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1 Introduction

Let p be an odd prime. The Adams-Novikov spectral sequence (ANSS) based on the Brown-Peterson

spectrum BP is one of the most powerful tools to compute the p-component of the stable homotopy

groups of spheres π∗(S0) (see [1, 8, 11, 22]).

The E2-term of the ANSS is Exts,tBP∗BP (BP∗, BP∗), which has been extensively studied in low

dimensions. For s = 1, Ext1,∗BP∗BP (BP∗, BP∗) is generated by αkpn/n+1 for n � 0, and p � k with

k � 1, where αkpn/n+1 has order pn+1 (see [11, 14]). For s = 2, Ext2,∗BP∗BP (BP∗, BP∗) is the direct sum

of cyclic groups generated by βkpn/j,i+1 for suitable (n, k, j, i) (see [11, 22, 24]), and βkpn/j,i+1 has order

pi+1. For s � 3, only partial results of Exts,∗BP∗BP (BP∗, BP∗) are known (see [13]).

To compute the stable homotopy groups of the sphere, we still need to know which elements of the E2-

page could survive to the E∞-page of the ANSS. It is known that each element αkpn/n+1 is a permanent

cycle in the ANSS which represents an element of ImJ with the same order. Moreover, Behrens [4]

showed that for l a prime which generates Z×
p , the spectrum Q(l) introduced in [2, 3] detects the α and

β families in the stable stems. However, we are still far from fully determining which elements of the

βkpn/j,i+1 family could survive to E∞.
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Let βkpn/j denote βkpn/j,1. Toda [26,27] proved that α1β
p
1 is zero in π∗(S0). This relation supports a

non-trivial Adams-Novikov differential called the Toda differential, i.e.,

d2p−1(βp/p) = a · α1β
p
1 �= 0, (1.1)

where a is a non-zero scalar mod p. Hence βp/p could not survive the ANSS.

Based on the Toda differential (1.1), Ravenel [19] generalized the result and proved that there are non-

trivial differentials d2p−1(βpn/pn) ≡ a · α1β
p
pn−1/pn−1 mod ker β

p(pn−1−1)/(p−1)
1 for n � 1. Consequently,

βpn/pn also cannot survive to E∞ in the ANSS. From this, one can see that only βkpn/j ∈ H2(BP∗) for
k � 2, 1 � j � pn or k = 1, 1 � j � pn − 1 might survive to E∞ in the ANSS. The following are some

known results in this area:

Let p � 5. Oka proved that (a) for k = 1, 1 � j � p − 1 or k � 2, 1 � j � p, βkp/j are permanent

cycles in the ANSS (see [15]); (b) for k = 1, 1 � j � 2p− 2 or k � 2, 1 � j � 2p, βkp2/j are permanent

cycles in the ANSS (see [16]); (c) for n � 2, k = 1, 1 � j � 2n−1(p− 1) or n � 2, k � 2, 1 � j � 2n−1p,

βkpn/j are permanent cycles in the ANSS (see [17, 18]).

Let p � 7. Shimomura [25] proved that for k � 1, 1 � j � p2 − 2, βkp2/j are permanent cycles in the

ANSS.

In this paper, we prove the following theorem.

Theorem A. Let p � 7 be a prime. Then βp2/p2−1 is a permanent cycle in the Adams-Novikov spectral

sequence.

We can briefly summarize our strategy to prove Theorem A as follows. Inspection of degrees shows that

βp2/p2−1 has too low a dimension to be the target of an Adams-Novikov differential. Hence it suffices to

prove that βp2/p2−1 does not support any non-trivial differential. We work with the small descent spectral

sequence (SDSS), which converges to the E2-page of the ANSS. Computations show that in dimension

one less than that of βp2/p2−1, the SDSS has 8 elements listed in Lemma 3.1, and each must be eliminated

as a possible target of a differential on βp2/p2−1. Two of them are removed by d′2s in the SDSS as shown

in Figure 1, leaving the six listed in Theorem 3.3. Four of them are removed by d′2p−1s in the ANSS as

shown in Figure 2. This leaves only g7 and g8. They each lie in filtration 3, so they cannot be the target

of an ANSS differential on βp2/p2−1.

Assumption on prime p. Henceforth, in this paper, it is always implicitly assumed that p > 5,

unless stated otherwise.

Let M be the mod p Moore spectrum and M(1, pn − 1) be the cofiber of the map vp
n−1

1 , i.e.,

Σ∗M
vpn−1
1 �� M �� M(1, pn − 1).

Ravenel [20, Theorem 7.12] claimed that if M(1, pn − 1) is a ring spectrum and βpn/pn−1 is a permanent

cycle, then βkpn/j is a permanent cycle for all k � 1 and j � pn − 1.

Between the ANSS and the classical Adams spectral sequence (ASS), there is the Thom reduction map

Φ : Ext∗BP∗BP (BP∗, BP∗) −→ Ext∗A(Z/p,Z/p)

such that Φ(βpn/pn−1) = h0hn+1. Thus we obtain the following corollary.

Corollary B. Let p � 7 be a prime. Then h0h3 is a permanent cycle in the classical Adams spectral

sequence.

In [5], Cohen and Goerss claimed the existence of h0hn+1 in the classical ASS. One can see that the

existence of h0hn+1 in ASS is equivalent to the existence of βpn/pn−1 in the Adams-Novikov spectral

sequence. However, Minami [12] found a fatal error in their proof, so it is still an open problem in odd

primary stable homotopy theory. Due to its extreme importance, Hovey [6] listed the convergence of

h0hn+1 as one of the major open problems in algebraic topology.

Consider the ANSS for the Moore spectrum Ext∗,∗BP∗BP (BP∗, BP∗(M)) ⇒ π∗(M). From the Toda

differential, one can see that in the ANSS for the Moore spectrum

d2p−1(hn+2) = v1β
p
pn/pn , d2p−1(v1hn+2) = v21β

p
pn/pn .
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Applying the connecting homomorphism δ : Ext1,∗BP∗BP (BP∗, BP∗(M)) → Ext2,∗BP∗BP (BP∗, BP∗) induced
by the cofiber sequence

S0 p �� S0 �� M,

one gets an Adams differential in the ANSS for the sphere, i.e.,

d2p−1(βpn+1/pn+1−1) = α2β
p
pn/pn .

In Section 6, we prove that βp
p/p is divisible by β1, i.e., β

p
p/p = β1g. Note α2β1 = 0, and this provides

another perspective for understanding why we could have

d2p−1(βp2/p2−1) = α2β
p
p/p = 0 in Ext2p+1,∗

BP∗BP (BP∗, BP∗)

in Theorem A.

Based on the analysis of βp
p/p, we conjecture the following.

Conjecture C. For n < p− 1, βp
pn/pn is divisible by β1 and

βp
p/p = β1h11b

p−3
20 γ2,

βp
p2/p2 = β1h21h11b

p−4
30 δ3,

...

βp
pn/pn = β1hn,1hn−1,1 · · ·h11b

p−n−2
n+1,0 α

(n+2)
n+1 ,

...

βp
pp−2/pp−2 = β1hp−2,1hp−3,1 · · ·h11α

(p)
p−1,

where α(n+2) is the (n+ 2)-th letter of the Greek alphabet, and α
(n+2)
n+1 ∈ Extn+2,∗

BP∗BP (BP∗, BP∗) is one of

the (n+ 2)-th Greek letter family elements. These equations imply α2β
p
pn/pn = α2β1g = 0 for n < p− 1.

For n � p− 1, we conjecture that βp
pn/pn is not divisible by β1 and α2β

p
pn/pn might be non-zero. This

implies that βpn+1/pn+1−1 does not survive to E∞ in the ANSS when n � p− 1.

The rest of this paper is organized as follows. In Section 2, we recall the construction of the topological

small descent spectral sequence (TSDSS) and the small descent spectral sequence (SDSS), where the

SDSS is a spectral sequence that converges to Exts,tBP∗BP (BP∗, BP∗) started from the Ext groups of a

complex with p-cells. We list all the generators of the E1-page of the SDSS along with their corresponding

t− s values. This allows us to compute the E2-terms of the ANSS for specific t− s values. In Section 3,

we compute the Adams-Novikov E2-term Exts,tBP∗BP (BP∗, BP∗) subject to t − s = q(p3 + 1) − 3 by the

SDSS. In Section 4, a non-trivial Adams-Novikov differential d2p−1(h20b11γs) = α1β
p
1h20γs is proved. We

prove our main theorem by showing that dr(βp2/p2−1) = 0 in Section 5. At last, in Section 6, we prove

that βp
p/p is divisible by β1 and give our conjecture.

2 The small descent spectral sequence and the ABC theorem

In 1985, Ravenel [21–24] introduced the method of infinite descent and used it to compute the first

thousand stems of the stable homotopy groups of spheres at the prime 5. This method applies a so-called

small descent spectral sequence (SDSS) to identify the E2-terms of the ANSS.

Hereafter, we set q = 2p − 2. As mentioned in Section 1, we assume that p > 5 is a prime number

throughout this paper. Let T (n) be the Ranevel spectrum (see [22, Section 5, Chapter 6]) characterized

by BP∗(T (n)) = BP∗[t1, t2, . . . , tn]. Then we have the following diagram:

S0 = T (0) �� T (1) �� T (2) �� · · · �� T (n) �� · · · �� BP,
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where S0 denotes the sphere spectrum localized at p. Let T (0)p−1 and T (0)p−2 denote the q(p− 1) and

q(p− 2) skeletons of T (1), respectively, and they are denoted by X and X for simplicity. Then

X = S0 ∪α1 e
q ∪ · · · ∪α1 e

(p−2)q ∪α1 e
(p−1)q and X = S0 ∪α1 e

q ∪ · · · ∪α1 e
(p−2)q.

The BP -homologies of them are

BP∗(X) = BP∗[t1]/〈tp1〉 and BP∗(X) = BP∗[t1]/〈tp−1
1 〉.

From the definition above, we get the following cofiber sequences:

S0 i′ �� X
j′ �� ΣqX

k′
�� S1, (2.1)

X
i′′ �� X

j′′ �� S(p−1)q k′′
�� ΣX, (2.2)

and the short exact sequences of BP -homologies

0 �� BP∗(S0)
i′∗ �� BP∗(X)

j′∗ �� BP∗(ΣqX) �� 0, (2.3)

0 �� BP∗(X)
i′′∗ �� BP∗(X)

j′′∗ �� BP∗(S(p−1)q) �� 0. (2.4)

Putting (2.3) and (2.4) together, one has the following long exact sequence:

0 �� BP∗(S0) �� BP∗(X) �� BP∗(ΣqX) �� BP∗(ΣpqX) �� · · · . (2.5)

Putting (2.1) and (2.2) together, one has the following Adams diagram of cofibers:

S0

��

Σq−1X��

��

Spq−2��

��

Σ(p+1)q−3X��

��

· · ·��

X Σq−1X Σpq−2X Σ(p+1)q−3X.

(2.6)

Proposition 2.1 (See [22, Proposition 7.4.2]). Let X be as above. Then

(a) There is a spectral sequence converging to Exts+u,∗
BP∗BP (BP∗, BP∗(S0)) with the E1-term

Es,t,u
1 = Exts,tBP∗BP (BP∗, BP∗(X))⊗ E[α1]⊗ P [β1],

where Es,t,0
1 = Exts,tBP∗BP (BP∗, BP∗(X)), α1 ∈ E0,q,1

1 , β1 ∈ E0,qp,2
1 , and dr : Es,t,u

r → Es−r+1,t,u+r
r .

Here, E[−] denotes the exterior algebra and P [−] denotes the polynomial algebra on the indicated

generators. This spectral sequence is referred to as the small descent spectral sequence (SDSS).

(b) There is a spectral sequence converging to π∗(S0) with the E1-term

Es,t
1 = π∗(X)⊗ E[α1]⊗ P [β1],

where E0,t
1 = πt(X), α1 ∈ E1,q

1 , β1 ∈ E2,pq
1 , and dr : Es,t

r → Es+r,t+r−1
r . This spectral sequence is

referred to as the topological small descent spectral sequence (TSDSS).

The two spectral sequences mentioned above could determine the 0-line and the 1-line (i.e.,

Ext0,∗BP∗BP (BP∗, BP∗(S0)), Ext1,∗BP∗BP (BP∗, BP∗(S0))) or the corresponding elements in π∗(S0) by

Ext0,∗BP∗BP (BP∗, BP∗(X)) and Ext1,∗BP∗BP (BP∗, BP∗(X)). Additionally, for s � 2, the s-line Exts,∗BP∗BP

(BP∗, BP∗(S0)) or the corresponding elements in π∗(S0) are produced by the corresponding elements in

Exts,∗BP∗BP (BP∗, BP∗(X)) with s � 2 as described in the following ABC theorem [24, Theorem 7.5.1].

Theorem 2.2 (The ABC theorem). For t− s < q(p3 + p− 1)− 3 and s � 2,

Exts,tBP∗BP (BP∗, BP∗(X)) = A⊕B ⊕ C.
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Here, A is the Z/p-vector space spanned by

{βip, βip+1 | i � p− 1} ∪ {βp2/p2−j | 0 � j � p− 1}.

Meanwhile, B = R⊗ {γi | i � 2}, where

R = P [bp20]⊗ E[h20]⊗ Z/p{{bk11 | 0 � k � p− 1} ∪ {h11b
k
20 | 0 � k � p− 2}}.

Finally,

Cs,t =
⊕
i�0

Rs+2i,t+i(p2−1)q.

We list the bidegrees of the various elements appearing in the ABC theorem as follows:

βip ∈ Ext2,q[ip
2+ip−1], βip+1 ∈ Ext2,q[ip

2+(i+1)p], βp2/p2−j ∈ Ext2,q[p
3+j],

γi ∈ Ext3,q[i(p
2+p+1)−p−2], h11 ∈ Ext1,qp, h20 ∈ Ext1,q(p+1),

b11 ∈ Ext2,qp
2

, b20 ∈ Ext2,qp(p+1).

From the ABC theorem above, we can find all the generators of Exts,tBP∗BP (BP∗, BP∗(X)) for s � 2

and t− s < q(p3 + p− 1)− 3. Table 1 summarizes the first class of generators, i.e., the generators of A.

Here, pq − 2 = 2p2 − 2p− 2 is the total degree of β1 ∈ E0,qp,2
1 in the SDSS. The reason for computing

t− s mod pq − 2 and the purpose of underlining certain values will become clear in Lemma 3.1.

The generators of B are summarized in Table 2.

Let us take h11b
k
20γi from the B-family as an example to illustrate the calculation.

The total degree of h11b
k
20γi is

q[(i+ k)p2 + (i+ k)p+ i− 2]− 2k − 4 = 2(i+ k)p3 − 2(k + 2)p− 2(i+ k)

for 2 � i � p−1 and 0 � k � p−2. To ensure that the total degree of h11b
k
20γi is less than q(p3+p−1)−3,

we need i+ k < p. A straightforward computation shows

2(i+ k)p3 − 2(k + 2)p− 2(i+ k) ≡ 2(k + 2i− 2)p mod pq − 2.

Notice that 2(k + 2i− 2)p > pq − 2 if k + 2i > p, and the total degree of h11b
k
20γi is

2(k + 2i− 2)p− (pq − 2) = 2(k + 2i− p− 1)p+ 2 mod pq − 2

if k + 2i > p.

Table 1 Generators of A

Generators of A t− s and t− s mod pq − 2 Index ranges

βip q[ip2 + ip− 1]− 2

≡ 2(i− 1)p+ 2i if i � p− 2

≡ 0 if i = p− 1

βip+1 q[ip2 + (i+ 1)p]− 2

≡ 2ip+ 2i if i � p− 2

≡ 2p
2p

if i = p− 1

βp2/p2−j q[p3 + j]− 2

≡ 2(j + 1)p− 2j
2p

if j � p− 2

≡ 4 if j = p− 1
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Table 2 Generators of B

Generators of B t− s and t− s mod pq − 2 Index ranges

h11bk20γi q[(i+ k)p2 + (i+ k)p+ i− 2] for 2 � i � p− 1, 0 � k � p− 2,

−2k − 4 and 2 � i+ k � p− 1

≡ 2(k + 2i− 2)p if k + 2i � p

≡ 2(k + 2i− p− 1)p+ 2 if k + 2i > p

h20h11bk20γi q[(i+ k)p2 + (i+ k + 1)p+ i− 1] for 2 � i � p− 1, 0 � k � p− 2,

−2k − 5 and 2 � i+ k � p− 1

≡ 2(k + 2i− 1)p− 1 if k + 2i < p

≡ 2(k + 2i− p)p+ 1 if k + 2i � p

bk11γi q[(i+ k)p2 + (i− 1)p+ i− 2] for 2 � i � p− 1, 0 � k � p− 1,

−2k − 3 and 2 � i+ k � p− 1

≡ 2(k + 2i− 2)p− 2k − 1 if k + 2i � p+ 1

≡ 1 if k = 0, 2i = p+ 1

≡ 2(k + 2i− p− 1)p− 2k + 1
4p−3

if k + 2i � p+ 2

h20bk11γi q[(i+ k)p2 + ip+ i− 1] for 2 � i � p− 1, 0 � k � p− 1,

−2k − 4 and 2 � i+ k � p− 1

≡ 2(k + 2i− 1)p− 2(k + 1) if k + 2i � p

≡ 2(k + 2i− p)p− 2k
2p

if k + 2i > p

One might have noticed that although R contains the P [bp20] part, P [bp20] does not show up in the

B-family generators. This is because the total degree of bp20 is

p(qp(p+ 1)− 2) > q(p3 + p− 1)− 3.

Hence, suppose that a generator of B is a multiple of bp20, and its total degree would exceed the range of

interest.

On the other hand, the P [bp20] part does show up in the C-family generators. The key difference is that

C is the direct sum of shifted copies of R. Based on [21, Theorems 4.11 and 4.12], we could determine

all the generators of C.

In more detail, let us write i = jp + m with 0 � m � p − 1. Considering the i-th shifted copy

Rs+2i,t+i(p2−1)q ⊂ Cs,t we have the following:

(1) b
(j+1)p
20 ∈ R2(p−m)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(p−m),t, which is represented by bp−m−1

20 ujp+m for

p− 1 � m � 1, where

ujp+m ∈ C2,q[(j+1)p2+(j+m+1)p+m].

From this, we get generators of the form

bp−m−1
20 ujp+m ⊗ E[h20]⊗ {bk11 | 0 � k � p− 1} ∪ {h11b

k
20 | 0 � k � p− 2}.

(2) bk11b
jp
20 ∈ R2(k−m)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m),t, which is represented by bk−m−1

11 β(j+1)p/p−m

for p− 1 � k � m+ 1 � 1, where

β(j+1)p/p−m ∈ C2,q[(j+1)p2+jp+m].

From this, we get generators of the form

bk−m−1
11 β(j+1)p/p−m ⊗ E[h20].

• Especially, h20b
p−1
11 bjp20 ∈ R3+2(jp+p−2),t+(jp+p−2)(p2−1)q ⊂ C3,t is represented by h11β(j+1)p/1,2,

which is an element of order p2.
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(3) h11b
k
20b

jp
20 ∈ R2(k−m)+1+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m)+1,t, which is represented by

bk−m−1
20 ηjp+m+1

for p− 2 � k � m+ 1 � 1, where

ηjp+m+1 = h11ujp+m ∈ C3,q[(j+1)p2+(j+m+2)p+m].

(4) h20h11b
k
20b

jp
20 ∈ R2(k−m+1)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m+1)t, which is represented by

bk−m
20 βjp+m+2

for p− 2 � k � m � 0, where

βjp+m+2 ∈ C2,q[jp2+(j+m+2)p+m+1].

• Especially, h20h11b
p−2
20 bjp20 ∈ R2+2(jp+p−2),t+(jp+p−2)(p2−1)q ⊂ C2,t is represented by β(j+1)p/1,2,

which is an element of order p2.

The generators of C are summarized in Table 3.

Remark 2.3. The Adams-Novikov spectral sequence for the spectrum X collapses from the E2-term

Exts,tBP∗BP (BP∗, BP∗(X)) in the range t−s < q(p3+p−1)−3, since there are no elements with filtration

> 2p. Thus we actually get the homotopy groups πt−s(X) in this range.

3 The ANSS E2-term Exts,tBP∗BP (BP∗,BP∗) at t− s = q(p3 + 1)− 3

Consider the Adams-Novikov differential dr : Es,t
r → Es+r,t+r−1

r in the ANSS. From the total degree of

βp2/p2−1, we know that

dr(βp2/p2−1) ∈ Exts,tBP∗BP (BP∗, BP∗)

such that t − s = q(p3 + 1) − 3. The SDSS Es,t,u
1 converges to Exts+u,t

BP∗BP (BP∗, BP∗). Fixing t − s − u

= q(p3 + 1)− 3, we have the following lemma.

Lemma 3.1. When restricted to t − s − u = q(p3 + 1) − 3, the E1-page Es,t,u
1 of the SDSS is the

Z/p-module generated by the following p+15
2 generators:

g1 = α1β
p2−1
1 β2 ∈ E2,∗,2p2−1

1 , g2 = βp2−p
1 h20βp/p ∈ E3,∗,2p2−2p

1 ,

g3 = α1β
p2−2p−1

2
1 h20γ p+1

2
∈ E4,∗,p2−2p

1 , g4 = β
p2−6p+1

2
1 b211γ p+1

2
∈ E7,∗,p2−6p+1

1 ,

g5,m = α1β
mp− p−1

2
1 b

p−1
2 −m

11 β( p+1
2 )p/p−m ∈ Ep+1−2m,∗,∗

1 , g6 = βp−1
1 η(p−3)p+3 ∈ E3,∗,2p−2

1 ,

g7 = α1β(p−1)p+1 ∈ E
2,q(p3+1),1
1 , g8 = α1βp2/p2 ∈ E

2,q(p3+1),1
1 .

The index range for m in g5,m is 0 � m � p−1
2 .

Proof. Fix t − s − u = q(p3 + 1) − 3. From the ABC theorem, we know that the generators of the

E1-terms in the SDSS are of the form W = βk
1w or W = α1β

k
1w, where w is an element listed in the

ABC theorem.

(1) If a generator of Es,t,u
1 is of the form W = βk

1w, then the total degree of βp
1w is q(p3 + 1)− 3 and

the total degree of w is q(p3 + 1)− 3 modulo the total degree of β1 which is t− u = qp− 2. Noting that

q(p3 + 1)− 3 ≡ 4p− 3 mod qp− 2,

we list all the generators whose total degree might be 4p − 3 mod qp − 2, which are marked with an

underline and the subscript 4p− 3 in Tables 1–3.



8 Hong J G et al. Sci China Math

Table 3 Generators of C

Generators of C t− s and t− s mod pq − 2 Index ranges

bk11b
p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + jp+m] for 1 � m < p, 0 � j � p− 2,

−2(p−m+ k) and 0 � k < p, j + k < m

≡ 2(j + k + 1)p+ 2(j − k + 1)

h20bk11b
p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + (j + 1)p for 1 � m < p, 0 � j � p− 2,

+ m+ 1]− 2(p−m+ k)− 1 and 0 � k < p, j + k < m,

and j + k � p− 3

≡ 2(j + k + 2)p+ 2(j − k + 1)− 1 if j + k � p− 4

or j + k = p− 3, 2j < p− 5

≡ 2(j − k + 2)p− 1 if j + k = p− 3, 2j � p− 5

h11b
k+p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + (j + k for 1 � m < p, 0 � j � p− 2,

+1)p+m]− 2(p−m+ k)− 1 and 0 � k � p− 2, j + k < m,

≡ 2(j + k + 2)p+ 2(j − p) + 3 and j + k � p− 3

h20h11b
k+p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + (j + k for 1 � m < p, 0 � j � p− 2,

+2)p+m] + 2(m− k − 2) and 0 � k � p− 2, j + k < m,

and j + k � p− 3

≡ 2(j + k + 2)p+ 2j + 2 if j + k � p− 4

≡ 2j + 4 if j + k = p− 3

bk−m−1
11 β(j+1)p/p−m q[(j + k −m)p2 + jp+m] for 1 � m+ 1 � k < p,

−(2k − 2m) and 0 � j � p− 2

≡ 2(j + k)p+ 2(j − k) if j + k � p− 2

or j + k = p− 1, 2j < p− 1

≡ 2(j + k − p+ 1)p+ 2(j − k + 1)
2p

if j + k � p

or j + k = p− 1, 2j � p− 1

h20b
k−m−1
11 β(j+1)p/p−m q[(j + k −m)p2 + (j + 1)p+m for 1 � m+ 1 � k < p,

+1]− (2k − 2m+ 1) and 0 � j � p− 2

≡ 2(j + k + 1)p+ 2(j − k)− 1
4p−3

if j + k � p− 3

or j + k = p− 2, 2j � p− 3

≡ 2(j + k − p+ 2)p+ 2(j − k) + 1 if j + k > p− 2

or j + k = p− 2, 2j > p− 3

h11β(j+1)p/1,2 q[(j + 1)p2 + (j + 2)p− 1]− 3 for 0 � j � p− 2

≡ 2jp+ 2(j + 1) + 1 if j � p− 3

≡ 1 if j = p− 2

bk−m−1
20 ηjp+m+1 q[(j + k −m)p2 + (j + k + 1)p for 1 � m+ 1 � k � p− 2,

+ m]− (2k − 2m+ 1) and 0 � j � p− 2

≡ 2(j + k)p+ 2j + 1 if j + k � p− 2

≡ 2(j + k − p+ 2)p+2(j − p) + 3
4p−3

if j + k > p− 2

bk−m
20 βjp+m+2 q[(j + k −m)p2 + (j + k + 2)p for 0 � m � k � p− 2,

+ m+ 1]− 2(k −m+ 1) and 0 � j � p− 2

≡ 2(j + k + 1)p+ 2j
2p

if j + k � p− 3

≡ 2(j + k − p+ 3)p+ 2(j − p) + 2 if j + k > p− 3

≡ 0 if j = k = p− 2

β(j+1)p/1,2 q[(j + 1)p2 + (j + 1)p− 1]− 2 for 0 � j � p− 2

≡ 2jp+ 2(j + 1) if j � p− 3

≡ 0 if j = p− 2

We have

bk11γi at k = 2 and i = (p+ 1)/2,

h20b
k−m−1
11 β(j+1)p/p−m at k = 1 and j = 0,

bk−m−1
20 ηjp+m+1 at k = 3 and j = p− 3,
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from which we get the following generators in Es,t,u
1 :

b211γ p+1
2

⇒ g4 = β
p2−6p+1

2
1 b211γ p+1

2
∈ E7,∗,p2−6p+1

1 ,

h20βp/p ⇒ g2 = βp2−p
1 h20βp/p ∈ E3,∗,2p2−2p

1 ,

η(p−3)p+3 ⇒ g6 = βp−1
1 η(p−3)p+3 ∈ E3,∗,2p−2

1 .

(2) If a generator of Es,t,u
1 is of the form W = α1β

k
1w1, then from the total degree of α1 being

t − u = 2p − 3, we see that the total degree of w1 is 2p modulo qp − 2. Similarly, we can find all such

w1’s, which are marked with an underline and the subscript 2p in Tables 1–3. We have

β(p−1)p+1, βp2/p2 , h20γ p+1
2
, b

p−1
2 −m

11 β( p+1
2 )p/p−m, β2,

from which we get the following generators in Es,t,u
1 :

g7 = α1β(p−1)p+1, g8 = α1βp2/p2 ,

g3 = α1β
p2−2p−1

2
1 h20γ p+1

2
, g5,m = α1β

mp− p−1
2

1 b
p−1
2 −m

11 β( p+1
2 )p/p−m, 0 � m � p− 1

2
,

g1 = α1β
p2−1
1 β2.

Computing the filtration of the corresponding generators, we get the lemma.

Remark 3.2. The method in proving Lemma 3.1 is a general method in computing the E1-term Es,t,u
1

of the SDSS with specialized t− s− u.

Theorem 3.3. When restricted to t− s = q(p3 +1)− 3, the Adams-Novikov E2-page Exts,tBP∗BP (BP∗,
BP∗) is the Z/p-module generated by the following 6 elements:

g1 = α1β
p2−1
1 β2 ∈ Ext2p

2+1,∗
BP∗BP ,

g3 = α1β
p2−2p−1

2
1 h20γ p+1

2
∈ Extp

2−2p+4,∗
BP∗BP , g4 = β

p2−6p+1
2

1 b211γ p+1
2

∈ Extp
2−6p+8,∗

BP∗BP ,

g6 = βp−1
1 η(p−3)p+3 ∈ Ext2p+1,∗

BP∗BP ,

g7 = α1β(p−1)p+1 ∈ Ext3,q(p
3+1), g8 = α1βp2/p2 ∈ Ext3,q(p

3+1).

Proof. Following Ravenel [22, p. 287], we compute in the cobar complex of N2
0 = BP∗/(p∞, v∞1 ):

d

(
vjp2
pvp1

(t2 − tp+1
1 )

)
=

vjp2
pvp1

tp1 ⊗ t1 +
vjp2

pvp−1
1

b10,

− d

(
vjp+1
2

pvp+1
1

t1

)
= − vjp2

pvp1
tp1 ⊗ t1 − j

v
(j−1)p+1
2

pv1
tp

2

1 ⊗ t1 +
vjp2
pv1

t1 ⊗ t1,

d

(
j
v
(j−1)p
2 v3
pv1

t1

)
= j

v
(j−1)p+1
2

pv1
tp

2

1 ⊗ t1 − j
vjp2
pv1

t1 ⊗ t1,

− (j − 1)/2d

(
vjp2
pv1

t21

)
= (j − 1)

vjp2
pv1

t1 ⊗ t1.

A straightforward calculation shows that the coboundary of

vjp2
pvp1

t2 − vjp2
pvp1

tp+1
1 − vjp+1

2

pvp+1
1

t1 + j
v
(j−1)p
2 v3
pv1

t1 − (j − 1)/2
vjp2
pv1

t21

is
vjp
2

pvp−1
1

b10. Then from δδ(
vjp
2

pvp
1
) = βjp/p, we get a differential in the SDSS:

d2(h20βjp/p) = β1βjp/p−1.
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0 t− s− uq(p3 + 1)− 4 q(p3 + 1)− 3 q(p3 + 1)− 2

βp2/p2−1

s+ u

g6

g7 g83

d2

d2g5,m

g4

g3

g2

g1

Figure 1 Two SDSS d2 differentials

Similarly, we have

d2(h20βjp/i) = β1βjp/i−1 for 2 � i � p. (3.1)

Applying (3.1), we get the following differentials in the SDSS:

d2(g2) = d2(β
p2−p
1 h20βp/p) = βp2−p+1

1 βp/p−1,

d2(α1β
mp− p−1

2 −1
1 b

p−1
2 −m

11 h20β( p+1
2 )p/p−m+1) = α1β

mp− p−1
2

1 b
p−1
2 −m

11 β( p+1
2 )p/p−m = g5,m,

which are illustrated in Figure 1. Then the theorem follows.

4 A differential in the ANSS

This section is aimed at showing that

d2p−1(h20b11γs) = α1β
p
1h20γs (4.1)

in the Adams-Novikov spectral sequence. This differential could imply the vanishing of g3.

We begin from showing that πq(p2+2p+2)−2(V (2)) = 0, from which we show that the Toda bracket

〈α1β1, p, γs〉 = 0 and the Toda bracket 〈α1β
p−1
1 , α1β1, p, γs〉 is well-defined. Then from the relation

〈α1β
p−1
1 , α1β1, p, γs〉 = α1β

p−1
1 h20γs = βp/p−1γs

in π∗(S0) and d(h20b11) = β1βp/p−1, we get the desired differential in the ANSS.

Let p � 7 and V (2) be the Smith-Toda spectrum characterized by BP∗(V (2)) = BP∗/I3, where I3 is

the invariant ideal of BP∗ = Z(p)[v1, v2, . . . , vi, . . .] generated by p, v1, and v2. To compute the homotopy

groups of V (2), one has the ANSS {Es,t
r V (2), dr} that converges to π∗(V (2)). The E2-page of this spectral

sequence is

Es,t
2 V (2) = Exts,tBP∗BP (BP∗, BP∗(V (2))).

Let

Γ = BP∗/I3 ⊗BP∗ BP∗BP ⊗BP∗ BP∗/I3 = BP∗/I3[t1, t2, . . .].

Then (BP∗/I3,Γ) is a Hopf algebroid, and its structure map is deduced from that of (BP∗, BP∗(BP )).

By a change of ring theorem, one sees that

Exts,tBP∗BP (BP∗, BP∗(V (2))) = Exts,tΓ (BP∗, BP∗/I3) ⇒ π∗(V (2)).
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Lemma 4.1. The (q(p2 + 2p+ 2)− 2)-dimensional stable homology group of V (2) is trivial, i.e.,

πq(p2+2p+2)−2(V (2)) = 0.

Proof. Fixing t− s = q(p2 + 2p+ 2)− 2, we know that the Adams-Novikov E2-term

Ext
s,s+q(p2+2p+2)−2
BP∗BP (BP∗, BP∗(V (2))) = Ext

s,s+q(p2+2p+2)−2
Γ (BP∗, BP∗/I3)

converges to πq(p2+2p+2)−2(V (2)). We prove that πq(p2+2p+2)−2(V (2)) = 0 by showing that

Ext
s,s+q(p2+2p+2)−2
BP∗BP (BP∗, BP∗(V (2))) = 0.

In the cobar complex Cs
ΓBP∗/I3, the inner degree of vi, |vi| = |ti| � q(p3 + p2 + p + 1) for i � 4. It

follows that in the range t− s � q(p3 + p2 + p+ 1)− 1,

Exts,tBP∗BP (BP∗, BP∗/I3) = Exts,tΓ (BP∗, BP∗/I3) = Exts,tΓ′ (BP∗, BP∗/I3),

where Γ′ = Z/p[v3][t1, t2, t3]. From ηR(v3) ≡ v3 mod I3, we see that

Exts,∗
Z/p[v3][t1,t2,t3]

(BP∗, BP∗/I3) ∼= Exts,∗
Z/p[t1,t2,t3]

(Z/p,Z/p)⊗ Z/p[v3].

To compute the Ext groups Ext∗
Z/p[t1,t2,t3](Z/p,Z/p), we can use the modified May spectral sequence

(MSS) introduced in [7, 9, 10, 24].

There is the May spectral sequence {Es,t,∗
r , δr} that converges to Exts,tZ/p[t1,t2,t3]

(Z/p,Z/p). The E1-term

of this spectral sequence is

E∗,∗,∗
1 = E[hij | 0 � j, i = 1, 2, 3]⊗ P [bij | 0 � j, i = 1, 2, 3], (4.2)

where

hij ∈ E
1,q(1+p+···+pi−1)pj ,2i−1
1 and bij ∈ E

2,q(1+p+···+pi−1)pj+1,p(2i−1)
1 .

The first May differential is given by

δ1(hij) =
∑

0<k<i

hi−k,k+jhk,j and δ1(bij) = 0. (4.3)

For the reason of the total degree, to compute Ext
s,s+(q(p2+2p+2)−2)
BP∗BP (BP∗, BP∗/I3), we only need to

consider the sub-algebra generated by h30, h20, h10, h21, h11, h12, and b20, b10, b11, i.e., the subcomplex

E[hij | 1 � i, i+ j � 3]⊗ E[b20, b11]⊗ P [b10].

From (4.3), we know that within t− s � q(p2 + 2p+ 2)− 2, May’s E2-term is

Es,∗,∗
2 = Hs,∗,∗(Es,∗,∗

1 , δ1) = H∗,∗,∗(E[hij | 0 � j, i+ j � 3], δ1)⊗ E[b20, b11]⊗ P [b10].

Toda [28] computed the cohomology of (E[hij | 0 � j, i + j � 3], δ1). Here, we only jot down the

even-dimensional elements within that range, i.e.,

h20h10, q(p+ 2)− 2, h20h11, q(2p+ 1)− 2,

h12h10, q(p2 + 1)− 2, h21h11, q(p2 + 2p)− 2.

Thus within t− s � q(p2 + 2p+ 2)− 2, even-dimensional May’s E2-term Es,t,∗
2 is a sub-algebra of

Z/p{1, h20h10, h20h11, h12h10, h21h11} ⊗ E[b20, b11]⊗ P [b10].

Suppose that we have a generator y in Ext
s,s+q(p2+2p+2)−2
Z/p[v3][t1,t2,t3]

(BP∗, BP∗/I3). Then y is the form of x or

v3x, where x is an even-dimensional generator in H∗(E[hij | i+ j � 3])⊗ E[b20, b11]⊗ P [b10].
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(1) If y = v3x, then x ∈ Es,t,∗
2 subject to t − s = q(p + 1) − 2. An easy computation shows that the

corresponding E2-term is zero.

(2) If y = x, then x ∈ Es,t,∗
2 subject to t− s = q(p2 + 2p+ 2)− 2. Similarly, from

q(p2 + 2p+ 2)− 2 ≡ 6p− 2 mod qp− 2,

we compute the total degree t− s mod qp− 2 of the generators in

Z/p{1, h20h10, h20h11, h12h10, h21h11} ⊗ [b20, b11]

and find that none of them is 6p− 2. Thus the corresponding E2-term is zero.

The lemma then follows.

It is easily shown that the following theorem holds from the lemma above.

Theorem 4.2. For p � 7 and s � 1, the Toda bracket is 〈α1β1, p, γs〉 = 0.

Proof. Let ṽ3 be the composition of the following maps:

Sq(p2+p+1) ˜i �� Σq(p2+p+1)V (2)
v3 �� V (2),

where the first map is the inclusion map to the bottom cell.

It is known that ṽ3 is an order p element in πq(p2+p+1)(V (2)). Thus the Toda bracket 〈α1β1, p, ṽ3〉 is
well-defined and 〈α1β1, p, ṽ3〉 ∈ πq(p2+2p+2)−2(V (2)) = 0. It follows that the Toda bracket 〈α1β1, p, ṽ3〉
= 0.

Let j̃ : V (2) → Sq(p+2)+3 be the map that collapses all lower-dimensional cells in V (2). Then γs =

ṽ3 · vs−1
3 · j̃. As a result,

〈α1β1, p, γs〉 = 〈α1β1, p, ṽ3 · vs−1
3 · j̃〉 = 〈α1β1, p, ṽ3〉 · vs−1

3 · j̃ = 0.

This completes the proof.

Proposition 4.3 (See [22, Proposition 7.5.11]). For p � 7 and s � 1, the Toda bracket

〈α1β
p−1
1 , α1β1, p, γs〉 is well-defined in π∗(S0), and

α1β
p−1
1 h20γs = 〈α1β

p−1
1 , α1β1, p, γs〉 = βp/p−1γs.

Proof. From 〈βp−1
1 , α1β1, p〉 = 0, 〈α1β1, p, α1〉 = 0, 〈α1, α1β1, p〉 = 0, and 〈α1β1, p, γs〉 = 0, we know

that the following 4-fold Toda brackets are well-defined and

βp/p−1 = 〈βp−1
1 , α1β1, p, α1〉, α1h20γs = 〈α1, α1β1, p, γs〉.

On the other hand, one has

βp−1
1 α1h20γs = βp−1

1 〈α1, α1β1, p, γs〉
= 〈α1β

p−1
1 , α1β1, p, γs〉

= α1〈βp−1
1 , α1β1, p, γs〉

= 〈βp−1
1 , α1β1, p, α1γs〉

= 〈βp−1
1 , α1β1, p, α1〉 · γs

= βp/p−1γs.

The proposition follows.

Theorem 4.4. For p � 7 and 2 � s � p− 2, we have the following Adams-Novikov differentials:

d2p−1(h20b11γs) = α1β
p
1h20γs.
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Proof. Note that b11 = βp/p. Then from (3.1), one has the differential in the small descent spectral

sequence d2(h20b11) = β1βp/p−1, which could be read as d(h20βp/p) = β1βp/p−1 and d(h20βp/pγs)

= β1βp/p−1γs in the cobar complex of BP∗, or equivalently the first Adams-Novikov differential

in the ANSS. Then from the relation βp/p−1γs = α1β
p−1
1 h20γs in π∗(S0) and βp/p−1γs = 0 in

Ext5,∗BP∗BP (BP∗, BP∗), we get the Adams differential in the ANSS, i.e.,

d2p−1(h20b11γs) = β1 · βp−1
1 α1h20γs = α1β

p
1h20γs.

The theorem follows.

5 The proof of Theorem A

In this section, we prove our main theorem which states that βp2/p2−1 survives to E∞ in the ANSS. Note

that βp2/p2−1 has too low a dimension to be the target of an Adams-Novikov differential, and we will do

this by showing that all the Adams-Novikov differentials dr(βp2/p2−1) are trivial.

Lemma 5.1. Let i �≡ 0 mod p. In the ANSS, one has the following Adams-Novikov differential:

d2p−1(ηi) = βp
1βi+1.

Proof. Recall from [22, Theorem 7.3.8] that there is a spectral sequence of the following form:

E1 = Exts,tBP∗BP (BP∗, BP∗(Xp2−1))⊗ E[h11]⊗ P [b11] ⇒ Exts,tBP∗BP (BP∗, BP∗(X)),

where BP∗(Xp2−1) = BP∗[t1]/〈tp
2

1 〉. Moreover, it is proved in [22, Theorem 7.3.11(e)] that the above

spectral sequence has non-trivial differentials d2(h20μi−1) = ib11βi+1. From its definition, we know that

ηi = h11μi−1 is represented by

δδ

(
vp+i−1
2 t2 + vi2t

p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1

pv1

)

(see [22, p. 288]), which is also denoted by δδ(
vp+i
2

pv1
ζ2) in [11, 29]. In the cobar complex of

N2
0 = BP∗/(p∞, v∞1 ), a straightforward computation shows that the coboundary of

vi2(t3 − t1t
p
2 − t2t

p2

1 + tp
2+p+1

1 ) + vp+i−1
2 (t1t2 − tp+2

1 )− vi−1
2 v3(t2 − tp+1

1 )

pv1

+
2vp+i

2

(p+ i)p2v1
t1 − vp+i

2

(p+ i)pv21
t21

is
(vp+i−1

2 t2 + vi2t
p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1)⊗ t1

pv1
+

vi+1
2

pv1
b11.

This shows that in Ext2,∗BP∗BP (BP∗, N2
0 ), we have the following relation between cohomology classes:

[
(vp+i−1

2 t2 + vi2t
p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1)⊗ t1

pv1

]
= −

[
vi+1
2

pv1
b11

]
.

Applying the connecting homomorphism δδ, we get α1ηi = βi+1βp/p.

From α1ηi = βi+1βp/p and the Toda differential, one has

α1d2p−1(ηi) = d2p−1(α1ηi) = d2p−1(βi+1βp/p) = α1β
p
1βi+1.

The lemma follows from α1d2p−1(ηi) = α1β
p
1βi+1.
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0 t− sq(p3 + 1)− 4 q(p3 + 1)− 3 q(p3 + 1)− 2

βp2/p2−1

s

g6

g7 g81

d2p−1

d2p−1

d2p−1

d2p−1

g4

g3

g1

Figure 2 Four ANSS d2p−1 differentials

Proof of Theorem A. From βp2/p2−1 ∈ Ext
2,q(p3+1)
BP∗BP (BP∗, BP∗), we know that dr(βp2/p2−1) ∈

Exts,tBP∗BP (BP∗, BP∗) subject to t−s = q(p3+1)−3. From Theorem 3.3, we know that the corresponding

Exts,tBP∗BP (BP∗, BP∗) is the Z/p-module generated by g1, g3, g4, g6, and g7, g8.

Since g7 = α1β(p−1)p+1 and g8 = α1βp2/p2 have dimensions that are too low, they lie outside the image

of dr(βp2/p2−1). Moreover, we will show that g1, g3, g4, and g6 either support or receive a nontrivial

differential (see Figure 2). Therefore, they cannot lie in the image of dr(βp2/p2−1).

From the Toda differential d2p−1(b11) = α1β
p
1 , we have

d2p−1(β
p2−p−1
1 b11β2) = α1β

p2−1
1 β2 = g1,

d2p−1(g4) = d2p−1(β
p2−6p+1

2
1 b211γ p+1

2
) = 2α1β

p2−4p+1
2

1 b11γ p+1
2
.

From d2p−1(h20b11γs) = α1β
p
1h20γs (see Theorem 4.4), we have

d2p−1(β
p2−4p−1

2
1 h20b11γ p+1

2
) = α1β

p2−2p−1
2

1 h20γ p+1
2

= g3.

From Lemma 5.1, we have

d2p−1(g6) = d2p−1(β
p−1
1 η(p−3)p+3) = β2p−1

1 β(p−3)p+4.

Then Theorem A follows.

6 A conjecture

Consider the cofiber sequence

S0 p �� S0 �� M

and the induced short exact sequence of BP -homologies

0 �� BP∗(S0)
p �� BP∗(S0) �� BP∗(M) �� 0,

which induces a long exact sequence of Ext groups, i.e.,

· · · �� Ext1,t(BP∗(S0)) ��

d2p−1

��

Ext1,t(BP∗(S0)) ��

d2p−1

��

Ext1,t(BP∗(M))
δ ��

d2p−1

��

Ext2,t(BP∗(S0)) ��

d2p−1

��

· · ·

· · · �� Ext2p,∗(BP∗(S0)) �� Ext2p,∗(BP∗(S0)) �� Ext2p,∗(BP∗(M))
δ �� Ext2p+1,∗(BP∗(S0)) �� · · · .
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For the connecting homomorphism δ, one has

δ(hi+2) = βpi+1/pi+1 , δ(v1hi+2) = βpi+1/pi+1−1, δ(vi1) = iαi.

From the Toda differential d2p−1(βp/p) = α1β
p
1 , one can get a non-trivial differential in the ANSS for

the Moore spectrum M :

d2p−1(h2) = v1β
p
1 .

Then from the relation hi+1β
pi

p/p = hi+2β
pi

1 (see [19] and [22, p. 246]), we get the following Adams-Novikov

differential by induction:

d2p−1(hi+2)β
pi

1 = d2p−1(hi+2β
pi

1 )

= d2p−1(hi+1β
pi

p/p)

= d2p−1(hi+1)β
pi

p/p

= v1β
p
pi−1/pi−1β

pi

p/p

= v1(βpi−1/pi−1βpi−1

p/p )p

= v1β
p
pi/piβ

pi

1 ,

which implies d2p−1(hi+2) = v1β
p
pi/pi in the ANSS for the Moore spectrumM . Then from the convergence

of v1 in the ANSS for the Moore spectrum, one has

d2p−1(v1hi+2) =v21β
p
pi/pi .

Applying the connecting homomorphism δ, we have the Adams-Novikov differential for the sphere

d2p−1(βpi+1/pi+1−1) = d2p−1(δ(v1hi+2)) = δ(d2p−1(v1hi+2)) = δ(v21β
p
pi/pi) = 2α2β

p
pi/pi .

So one can prove the non-existence of βpi+1/pi+1−1 from the non-triviality of

α2β
p
pi/pi �= 0 ∈ Ext2p+1,∗

BP∗BP (BP∗, BP∗).

The behavior for small i is already known:

(1) βp/p−1 exists and α2β
p
1 = 0 because α2β1 = 0.

(2) βp2/p2−1 exists, and this implies α2β
p
p/p = 0.

We know that βp
p/p �= 0 in Ext2p,qp

3

BP∗BP (BP∗, BP∗) (see [19, 22]). However, we could not find its

representative element bp11 in Ext2p,qp
3

BP∗BP (BP∗, BP∗(X)) due to the non-trivial differential d(h11b
p−1
20 ) = bp11

in the SDSS (see [22, Theorem 7.3.12(b)] and the ABC theorem). Nonetheless, we could prove that βp
p/p

is divisible by β1.

(1) At the prime p = 5, β1x952 converges to β5
5/5, where x952 = h11b

p−3
20 γ2. This implies α2β

5
5/5 =

α2β1x952 = 0 (see [22, Subsection 7.5]) because α2β1 = 0.

(2) At the prime p � 7, we compute Ext2p,qp
3

BP∗BP (BP∗, BP∗) by the SDSS. The E1-term

Es,t,u
1 = Exts,∗BP∗BP (BP∗, BP∗(X))⊗ E[α1]⊗ P [β1]

subject to s + u = 2p, t = qp3 is the Z/p module generated by β1h11b
p−3
20 γ2, α1β1b

p−3
20 ηp, and

α1β
p−1
2

1 h20b
p−5
2

11 b20μ p−3
2 p+p−2. Since each generator is divisible by β1, we conclude that βp

p/p must also be

divisible by β1. We further conjecture that βp
p/p = β1h11b

p−3
20 γ2. Additionally, we have other conjectures

regarding βp
pn/pn for general n, which are summarized in Conjecture C.

Acknowledgements The second and third authors were supported by National Natural Science Foundation of

China (Grant No. 12271183). The third author was also supported by National Natural Science Foundation of

China (Grant Nos. 12001474 and 12261091). All the authors contributed equally to this work.



16 Hong J G et al. Sci China Math

References

1 Adams J F. On the structure and applications of the Steenrod algebra. Comment Math Helv, 1958, 32: 180–214

2 Behrens M. A modular description of the K(2)-local sphere at the prime 3. Topology, 2006, 45: 343–402

3 Behrens M. Buildings, elliptic curves, and the K(2)-local sphere. Amer J Math, 2007, 129: 1513–1563

4 Behrens M. Congruences between modular forms given by the divided β family in homotopy theory. Geom Topol,

2009, 13: 319–357

5 Cohen R L, Goerss P. Secondary cohomology operations that detect homotopy classes. Topology, 1984, 23: 177–194

6 Hovey M. Algebraic topology problem list. Https://www-users.cse.umn.edu/∼tlawson/hovey/big.html

7 Liu X G, Wang X J. A four-filtrated May spectral sequence and its applications. Acta Math Sin (Engl Ser), 2008, 24:

1507–1524

8 Liulevicius A. The factorization of cyclic reduced powers by secondary cohomology operations. Proc Natl Acad Sci

USA, 1960, 46: 978–981

9 May J P. The cohomology of restricted Lie algebras and of Hopf algebras: Application to the Steenrod algebra. PhD

Thesis. Princeton: Princeton University, 1964

10 May J P. The cohomology of restricted Lie algebras and of Hopf algebras. J Algebra, 1966, 3: 123–146

11 Miller H R, Ravenel D C, Wilson W S. Periodic phenomena in the Adams-Novikov spectral sequence. Ann of Math

(2), 1977, 106: 469–516

12 Minami N. On the odd-primary Adams 2-line elements. Topology Appl, 2000, 101: 231–255

13 Nakai H. The chromatic E1-term H0M2
1 for p > 3. New York J Math, 2000, 6: 21–54

14 Novikov S P. The methods of algebraic topology from the viewpoint of cobordism theory (in Russian). Izv Akad Nauk

SSSR Ser Mat, 1967, 31: 855–951

15 Oka S. A new family in the stable homotopy groups of spheres. Hiroshima Math J, 1975, 5: 87–114

16 Oka S. Realizing some cyclic BP∗-modules and applications to stable homotopy of spheres. Hiroshima Math J, 1977,

7: 427–447

17 Oka S. Small ring spectra and p-rank of the stable homotopy of spheres. Contemp Math, 1983, 19: 267–308

18 Oka S. Multiplicative structure of finite ring spectra and stable homotopy of spheres. In: Algebraic Topology. Aarhus

1982. Lecture Notes in Mathematics, vol. 1051. Cham: Springer, 1984, 418–441

19 Ravenel D C. The non-existence of odd primary Arf invariant elements in stable homotopy. Math Proc Cambridge

Philos Soc, 1978, 83: 429–443

20 Ravenel D C. A Novice’s guide to the Adams-Novikov spectral sequence. In: Geometric Applications of Homotopy

Theory II. Lecture Notes in Mathematics, vol. 658. Berlin-Heidelberg: Springer, 1978, 404–475

21 Ravenel D C. The Adams-Novikov E2-term for a complex with p-cells. Amer J Math, 1985, 107: 933–968

22 Ravenel D C. Complex Cobordism and Stable Homotopy Groups of Spheres. New York: Academic Press, 1986

23 Ravenel D C. The method of infinite descent in stable homotopy theory I. Contemp Math, 2002, 293: 251–284

24 Ravenel D C. Complex Cobordism and Stable Homotopy Groups of Spheres: Second Edition. Providence: AMS

Chelsea Publishing, 2004

25 Shimomura K. The beta elements βtp2/r in the homotopy of spheres. Algebr Geom Topol, 2010, 10: 2079–2090

26 Toda H. An important relation in the homotopy groups of spheres. Proc Japan Acad, 1967, 43: 839–842

27 Toda H. Extended p-th powers of complexes and applications to homotopy theory. Proc Japan Acad, 1968, 44: 198–203

28 Toda H. On spectra realizing exterior parts of the Steenrod algebra. Topology, 1971, 10: 53–65

29 Wang X. The secondary differentials on the third line of the Adams spectral sequence. Topology Appl, 2009, 156:

477–499


