⩽ ℓ ⩽ m− 1.

Before proving our first result, we need the following crucial lemma.

Lemma 3.3. Assume that the m-birth Q-matrix Q = (qij) is irreducible and the
corresponding process is recurrent. Then the following relation holds:

Ejτ0 =

m∑
k=1

(
j−m∑
i=0

c
(k)
i

)
Ekτ0 −

j−m∑
i=0

di, j ⩾ m+ 1,

with the assumption that at most one of Eiτ0 (i = 1, 2, · · · ,m) is infinite.

Proof. The proof is decomposed into two steps. First, let H = {0}. By [2, Theorem
4.48], (Eiσ0 : i ∈ Z+) is the minimal nonnegative solution to the equation

xi =
1

qi

∑
k/∈{0,i}

qikxk +
1

qi
, i ∈ Z+. (9)

By [2, Theorem 2.13] (localization theorem), (Eiτ0 : i ⩾ 1) is the minimal nonneg-
ative solution (x∗i ) to the equation

xi =
1

qi

∑
k/∈{0,i}

qikxk +
1

qi
, i ⩾ 1. (10)

Let (xi)i⩾1 be a finite solution to (10). Define wi := xi+1 − xi for i ⩾ 1 and
w0 := x1, then it is not difficult to derive

wi+m−1 =
1

qi,i+m

(
−1 + qi0x1 +

i+m−2∑
k=1

q
(k)
i wk

)

=
1

qi,i+m

(
−1 + qi0x1 +

m−1∑
k=1

q
(k)
i wk +

i−1∑
k=1

q
(k+m−1)
i wk+m−1

)
, i ⩾ 1.
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Let hi = wi+m−1 for all i ⩾ 1. Then

hi =
1

qi,i+m

(
fi +

i−1∑
k=1

q
(k+m−1)
i hk

)
,

where fi = −1 + qi0x1 +
∑m−1

k=1 q
(k)
i wk for all i ⩾ 1. Hence by (8), one has

wi+m−1 = hi =

i∑
k=1

F
(k)
i

(
−1 + q

(m−1)
k xm −

∑m−1
ℓ=1 qkℓxℓ

)
qk,k+m

, 1 ⩽ i ⩽ n−m.

(11)
Hence for all j ⩾ m+ 1, by Remark 3.2, it is obtained that

xj =

j−1∑
i=m

wi + xm =

j−1∑
i=m

i−m+1∑
k=1

F
(k)
i−m+1

(
− 1 + q

(m−1)
k xm −

∑m−1
ℓ=1 qkℓxℓ

)
qk,k+m

+ xm

=

(
j−m∑
i=1

F
(0)
i + 1

)
xm +

m−1∑
ℓ=1

xℓ

j−m∑
i=1

c
(ℓ)
i −

j−m∑
i=0

di =

m∑
ℓ=1

j−m∑
i=0

c
(ℓ)
i · xℓ −

j−m∑
i=0

di.

Thus the proof is completed.

Next we turn to the proof of our first result.

Proof of Theorem 2.1.

Denote the (n+1)× (n+1) northwest corner truncation of Q on {0, 1, 2, . . . , n}
by Q(n). Now we augment the truncated transition elements to some column.

Specifically, the augmentation Q-matrix Q̃(n) = (q̃
(n)
ij : 0 ⩽ i, j ⩽ n) is given by

Q̃(n) = Q(n) + (−Q(n))1Te0, where 1 = (1, 1, · · · , 1) and e0 = (1, 0, · · · , 0) are
(n+ 1)-dimensional row vectors. In details, by the m-birth property, we have

q̃
(n)
ij =


qij , if 0 ⩽ i ⩽ n−m, 0 ⩽ j ⩽ n,
qij , if n−m+ 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ n,

qi0 +
∑i+m

k=n+1 qik, if n−m+ 1 ⩽ i ⩽ n, j = 0.
(12)

We start with the following equations named approximating equations corre-

sponding to the Q-matrix Q̃(n) = (q̃
(n)
ij , 0 ⩽ i, j ⩽ n) :

xi =

n∑
k=1,k ̸=i

q̃
(n)
ik

−q̃(n)ii

xk +
1

−q̃(n)ii

, 1 ⩽ i ⩽ n, (13)

Now we assert that there indeed exists a unique finite solution to equation (13).
In fact, we may rewrite (13) into the form (I − Π)x = r, where I is the n × n
identity matrix, x = (x1, x2, · · · , xn)T and r = ( 1

q1
, 1
q2
, · · · , 1

qn
)T. The n×n matrix

Π = (Πij : 1 ⩽ i, j ⩽ n) with Πij =
qij
qi
1{i̸=j} for all 1 ⩽ i, j ⩽ n is called

local embedding chain corrseponding to Q̃(n). It may be clearly seen that Π is
transient via the m-birth property. Therefore, the inverse of the matrix I−Π exists
pointwisely. So there exists a unique solution that could be expressed as

x = (I −Π)−1r =

+∞∑
n=0

Πnr < +∞.
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So it can be shown that (Eiτ
(n)
0 < ∞, 1 ⩽ i ⩽ n) is the unique finite solution to

(13) for the process conditioned on the finite state space, where τ
(n)
0 is the first

hitting time of 0 for the process associated with Q̃(n).
As for equations (13), as in the proof of Lemma 3.3, it follows that

x
(n)
i =

m∑
ℓ=1

i−m∑
k=0

c
(ℓ)
k · x(n)ℓ −

i−m∑
k=0

dk, m+ 1 ⩽ i ⩽ n.

Substituting the results above into the last m equations of (13), we derive

C(n)x = h(n), i.e.,

m∑
j=1

c
(n)
ij xj = h

(n)
i , 1 ⩽ i ⩽ m, (14)

where x = (x1, x2, · · · , xm)T, the m × m matrix C(n) = (c
(n)
ij , 1 ⩽ i, j ⩽ m) is

defined as: for all 1 ⩽ i, j ⩽ m,

c
(n)
ij =


−qn−m+i,j −

n−m∑
k=1

n∑
ℓ=k+m

qn−m+i,ℓc
(j)
k , if 1 ⩽ j ⩽ m− 1,

−
n−m∑
k=0

n∑
ℓ=k+m

qn−m+i,ℓc
(m)
k , if j = m,

(15)

and the m-dimensional column vector h(n) = (h
(n)
1 , h

(n)
2 , · · · , h(n)m )T is defined as

h
(n)
i = 1−

n−m∑
k=0

n∑
ℓ=k+m

qn−m+i,ℓdk, 1 ⩽ i ⩽ m.

Note that for 1 ⩽ j ⩽ m− 1,

c
(n)
1j = −qn−m+1,j − q

(n)
n−m+1

n−m∑
k=0

c
(j)
k +

n−m∑
k=0

q
(k+m−1)
n−m+1 c

(j)
k = qn−m+1,n+1

n−m+1∑
k=0

c
(j)
k ,

c
(n)
1m = −q(n)n−m+1

n−m∑
k=0

q
(k+m−1)
n−m+1 c

(m)
k +

n−m∑
k=0

q
(k+m−1)
n−m+1 c

(m)
k = qn−m+1,n+1

n−m+1∑
k=0

F
(0)
k ,

h
(n)
1 = 1− q

(n)
n−m+1

n−m∑
k=0

dk +

n−m∑
k=0

q
(k+m−1)
n−m+1 dk = qn−m+1,n+1

n−m+1∑
k=0

dk.

Hence equations (14) together with the m-birth property (i.e., qn−m+1,n+1 > 0) are

equivalent to equations A(n)x = b(n), where the matrix A(n) and the column vector
b(n) are defined in (1) and (2).

Therefore, it is obtained by Cramer’s rule that

Eiτ
(n)
0 =

det(A
(n)
i )

det(A(n))
, 1 ⩽ i ⩽ m. (16)

Next, rewrite equations (13) as x(n) = R(n)x(n) + f (n), where the elements of

R(n) = (r
(n)
ij : 1 ⩽ i, j ⩽ n) and f (n) = (f

(n)
i : 1 ⩽ i ⩽ n) have the form

r
(n)
ij =

qij
qi
1{1⩽i ̸=j⩽n}, f

(n)
i =

1

qi
1{1⩽i⩽n}, i, j ⩾ 0.

Then it is obvious that R(n) and f (n) are increasing in n in the element-wise sense.
Since for each n, k, qnk

qn
⩾ 0 and 1

qn
> 0, by the Monotone Convergence Theorem

[2, Theorem 2.7], we know that (x
(n)
i )1⩽i⩽n is increasing to the minimal non negative
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solution (i.e., (Eiτ0)i⩾1) of (10) as n → ∞. Therefore, Eiτ
(n)
0

x Eiτ0, as n → ∞.
So taking limits in (16) gives us that as n→ ∞,

det(A
(n)
i )

det(A(n))

x Eiτ0, 1 ⩽ i ⩽ m.

Equation (3) is easily obtained from Lemma 3.3.
From [2, Theorem 4.44(1)], it follows immediately that the m-birth process is

ergodic if and only if E0σ0 < +∞, which is now equivalent to Bi < +∞ for all
i = 1, 2, · · · ,m. By [2, Theorem 4.44(3)] or [7], the process is strongly ergodic if
and only if supk⩾0 Ekσ0 < +∞, which is equivalent to (4). As mentioned in the
proof of the cited book, for ergodicity, the uniqueness assumption suffices instead
of the recurrence assumption. The proof is now finished.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3.

By [6, Theorem 9.5.1] and [2, Theorem 2.13] (localization theorem), we know
that (ψi0(λ) : i ⩾ 1) is the minimal nonnegative solution (x∗i ) to the equation

xi =
1

qi + λ

∑
k/∈{0,i}

qikxk +
λ

qi + λ
, i ⩾ 1. (17)

The augmented truncation Q-matrix Q̃(n) is defined similarly to (12). We still have
to deal with the following equations, named approximating equations, corresponding
to Q̃(n) :

xi =

n∑
k=1,k ̸=i

q̃
(n)
ik

λ− q̃
(n)
ii

xk +
λ

λ− q̃
(n)
ii

, 1 ⩽ i ⩽ n.

Then following the strategy as in the proof of Theorem 2.1 gives us that

H(n)x = s(n), i.e.,
m∑
j=1

h
(n)
ij xj = s

(n)
i , 1 ⩽ i ⩽ m,

where the matrix H(n) and the column vector s(n) are defined in (6) and (7), and
it also holds that

x
(n)
i =

m∑
ℓ=1

(
i−m∑
k=0

c̃
(ℓ)
k

)
x
(n)
ℓ −

i−m∑
ℓ=0

d̃ℓ, m+ 1 ⩽ i ⩽ n.

Therefore, applying Cramer’s rule and the Monotone Convergence Theorem [2,
Theorem 2.7] provides all our final formulas in Theorem 2.3. Thus, the proof of
Theorem 2.3 is completed.

4. Examples. In order to verify the effectiveness of our results in this paper, in
this section we provide some examples. The first one is the single birth process,
which is the m = 1 case.

Example 4.1. (single birth process)
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Let the regular and irreducible Q-matrix Q = (qij) be of the following form:
qi,i+1 > 0 for all i ⩾ 0 and qi,i+j = 0 for all j ⩾ 2 with i ⩾ 0. Assume the
corresponding process is recurrent, then it could be obtained that

Eiσ0 =

i−1∑
k=0

(
F

(0)
k d− dk

)
, Eie

−λσ0 = 1− λ

i−1∑
k=0

(
F̃

(0)
k d̃− d̃k

)
, i ⩾ 1, λ > 0,

where

d := lim
k→∞

∑k
n=0 dn∑k

n=0 F
(0)
n

, d̃ = lim
k→∞

∑k
n=0 d̃n∑k

n=0 F̃
(0)
n

.

Furthermore, the process is ergodic (i.e., positive recurrent) if and only if d < ∞;
and it is strongly ergodic if and only if

sup
k⩾0

k∑
n=0

(
F (0)
n d− dn

)
<∞.

Proof. This example is for the m = 1 case of our results. At this stage, we have for
i ⩾ 0,

F
(i)
i = 1, F

(i)
k =

1

qk,k+1

k−1∑
j=i

q
(j)
k F

(i)
j , k > i,

d0 = 0, di =
1

qi,i+1

(
1 +

i−1∑
k=1

q
(k)
i dk

)
, i ⩾ 1,

c
(1)
i = F

(0)
i and a

(n)
11 =

∑n
k=0 c

(1)
k =

∑n
k=0 F

(0)
k . By applying Theorem 2.1, it is

derived that det(A
(n)
1 ) =

∑n
k=0 dk and det(A(n)) =

∑n
k=0 F

(0)
k . Thus we have

E1τ0 = lim
n→∞

det(B
(n)
1 )

det(D(n))
= lim

n→∞

∑n
k=1 dk∑n

k=0 F
(0)
k

= d,

Eiτ0 =

i−1∑
k=0

c
(1)
k E1τ0 −

i−1∑
k=0

dk =

i−1∑
k=0

(
F

(0)
k d− dk

)
, i ⩾ 2.

Therefore the process is strongly ergodic if and only if

sup
i⩾1

Eiτ0 = sup
k⩾0

k∑
n=0

(
F (0)
n d− dn

)
<∞.

Similarly, we also know det(H
(n)
1 ) = λ

∑n
k=1 d̃k andH(n) =

∑n
k=0 F̃

(0)
k . By applying

Theorem 2.3, it is obtained that for λ > 0,

Eie
−λσ0 = 1− λ

i−1∑
k=0

(
F̃

(0)
k d̃− d̃k

)
, i ⩾ 1.

Thus we have completed the proof of the example.

Remark 4.2. Example 4.1 shows the same results as those from [3], which justifies
the validity of our results when m is reduced to one.

Next we analyze one concrete example that belongs to the class of both 2-birth
and single death processes.
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Example 4.3. Given a regular and irreducible single death Q-matrix Q = (qij)
satisfying:

qi,i−1 = a > 0, i ⩾ 1, qi,i+1 = b ⩾ 0, qi,i+2 = d > 0, i ⩾ 0,

and qij = 0 for other i, j ⩾ 0, i ̸= j, then the process is recurrent if and only if
a ⩾ b+2d and it is ergodic if and only if a > b+2d. Moreover, starting from j ⩾ 1,
the moment of the hitting time of 0 has the form:

Ejτ0 =
j

a− b− 2d
, j ⩾ 1.

Therefore, the process could not be strongly ergodic.

Proof. In fact, it can be seen that

F
(i)
i = 1, F

(i)
i+1 = −b+ d

d
, i ⩾ 0, F

(k)
i =

a

d
F

(k)
i−2 −

b+ d

d
F

(k)
i−1, 0 ⩽ k ⩽ i− 2.

By the basic theory of difference equations, it is known that

F (k)
n =

λn−k+1
2 − λn−k+1

1

λ2 − λ1
, 0 ⩽ k ⩽ n,

where

λ1 =
−(b+ d)−

√
(b+ d)2 + 4ad

2d
, λ2 =

−(b+ d) +
√

(b+ d)2 + 4ad

2d
.

Note that λ1 < −1 and −λ1 > λ2 > 0. For this given process, we have m = 2 and
thus

c
(1)
1 =

a+ b+ d

d
, c

(1)
k = −

k∑
ℓ=1

F
(ℓ)
k qℓ1
qℓ,ℓ+2

=
a+ b+ d

d
F

(1)
k − a

d
F

(2)
k , k ⩾ 2,

c
(2)
k = F

(0)
k =

1

λ2 − λ1
(λk+1

2 − λk+1
1 ), k ⩾ 0.

And we also have for i ⩾ 0,

d0 = 0, di =

i∑
k=1

F
(k)
i

qk,k+2
=

1

d(λ2 − λ1)

(
λ2(1− λi2)

1− λ2
− λ1(1− λi1)

1− λ1

)
,

and b(n) = (b
(n)
1 , b

(n)
2 )T with b

(n)
1 =

∑n−1
k=0 dk and b

(n)
2 = dn. Define the matrix

A(n) = (a
(n)
ij )1⩽i,j⩽2 as in (1). Again, denote A

(n)
1 and A

(n)
2 by replacing the first

and second column of A(n) with the column vector b(n), repectively. Now we obtain

E1τ0 = lim
n→∞

det(A
(n)
1 )

det(A(n))
=

λ21λ
2
2

(λ1 − 1)(λ2 − 1)(aλ1(λ2 − 1)− aλ2 + (b+ d)λ1λ2)

=
1

a− b− 2d
,

E2τ0 = lim
n→∞

det(A
(n)
2 )

det(A(n))
=

−(b+ d)λ1λ2 + a(λ1 + λ2 − 2λ1λ2)

d(λ1 − 1)(λ2 − 1)(aλ1(λ2 − 1)− aλ2 + (b+ d)λ1λ2)

=
2

a− b− 2d
.

From Lemma 3.3, we know that for n ⩾ 3,

Enτ0=

2∑
k=1

(
n−2∑
i=0

c
(k)
i

)
Ekτ0 −

n−2∑
i=0

di= a
(n−1)
11 E1τ0 + a

(n−1)
12 E2τ0 − b

(n−1)
1 =

n

a− b− 2d
.
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Thus we obtain sup
n⩾1

Enτ0 = sup
n⩾3

n
a−b−2d = ∞. So in this case, the process is ergodic

but not strongly ergodic. Hence the proof is completed by Theorem 2.1 and Lemma
3.3.

Remark 4.4. In the Example 4.3, the process could either be regarded as the
single death process or the 2-birth process. Recall that via the formulas of the
corresponding quantities as in example 4.3 for single death processes, it is easily
checked that the results are consistent with the counterparts by using expressions
obtained before.
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