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1 Introduction

Let p be an odd prime. The Adams-Novikov spectral sequence (ANSS) based on the Brown-Peterson
spectrum BP is one of the most powerful tools to compute the p-component of the stable homotopy
groups of spheres 7, (S%) (see [1,8,11,22]).

The Fs-term of the ANSS is Extg'},* pp(BP., BP,), which has been extensively studied in low
dimensions. For s = 1, Ext}é*P*BP(BP*,BP*) is generated by apyn/py1 for n > 0, and p t & with
k > 1, where ajpn /nq1 has order p" Tt (see [11,14]). For s = 2, Ext%’*P*BP(BP*,BP*) is the direct sum
of cyclic groups generated by Byyn ;41 for suitable (n,k, j, i) (see [11,22,24]), and Bjpn /541 has order
p't. For s > 3, only partial results of Ext};}, gp(BPy, BP,) are known (see [13]).

To compute the stable homotopy groups of the sphere, we still need to know which elements of the Fs-
page could survive to the E-page of the ANSS. It is known that each element ay,n /41 is @ permanent
cycle in the ANSS which represents an element of Im.J with the same order. Moreover, Behrens [4]
showed that for [ a prime which generates Z,, the spectrum Q(l) introduced in [2,3] detects the o and
[ families in the stable stems. However, we are still far from fully determining which elements of the
Brpn /j,i+1 family could survive to Eo.
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Let Bypn/; denote Bypn /1. Toda [26,27] proved that oy 7 is zero in 7.(S?). This relation supports a
non-trivial Adams-Novikov differential called the Toda differential, i.e.,

dap—1(Bpp) = a1y # 0, (1.1)

where a is a non-zero scalar mod p. Hence f3,/, could not survive the ANSS.

Based on the Toda differential (1.1), Ravenel [19] generalized the result and proved that there are non-
trivial differentials dgp,l(ﬂpn/pn) =a- alﬁgn,l/pn,l mod ker Bf(pnilfl)/(pfl) for n > 1. Consequently,
Bpn jpn also cannot survive to Fo, in the ANSS. From this, one can see that only Bj,n/; € H?*(BP,) for
k=22 1<j<ptork=1,1<j<p"—1might survive to F, in the ANSS. The following are some
known results in this area:

Let p > 5. Oka proved that (a) for k =1,1<j<p—1ork >2 1<j<p, P/, are permanent
cycles in the ANSS (see [15]); (b) for k=1, 1 <j<2p—2o0r k > 2,1 < j <2p, By, are permanent
cycles in the ANSS (see [16]); (¢) forn >2, k=1,1<j<2" Y (p—1)orn>=2k>21<j<2"1p,
Brpn/j are permanent cycles in the ANSS (see [17,18]

Let p > 7. Shimomura [25] proved that for k > 1, 1 < j < p? — 2, Brp2/; are permanent cycles in the
ANSS.

In this paper, we prove the following theorem.

~—

Theorem A. Letp > 7 be a prime. Then B2 ,2_1 is a permanent cycle in the Adams-Novikov spectral
sequence.

We can briefly summarize our strategy to prove Theorem A as follows. Inspection of degrees shows that
Bp2 /p2—1 has too low a dimension to be the target of an Adams-Novikov differential. Hence it suffices to
prove that 3,2 /,2_1 does not support any non-trivial differential. We work with the small descent spectral
sequence (SDSS), which converges to the Es-page of the ANSS. Computations show that in dimension
one less than that of 3,2 ,2_1, the SDSS has 8 elements listed in Lemma 3.1, and each must be eliminated
as a possible target of a differential on 3,2 ,2_1. Two of them are removed by djs in the SDSS as shown
in Figure 1, leaving the six listed in Theorem 3.3. Four of them are removed by dj, ;s in the ANSS as
shown in Figure 2. This leaves only g7 and gg. They each lie in filtration 3, so they cannot be the target
of an ANSS differential on 3,2 /p2_1.

Assumption on prime p. Henceforth, in this paper, it is always implicitly assumed that p > 5,
unless stated otherwise.
Let M be the mod p Moore spectrum and M (1, p™ — 1) be the cofiber of the map v 71, ie.,

n_1

SM e M —— M(1,p" — 1).

Ravenel 20, Theorem 7.12] claimed that if M (1,p™ — 1) is a ring spectrum and 3,» /1 is a permanent
cycle, then Sj,n/; is a permanent cycle for all k > 1 and j < p" — 1.
Between the ANSS and the classical Adams spectral sequence (ASS), there is the Thom reduction map

® : Extlyppp(BP., BP.) — Ext’y(Z/p, Z/p)

such that ®(Byn /pn_1) = hohpy1. Thus we obtain the following corollary.

Corollary B. Let p > 7 be a prime. Then hohs is a permanent cycle in the classical Adams spectral
sequence.

In [5], Cohen and Goerss claimed the existence of hoh,41 in the classical ASS. One can see that the
existence of hoh,y1 in ASS is equivalent to the existence of B, /,»_; in the Adams-Novikov spectral
sequence. However, Minami [12] found a fatal error in their proof, so it is still an open problem in odd
primary stable homotopy theory. Due to its extreme importance, Hovey [6] listed the convergence of
hohn+1 as one of the major open problems in algebraic topology.

Consider the ANSS for the Moore spectrum Extyp pp(BP., BP.(M)) = m.(M). From the Toda
differential, one can see that in the ANSS for the Moore spectrum

dop—1(hnt2) = ’Ul/Bgn/pru dop—1(Vihni2) = U%ﬁgn/pw
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Applying the connecting homomorphism § : Extjlg’}*BP(BP*7 BP.(M)) — Ext%};*BP(BP*, BP,) induced
by the cofiber sequence

[N B, )
one gets an Adams differential in the ANSS for the sphere, i.e.,

dap—1(Bpn+1 jpnti_1) = azﬁﬁ"/p”'

In Section 6, we prove that ﬁﬁ/p is divisible by (i, i.e., ﬁ/p = (19. Note a7 = 0, and this provides
another perspective for understanding why we could have

dap—1(Bpejpr—1) = a2, =0 in Ext} 55 (BP., BP.)

in Theorem A.
Based on the analysis of 5;? Jpr WE conjecture the following.

Conjecture C. Forn<p-1, ﬁgn/pn 1s divisible by B and

B, = Brhubhy *ye,
Bga/pz = Brhaihibhy 03,

P - p—n—2 (n+2)
B jpn = Brhn thn—11 - haiaby 1y o oy,

P _ (»)
o2 o2 = Dihp—21hp31---huog=y,

where a"*2) s the (n + 2)-th letter of the Greek alphabet, and aﬁ]ff) € Ext?];f’gp(BP*, BP,) is one of
the (n + 2)-th Greek letter family elements. These equations imply O{Q/BIZ:,L/p” =af1g=0 form<p—1.

Forn > p—1, we conjecture that ﬁgn/pn
implies that Byn+1/pnt1_1 does not survive to Ew, in the ANSS when n > p — 1.

is not divisible by £ and agﬁgn/pn might be non-zero. This

The rest of this paper is organized as follows. In Section 2, we recall the construction of the topological
small descent spectral sequence (TSDSS) and the small descent spectral sequence (SDSS), where the
SDSS is a spectral sequence that converges to Ext%’,;* pp(BPy, BP,) started from the Ext groups of a
complex with p-cells. We list all the generators of the E1-page of the SDSS along with their corresponding
t — s values. This allows us to compute the Fs-terms of the ANSS for specific ¢t — s values. In Section 3,
we compute the Adams-Novikov Ea-term ExtsB”}J*BP(BP*, BP,) subject to t — s = g(p* + 1) — 3 by the
SDSS. In Section 4, a non-trivial Adams-Novikov differential dap—1(haobi17s) = alﬂfhmfys is proved. We
prove our main theorem by showing that d,(8,2/p2_1) = 0 in Section 5. At last, in Section 6, we prove
that ﬁg Ip is divisible by £; and give our conjecture.

2 The small descent spectral sequence and the ABC theorem

In 1985, Ravenel [21-24] introduced the method of infinite descent and used it to compute the first
thousand stems of the stable homotopy groups of spheres at the prime 5. This method applies a so-called
small descent spectral sequence (SDSS) to identify the Es-terms of the ANSS.

Hereafter, we set ¢ = 2p — 2. As mentioned in Section 1, we assume that p > 5 is a prime number
throughout this paper. Let T'(n) be the Ranevel spectrum (see [22, Section 5, Chapter 6]) characterized
by BP.(T(n)) = BP,[t1,t2,...,t,]. Then we have the following diagram:

S0 = 7(0) T(1) 7(2) . T(n) - BP,
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where S° denotes the sphere spectrum localized at p. Let T(0),—; and T'(0),_> denote the ¢(p — 1) and
q(p — 2) skeletons of T(1), respectively, and they are denoted by X and X for simplicity. Then

X =8%0U,, e7U Uy, eP™ 27y, P D9 and X =80, e?U---U,, eP~2,
The BP-homologies of them are
BP.(X) = BP,[t1]/(t]) and BP.(X)= BP, [tl]/(tll’_1>.
From the definition above, we get the following cofiber sequences:

v

i’ J k'

S0t X DY St (2.1)
X x 2 se-na K5y (2.2)
and the short exact sequences of BP-homologies
0— > BP,(S°) —“> BP.(X) "= BP.(34X) — >0, (2.3)
0— > BP,(X) —“= BP,(X) 2= BP,(S0-Da) — ). (2.4)

Putting (2.3) and (2.4) together, one has the following long exact sequence:
0 —= BP,(8°) —> BP,(X) —= BP,(39X) —= BP,(YP1X) —> -~ . (2.5)
Putting (2.1) and (2.2) together, one has the following Adams diagram of cofibers:

SO0« ya-lX o gra—2 . a3} ...

| | | | (2.6)

X na-lx »pa-2x »p+he=3x

Proposition 2.1 (See [22, Proposition 7.4.2]).  Let X be as above. Then
(a) There is a spectral sequence converging to EX‘LSB,J}Z’;;,P(BRk7 BP,(S%)) with the Ey-term

By = Extyh, p(BP., BP.(X)) ® Elon] © P[],

where B0 = Extyy pp(BP., BPA(X)), aq € EP®', By € EY™?, and d, : Byt — Es-rltutr,
Here, E[—] denotes the exterior algebra and P[—] denotes the polynomial algebra on the indicated
generators. This spectral sequence is referred to as the small descent spectral sequence (SDSS).

(b) There is a spectral sequence converging to m.(S°) with the Ei-term

E}' = 7.(X) ® Eloa] ® P[By],

where BV = 1,(X), ay € BV, By € EYP and d, : ESt — ESthtr=1 This spectral sequence is
referred to as the topological small descent spectral sequence (TSDSS).

The two spectral sequences mentioned above could determine the O0-line and the 1-line (i.e.,
Extyy, pp(BP., BP.(S%)), Extyp pp(BP., BP.(S%))) or the corresponding elements in 7,(S°) by
Ext)y, pp(BPy, BP.(X)) and Extp}, pp(BP., BP.(X)). Additionally, for s > 2, the s-line Ext}}, 5p
(BP,, BP.(S)) or the corresponding elements in 7,(S°) are produced by the corresponding elements in
Ext‘;’},*BP(BP*, BP,.(X)) with s > 2 as described in the following ABC theorem [24, Theorem 7.5.1].

Theorem 2.2 (The ABC theorem). Fort—s<gq(p*+p—1)—3 ands > 2,

Ext pp(BP., BP.(X)) = A® B C.
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Here, A is the Z/p-vector space spanned by
{ﬂip’ﬁizﬂrl li<p—-1}U {5p2/p2*j |10<j<p—1}.

Meanwhile, B= R ® {~; | i > 2}, where

R = P[bhy] @ Elhzo] @ Z/p{{bf) | 0 <k <p—1}U{huibly | 0 <k <p—2}).

Finally,
oSt = @Rs+2i7t+i(p2—1)q'
i>0
We list the bidegrees of the various elements appearing in the ABC theorem as follows:
Bip € Ext21# +=1 g, € Ext2 el + 10 Bp2/p2—-j € Ext 24P’ +7,
v € Ext37‘1[i(p2+p+1)_10—2], hiy € Eth’qp, hoo € Eth’q(p+1)7
b1 € Extz’qu, bag € Ext2:ap(p+1)

From the ABC theorem above, we can find all the generators of Ext;';,*BP(BP*, BP, (X)) for s > 2
and t — s < q(p3 4+ p — 1) — 3. Table 1 summarizes the first class of generators, i.e., the generators of A.
Here, pq — 2 = 2p® — 2p — 2 is the total degree of 8, € EY%% in the SDSS. The reason for computing

t — s mod pg — 2 and the purpose of underlining certain values will become clear in Lemma 3.1.

The generators of B are summarized in Table 2.
Let us take hllbé“ofyi from the B-family as an example to illustrate the calculation.

The total degree of hllb’go'yi is
qli+k)p* + (i +E)p+i—2]—2k—4=2(i+k)p> — 2(k + 2)p — 2(i + k)

for2<i<p—1and 0 < k < p—2. To ensure that the total degree of hnb’gow is less than q(p3 +p—1)-3,

we need i + k < p. A straightforward computation shows
2(i + k)p® — 2(k +2)p — 2(i + k) = 2(k + 2i — 2)p mod pq — 2.
Notice that 2(k + 2i — 2)p > pqg — 2 if k + 2i > p, and the total degree of hy1b5,7; is
2(k+2i—2)p—(pg—2)=2(k+2i—p—1)p+ 2 mod pg — 2
if k421 > p.

Table 1 Generators of A

Generators of A t—sand t —s mod pg— 2 Index ranges
Bip qlip? +ip — 1] — 2
=2(i— )p+2i ifi<p—2
=0 ifi=p—1
Bip+1 qlip? + (i +1)p] - 2
= 2ip+ 21 ifi<p—2
= 2£2p ifi=p—1
By jp2_j alp® + 5] — 2
=20+Vp—2j, if j<p—2

=4 if j=p—1
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Table 2 Generators of B

Generators of B t—sand t— s mod pg— 2 Index ranges
h11b5,7: ql(i + k)p? + (i + k)p +i — 2 for2<i<p—1,0<k<p—2,
—2k —4 and2<i+k<p—1
=2(k+2i—2)p ifk4+2i<p
=2k+2i—-p—1)p+2 ifk+2i>p
haoh11b5,7yi g+ kP> + G+ k+Dp+i—1] for2<i<p—1,0<k<p—2,
—2k—5 and 2<i+k<p-—1
=2k+2i-1)p—1 iftk+2i<p
=2k+2i—pp+1 ifk+2i>p
bk s q[(i + k)p? + (i — D)p +i — 2] for2<i<p—1,0<k<p—1,
—2k—3 and 2<i+k<p-—1
=2k+2i—2)p—2k—1 ifk+2i<p+1
=1 ifk=0,2=p+1
=2(k+2i-p-—Up-2k+1, . ifh+2>p+2
haobky i ql(i + k)p? +ip+i — 1] for2<i<p-1,0<k<p—1,
—2k —4 and 2<i+k<p-—1
=2k+2i-1)p—2(k+1) ifk+2:<p
52(k+2i—p)p—2k‘?p ifk+2i>p

One might have noticed that although R contains the P[bh,] part, P[b5,] does not show up in the
B-family generators. This is because the total degree of b5 is

plgp(p+1) —2) > q(p* +p—1) — 3.

Hence, suppose that a generator of B is a multiple of b%, and its total degree would exceed the range of
interest.

On the other hand, the P[b4,] part does show up in the C-family generators. The key difference is that
C is the direct sum of shifted copies of R. Based on [21, Theorems 4.11 and 4.12], we could determine
all the generators of C.

In more detail, let us write ¢ = jp + m with 0 < m < p — 1. Considering the ¢-th shifted copy
Rs+2it+i(P*=1)a « 05t we have the following:

(1) b%ﬂ)p € R2(p=m)+2(jptm) t+(iptm)(p°~1)a = 02(p=m)t which is represented by B ™ g for
p—1>=m > 1, where

2,q[(G+1)p*+( 1
Ujpim € C al(G+1)p "+ +m+1)p+m]

From this, we get generators of the form
bgo_m_lujp-‘rm ® E[hQO] ® {blfl | 0<k< p—= 1} U {hllblzco | 0<k< p—= 2}'

(2) b’flb% € R2(k=m)+2(jptm) t+(jptm)(p* ~1)a C2k=m)t which is represented by b]fl_m_lﬂ(j+1)p/p_m
forp—1>2k>m+12>1, where

Bt 1)p/p—m € CHAGHDP Hiptm]

From this, we get generators of the form
k—m—
b1 15(j+l)p/pfm ® Elhso).

e Especially, hgobﬁ’flb% € R3T2ptp=2)t+(jptp=2(*~Da - o3t g represented by hi18(j41)p/1,2
which is an element of order p2.
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. . - 2
(3) h1bkblP € R2k—m)+1F2(ptm) t+(jptm) (=g — C2(k=m)+1Lt which is represented by

k—m—
b ™ 177jp+m+1
forp—2>k>m+12>1, where

Cv2
Niptmal = hi1tjppm € CHUATTVP FGFmE2ptm]

(4) hoohy1 b b2 € R2(E—mFD+2(ptm). tHptm) (0" ~1)a « c2(k=m+Dt which is represented by
bgo_mﬁjp-‘rm-i-?
forp—2>=k>m >0, where

.02 .
Bip+m+2 € C2:alip® +(G+m+2)p+m+1]

e Especially, hooh11b5, b% € R¥P2ptp=2)t+(jptp=2)(p"~1)a c (21 is represented by B(j+1)p/1,25
which is an element of order p2.
The generators of C are summarized in Table 3.

Remark 2.3. The Adams-Novikov spectral sequence for the spectrum X collapses from the Fs-term
Ext%’ij*BP(BP*, BP,(X)) in the range t — s < q(p® +p—1) — 3, since there are no elements with filtration
> 2p. Thus we actually get the homotopy groups m;_s(X) in this range.

3 The ANSS E,-term Ext}p pp(BP,,BP,) at t —s=q(p®* +1) — 3

Consider the Adams-Novikov differential d, : E3t — E5*7+7=1 in the ANSS. From the total degree of
Bp2 /p2—1, we know that
dr(By2jp2—1) € Exty3p pp(BPy, BP,)

such that t — s = ¢(p® + 1) — 3. The SDSS E}""" converges to Extyp 5 p(BP., BP,). Fixing t —s —u
= q(p® + 1) — 3, we have the following lemma.

Lemma 3.1.  When restricted to t — s —u = q(p® + 1) — 3, the Ei-page Ef’t’u of the SDSS is the

Z/p-module generated by the following p+ 5 generators:

2 2 2 2
_ p°—1 2,%,2p~—1 _ Rp°—p 3,%,2p” —2p
g1 =18 B2€ k] , 92=01 Thaofyy € E] ,

p2—2p—1 p2—6p+1 2
4, -2 7,%,p°—6p+1
gs=afy *  hayen € EY P g = by ? b%ﬂ& € B[P TP
_ mpf%l b%l m Ep+1—2m,*,* ES,*,Zp—Q
g5,m = 04151 11 B(%)p/p,m S ) 51 N(p—3)p+3 S )
_ 2,q(p*+1),1 _ 2,q(p®+1),1
g7 = alﬂ(p—l)p-ﬁ-l € El y 98 = 0416172/1)2 € El .

The index range for m in gs , is 0 < m < P~

Proof. Fixt—s—u = q(p®+ 1) — 3. From the ABC theorem, we know that the generators of the
Ej-terms in the SDSS are of the form W = g¥w or W = a1 8¥w, where w is an element listed in the
ABC theorem.

(1) If a generator of E™" is of the form W = B¥w, then the total degree of fFw is q(p* + 1) — 3 and
the total degree of w is ¢(p* + 1) — 3 modulo the total degree of 3, which is t —u = gp — 2. Noting that

q(p® +1) —3=4p — 3 mod gp — 2,

we list all the generators whose total degree might be 4p — 3 mod ¢gp — 2, which are marked with an
underline and the subscript 4p — 3 in Tables 1-3.
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Table 3 Generators of C

Generators of C

t—sand t—s mod pg— 2

Index ranges

k pgp—m—1_
bi1b39 Ujp+m

adlp—m—+j+k+Dp2+jp+m
—2(p—m+k)
=20 +k+1p+2( —k+1)

forl<m<p0<j<p—2,

and 0<k<p,j+k<m

k 1 p—m—1 .
haoby1 b5 Ujp+m

gdllp—m~+j+k+1p>+(G+1)p
+m+1—-2(p—m+k)—1

=20 +k+2p+20—k+1) -1

=2(j—k+2p—1

for1<m<p,0<j<p—2,

and 0 < k <p,j+k<m,
and j+E<p—3
ifj+k<p—4

orj+k=p—3,2j<p—5

itj+k=p—32j>p—5

k+p—m—1_
h11bsg Ujp+m

dlp—m+j+k+1p>+G+k
+)p+m]—2(p—m+k)—1
=2 +k+2p+2(j —p)+3

forI<m<p,0<j<p—2,
and 0<k<p—2,j+k<m,

and j+k<p—3

m—1

k —
haohi1byg " Ujptm

gdlp—m4+j+k+Dp>+(G+k
+2)p+m]+2(m—k—2)

=2+ k+2p+2j+2

for1<m<p,0<j<p—2,
and 0<k<p—2,j+k<m,

and j+E<p—3
ifj+k<p—4

=2j+4 ifj+k=p—3
VT T BG4 1)p p—m al(j + k — m)p® + jp + m] forl<m+1<k<p,
—(2k — 2m) and 0<j<p—2

=20+ k)p+2(j — k)

=20 +k—p+p+2(G—k+1)

2p

ifj+k<p—2
orjtk=p—1,2<p—1
ifj+k>p
orjtk=p-1,2>p—1

k—m—1
h20b11m 6(j+1)p/p—m

qdlG+k—m)p>+ (G +1p+m
+1] - (2k —2m + 1)
=20 +k+p+2(i—k) -1

-3

=2(j+k—p+2p+2(—k) +1

forl<m+1<k<p,
and0<j<p—2
ifj+k<p—3
orj+k=p—2,2<p-—3
ifj+k>p—2
orjtk=p—22j>p—3

h11B(i+1)p/1,2

qG+1p*+ (G +2)p—1 -3
=2jp+2(j+1)+1
=1

for0<j<p—2
ifj<p-3
ifj=p—2

k—m—1
bag Njp+m+1

gl +k—m)p? + (5 +k+1)p
+ m] — (2k —2m +1)
=2(j+kp+2j+1

=20 +k-p+2)p+2(—p)+3,

-3

forl<m+1<k<p—2,
and 0<j<p—2
ifj+k<p—2
ifj+k>p—2

k—m
bayg Bip+m+2

q[(G +k—m)p* + (j+k+2)p
+m+1—-2k—-m+1)
=2 +k+D)p+2,
=2 +k—p+3)p+20J—p) +2
=0

forO<Km<k<p—2,
and 0<j<p—2
ifj+k<p—3
ifj+k>p—3
fj=k=p—2

BGi+1)p/1,2

ad(G+Dp*+ G+ Dp—1 -2
=2p+2(j +1)
=0

for0<j<p—2
ifj<p-3
fj=p—2

We have

bivi atk=2andi=(p+1)/2,
hQOblf;m_lﬂ(j+l)p/p—m at k=1 andj = O7

Vs jprme1 at k=3 and j =p -3,
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from which we get the following generators in E;"*":

p2—6pt1

bll’}/p#»l = g4 - Bl 2 bll’y%ﬂ E

3,%,2p% —2
hQOBp/p = g2 = 61 thOﬂp/p S El P p’
Jx,2p—2

7,%,p° —6p+1
£ ,

Mp—3)p3 = 86 = BY "Np—s)pss € By

(2) If a generator of Ef’t’u is of the form W = a;3fw;, then from the total degree of a; being
t —u = 2p — 3, we see that the total degree of w; is 2p modulo gp — 2. Similarly, we can find all such
wy’s, which are marked with an underline and the subscript 2p in Tables 1-3. We have

-
ﬁ(p—l)l)-‘rla ﬂp2/p27 h207%“7 bll2 ﬁ(PTJrl)p/pfma 527

from which we get the following generators in E;"*":

97 = 1 Bp-1)pr1, 98 = 1Bz pe,

mp— gty Pt —m p—1
g3 = o fy haovegr,  85.m = a1fy bit Bty pem 0SMS ———,

2_
g1 =Y B

Computing the filtration of the corresponding generators, we get the lemma. O

Remark 3.2.  The method in proving Lemma 3.1 is a general method in computing the E;-term E7™ o

of the SDSS with specialized t — s — wu.

Theorem 3.3.  When restricted to t — s = q(p® + 1) — 3, the Adams-Novikov Eo-page Extg;*BP (BP.,
BP,) is the Z/p-module generated by the following 6 elements:

2
_ p°—1 2p +1,%
91—04161 62€EXtBP BP>

p2—2p—1 2 p2—6p+1 2
—2p+4, 2 —6p+8,
gs =By 7 haoyen €ExtppiETT, ga=81 7 byyen € Exthp et
_ ap—1 2p+1,*
g6 = F1 Np—3)p+3 € EXtBP*BP7
3 3
97 = 1 Bp-1)p+1 € Ext®4® +1)7 g8 = a18p2/p2 € Ext® ("),

Proof.  Following Ravenel [22, p. 287], we compute in the cobar complex of NZ = BP,/(p>,v$°):

U%p 4 p Ujp
d(p(tQ — tzf )) = tp & tl + blOv
p pof

pvy 1
it > wiP pU—Dptl P
—d| 25t ) =—-FHthet —j 22—t @t + >t D t,
<p v pop ! por pv1
(i—1)p (—1)p+1 Jp
.V v .V 2 v
d(]“h) =j27tif ®t —j—2t @y,
pu1 pvy pvy
Jp vIP
(- 1)/2d< ) (- 1)7151 @t
pu1 pur
A straightforward calculation shows that the coboundary of
wIP wIP UJP+1 2= Dpy, 3 JP
2 tQ_Ltp+1— p+1t1+] 2 (]_1)/2
pvl pvl pUy bu

s psiﬁ—,lblo. Then from 55(;%{)) = Bjp/p> We get a differential in the SDSS:

da(h20Bjp/p) = B1Bjp/p—1-
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s+u
O(& gi1e
g2e
g3e
ga@
E5,mo<“
o
gc@
3 greeds
Bp2/p2-1
0 a(p® +1) —4 a(p® +1) =3 ap® +1) -2 t=s—u
Figure 1 Two SDSS d» differentials
Similarly, we have
da(h20Bjpsi) = B1Bjpji—1  for 2 <i < p. (3.1)
Applying (3.1), we get the following differentials in the SDSS:
2 2
d2(92) = da(BY "haoBysp) = B T Bypp,s
_p=l_q p=l_ mp—B=l p=1_
dQ(CVlB;np 2 b112 mh205(%)17/p—m+1) = Oqﬂlnp 3 b112 mﬁ(%)p/p—m =05m,
which are illustrated in Figure 1. Then the theorem follows. O
4 A differential in the ANSS
This section is aimed at showing that
dop—1(haob117s) = a1 87 haoys (4.1)

in the Adams-Novikov spectral sequence. This differential could imply the vanishing of gs.
We begin from showing that g2 49p42)-2(V(2)) = 0, from which we show that the Toda bracket
(o181, p,7s) = 0 and the Toda bracket <alﬁf71, a181,p,7s) is well-defined. Then from the relation

(a1 B a1 B, p,vs) = a1 B haoys = Bp/p—17s

in 7,(S%) and d(haobi1) = B1B,/p—1, we get the desired differential in the ANSS.

Let p > 7 and V(2) be the Smith-Toda spectrum characterized by BP,(V(2)) = BP, /I3, where I3 is
the invariant ideal of BP, = Zp[v1,va,...,v;,...] generated by p, v1, and va. To compute the homotopy
groups of V(2), one has the ANSS {E5*V(2),d,.} that converges to 7. (V(2)). The Es-page of this spectral
sequence is

B3'V(2) = Extyly gp(BP., BP(V(2).

Let
I'=BP./Is ®pp, BP.BP @pp, BP./Is = BP,/I3[t1,ta,...].

Then (BP,/I3,T) is a Hopf algebroid, and its structure map is deduced from that of (BP., BP.(BP)).
By a change of ring theorem, one sees that

Ext}p pp(BP., BP.(V(2))) = Ext3'(BP., BP./I5) = m.(V(2)).
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Lemma 4.1.  The (q(p? + 2p + 2) — 2)-dimensional stable homology group of V(2) is trivial, i.e.,
7Tq(p2+2p+2)72(v(2)) =0.
Proof.  Fixing t — s = q(p® + 2p + 2) — 2, we know that the Adams-Novikov Ep-term
Extiy 9027 2=2(pp  BP,(V(2))) = Exti 10 D=2 (pp BP, /1)
converges to Tq(p242p+2)—2(V(2)). We prove that mg(p219p42)—2(V(2)) = 0 by showing that
Extyi @82+ =2(gp BP,(V(2))) = 0.

In the cobar complex CEBP, /I3, the inner degree of v;, |v;| = |t;| = q(p®> +p* +p+1) fori > 4. Tt
follows that in the range t —s < q(p® +p?> +p+1) — 1,

Extyp pp(BP., BP./I3) = Ext}'(BP., BP,/I3) = Ext}/ (BP., BP,/I3),
where IV = Z/plvs][t1, ta, t3]. From ng(vs) = vs mod I3, we see that
Ext%’fp[vﬂ[tht%tg](BP*, BP,/I3) = Ext%;;[tht%tg](Z/p, Z/p) ® Z/plvs].

To compute the Ext groups EXt%/p[tl,tQ,tg] (Z/p,7Z/p), we can use the modified May spectral sequence
(MSS) introduced in [7,9,10, 24].

There is the May spectral sequence { E$"* §,.} that converges to Ext%/tp[tl,t%ts] (Z/p,Z/p). The E;-term
of this spectral sequence is

E{™" = Elhiy | 0<j,i = 1,2,3]® Plbi; | 0< j,i = 1,2,3], (4.2)
where
hij € E117q(1+p+~~+pi71)pj,2i—1 and by € E%,q(1+p+...+pi71)py‘+17p(2i_1).

The first May differential is given by

(51(hi]‘)= Z hi—k,k-{-jhk,j and (51(()1']'):0. (43)
0<k<i

2
For the reason of the total degree, to compute Ext;gg},p +2p+2)_2)(BP*7 BP,/I3), we only need to
consider the sub-algebra generated by hsg, hog, b1, h21, h11, h12, and bag, b1g, b11, i.e., the subcomplex

E[hlj | 1 g Z,Z+] g 3] [ E[bgo,bll] [ P[blo]
From (4.3), we know that within t — s < q(p? + 2p + 2) — 2, May’s Fa-term is
Ey™" = H>" " (EY™",61) = H""(Elhij | 0 < j, i+ j < 3],01) ® E[b2o, b11] @ Plbio].

Toda [28] computed the cohomology of (E[h;; | 0 < j,i+ j < 3],61). Here, we only jot down the
even-dimensional elements within that range, i.e.,

hZOhIO; q(p + 2) - 27 h20h11a Q(Qp + 1) - 27
hishio, q(P*+1)—2, hothi, q(p* +2p) —2.

Thus within t — s < ¢(p? + 2p + 2) — 2, even-dimensional May’s E-term E;t’* is a sub-algebra of
Z/p{1, haohio, haohi1, highio, harhi1} @ Elbag, b11] @ Plbig].

Suppose that we have a generator y in Extz’/s;g;ﬁij_ff ;?)_Q(BP*, BP,/I3). Then y is the form of x or

vsx, where x is an even-dimensional generator in H*(E[h;; | i + j < 3]) ® E[bao, bi1] ® Pb1o].
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(1) If y = vgx, then x € E;t’* subject to t —s = ¢(p + 1) — 2. An easy computation shows that the
corresponding Fs-term is zero.
(2) If y = z, then = € By subject to t — s = q(p® + 2p + 2) — 2. Similarly, from

q(p®> +2p+2) —2=6p—2 mod gp — 2,
we compute the total degree t — s mod ¢gp — 2 of the generators in

Z/p{1, haohio, haoh11, hizhio, horhi1} @ [bao, b11]

and find that none of them is 6p — 2. Thus the corresponding F>-term is zero.
The lemma then follows. O

It is easily shown that the following theorem holds from the lemma above.
Theorem 4.2. Forp>7 and s > 1, the Toda bracket is {c131,p,7s) = 0.

Proof.  Let v3 be the composition of the following maps:

GapPHpHl) Eq(p2+p+1)v(2) 2 v(2),
where the first map is the inclusion map to the bottom cell.

It is known that U3 is an order p element in m(,24,41)(V(2)). Thus the Toda bracket (o /i, p,vs) is
well-defined and (o181, p,U3) € Tqp242pt2)—2(V(2)) = 0. It follows that the Toda bracket (a/31,p,v3)
=0.

Let j : V(2) — S7Pt2)+3 he the map that collapses all lower-dimensional cells in V/(2). Then v, =
U305t j. As a result,

(a1B1,p,7s) = (Q1B1,p, 3 - v5 " ) = (@11, p, V3) - v '+ j

I
e

This completes the proof. O
Proposition 4.3 (See [22, Proposition 7.5.11]). For p > 7 and s > 1, the Toda bracket
<a15f71,a1ﬂ1,p, vs) s well-defined in m,(S°), and

1B T hogys = (a1 BV aa By, p, vs) = Bp/p—17s-

P?"OOf. From <ﬁf_l7alﬁlap> = 07 <a1ﬁ1up7 O[1> = 07 <Oé1,0[1ﬂ17p> = 07 and <a151up7’78> = 07 we know
that the following 4-fold Toda brackets are well-defined and
Bp/p—l = <ﬁf717 041517197 OZ1>, athO'Ys = <0517 a1ﬁ17p7 ’75>

On the other hand, one has

B arhaoys = BY a1, a1 B1,p,vs)
= (a1, 11, p, 7s)
= a1 (BY", 1B, p, vs)
= (BY71, a1 1, p, 017s)
= (B0, 1B, p, 1) s
= ﬁp/pflfy&
The proposition follows. O

Theorem 4.4. Forp > 7 and 2 < s < p— 2, we have the following Adams-Novikov differentials:

d2p—1(h20b11’75) = OélﬂthO’Ys-
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Proof.  Note that b1y = ,/,. Then from (3.1), one has the differential in the small descent spectral

sequence da(haobi1) = B1fp/p—1, which could be read as d(h2oB,/p) = Bi1Bp/p—1 and d(haofBp/p7s)
= B1Bp/p—17s in the cobar complex of BP,, or equivalently the first Adams-Novikov differential
in the ANSS. Then from the relation f3,,,_17s = o187 hagys in . (S°) and Bp/p—17s = 0 in
Ext%’*P*BP(BP*, BP,), we get the Adams differential in the ANSS, i.e.,

dop—1(h20b117s) = P '5f_1@1h20’73 = a1 haos-

The theorem follows. O

5 The proof of Theorem A

In this section, we prove our main theorem which states that 3,2 /,2_; survives to E, in the ANSS. Note
that ()2 ,,2_; has too low a dimension to be the target of an Adams-Novikov differential, and we will do
this by showing that all the Adams-Novikov differentials d.(8)2/,2_1) are trivial.

Lemma 5.1. Let i £ 0 mod p. In the ANSS, one has the following Adams-Novikov differential:
dap—1(ni) = BY Bit1-
Proof.  Recall from [22, Theorem 7.3.8] that there is a spectral sequence of the following form:
By = Ext}j, pp(BP., BP.(X”'"1)) ® E[hn] @ Plbn] = Extish, 5p(BP., BP.(X)).

where BP*(X”2’1) = BP, [tl]/<t’172>. Moreover, it is proved in [22, Theorem 7.3.11(e)] that the above
spectral sequence has non-trivial differentials da(hoopti—1) = ib118;4+1. From its definition, we know that
7; = h11p;—1 is represented by

i—1 i i D2 i—1
55(1}5“ to 4 vith — vtV P ol v;;t’f)
buy

p+i
)

(see [22, p.288]), which is also denoted by dd(-%-C2) in [11,29]. 1In the cobar complex of
Ng = BP,/(p™,v$°), a straightforward computation shows that the coboundary of

. 2 2 . .
Vh(ts — tth — tot? 42 TP BT gy — P 2) gl g (b — 2T

pur

p+i p+i
2y ) 2

(p+ip2v, - (p+iypol

is
p+i—1 o i P> +p i—1, 4P i+1
(vh to + vty — vit] TP — i gt @ 1 L0

pu1 pu1

b11.

This shows that in Ext%;* pp(BP, NZ), we have the following relation between cohomology classes:

: . . 2 . .
(VBT 4 vith — bt TP i Lyt @ tl} _ [v%“ ]
pur

Applying the connecting homomorphism 6, we get a1m; = Bit18,/p-
From a1m; = Biy18,/, and the Toda differential, one has

arday_1(ni) = dop—1(0am;) = dap—1(Biv18p/p) = 0157 Bisy1-

The lemma follows from aydap—1(1;) = 187 Bit1. O
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gie
d2p—1
gse o
dop—1
o
m
o
gi@
o
‘K
dee
1+ g7e008
Bp2/p2 1
1 1 &
0 q(p® +1) — 4 a(p®+1) -3 ap*+1) -2 t—s

Figure 2 Four ANSS da;,_1 differentials

Proof of Theorem A.  From B,/ € Ext%?,(*p;?)(BP*, BP,), we know that d,(Bp2/p2-1) €
Ext‘gzg*BP(BP*, BP,) subject to t—s = q(p*+1) —3. From Theorem 3.3, we know that the corresponding
Extf’g’}*BP(BP*, BP,) is the Z/p-module generated by g1, g3, 94, g6, and g7, gs.

Since g7 = a18(p—1)p+1 and gg = a1y2 /2 have dimensions that are too low, they lie outside the image
of d.(Bp2/p2—1). Moreover, we will show that gi,g3, g4, and ge either support or receive a nontrivial
differential (see Figure 2). Therefore, they cannot lie in the image of d,.(8p2/p2—1).

From the Toda differential dap,—1(b11) = a1 87, we have

2_, 1 2_q
dop—1(BY P b11B2) = a1 Y T B = g1,
p2—6p+1 p2—dp+1

d2p—1(94) = d2p—1(/81 b?l’YPTH) =213, °? bll’Y%-

From dap—1(haob117s) = a1 87 haos (see Theorem 4.4), we have

p274p71 p272p71

dop—1(fy 2 h205117%)=a151 2 h207%293~

From Lemma 5.1, we have

dop—1(96) = dap—1 (B Nip-3)ps3) = B Blp—3)pia-
Then Theorem A follows. O

6 A conjecture

Consider the cofiber sequence
R /4
and the induced short exact sequence of BP-homologies
0 — BP,(5°) —> BP,($°) — BP,(M) —= 0,

which induces a long exact sequence of Ext groups, i.e.,

- — Ext"(BP,(S°)) — Ext"*(BP,(S°)) —= Ext"*(BP,(M)) —2> Ext>!(BP,(5°)) — - -

dzp_l ldgp_l d2p—1 ld%)—l

- — Ext?*(BP,(S°)) — Ext®*(BP,(5°)) — Ext?*(BP,(M)) % Ext?*1*(BP,(S%)) — -- - .
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For the connecting homomorphism 4, one has
(5(hi+2) = ﬂpi+1/pi+1, 6(v1hi+2) = 6pi+1/pi+1,1, (S(Ui) = Z'Oéi.

From the Toda differential dap—1(83,/,) = 187, one can get a non-trivial differential in the ANSS for
the Moore spectrum M:

dap—1(h2) = v1 7.

Then from the relation hi+15£;p = hHngi (see [19] and [22, p. 246]), we get the following Adams-Novikov
differential by induction:

dop—1(his2) B0 = dop_1(hit2fBY)
= dyp1(hir1 ],
= dyp1(hir1)BY),

;
= 011 i By
P
= ’Ul(ﬂpifl/pi—l o/p )
i
= ’Ulﬁﬁi/piﬁf s

which implies dap—1(hit2) = v1 ﬁ;’ i i in the ANSS for the Moore spectrum M. Then from the convergence
of v1 in the ANSS for the Moore spectrum, one has

d2p—1(vlhz’+2) :Ufﬂgi/pi'
Applying the connecting homomorphism ¢, we have the Adams-Novikov differential for the sphere

dap—1(Bpit1 1) = dop-1(3(vihit2)) = 6(dap—1(v1hiy2)) = (VB i) = 2000 -

p

So one can prove the non-existence of fpi+1/pi+1_1 from the non-triviality of

@zl # 0 € Extyd 5p (BP., BP.).

The behavior for small 7 is already known:
(1) Bp/p—1 exists and azf] = 0 because agff; = 0.

(2) Bp2/p2—1 exists, and this implies agﬁg/p =0.

We know that Bg/p # 0 in Ext?éxgp(BP*,BP*) (see [19,22]). However, we could not find its

representative element bf; in Ex‘c?gp}’;i’gp(BP*7 BP,(X)) due to the non-trivial differential d(h; b5, ") = b,
in the SDSS (see [22, Theorem 7.3.12(b)] and the ABC theorem). Nonetheless, we could prove that ﬁg/p
is divisible by 3;.

(1) At the prime p = 5, Bixgs2 converges to 6;’/5, where zg502 = hllbgag’")@. This implies agﬂg‘/5 =
asf1xgse = 0 (see [22, Subsection 7.5]) because asf; = 0.

(2) At the prime p > 7, we compute Ext%pizgp(BP*, BP,) by the SDSS. The E;-term

By = Extyy, p(BP., BP.(X)) ® Elon] © P[]

subject to s +u = 2p, t = qp* is the Z/p module generated by ﬂlhnb’;g?’vg, al,Blbgo_Snp, and
1 -5
alglpz hzob:f bzoupfspﬂ)fz. Since each generator is divisible by 1, we conclude that ﬂg/p must also be
2

divisible by 1. We further conjecture that [35 o= Brh11bh 372. Additionally, we have other conjectures

regarding 3%

o/ for general n, which are summarized in Conjecture C.
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