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Abstract
The finiteness problem of stationary configurations for the planar five-vortex problem
is considered in this paper. The numbers of equilibria and rigidly translating configura-
tions are shown to be at most 6 and 24 respectively. The numbers of relative equilibria
and collapse configurations are shown to be finite, except perhaps if the 5-tuple of
vorticities belongs to a given codimension 2 subvariety of the vorticity space. In par-
ticular, if the vorticities are of the same sign, the number of stationary configurations
is finite.

Mathematics Subject Classification 76B47 · 70F10 · 37Nxx

1 Introduction

The planar N-vortex problem which originated from Helmholtz’s work in 1858 [9],
considers the motion of point vortices in a fluid plane. It was given a Hamiltonian
formulation by Kirchhoff as follows:

�n ṙn = J
∂H

∂rn
= J

∑

1≤ j≤N , j �=n

� j�n
r j − rn

|r j − rn|2 , n = 1, . . . , N .

Here, J =
[
0 1

−1 0

]
, rn = (xn, yn) ∈ R

2, and �n (n = 1, . . . , N ) are the posi-

tions and vortex strengths (or vorticities) of the vortices, and the Hamiltonian is
H = −∑

1≤ j<k≤N � j�k ln |r j − rk |, where | · | denotes the Euclidean norm in

B Shuqiang Zhu
zhusq@swufe.edu.cn

Xiang Yu
xiang.zhiy@foxmail.com; yuxiang_math@tju.edu.cn

1 Center for Applied Mathematics and KL-AAGDM, Tianjin University, Tianjin 300072, China

2 School of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-025-03183-w&domain=pdf
http://orcid.org/0000-0002-6216-2326


X. Yu, S. Zhu

R
2. The N -vortex problem is a widely used model for providing finite-dimensional

approximations to vorticity evolution in fluid dynamics, especially when the focus
is on the trajectories of the vorticity centers rather than the internal structure of the
vorticity distribution [10].

An interesting set of special solutions of the dynamical system are homographic
solutions, where the relative shape of the configuration remains constant during the
motion. An excellent review of these solutions can be found in [3, 10]. Following
O’Neil, we refer to the corresponding configurations as stationary. The only station-
ary configurations are equilibria, rigidly translating configurations (where the vortices
move with a common velocity), relative equilibria (where the vortices rotate uni-
formly), and collapse configurations (where the vortices collide in finite time) [13].

Many results on stationary configurations have been obtained by focusing on sys-
tems with a small number of vortices and exploring symmetric cases (cf. [2, 5, 7,
8, 11–15, 17, 18, 20–22] and the references therein). Notably, we emphasize works
whose underlying concepts have proven fruitful in understanding central configura-
tions in celestial mechanics. The equations governing stationary configurations are
similar to those describing central configurations in celestial mechanics. By applying
the topological methods first introduced for central configurations in celestial mechan-
ics [16], Palmore gavewithout proof a lower bound on the number of relative equilibria
for N vorticities of the same sign [17]. O’Neil categorized stationary configurations
into the four mentioned classes and initiated the systematic examination of their num-
bers. Roberts constructed a continuum of five-body central configurations in celestial
mechanics, where a negative mass is included, and then this construction naturally led
to an extension for the five-vortex relative equilibria [18]. With the algebraic method
introduced in [6], Hampton and Moeckel showed that the number of four-vortex rel-
ative equilibria is at most 74, provided that no subcollection of the four vortices has
vanishing total vorticities [7]. Roberts applied Morse theoretical ideas to the study of
relative equilibria in the planar n-vortex problem [19].

Albouy andKaloshin introduced a novel method to study the finiteness of five-body
central configurations in celestialmechanics [1]. The first author successfully extended
this approach tofluidmechanics.Using this newmethod, thefirst author establishednot
only the finiteness of four-vortex relative equilibria for any four nonzero vorticities but
also the finiteness of four-vortex collapse configurations for a fixed angular velocity.
This represents the first result on the finiteness of collapse configurations for N ≥ 4
[22].

In this paper, we focus on the finiteness of five-vortex stationary configurations.
For equilibria and rigidly translating configurations, O’Neil showed that for generic
vorticities, the upper bounds are (N − 2)! and (N − 1)!, respectively [13, 14]. We
confirm these upper bounds for the all five-vortex system. We apply the singular
sequence method developed by the first author in [22] to investigate the finiteness of
relative equilibria and collapse configurations.

Because of the continuum of five-vortex relative equilibria constructed by Roberts
[18] (see also Sect. 4) and the continuum of five-vortex collapse configurations con-
structed by Novikov and Sedov [12], the finiteness of relative equilibria and collapse
configurations can only be expected for generic vorticities, and, in case of collapse
configurations, fixed �.
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Two configurations are called equivalent if they are related by rotations, translations
and dilations in the plane. In the following, all the counts are made for the equivalence
classes. We have proven the following results:

Theorem 1.1 For the planar five-vortex problem with nonzero vorticities �n (n ∈
{1, 2, 3, 4, 5}),
1. There are at most 6 equilibria;
2. There are at most 24 rigidly translating configurations;
3. There are finitely many relative equilibria provided that none of 14 polynomial

systems of (18) holds;
4. For any given � ∈ C

∗, there are finitely many collapse configurations provided
that none of 7 polynomial systems of (19) holds.

Please see Definition 2.3 for the meaning of �. We refer readers to Sect. 8 for
Systems (18) and (19), and to Definition 2.1 for the meaning of L j1,..., jn .

Denote by R
∗ the set of nonzero real numbers. By Theorem 1.1, those vorticities

that may admit infinitelymany relative equilibria form a subvariety of (R∗)5, and those
vorticities that may admit infinitely many collapse configurations form a subvariety of
{(�1, . . . , �5) : �i ∈ R

∗, i = 1, . . . , 5,
∑

1≤i< j≤5 �i� j = 0}. We further show that
the codimension of the subvariety is at least 2.

Theorem 1.2 For any choice of five vorticities (�1, . . . , �5) ∈ (R∗)5\A, where A is
a closed algebraic subset of codimension 2, there are finitely many relative equilibria
of the five-vortex problem.

Forany choice of five vorticities in {(�1, . . . , �5) : �i ∈ R
∗, i = 1, . . . , 5,

∑
1≤i< j≤5

�i� j = 0}\B,whereB is a closed algebraic subset of codimension 2, there are finitely
many collapse configurations of the five-vortex problem for any given � ∈ C

∗.

The following result on finiteness is also proved.

Theorem 1.3 Given five vorticities, if
∑

j∈J � j �= 0 and
∑

j,k∈J , j �=k � j�k �= 0 for
any nonempty subset J of {1, 2, 3, 4, 5}, there are finitely many complex central con-
figurations of the five-vortex problem for any fixed � ∈ C

∗.

Please see Definition 4.1 and 4.2 for themeaning of complex central configurations.
If all vorticities are of the same sign, relative equilibria are the only possible sta-

tionary configurations. Theorem 1.3 leads to the following result.

Theorem 1.4 Consider the planar five-vortex problem with all positive or all negative
vorticities �n (n ∈ {1, 2, 3, 4, 5}). There are finitely many stationary configurations.

The paper is structured as follows. In Sect. 2, we introduce notations and definitions.
In Sect. 3, we prove results on equilibria and rigidly translating configurations. In
Sect. 4, we briefly review the singular sequencemethod and the two-colored diagrams.
In Sect. 5, we identify constraints when some particular sub-diagrams appear. In
Sect. 6, we construct the problematic diagrams for the 5-vortex problem. We derive
constraints on vorticities corresponding to each of the 22 diagrams in Sect. 7 and prove
the main results in Sect. 8.
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2 Basic notations

We recall some basic notations on stationary configurations and direct readers to a
more comprehensive introduction provided by O’Neil [13] and Yu [22].

We represent vortex positions rn ∈ R
2 as complex numbers zn ∈ C. The equations

of motion are żn = iVn , where

Vn =
∑

1≤ j≤N , j �=n

� j z jn
r2jn

=
∑

j �=n

� j

z jn
. (1)

Here, z jn = zn − z j , r jn = |z jn| = √
z jnz jn , i = √−1, and the overbar denotes

complex conjugation.
Let C

N = {z = (z1, . . . , zN ) : z j ∈ C, j = 1, . . . , N } denote the space of
configurations for N point vortex. The collision set is defined as � = {z ∈ C

N : z j =
zk for some j �= k}. The space of collision-free configurations is given by C

N\�.

Definition 2.1 The following quantities and notations are defined:

Total vorticity � = ∑N
j=1 � j

Total vortex angular momentum L = ∑
1≤ j<k≤N � j�k

Moment of vorticity M = ∑N
j=1 � j z j

Angular impulse I = ∑N
j=1 � j |z j |2 = ∑N

j=1 � j z j z j
Size S = ∑

1≤ j<k≤N � j�kr2jk .

For J = { j1, . . . , jn} ⊂ {1, . . . , N }, we also define

�J = � j1,..., jn =
∑

j∈J

� j , L J = L j1,..., jn =
∑

j<k, j,k∈J

� j�k .

A motion is called homographic if the relative shape remains constant. Following
O’Neil [13], we term a corresponding configuration as a stationary configuration.
Equivalently,

Definition 2.2 Aconfiguration z ∈ C
N\� is stationary if there exists a constant� ∈ C

such that
Vj − Vk = �(z j − zk), 1 ≤ j, k ≤ N . (2)

There are only four kinds of homographic motions, equilibria, translating with a
common velocity, uniformly rotating, and homographic motions that collapse in finite
time. Following [7, 13, 22], we term the stationary configurations corresponding to
these four classes of homographic motions as equilibria, rigidly translating configu-
rations, relative equilibria and collapse configurations. Equivalently,

Definition 2.3 i. z ∈ C
N\� is an equilibrium if V1 = · · · = VN = 0.

ii. z ∈ C
N\� is rigidly translating if V1 = · · · = VN = c for some c ∈ C\{0}.

iii. z ∈ C
N\� is a relative equilibrium if there exist constants λ ∈ R\{0}, z0 ∈ C

such that Vn = λ(zn − z0), 1 ≤ n ≤ N .
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iv. z ∈ C
N\� is a collapse configuration if there exist constants �, z0 ∈ C with

Im(�) �= 0 such that Vn = �(zn − z0), 1 ≤ n ≤ N .

Proposition 2.1 [13] Every equilibrium has vorticities satisfying L = 0; every rigidly
translating configuration has vorticities satisfying � = 0

Definition 2.4 A configuration z is equivalent to z′ if there exist a, b ∈ C with b �= 0
such that z′n = b(zn + a) for 1 ≤ n ≤ N .

A configuration is called translation-normalized if its translation freedom is
removed, rotation-normalized if its rotation freedom is removed, and dilation-
normalized if its dilation freedom is removed. A configuration normalized in
translation, rotation, and dilation is termed a normalized configuration.

We count the stationary configurations according to the equivalence classes. Count-
ing equivalence classes is the same as counting normalized configurations. Note that
the removal of any of these three freedoms can be performed in various ways.

3 Equilibria and rigidly translating configurations

In this section, we investigate the number of equilibria and rigidly translating config-
urations of five vorticities, via the minimal polynomial system introduced by O’Neil
[14]. In particular, we will prove the corresponding results in Theorem 1.3.

Recall that the equilibria and the rigidly translating configurations are solutions of
the system

∑

k �= j

�k

z j − zk
= c, (3)

where c = 0 corresponds to equilibria and c �= 0 corresponds to the rigidly translating
configurations. If the configuration (z1, ..., zN ) is an equilibrium or rigidly translating
configuration, so is each member of its equivalent class (b(z1 + a), . . . , b(zN + a))

with a, b ∈ C and a �= 0. Given a linear form A(z1, . . . , zN ) = a1z1 + · · · + aN zN ,

with a1+· · ·+aN �= 0, there is one and only one value of a for which the members of
the class satisfy A = 0. Hence, it is convenient to identify the translation-normalized
equilibria and the rigidly translating configurations with points of C

N , satisfying

A(z1, . . . , zN ) = 0,
∑

k �= j

�k

z j − zk
= c, j = 1, . . . , N , (4)

Let ζ be a complex variable. O’Neil [14] observed that system (4) is equivalent to

A(z1, . . . , zN ) = 0,
∑

j<k

� j�k

(ζ − z j )(ζ − zk)
= c

∑

j

� j

ζ − z j
, for ∀ζ �= z1, . . . , zN .

(5)
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3.1 Equilibria

The second equation of system (5) becomes
∑

j<k
� j�k

(ζ−z j )(ζ−zk )
= 0. Multiplying it

with (ζ − z1) · · · (ζ − zN ) leads to

ζ N−2L + ζ N−3 f1 + ζ N−4 f2... + ζ fN−3 + fN−2 = 0, ζ ∈ C,

where fk = fk(z1, . . . , zN ) is a homogeneous polynomial of degree k, 1 ≤ k ≤ N−2.
Then L = 0, and system (5) with c = 0 is equivalent to

A(z1, . . . , zN ) = 0, f1 = f2 = · · · = fN−2 = 0, (z1, . . . , zN ) /∈ �. (6)

The (N − 1) homogeneous polynomials define a projective variety V0 in P
N−1, and

each point of this variety represents an equivalence class of equilibria. If the variety
V0 is zero-dimensional, Bézout’s theorem implies that the number of points in V0 is
(N − 2)!, counted by multiplicity.

Proposition 3.1 [14] Let the nonzero vorticities�1, . . . , �N satisfy the relation L = 0,
and let V0 be defined as above, so that V0 \ � is the set of all equilibria. Suppose
there are two indices p, q such that for all proper subsets J of {1, . . . , N }, {p, q} ⊂ J
implies L J �= 0. Then V0 contains exactly (N − 2)! points counted according to
multiplicity, and there are no more than (N − 2)! equilibria.

Please see Definition 2.1 for the meaning of �J , � j1,..., jn , L J and L j1,..., jn .

Remark 1 There are some facts on L J . If L J = 0, then the cardinality of J , denoted by
card(J ), can not be two, since �i �= 0 for all i = 1, . . . , N ; If L J = 0, then �J �= 0,
since �2

J > 2L J ; If L J = 0, then for any subset K of J with card(K )+ 1 = card(J ),
we have LK �= 0. Suppose that K ∪ {1} = J , L J = LK = 0. Then the identity
L J = LK + �K�1 implies that �K = 0, which contradicts with LK = 0.

Consider the case of N = 4. Since L = 0, Remark 1 implies that L J �= 0 for
all subsets J of {1, 2, 3, 4}. Hence, Proposition 3.1 implies that any four vorticities
satisfying L = 0 have at most 2 distinct equilibria. In fact, there are always exactly 2
distinct equilibria, as shown by O’Neil [13] and Hampton and Moeckel [7]. We now
utilize Proposition 3.1 to study the case of N = 5.

Proposition 3.2 Let the nonzero vorticities �1, . . . , �5 satisfy the relation L = 0.
Then there are at most 6 equilibria.

Proof We assume that for any pair of indices, there is some proper subset J of
{1, 2, 3, 4, 5} containing them such that L J = 0, and arrive at a contradiction. Since
L = 0, then L J = 0 holds only if the cardinality of J is three, as noted in Remark 1.

Since L = 0, the vorticities cannot all have the same sign. We divide the discussion
into two cases: one with a single negative vorticity and the other with two negative
vorticities.
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Case I: The signs of the five vorticities are (+,+,+,+,−). Consider the pair
{1, 2}. It must hold that L125 = 0. Similarly, for the pairs {1, 3}, {1, 4}, {2, 3}, {2, 4},
and {3, 4}, we have:

L125 = L135 = L145 = L235 = L245 = L345 = 0.

It is straightforward to find the solution: �1 = �2 = �3 = �4 = −2�5, which
contradicts the equation L = 0.

Case II: The signs of the five vorticities are (+,+,+,−,−). Consider the three
pairs {1, 2}, {1, 3}, and {2, 3}. The following system holds:

L124L125 = 0, L134L135 = 0, L234L235 = 0.

It is sufficient to consider two sub-cases: when there are three or two 5’s in the above
system.

Sub-case II-1: L125 = L135 = L235 = 0. It is straightforward to find the solution:
�1 = �2 = �3 = −2�5. Now consider the pair {4, 5}. It must hold that L145 = 0.
However,

L145 = �1�5 + �4(�1 + �5) = −2�2
5 − �4�5 < 0,

which is a contradiction.
Sub-case II-2: L125 = L135 = L234 = 0. It is straightforward to find that �2 =

�3 = −2�4. Now consider the pair {4, 5}, then L145L245L345 = 0. Since

L245 = �2�4 + �5(�2 + �4) = −2�2
4 − �4�5 < 0,

it must hold that L145 = 0. If L145 = 0, then by L125 = L145, we obtain �4 = �2,
which is a contradiction.

By Proposition 3.1, for any group of five vorticities with L = 0, the variety V0 is
zero-dimensional and there are at most 6 equilibria. �


The above result has also been proved differently by Tsai [21], where a complete
bifurcation diagram is provided. The actual number of equilibria could be fewer or
even zero, as some solutions may have multiplicity greater than one, and some points
of V0 may lie on �. If V0 ∩ � �= ∅, then there exists a proper subset J such that
L J = 0 [14].

For instance, if L123 = 0, then �123 �= 0, we can construct point on V0
⋂

� using
(5). Let

J = {1, 2, 3}, d j = ζ − z j , A(z1, . . . , z5) = z1, z1 = z2 = z3.
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Then

0 =
∑

j<k

� j�k

d j dk
=

∑

j<k, j,k∈J

� j�k

ζ 2 +
5∑

k=4

�J�k

ζdk
+ �4�5

d4d5

= �4

d4

(
�5

z4 − z5
+ �J

z4

)
+ �5

d5

(
�4

z5 − z4
+ �J

z5

)

− �J

ζ

(
�4

z4
+ �5

z5

)
.

The above equation holds if and only if z4 = −�4z5
�5

and L = 0. Hence we find the

following point of V0 on � (0 : 0 : 0 : −�4
�5

: 1), with multiplicity 2. Thus, there are
at most 4 equilibria for five vorticities satisfying L = L123 = 0. Similar solutions can
be constructed for N vorticities satisfying L = L J = 0, where the cardinality of J is
N − 2.

Assume there are four vorticities that satisfy L123 = L124 = L134 = 0. We can
choose �5 such that L = 0. The example above shows that there are three distinct
solutions of (5) on �, each with multiplicity 2. Hence, there is no equilibrium for this
group of vorticities. Up to renumbering, the vorticities are:

�1 = 1, �2 = −2, �3 = −2, �4 = −2, �5 = 6

5
.

Examples of groups of vorticities that do not admit any equilibrium exist for any N ≥ 5
(see [21]).

3.2 Rigidly translating configurations

Multiplying (ζ − z1) · · · (ζ − zN ) to the second equation of system (5) leads to
� = 0 and L = c

∑N
j=1 � j z j . Then we have (

∑N
j=1 � j z j )

∑
j<k

� j�k
(ζ−z j )(ζ−zk )

=
L

∑
j

� j
ζ−z j

, which leads to

ζ N−1L� + ζ N−3g1 · · · + ζ gN−3 + gN−2 = 0, ζ ∈ C,

where gk = gk(z1, . . . , zN ) is a homogeneous polynomial of degree k, 1 ≤ k ≤ N−2.
Note that

∑N
j=1 � j z j �= 0, as otherwise L = c

∑N
j=1 � j z j = 0, which contradicts

� = 0. Then system (5) with c �= 0 is equivalent to

A(z1, . . . , zN ) = 0, g1 = g2 = · · · = gN−2 = 0, (z1, . . . , zN ) /∈ �. (7)

The N −1 homogeneous polynomials define a projective variety Vc in P
N−1 and each

point of this variety represents an equivalent class of rigidly translating configurations.
If the variety Vc is zero dimensional, Bézout theorem implies that the number of points
in Vc is (N − 1)!, counted by multiplicity.
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Proposition 3.3 [14] Let the nonzero vorticities�1, . . . , �N satisfy the relation� = 0,
and let Vc be defined as above so that Vc \ � is the set of all rigidly translating
configurations. Suppose that there are two indices p, q such that for all proper subsets
J of {1, ..., N }, {p, q} ⊂ J implies L J �= 0 and �J �= 0. Then Vc contains exactly
(N−1)! points, counted according to multiplicity, and there are no more than (N−1)!
rigidly translating configurations.

For N = 4, if the nonzero vorticities �1, . . . , �4 satisfy the relation � = 0, then
there are at most 6 rigidly translating configurations. This result has already been
proved Hampton and Moeckel with resultant theory in [7]. It is easy to apply the
above criterion to obtain an alternative proof. However, it would be similar to the one
of Proposition 3.4 and simpler, so we omit it.

Note that for the vorticities (1,−1, a,−a), there is always one solution in � with
multiplicity three. Then there are at most three rigidly translating configurations. In
particular, for a = 1, there are two solutions in � with multiplicity three, so there are
no rigidly translating configurations [14, 21].

Proposition 3.4 Let the nonzero vorticities�1, . . . , �5 satisfy the relation� = 0. Then
the dimension of Vc is zero, so there are at most 24 rigidly translating configurations.

Proof We assume that for any pair of indices, there exist some proper subsets J1, J2
of {1, 2, 3, 4, 5} containing them such that L J1�J2 = 0, and we derive contradictions.
Note that �J = 0 holds only if the cardinality of J is two or three, and that L J = 0
holds only if the cardinality of J is three or four, as noted in Remark 1.

Since � = 0, the vorticities can not be of the same sign. We can simplify the
discussion by dividing it into two cases: one with a single negative vorticity and the
other with two negative vorticities.

Case I: the signs of the five vorticities be (+,+,+,+,−). Then −�5 = �1234 and
�J �= 0 for any proper subset J . Consider the pair {1, 2}. Without loss of generality,
we obtain L125L1235 = 0.

If L125 = L12 + �5�12 = 0, then −�5 = L12
�12

< �12, which is a contradiction.

If L1235 = L123+�5�123 = 0, then−�5 = L123
�123

< �123,which is a contradiction.
Case II: the signs of the five vorticities be (+,+,+,−,−). There are two sub-cases:

there exists some proper subset J such that �J = 0 or not.
Sub-case II-1: there are proper subsets J such that �J = 0. Then we may assume

that the vorticities are (1, b, c,−1,−(b + c)) where b, c > 0. Then �14 = �235 = 0.
Note that �124 = b, �134 = c, and

L125 = −c − b(b + c) < 0, L134 = −1, L135 = −b − c(b + c) < 0,

L1235 = −b2 − bc − c2 < 0, L145 = −1, L1245 = −1 − b(b + c) < 0,

L1345 = −1 − c(b + c) < 0, L124 = −1, L2345 = −b2 − bc − c2 < 0.

Consider the pair of indices {4, 5}. Since �J �= 0 for any proper subset containing
the two indices, then the following system holds:

L245L345 = 0,

123
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since it is already known that L145, L1245, L1345, L2345 are all negative. Similarly,
consider the four pairs {1, 2}, {1, 3}, {1, 5}. Then the following system holds

�125L1234 = 0, �135L1234 = 0, �125�135 = 0.

It is enough to divide the discussion into two sub-cases: L1234 = 0 or not.
Sub-case II-1-1: L1234 = bc − 1 = 0. Then by �125�135 = (1 − b)(1 − c) = 0,

we have b = 1 or c = 1. By L1234 = 0, it follows that b = 1 and c = 1. However,
this contradicts with L245L345 = [c − b(b + c)][b − c(b + c)] = 0.

Sub-case II-1-2: L1234 �= 0. Then �125 = 0 and �135 = 0. It follows that b = 1
and c = 1. However, this contradicts with L245L345 = 0.

Sub-case II-2: �J �= 0 for any proper subset J . We assume that �123 = 1, �1 ≤
�2 ≤ �3, �45 = −1 and |�4| ≤ |�5|. Then

L123 ≤ 1

3
, L23 ≤ 1

4
�2
23 <

1

4
�23, L45 ≤ 1

4
, �3 ≥ 1

3
, �5 ≤ −1

2
.

So,

L1235 = L123 + �5�123 = L123 − 1

2
< 0,

L345 = L45 + �3�45 = L45 − �3 < 0,

L235 = L23 + �5�23 ≤ L23 − 1

2
�23 < 0.

Similarly, it holds that L125 < 0, L135 < 0.
Consider the pair {3, 5}. All possible L J = 0 with J containing the pair are

L1345, L2345. Then it must hold L1345L2345 = 0. Consider also the two other pairs
{1, 5} and {2, 5}. Then the following system must hold,

L1345L2345 = 0, L145L1245L1345 = 0, L245L1245L2345 = 0. (8)

There are five sub-cases.
Sub-case II-2-1: L1345 = L1245 = 0. Then �2 = �3 and �13 > 1

2 . Thus,

L1345 = −�13 + L13 + L45 < −1

2
+ 1

4
+ 1

4
< 0,

which is a contradiction.
Sub-case II-2-2: L1345 = L245 = 0. The second equation implies that �2 = L45 ≤

1
4 . Then �13 ≥ 3

4 , and

L1345 = L13 + L45 − �13 ≤ 1

4
+ 1

4
− 3

4
< 0,

which is a contradiction.
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Sub-case II-2-3: L1345 = L2345. Then �1 = �2 and �13 ≥ 2
3 . Thus,

L1345 = −�13 + L13 + L45 ≤ −2

3
+ 1

4
+ 1

4
< 0,

which is a contradiction.
Sub-case II-2-4: L2345 = L145 = 0. The second equation implies that �1 = L45 ≤

1
4 . Then �23 ≥ 3

4 , and

L2345 = L23 + L45 − �23 ≤ 1

4
+ 1

4
− 3

4
< 0,

which is a contradiction.
Sub-case II-2-5: L2345 = L1245 = 0. Then �1 = �3 and �1 = �2 = �3 = 1

3 .
Thus,

L2345 = −�23 + L23 + L45 ≤ −2

3
+ 1

9
+ 1

4
< 0,

which is a contradiction.
By Proposition 3.3, for any group of five vorticities with � = 0, the variety Vc is

zero-dimensional and there are at most 24 rigidly translating configurations. �


4 Singular sequences for central configurations and coloring rules

In this section, we briefly review the basic elements of the Albouy-Kaloshin approach
developed by Yu [22] for the finiteness of relative equilibria and collapse configura-
tions, including, among others, the notation of central configurations, the extended
system, the notation of singular sequences, the two-colored diagrams, and the rules
for the two-colored diagrams. For a more comprehensive introduction, please refer to
[22].

4.1 Central configurations of the planar N-vortex problem

Recall Definition 2.3. Equations of relative equilibria and collapse configurations share
the form:

Vn = �(zn − z0), 1 ≤ n ≤ N , (9)

where � ∈ R\{0} indicates relative equilibria and � ∈ C\R indicates collapse con-
figurations.

Definition 4.1 Relative equilibria and collapse configurations are both called central
configurations.

The equations (9) read

�zn = Vn, 1 ≤ n ≤ N , (10)
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if the translation freedom is removed, i.e., we substitute zn with zn + z0 in equations
(10). The solutions then satisfy:

M = 0, �I = L. (11)

To remove dilation freedom, we enforce |�| = 1.
Introduce a new set of variables wn and a “conjugate" relation:

�zn =
∑

j �=n

� j

w jn
, �wn =

∑

j �=n

� j

z jn
, 1 ≤ n ≤ N , (12)

where z jn = zn − z j and w jn = wn − w j .
The rotation symmetry of (10) leads to the invariance of (12) under the map

Ra : (z1, . . . , zn, w1, . . . , wn) �→ (az1, . . . , azN , a−1w1, . . . , a
−1wN )

for any a ∈ C\{0}.
Introduce the variables Z jk,Wjk ∈ C (1 ≤ j < k ≤ N ) such that Z jk =

1/w jk,Wjk = 1/z jk . For 1 ≤ k < j ≤ N we set Z jk = −Zkj ,Wjk = −Wkj .
Then equations (10) together with the condition z12 ∈ R and |�| = 1 are embedded
into the following extended system

�zn = ∑
j �=n � j Z jn, 1 ≤ n ≤ N ,

�wn = �−1wn = ∑
j �=n � jW jn, 1 ≤ n ≤ N ,

Z jkw jk = 1, 1 ≤ j < k ≤ N ,

Wjkz jk = 1, 1 ≤ j < k ≤ N ,

z jk = zk − z j , w jk = wk − w j , 1 ≤ j, k ≤ N ,

Z jk = −Zkj , Wjk = −Wkj , 1 ≤ k < j ≤ N ,

z12 = w12.

(13)

This is a polynomial system in the variables Q = (Z,W) ∈ C
2N, here

Z = (Z1,Z2, . . . ,ZN) = (z1, z2, . . . , zN , Z12, Z13, . . . , Z(N−1)N ),

W = (W1,W2, . . . ,WN) = (w1, w2, . . . , wN ,W12,W13, . . . ,W(N−1)N ).

and N = N (N + 1)/2.

Definition 4.2 A complex normalized central configuration of the planar N -vortex
problem is a solution of (13). A real normalized central configuration of the planar
N -vortex problem is a complex normalized central configuration satisfying zn = wn

for any n = 1, . . . , N .

Note that a real normalized central configuration of Definition 4.2 is exactly a
central configuration of Definition 4.1. We will use the name “distance" for the
r jk = √

z jkw jk . Strictly speaking, the distances r jk = √
z jkw jk are now bi-valued.

However, only the squared distances appear in the system, so we shall understand r2jk
as z jkw jk from now on.
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4.2 Singular sequences

Let ‖Z‖ = max j=1,2,...,N |Z j | be the modulus of the maximal component of the
vector Z ∈ C

N. Similarly, set ‖W‖ = maxk=1,2,...,N |Wk |.
One important feature of System (13) is the symmetry: if Z,W is a solution, so is

aZ, a−1W for any a ∈ C\{0}. Thus, we can replace the normalization z12 = w12 in
System (13) by ‖Z‖ = ‖W‖. From now on, we consider System (13) with this new
normalization.

Consider a sequenceQ(n), n = 1, 2, . . ., of solutions of (13). Take a sub-sequence
such that the maximal component of Z(n) is fixed, i.e., there is a j ∈ {1, 2, . . . ,N }
that is independent of n such that ‖Z(n)‖ = |Z(n)

j |. Extract again in such a way that the
sequence Z(n)/‖Z(n)‖ converges. Extract again in such a way that the maximal com-
ponent ofW(n) is fixed. Finally, extract in such a way that the sequenceW(n)/‖W(n)‖
converges.

Definition 4.3 (Singular sequence)Consider a sequence of complex normalized cen-
tral configurations with the property thatZ(n) is unbounded. A sub-sequence extracted
by the above process is called a singular sequence.

Lemma 4.1 [1] Let X be a closed algebraic subset of C
m and f : C

m → C be a
polynomial. Either the image F(X ) ⊂ C is a finite set, or it is the complement of a
finite set. In the second case one says that f is dominating.

4.3 The two-colored diagrams

For two sequences of non-zero numbers, a, b, we use a ∼ b, a ≺ b, a � b, and
a ≈ b to represent “a/b → 1”, “a/b → 0”, “a/b is bounded” and “a � b, a � b”
respectively.

Recall that a singular sequence satisfy the property ‖Z(n)‖ = ‖W(n)‖ → ∞. Set
‖Z(n)‖ = ‖W(n)‖ = 1/ε2. Then ε → 0. Following Albouy-Kaloshin, [1], the two-
colored diagram was introduced in [22] to classify the singular sequences. Given a
singular sequence, the indices of the verticeswill bewritten down.Thefirst color, called
the z-color (red), is used to mark the maximal order components of Z . If zk ≈ ε−2,
draw a z-circle around the vertex k; If Z jk ≈ ε−2, draw a z-stroke between vertices
k and j. They constitute the z-diagram. The second color, called the w-color (blue
and dashed), is used to mark the maximal order components ofW in similar manner.
Then we also have the w-diagram. The two-colored diagram is the combination of the
z-diagram and the w-diagram, see Fig. 1.

Fig. 1 On the left, vertices 1, 2 are z-circled, and a z-edge is between them; In the middle, vertices 1, 2 are
z- and w-circled, and a zw-edge is between them; On the right, vertices 1, 2 are w-circled, and a w-edge is
between them
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If there is either a z-stroke, or a w-stroke, or both between vertex k and vertex l,
we say that there is an edge between them. There are three types of edges, z-edges,
w-edges and zw-edges, see Fig. 1.

The following concepts were introduced to characterize some features of singular
sequences. In the z-diagram, vertices k and l are called z-close, if zkl ≺ ε−2; a z-stroke
between vertices k and l is called a maximal z-stroke if zkl ≈ ε−2; a subset of vertices
are called an isolated component of the z-diagram if there is no z-stroke between a
vertex of this subset and a vertex of its complement. These concepts also apply to the
w-diagram.

Proposition 4.1 (Estimate) [22] For any (k, l), 1 ≤ k < l ≤ N, we have ε2 � zkl �
ε−2, ε2 � wkl � ε−2 and ε2 � rkl � ε−2.

There is a z-stroke between k and l if and only if wkl ≈ ε2. Then rkl � 1.
There is a maximal z-stroke between k and l if and only if zkl ≈ ε−2, wkl ≈ ε2.

Then rkl ≈ 1.
There is a z-edge between k and l if and only if zkl � ε2, wkl ≈ ε2. Then ε2 ≺

rkl � 1.
There is a maximal z-edge between k and l if and only if zkl ≈ ε−2, wkl ≈ ε2. Then

rkl ≈ 1.
There is a zw-edge between k and l if and only if zkl , wkl ≈ ε2. This can be

characterized as rkl ≈ ε2.

Remark 2 By the estimates above, the strokes in a zw-edge are not maximal. A max-
imal z-stroke is exactly a maximal z-edge.

The following rules for the two-colored diagrams are valid if “z” and “w” were
switched.

Rule I: There is something at each end of any z-stroke: another z-stroke or/and a
z-circle drawn around the name of the vertex. A z-circle cannot be isolated; there must
be a z-stroke emanating from it. There is at least one z-stroke in the z-diagram.

Rule II: If vertices k and l are z-close, they are both z-circled or both not z-circled.
Rule III: Themoment of vorticity of a set of vertices forming an isolated component

of the z-diagram is z-close to the origin.
Rule IV : Consider the z-diagram or an isolated component of it. If there is a z-

circled vertex, there is another one. If the z-circled vertices are all z-close together,
the total vorticity of these z-circled vertices is zero.

Rule V : There is at least one z-circle at certain end of any maximal z-stroke. As a
result, if an isolated component of the z-diagram has no z-circled vertex, then it has
no maximal z-stroke.

Rule VI: If there are two consecutive z-stroke, there is a third z-stroke closing the
triangle.

Remark 3 We would like to compare our rules for the N -vortex problem with those
of Albouy and Kaloshin for the N -body problem [1]. Our Rules I to V correspond to
their Rules 1a to 1e but are weaker due to the possibility of negative vorticities and
clusters with zero total vorticity. Our Rule VI is similar to their Rule 2b but is stronger
in the sense that we only need two consecutive z-strokes (w-strokes) to form a triangle
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of z-strokes (w-strokes), whereas they require two consecutive zw-edges to form a
triangle of zw-edges.

We lack the two-color rules due to the differences between the two potentials. The

Newtonian potential leads to Zi j = z
− 1

2
i j w

− 3
2

i j , so the existence of a z-stroke provides
estimates for both zi j and wi j , which in turn yields the two-color rules. In contrast,
the logarithmic potential leads to Zi j = w−1

i j , so the existence of a z-stroke provides
an estimate only for wi j , thus we lack the two-color rules.

Example: Robert’s continuum: Roberts found the following continuum of relative
equilibria for five vortices. The vorticities are �1 = −1, �2 = �3 = �4 = �5 = 2.
The first vortex is at the origin z1 = w1 = 0, while the other four vortices form a
rhombus

(z2, z3, z4, z5) = (a, b,−a,−b), (w2, w3, w4, w5) = (a,−b,−a, b),

where a ∈ R and ib ∈ R for the real configurations. One can check that the configu-
ration defined by the coordinates above and the restriction r223 = r234 = r245 = r252 =
a2 − b2 = 1 satisfies system (13).

For the real configurations, when a → 0, vertices 1, 2, and 4 collide. The cor-
responding singular sequence is a triple contact with r12, r14, r24 → 0, so the
corresponding diagram is a copy of Diagram 1 of Fig. 15 (the vertices of the tri-
angle should be 1, 2, 4). When b → 0, vertices 1, 3, and 5 collide. Similarly, the
corresponding diagram is a copy of Diagram 1 of Fig. 15 (the vertices of the triangle
should be 1, 3, 5).

For the complex configurations, when a → ∞, we have two choices: b ∼ a or
b ∼ −a. We get two other singular sequences with {z2, z3, z4, z5, w2, w3, w4, w5} all
going to infinity. For instance, if a → ∞ and b ∼ a, the corresponding diagram is
exactly Diagram 18 of Fig. 16.

5 Constraints when some sub-diagrams appear

We collect some useful results in this section. We will use notations such as
�J , � j1,..., jn , L J , and L j1,..., jn below. Please refer to Definition 2.1 for their meanings.

Proposition 5.1 [22] Suppose that a diagram has two z-circled vertices (say 1 and
2) which are also z-close, if none of all the other vertices is z-close with them, then
�1 + �2 �= 0 and �z12w12 ∼ 1

�1+�2
. In particular, vertices 1 and 2 cannot form a

z-stroke.

Corollary 5.1 Suppose that a diagram has two z-circled vertices (say 1 and 2) which
also form a z-stroke. If none of all the other vertices is z-close with them, then z12 ≈
ε−2, �1 + �2 �= 0, and w1, w2 � ε2.

Proof If they are z-close, by Proposition 5.1, they cannot form a z-stroke, which is a
contradiction. Note that Rule III implies

ε−2 � �1z1 + �2z2 = (�1 + �2)z1 + �2(z2 − z1).
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We obtain �1 + �2 �= 0.
Note that z1 j , z2 j ≈ ε−2, j ≥ 3. Then

�̄
∑

j≥3

� jw j =
∑

j≥3

�1� j

z1 j
+

∑

j≥3

�2� j

z2 j
� ε2.

By the equation
∑

j � jw j = 0, we have

ε2 � �1w1 + �2w2 = (�1 + �2)w1 + �2w21.

Since w21 ≈ ε2, we have w1, w2 � ε2. �

Proposition 5.2 [22] Suppose that a fully z-stroked sub-diagram with vertices
{1, . . . , k}, (k ≥ 3) exists in isolation in a diagram, and none of its vertices is z-
circled, then

L1,...,k =
∑

i, j∈{1,...,k},i �= j

�i� j = 0.

Corollary 5.2 Suppose a fully z-stroked sub-diagram with vertices K = {1, . . . , k},
k ≥ 3, exists in isolation in a diagram, and none of its vertices is z-circled.

1. If there is an isolated component I of the w-diagram such that K ⊂ I , then the
w-circled vertices in I cannot be exactly {1, . . . , k}.

2. Consider any subset of K with cardinality (k − 1) , say K1 = {2, . . . , k}. If there
is an isolated component I of the w-diagram with K1 ⊂ I , then the w-circled
vertices in I cannot be exactly K1.

3. If there is a vertex outside of K , say k +1, such that {k +1}∪ K forms an isolated
component of the w-diagram and these k + 1 vertices are fully w-stroked, then
there is at least one w-circle among them.

4. If there are several isolated components {I j , j = 1, . . . , s} of the w-diagram with
K ⊂ ∪s

j=1 I j , then the w-circled vertices in ∪s
j=1 I j cannot be exactly {1, . . . , k}.

Proof First, we have LK = 0 by Proposition 5.2, and the vertices of K are all w-close
by the estimate of Proposition 4.1.

For part (1), if the w-circled vertices in I are exactly {1, . . . , k}, then by Rule IV,
we have

∑
i∈K �i = 0. This leads to a contradiction because:

(
∑

i∈K
�i

)2

=
∑

i∈K
�2
i + 2LK .

The proof of part (4) is similar.
For part (2), if thew-circled vertices in I are exactly K1 = {2, . . . , k}, then by Rule

IV, we have
∑k

i=2 �i = 0. Therefore:

LK1 = LK − �1

(
k∑

i=2

�i

)
= 0,
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which again leads to a contradiction since
∑

i∈K1
�i = 0.

For part (3), if the component {k + 1} ∪ K is fully w-stroked but has no w-circle,
then Rule IV implies that LK = 0 and LK + �k+1

∑
i∈K �i = 0. This leads to∑

i∈K �i = 0, which is a contradiction. �

Proposition 5.3 Suppose that a diagram has an isolated z-stroke in the z-diagram,
and its two ends are z-circled. Let 1 and 2 be the ends of this z-stroke. Suppose there is
no other z-circle in the diagram. Then �1 +�2 �= 0, and z12 is maximal. The diagram
forces � = ±1 or ±i. Furthermore,

• If � = ±1, we have
∑N

j=3 � j = 0;
• If � = ±i, we have L = 0 and �1�2 = L3...N .

Proof The facts that �1 + �2 �= 0 and z12 is maximal follow from Corollary 5.1.
Without loss of generality, assume z1 ∼ −�2aε−2 and z2 ∼ �1aε−2, then

z12 ∼ (�1 + �2)aε−2,
1

z2
− 1

z1
∼

(
1

�1
+ 1

�2

)
ε2

a
.

The System (13) yields

�w12 = (�1 + �2)W12 + ∑N
j=3 � j

(
1
z j2

− 1
z j1

)

�z2 ∼ �1Z12.
(14)

The second equation of (14) implies w12 ∼ ε2

a�
. Note that 1

z j2
− 1

z j1
∼ 1

z2
− 1

z1
for

all j > 2 and that W12 = 1
z12

. The first equation of (14) implies

�/� = 1 +
N∑

j=3

� j

(
1

�1
+ 1

�2

)
. (15)

It follows that � = ±1 or ±i.
If � = ±1, we have

0 =
N∑

j=3

� j

(
1

�1
+ 1

�2

)
, ⇒

N∑

j=3

� j = 0.

If � = ±i, we obtain

−2 =
N∑

j=3

� j

(
1

�1
+ 1

�2

)
, L = 0, ⇒ L = 0, �1�2 = L3...N .

�

Similarly, we have the following result.
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Proposition 5.4 Suppose that a diagram has an isolated triangle of z-strokes in the
z-diagram, where two of the vertices of the triangle are z-circled. Let 2 and 3 be the
two z-circled vertices and 1 the other vertex. Suppose there is no other z-circle in the
diagram. Then �2 + �3 �= 0, and z23 is maximal. The diagram forces � = ±1 or ±i.
Furthermore,

• If � = ±1, we have
∑N

j=4 � j = 0;

• If � = ±i, we have L = 0 and L123 = L4...N + �1(
∑N

j=4 � j ).

Proof The facts that �2 +�3 �= 0 and z23 is maximal follow from Corollary 5.1. Note
that

�2z2 + �3z3 ≺ ε−2, �z1 ∼ �2Z21 + �3Z31 ≺ ε−2.

Without loss of generality, assume

z2 ∼ −�3aε−2, z3 ∼ �2aε−2, Z21 ∼ −�3bε
−2, Z31 ∼ �2bε

−2.

Then

z23 ∼ (�2 + �3)aε−2,
1

z3
− 1

z2
∼

(
1

�2
+ 1

�3

)
ε2

a
,

Z23 = 1

w23
= 1

1/Z21 + 1/Z13
∼ −b

�2�3

(�2 + �3)
ε−2.

Then similar to the above case, we have

�w23 ∼ (�2 + �3)W23 +
N∑

j �=2,3

� j

(
1

z3
− 1

z2

)

�z23 ∼ (�2 + �3)Z23 + �1(Z13 − Z12).

Short computation reduces the two equations to

−�
a

b
= �2�3

�2 + �3

⎛

⎝1 +
∑

j �=2,3

� j
�2 + �3

�2�3

⎞

⎠ ,

−�
a

b
= L123

�2 + �3
.

Then we obtain

�

�
L123 = �2�3 + (�2 + �3)

∑

j �=2,3

� j .

It follows that � = ±1 or ±i.
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If � = ±1, we have
∑N

j=4 � j = 0. If � = ±i, we have L = 0 and

L = 0, −L123 = �2�3 + (�2 + �3)
∑

j �=2,3

� j ,

which is equivalent to L123 = L4...N + �1(
∑N

j=4 � j ), L = 0. �

Proposition 5.5 Assume there is a triangle with vertices 1, 2, 3 that is fully z- and
w-stroked, and fully z- and w-circled. Moreover, assume that the triangle is isolated
in the z-diagram. Then there must exist some k > 3 such that zk1 � 1.

Proof By Proposition 4.1 and Rule IV, we have

z1 ∼ z2 ∼ z3, w1 ∼ w2 ∼ w3, �1 + �2 + �3 = 0.

Suppose that it holds zk1 � 1 for all k > 3. Then 1
zk j

− 1
zk1

= z1 j
zk j zk1

≺ ε2 for all
k > 3, 1 ≤ j ≤ 3, and so

�̄

3∑

j=1

� jw j =
∑

k≥4

3∑

j=1

�k� j

zk j
=

∑

k≥4

3∑

j=1

�k� j

(
1

zk1
+ 1

zk j
− 1

zk1

)
≺ ε2.

By the fact that w12, w13, w23 ≈ ε2, the equations

3∑

j=1

� jw j = �2w12 + �3w13 = �1w21 + �3w23 = �1w31 + �2w32 ≺ ε2

imply that
w12

�3
∼ w23

�1
∼ w31

�2
≈ ε2. (16)

By the isolation of this triangle in the z-diagram, it holds that

�z1 ∼ �2

w21
+ �3

w31
, �z2 ∼ �1

w12
+ �3

w32
, �z3 ∼ �1

w13
+ �2

w23
. (17)

Since z1 ∼ z2 ∼ z3, the equations (16) and (17) lead to

�1

�2
− �2

�1
= �2

�3
− �3

�2
= �3

�1
− �1

�3
.

This contradicts with �1 + �2 + �3 = 0. �

Similarly, we have the following result.

Proposition 5.6 Suppose that a diagram has an isolated triangle of z-strokes in the
z-diagram, where all three vertices, say 1, 2, 3, are z-circled. If z1 ∼ z2 ∼ z3, then
there exists some k > 3 such that zk1 ≺ ε−2.
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Proof Suppose that z1 ∼ z2 ∼ z3 ≈ ε−2. By Proposition 4.1 and Rule IV, we
have �1 + �2 + �3 = 0. Suppose that it holds zk1 ≈ ε−2 for all k > 3. Then
1
zk j

− 1
zk1

= z1 j
zk j zk1

≺ ε2 for all k > 3, 1 ≤ j ≤ 3. Similar to the argument of the above

result, we have �̄
∑3

j=1 � jw j ≺ ε2,

w12

�3
∼ w23

�1
∼ w31

�2
≈ ε2,

�z1 ∼ �2

w21
+ �3

w31
, �z2 ∼ �1

w12
+ �3

w32
, �z3 ∼ �1

w13
+ �2

w23
,

and �1
�2

− �2
�1

= �2
�3

− �3
�2

= �3
�1

− �1
�3

. This contradicts with �1 + �2 + �3 = 0. �

Proposition 5.7 Assume that vertices 1 and 2 are both z- andw-circled and connected
by a zw-edge, and the sub-diagram formed by the two vertices is isolated in the z-
diagram. Assume that vertices 3 and 4 are also both z- and w-circled and connected
by a zw-edge, and is isolated in the z-diagram. Then, there must exist some k > 4
such that at least one among zk1, wk1, zk3, wk3 is bounded (i.e., � 1).

Proof By Proposition 4.1 and Rule IV, we have

z1 ∼ z2, z3 ∼ z4, w1 ∼ w2, w3 ∼ w4, �1 + �2 = 0, �3 + �4 = 0.

Suppose that it holds that wk1 � 1 for all k > 4. Then 1
wk2

− 1
wk1

= w12
wk2wk1

≺ ε2 for

all k > 4. Note that z12 ≈ ε2, and

�z12 = (�1 + �2)Z12 + �3

(
w21

w32w31
− w21

w42w41

)
+

∑

k>4

�k

(
1

wk2
− 1

wk1

)
.

We conclude that

w21

w31w32
≈ w21

w41w42
� ε2 ⇒ w31 � 1 ⇒ w1 ∼ w2 ∼ w3 ∼ w4.

Similarly, we have

z1 ∼ z2 ∼ z3 ∼ z4.

Note that

�

4∑

j=1

� jw j =
∑

k>4

4∑

j=1

�k� j

zk j
=

∑

k>4

�k�1

(
1

zk1
− 1

zk2

)
+

∑

k>4

�k�3

(
1

zk3
− 1

zk4

)
≺ ε2.

Then the equation �2w12 + �4w34 = ∑4
j=1 � jw j leads to

�2w12 ∼ −�4w34, or �2Z34 ∼ −�4Z12.
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On the other hand, the isolation of the two segments implies

�z2 ∼ �1Z12, �z4 ∼ �3Z34,⇒ �1Z12 ∼ �3Z34.

As a result, we have

�1�2 = −�3�4, or �2
1 + �2

3 = 0,

which is a contradiction. �

Proposition 5.8 Assume that there is a quadrilateral with vertices 1, 2, 3, 4, that is
fully z- and w-stroked, and fully w-circled. Moreover, the quadrilateral is isolated in
the w-diagram. Then, there must exist some k > 4 such that wk1 � 1.

Proof We establish the result by contradiction. Rule IV implies that
∑4

j=1 � j = 0.

Suppose that it holds thatwk1 � 1 for all k > 4. Then 1
wk j

− 1
wk1

≺ ε2 for k > 4, j ≤ 4,
so

�

4∑

j=1

� j z j =
∑

k>4

�k

4∑

j=1

� j

wk j
=

∑

k>4

�k

4∑

j=1

� j

(
1

wk1
+ 1

wk j
− 1

wk1

)
≺ ε2.

Then

ε2 �
4∑

j=1

� j z j =
∑

j=2,3,4

� j z1 j ⇒ �2z12 ∼ −�3z13 − �4z14 ≈ ε2.

Set z13 ∼ aε2, z14 ∼ bε2, where a �= b are some nonzero constants. Then

z12 ∼ −�3a + �4b

�2
ε2, z23 ∼ a(�2 + �3) + �4b

�2
ε2,

z24 ∼ �3a + b(�2 + �4)

�2
ε2, z34 ∼ (b − a)ε2.

Since w1 ∼ w2 ∼ w3 ∼ w4, we set �̄wk ∼ 1
cε2

, k = 1, 2, 3, 4. Substituting those
into the system

�̄wk ∼
4∑

j �=k, j=1

� j

z jk
, k = 1, 2, 3, 4,

which is from the isolation of the quadrilateral in w-diagram. We obtain four homo-
geneous polynomials of the three variables a, b, c. Thus, we set c = 1, and obtain the
following four polynomials of the five variables a, b, �1, �3, �4,

a2(−�3)(b + �4) + ab
(
−�4(b − 2�3) + �2

1 + 2�1(�3 + �4)
)

− b2�3�4 = 0,
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a3�2
3(�1 + �4) + a2�3

(
−b

(
�2
1 + �1�3 + �4(2�3 − �4)

)
− (�1 − �3 + �4)(�1 + �3 + �4)

2
)

− ab
(
�2
1�4(b − 4�3) + �1

(
�2
4(b + 2�4) + 2�3

3 − 2�2
3�4 − 2�3�

2
4

)
− �2

3�4(b + 2�4)
)

− ab
(
2b�3�

2
4 − �4

1 − 2�3
1(�3 + �4) + �4

3 + �4
4

)

+ b2�4

(
�1

(
�4(b + �4) − 3�2

3 − 2�3�4

)
+ �3�4(b + �4)

−�3
1 − �2

1(3�3 + �4) − �3
3 − �2

3�4 + �3
4

)
= 0,

a3(�1 + �4) + a2(�3(2�1 + �3 + 2�4) − b(�1 + 2�4))

+ ab
(
b�4 − 2�1�3 − �2

3 − 2�3�4

)
− b2�1�4 = 0,

a2�3(b − �1) − ab(b(�1 + 2�3) + �4(2�1 + 2�3 + �4))

+ b2(b(�1 + �3) + �4(2�1 + 2�3 + �4)) = 0.

Tedious but standard computation, such as calculating the Gröbner basis, yields

b5(�1 + �3 + �4)
(
�2
1 + �1�3 + �1�4 + �2

3 + �3�4 + �2
4

)
= 0.

It is a contradiction since b �= 0, �1 + �3 + �4 = −�2 �= 0 and

�2
1 + �1�3 + �1�4 + �2

3 + �3�4 + �2
4 = 1

2
(�2

1 + �2
2 + �2

3 + �2
4) �= 0.

�


6 Construction of the 5-vortex diagrams

From now on, we focus on the planar 5-vortex problem. In this section, we identify all
problematic diagrams for the 5-vortex central configurations. We adopt the approach
used by Albouy and Kaloshin in the N -body problem [1], which involves analyzing
diagrams according to the maximal number of strokes emanating from a two-colored
vertex. During the analysis of all the possibilities we rule some of them out immedi-
ately. The ones we cannot exclude without further consideration are collected into a
list of 31 diagrams, shown in Figs. 15 and 16 in Sect. 7.

We call a two-colored vertex of the diagram a vertex which connects at least a
stroke of z-color with at least a stroke of w-color. The number of strokes from a
two-colored vertex is at least 2 and at most 8. Given a diagram, we define C as the
maximal number of strokes from a two-colored vertex. We use this number to classify
all possible diagrams.

Recall that the z-diagram indicates the maximal terms among a finite set of terms.
It is nonempty. If there is a circle, there is an edge of the same color emanating from
it. So there is at least a z-stroke, and similarly, at least a w-stroke.

Remark 4 We developed a symbolic computation algorithm to determine the diagrams
for the N -vortex problem [23], inspired by the work of Chang and Chen, who designed
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symbolic computation algorithms to implement the singular sequence method for the
N -body problem in celestial mechanics [4]. The core idea is to represent each two-
colored diagram as an N × 2N binary matrix. The rules from Sect. 4.3 and the results
from Sect. 5 are then translated into conditions on these binary matrices. Using this
algorithm, we can efficiently filter out invalid diagrams. This approach is particularly
useful when applying the singular sequence method to the finiteness problem for
N ≥ 6, as it significantly reduces the required manual work. For N = 5, the algorithm
outputs 31 diagrams, matching the list shown in Figs. 15 and 16 in Sect. 7. However,
we emphasize that all computations in this section were carried out by hand; the
algorithm was not used to obtain any of these diagrams.

6.1 No two-colored vertex

There is at least one isolated edge, which is not a zw-edge. Let us say it is a z-edge.
The complement has 3 bodies. There three can have one or three w-edges according
to Rule VI.

For one w-edge, the attached bodies have to be w-circled by Rule I. This is the first
diagram in Fig. 2.

For three w-edges, the three edges form a triangle. There are three possibilities for
the number of w-circled vertices: it is either zero, or two or three (one is not possible
by Rule III.) They constitute the last three diagrams in Fig. 2.

Hence, we have four possible diagrams, as shown in Fig. 2.

6.2 C = 2

There are two cases: a zw-edge exists or not.
If it is present, it is isolated. Let us say, vertex 1 and vertex 2 are connected by one

zw-edge. Note that there must be both z and w-circle among vertices 3, 4, and 5. If
none of the three vertices is z-circled, we have �1 + �2 = 0 by Rule IV. On the other
hand, since vertices 3, 4, and 5 are not z-circled, they are not z-close to vertex 1 and
vertex 2 . Then Proposition 5.1 implies that �1 + �2 �= 0. This is a contradiction.

Then Rule I implies that there is at least one z-stroke and one w-stroke among the
cluster of vertices 3, 4, and 5. There are two possibilities: whether there is another
zw-edge or not.

Fig. 2 Four possible diagram for no two-colored vertex. They correspond toDiagram 15 of Fig. 16, Diagram
1 of Fig. 15, Diagram 6 of Fig. 15, and Diagram 16 of Fig. 16 respectively
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Fig. 3 Two diagrams for C = 2.
The first one has been excluded.
The second one corresponds to
Diagram 18 of Fig. 16

If another zw-edge is present, then it is again isolated. This is the first diagram in
Fig. 3. Note that w15 ≈ ε−2, which contradicts with Proposition 5.7, thus impossible.

If another zw-edge is not present, there is at least one edge in both color. By the
circling method, the adjacent vertex is z- and w-circled. By the Estimate, the z-edge
implies the two attached vertices are w-close. Then the two ends are both w-circled
by Rule II. Thus, all three vertices are z- and w-circled. Then there are more strokes
in the diagram. This is a contradiction.

If there is no zw-edge, there are adjacent z-edges and w-edges. From any such
adjacency there is no other edge. Suppose that vertex 1 connects with vertex 4 by
w-edges and connects with 2 by z-edges. The circling method implies that 1 is z- and
w-circled, 2 is w-circled and 4 is z-circled. The color of 2 and 4 forces the color of
edges from the circle. If one of the two new edges completes the triangle with vertices
1, 2, 4, then Rule VI implies that C > 2, a contradiction. If the two new edges go to
the same vertex, we get the diagram corresponding to Roberts’ continuum at infinity,
shown as the second in Fig. 3.

If the two edges go to the different vertices, the circling method and Rule I demand
a cycle with alternating colors, which is impossible since the cycle has five edges.

Hence, there is only one possible diagram, the second one in Fig. 3.

6.3 C = 3

Consider a two-colored vertex with three strokes. There are two cases: in the first, it
is like vertex 1 in Fig. 4; in the second, it connects a single stroke to a zw-edge.

We start with the first case. Let us say vertex 1 connects with vertex 2 and vertex
3 by z-edges, and connects with vertex 4 by a w-edge. There is a z23-stroke by Rule
VI. The circling method implies that the vertices 1, 2 and vertex 3 are all w-circled,
see Fig. 4. Then there is w-stroke emanating from 2 and vertex 3. The w-stroke may
go to vertex 4, vertex 5, or it is a w23-stroke.

If one w-stroke goes from vertex 2 to vertex 4, then there is extra w12-stroke by
Rule VI, which contradict with C = 3. If all two w-strokes go to vertex 5, then Rule
VI implies the existence of w23-stroke. This is again a contradiction with C = 3.

If thew-strokes emanating from 2 and vertex 3 are just thew23-stroke, then we have
a zw-edge between 2, and 3. Then it is not necessary to discuss the second case. Then,
we consider the vertex 5. It is connected with the previous four vertices or isolated.

If the diagram is connected, vertex 5 can only connects with vertex 4 by a z-edge
(other cases is not possible by Rule VI). Then the circling method implies that vertex
5 is w-circled. Then there is w-stroke emanating from 5. This is a contradiction.
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Fig. 4 Two diagrams for C = 3.
Both have been excluded

If vertex 5 is isolated. Then the circlingmethod implies that all vertices except vertex
5 are w-circled. Only 2 and vertex 3 can be z-circled, and they are both z-circled or
both not z-circled by Rule IV, see Fig. 4.

If both vertex 2 and vertex 3 are not z-circled, then we have �2 + �3 = 0 and
L123 = 0 by Rule IV and Proposition 5.2. This is a contradiction since

L123 = �1(�2 + �3) + �2�3.

If both vertex 2 and vertex 3 are z-circled, then Rule IV implies that �2 + �3 = 0.
On the other hand, Corollary 5.1 implies that �2 + �3 �= 0. This is a contradiction.

Thus, the two diagrams in Fig. 4 are both excluded. There is no possible diagram.

6.4 C = 4

There are five cases: two zw-edges, only one zw-edge and one edge of each color,
only one zw-edge and two edge of the same color, one z-edge and three w-edges, or
two edges of each color emanating from the same vertex.

6.4.1

Suppose that there are two zw-edges emanating from, e.g., vertex 1 as on the first
diagram in Fig. 5.

We get a fully zw-edged triangle by Rule VI. This triangle is isolated since C = 4.
Since vertices 1, 2, and 3 are z-close and w-close, if one of them is circled in some
color, all of them will be circled in the same color. Thus, the first three vertices may
be all z-circled, all z-and w-circled, or all not circled.

If vertices 1, 2, and 3 are z-circled but not w-circled, we have �1 + �2 + �3 = 0
and L123 = 0 by Rule IV and Proposition 5.2. This is a contradiction since (�1 +
�2 + �3)

2 − 2L123 �= 0. Then the first three vertices can only be all z-and w-circled,
or all not circled.

The other two vertices can be disconnected, connected by one , e.g., z-edge, or
by one zw-edge. Then there are six possibilities, according to whether the first three
vertices are all z-and w-circled, or all not circled, and the connection between the
other two vertices.

Suppose that vertex 4 and vertex 5 are connected by one zw-edge, and the first three
vertices are all not circled. Then we have �4 + �5 = 0 by Rule IV. On the other hand,
Corollary 5.1 implies that �4 + �5 �= 0. This is a contradiction.
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Fig. 5 Five diagrams for C = 4, two zw-edges. The second and fourth one has been excluded. The first,
third and fifth one correspond to Diagram 1 of Fig. 16, Diagram 2 of Fig. 15, and Diagram 20 of Fig. 16
respectively

Then we have the five possibilities, see Fig. 5. Note that Proposition 5.5 can further
exclude the second and fourth one.

Hence, there are three possible diagrams, the first, third and fifth one in Fig. 5.

6.4.2

Suppose that there is one zw-edge and one edge of each color emanating from
vertex 1, as in the first digram of Fig. 6. We complete the triangles by Rule VI. Note
that no more strokes can emanating from vertex 1 and vertex 4 since C = 4. If there
are more strokes from vertex 2, it can not goes to vertex 3, since it implies one more
stroke emanating from vertex 1. Similarly, there is no z35-stroke or w25-stroke. Then
between vertex 5 and the first four vertices, there can have no edge, one z25-stroke, or
one z25-stroke and one w35-stroke.

For the disconnected diagram, vertex 1 and vertex 4 can not be circled. Otherwise,
the circling method implies either vertex 2 is be z-circled or 3 is w-circled, there
should be stroke emanating from vertex 2 or vertex 3 . This is a contradiction. Then
vertex 2 can not be circled, otherwise, vertex 3 is of the same color by Rule IV. This
is a contradiction. Hence, there is no circle in the diagram and this is the first diagram
in Fig. 6.

If there is only z25-stroke, then the circling method implies that vertices 1, 2, 4, and
5 are z-circled. Note that vertex 3 and vertex 5 can not be w-circled, otherwise there
are extraw-strokes. Then vertices 1, 2, and 4 are notw-circled by the circling method.
Note that vertex 3 must be z-circled, otherwise, we have L124 = 0 and �1 + �4 = 0.
This is a contradiction. Then we have the second diagram in Fig. 6.

If there are z25-stroke and w35-stroke. Then vertex 5 is z-and w-circled. By the
circling method, all vertices are z-and w-circled. This the third diagram in Fig. 6.

Hence, there are three possible diagrams, the first three in Fig. 6.

Fig. 6 Four diagrams forC = 4, one zw-edge. The fourth one has been excluded. The first three correspond
to Diagram 2 of Fig. 16, Diagram 8 of Fig. 16, and Diagram 19 of Fig. 16 respectively

123



On finiteness of stationary...

6.4.3

Suppose that there are one zw-edges and two z-edges emanating from vertex 1, as
in the fourth diagram in Fig. 6. Then there are z23-stroke, z24-stroke and z34-stroke by
Rule VI. Note that vertex 1 is w-circled, then the circling method implies all vertices
except possibly vertex 5 are w-circled. Then there is w-stroke emanating from 3 and
vertex 4. The w-stroke may go to vertex 5, or it is a w34-stroke.

If all twow-strokes go to vertex 5, then Rule VI implies the existence ofw34-stroke,
which contradicts with C = 4. Then the w-strokes from 3 and vertex 4 is w34-stroke,
and vertex 5 is disconnected.

Consider the circling the the diagram.We have three different cases: all vertices are
not z-circled, only two of the first four vertices, say, vertex 1 and vertex 2 are z-circled,
or all the first four vertices are z-circled.

If none of the first four vertices is z-circled, then we have �1234 = 0 and L1234 = 0
by Rule IV and Proposition 5.2. This is a contradiction.

If only vertex 1 and vertex 2 are z-circled, we have �1 + �2 = 0 by Rule IV. On
the other hand, Corollary 5.1 implies that �1 + �2 �= 0. This is a contradiction.

Then all the first four vertices are z-circled. This gives the fourth diagram in Fig. 6.
However, this contradicts with Proposition 5.7, so excluded.

Hence, there is no possible diagram, i.e., the fourth one in Fig. 6 is impossible.

6.4.4

Suppose that from vertex 1 there are three w-edges go to vertex 2, vertex 3 and
vertex 4 respectively and one z-edges goes to vertex 5 . There is a w-stroke between
any pair of {1, 2, 3, 4} by Rule VI, and the four vertices are all z-circled.

Then there are z-strokes emanating from vertex 2, vertex 3 and vertex 4 . None of
them can go to vertex 5 by Rule VI. Then there are z23-, z24- and z34-strokes. This
contradict with C = 4. Hence, there is no possible diagram in this case.

6.4.5

Suppose that there are twow-edges and two z-edges emanating from vertex 1, with
numeration as in the first diagram of Fig. 7. By Rule VI, there is w23- and z45-stroke.
Thus, we have two attached triangles. By Rule VI, if there is more stroke, it must be
z23- and/or w45-stroke.

Case I: If there is no more stroke, then vertex 1 can not be circled, otherwise, the
circling method would lead to contradiction. Rule IV implies that vertex 2 and vertex
3 can only be both or both not w-circled, and vertex 4 and vertex 5 can only be both
or both not z-circled. Then we have the first three diagrams in Fig. 7.

Case II: If there is only z23-stroke, the circling method implies vertex 1, vertex
2 and vertex 3 are z-circled. Note that only vertex 2 and vertex 3 can be w-circled.
There are two possibilities: whether vertex 2 and vertex 3 are both w-circled or both
not w-circled.

If vertex 2 and vertex 3 are bothw-circled, we have �2+�3 = 0 by Rule IV. On the
other hand, since vertices 1, 4, and 5 are notw-circled, they are notw-close to vertex 2
and vertex 3 . Then Proposition 5.1 implies that �2 + �3 �= 0. This is a contradiction.
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Fig. 7 Four diagrams for C = 4, no zw-edges. They correspond to Diagram 3 of Fig. 16, Diagram 3 of
Fig. 15, Diagram 17 of Fig. 16, and Diagram 9 of Fig. 15 respectively

If vertex 2 and vertex 3 are both not w-circled, we have �2 +�3 = 0 and L123 = 0
by Rule IV and Proposition 5.2. This is a contradiction. Hence there is no possible
diagram in this case.

Case III: If there are z23- and w45-strokes, the circling method implies vertex 2
and vertex 3 are z-circled, vertex 4 and vertex 5 are w-circled, and vertex 1 is z- and
w-circled. By Rule I, vertex 2 and vertex 3 are both z-circled, and vertex 4 and vertex
5 are both w-circled. This is the last diagram in Fig. 7.

Hence, there are four possible diagrams in this case, as shown in Fig. 7.
In summary, among the thirteen diagrams in Figs. 5, 6 and 7, we have excluded the

first and third one in Fig. 5 and the fourth one in Fig. 6. We have 10 possible diagrams.

6.5 C = 5

There are three cases: two zw-edges, one zw-edge with one z-edge and two w-edges,
one zw-edge with three z-edges.

6.5.1

Suppose that there are two zw-edges and one z-edges emanating from vertex 1,
with numeration as in the first digram of Fig. 8. Rule VI implies the existence of z23-,
w23-, z24- and z34-strokes. Then vertex 5 can be either disconnected or connects with
vertex 4 by one w-edge, otherwise, it would contradict with C = 5.

For the disconnected diagram, note that any of the connected four vertices can not
be w-circled. Otherwise, the circling method implies vertex 4 is w-circled, which is a
contradiction. There are three cases: none of the vertices are circled, all four vertices
except vertex 4 are z-circled, or all four vertices are z-circled.

If none of the vertices are circled, by Proposition 5.2 we have L123 = 0 since
vertices 1, 2, and 3 form a triangle with no w-circled attached. Similarly, we have
L1234 = 0 by Proposition 5.2. This is a contradiction since

L1234 = L123 + �4(�1 + �2 + �3), (�1 + �2 + �3)
2 − 2L123 �= 0.

If only vertices 1, 2, and 3 are z-circled, we also have L123 = 0. By Rule IV, we
have �1 + �2 + �3 = 0. This is a contradiction.

Then we have only one possible diagram for the disconnected diagram, and it is
the first in Fig. 8.
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Fig. 8 Two diagrams for C = 5,
two zw-edges. They correspond
to Diagram 5 of Fig. 15, and
Diagram 7 of Fig. 15
respectively

For the connected diagram with w45-edge, the circling method implies that all
vertices are w-circled. Note that vertex 4 and vertex 5 can not be z-circled. Then
we have two cases: all the five vertices are not z-circled, or vertices 1, 2, and 3 are
z-circled.

If all the five vertices are not z-circled, we have �1 + �2 + �3 = 0 by Rule IV and
L1234 = 0 by Proposition 5.2. This is a contradiction.

Then, we have only one possible diagram for the connected diagram, and it is the
second in Fig. 8.

Hence, we have two possible diagrams, shown in Fig. 8.

6.5.2

Suppose that there are one zw-edge, one z-edge, and two w-edges emanating from
vertex 1, with numeration as in the first diagram of Fig. 9. Rule VI implies that vertices
1, 2, 3, and 4 are fullyw-stroked, and that vertices 1, 3, and 5 are fully z-stroked. There
is no more stroke emanating from vertices 1, 3, and 5, since that would contradict with
C = 5. There are two cases, z24-stroke is present or not.

If it is not present, vertex 2 and vertex 4 can only be w-circled, and vertex 5 can
only be z-circled. Then vertex 1 and vertex 3 can not be circled, otherwise, the circling
method would lead to contradiction. Then we have the first two diagrams in Fig. 9 by
Rule IV.

If z24-stroke is present, then vertices 1, 2, 3, and 4 are all z-circled. Vertex 1 and
vertex 3 can not be w-circled, which would lead to vertex 5 also w-circled and a
contradiction. Vertex 2 and vertex 4 are w-close, so they are both w-circled or both
not w-circled. If they are both w-circled, then Rule IV implies that �2 + �4 = 0. On
the other hand, Proposition 5.1 implies that �2 + �4 �= 0. This is a contradiction.

Then according to whether vertex 5 is z-circled or not, we have two cases, which
are the last two diagrams in Fig. 9.

The third diagram in Fig. 9 is impossible. We would have L1234 = 0 and∑4
j=1 � j = 0 by Proposition 5.2 and Rule IV. Hence, we have only one possible

diagram if z24-stroke is present, and it is the last diagram in Fig. 9.
Hence, we have three possible diagrams, the first two and the last one in Fig. 9.

123



X. Yu, S. Zhu

Fig. 9 Four diagrams for C = 5, one zw-edges. The third one has been excluded.The first, second and the
fourth one correspond to Diagram 4 of Fig. 16, Diagram 4 of Fig. 15, and Diagram 12 of Fig. 16 respectively

6.5.3

Suppose that there is one zw-edge and three w-edges emanating from vertex 1 .
Let us say, the zw-edge goes to vertex 2 and the other edges go to the other three
vertices. Rule VI implies that vertices 1, 2, 3, 4, 5 are fully w-stroked. The circling
method implies that all vertices are z-circled. Then there are z-strokes emanating from
vertices 3, 4, and 5. SinceC = 5 at vertex 1 and vertex 2, the z-strokes from vertices 3,
4, and 5 must go to vertices 3, 4, and 5. By Rule VI, they form a triangle of z-strokes.
This is a contradiction with C = 5. Hence, there is no possible diagram in this case.

In summary, among the six diagrams in Fig. 8 and 9, we have excluded the third
one in Fig. 9. We have five possible diagrams.

6.6 C = 6

There are three cases: three zw-edges, two zw-edge with one edge in each color, two
zw-edge with two z-edge.

6.6.1

Suppose that there are three zw-edges emanating from vertex 1, with numeration
as in the first digram of Fig. 10. Rule VI implies that the vertices 1, 2, 3, and 4 are fully
zw-edged. Then vertex 5 must be disconnected since C = 6. The first four vertices
can be circled in the same way by the circling method.

If all the first four vertices are z-circled but not w-circled, then we would have
L1234 = 0 and

∑4
j=1 � j = 0 by Proposition 5.2 andRule IV. This is one contradiction.

Then we have two possible diagrams, as shown in Fig. 10. However, the second
one is impossible by Proposition 5.8.

Fig. 10 Two diagrams for
C = 6, three zw-edges. The
second one has been excluded.
The first one corresponds to
Diagram 10 of Fig. 16
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Hence, there is only one possible diagram if there are three zw-edges, the first one
in Fig. 10.

6.6.2

Suppose that there are two zw-edges and two z-edges emanating from vertex 1, with
numeration as in the first diagram of Fig. 11. Rule VI implies the existence of z25-,
z35-, z24-, z45- and z34-strokes, and that the vertices 1, 2, and 3 are fully zw-edged. If
there is more stroke, it must be w45-stroke since C = 6.

If there is no more stroke, then the vertices can only be z-circled. There are two
cases, either vertices 1, 2, and 3 are z-circled or not.

If vertices 1, 2, and 3 are z-circled, then either vertex 4 or vertex 5 must also be
z-circled. Otherwise, we have �1 +�2 +�3 = 0 and L123 = 0 by Proposition 5.2 and
Rule IV. This is one contradiction. Then we have the first two diagrams in Fig. 11.

If vertices 1, 2, and 3 are not z-circled, then vertex 4 and vertex 5 are both z-circled
or both not z-circled. Then we have the second two diagrams in Fig. 11.

If w45-stroke is present, then the circling method implies that all vertices are w-
circled. Rule IV implies that �123 = 0. If at least one, hence all three vertices 1, 2,
and 3 are z-circled. Then there are two cases, according to whether vertices 4 and 5
are z-circled. Hence, we have the last two diagrams in Fig. 11. If none of vertices 1,
2, and 3 are z-circled, there are also two cases, depending on whether vertices 4 and
5 are z-circled. If the two vertices are both z-circled, Rule IV implies that �45 = 0,
which contradicts with �45 �= 0 by Proposition 5.1. If the two vertices are both not
z-circled, Proposition 5.2 yields L12345 = 0. But Rule IV implies that �12345 = 0, a
contradiction.

Hence, there are six possible diagrams in this case, as shown in Fig. 11.

Fig. 11 Six diagrams for C = 6,
two zw-edges, case 1. They
correspond to Diagram 7 of
Fig. 16, Diagram 9 of Fig. 16,
Diagram 5 of Fig. 16, Diagram 6
of Fig. 16, Diagram 8 of Fig. 15,
and Diagram 21 of Fig. 16
respectively
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Fig. 12 One diagram for C = 6,
two zw-edges, case 2. It
corresponds to Diagram 11 of
Fig. 16

6.6.3

Suppose that there are two zw-edges and one edge of each color emanating from
vertex 1, with numeration as in the first diagram of Fig. 12. Rule VI implies the
existence ofw25-,w35-, z24-, and z34-strokes, and that the vertices 1, 2, and 3 are fully
zw-edged. If there is more stroke, it must be w45-stroke, but it would lead to extra
stroke emanating from vertex 1, which contradicts with C = 6.

Vertex 5 can only be w-circled, and vertex 4 can only be z-circled. Then vertices 1,
2 and 3 can not be circled, otherwise, the circling method would lead to contradiction.
Then we have the diagram in Fig. 12 by Rule IV.

In summary, among the nine diagrams of Figs. 10, 11, and 12, we exclude the
second one of Fig. 10. That is, we have eight possible diagrams.

6.7 C = 7

Suppose that there are three zw-edges and one z-edge emanating from vertex 1, with
numeration as in the diagram of Fig. 13. Rule VI implies that the vertices 1, 2, 3, and 4
are fully zw-edged and that vertex 5 connects with the first four vertices by one z-edge.
There is no more stroke since C = 7. If any vertex is w-circled, all are w-circled,
which would lead tow-stroke emanating from vertex 5 . This is a contradiction. There
are two cases, either vertex 1 is z-circled or not.

If vertex 1 is not z-circled, then none of the vertices is z-colored by the circling
method. Then L1234 = 0 and L = 0 by Proposition 5.2, a contradiction.

If vertex 1 is z-circled, then vertices 1, 2, 3, and 4 are all z-circled. In this case,
vertex 5 must be z-circled. Otherwise, we have L1234 = 0 and

∑4
j=1 � j = 0 by

Proposition 5.2 and Rule IV, a contradiction.
Hence, we only have one diagram in the case of C = 7, as in Fig. 13.

Fig. 13 One diagram for C = 7.
It corresponds to Diagram 13 of
Fig. 16
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Fig. 14 Two diagrams for
C = 8. They correspond to
Diagram 14 and 22 of Fig. 16

6.8 C = 8

Suppose that there are four zw-edges emanating from vertex 1 . Rule VI implies
that the vertices 1, 2, 3, 4, 5 are fully zw-edged. Since all vertices are both z-close
and w-close, the vertices are all z-circled (respectively, w-circled) or all not z-circled
(respectively, w-circled). If they are all just z-circled but not w-circled, then we have

� = 0, L = 0,

by Rule IV and Proposition 5.2, a contradiction.
Hence, we have two diagrams in the case of C = 8, as in Fig. 14.
Summary: In the searching for all problematic 5-vortex two-colored diagrams, we

have found 39 of them, as shown in Figs. 2-14. Among them, we have excluded eight
of them, i.e., the first diagram in Fig. 3, the two diagrams in Fig. 4, the second and
fourth diagram in Fig. 5, the fourth diagram in Fig. 6, the third diagram in Fig. 9, and
the second diagram in Fig. 10. Hence, we conclude that any singular sequence should
converge to one of the remaining 31 diagrams.

7 Further diagram exclusion and the vorticity constraints

The 31 diagrams found in Sect. 6 are collected into two classes, 9 diagrams that can
be excluded by further arguments, see Fig. 15 , and 22 diagrams that we can not
exclude, see Fig. 16.

We would like to point out that the diagrams in the two lists differ in appearance
from those in Sect. 6. In Figs. 15 and 16, the diagrams are ordered by the number of
circles, whereas in Sect. 6, they are ordered by the maximal number of strokes from
a two-colored vertex. Additionally, there are differences in vertex labeling and in the
switching of z- and w-diagrams. These differences are not mistakes. Each diagram in
Sect. 6 represents an equivalence class under vertex permutations and color switching.
It is therefore valid to present different representatives of the same equivalence classes,
and we have intentionally done so to emphasize this fact, as it is often overlooked by
readers.

For the 22 diagrams in Fig. 16, we list the vorticity constraints. Most of them
are straightforward from the results in Sect. 5, while some requires additional work.
We will use notations such as �J , � j1,..., jn , L J , and L j1,..., jn below. Please refer to
Definition 2.1 for their meanings.
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7.1 The 9 impossible diagrams

The 9 impossible diagrams are presented in Fig. 15. We exclude them in the fol-
lowing.

1. Diagram 1: Consider the isolated component {3, 4, 5}of the z-digram, we see
L345 = 0; Consider the isolated component {1, 2} of the w-diagram. By Proposi-
tion 5.3, there are two cases:

(a) � = ±1, then �3 + �4 + �5 = 0, which contradicts with L345 = 0;
(b) � = ±i, then L = 0,and�1�2 = L345. Since L345 = 0,we obtain�1�2 = 0,

which is impossible.

2. Diagram 2 can be excluded by the same argument as that of Diagram 1.
3. Diagram 3: Consider the isolated component {3, 4, 5}of the z-diagram, we see

L345 = 0; Consider the isolated component {1, 2, 3}of the w-diagram. By Propo-
sition 5.4, there are two cases:

(a) � = ±1, then �3 + �4 = 0, which contradicts with L345 = 0 since L345 =
�3�4 + �5(�3 + �4).

(b) � = ±i, then L = 0,and L125 = L345. Since L345 = 0, we obtain �3�4 =
−�5(�3 + �4); similarly, it also holds �1�2 = −�5(�1 + �2). Note that

0 = L = L125 + (�3 + �4)(�1 + �2 + �5) + �3�4 = (�3 + �4)(�1 + �2),

which implies that �1�2�3�4 = 0, which is impossible.

4. Diagram 4: We will show that z1 � ε2, then it contradicts with Corollary 5.1 and
this diagram is thus excluded.

Fig. 15 The 9 diagrams that can be excluded. They correspond to the second diagram of Fig. 2, the third
diagram of Fig. 5, the second diagram of Fig. 7, the second diagram of Fig. 9, the first diagram of Fig. 8, the
third diagram of Fig. 2, the second diagram of Fig. 8, the fifth diagram of Fig. 11, and the fourth diagram
of Fig. 7 respectively
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Note that w1 j , w2 j ≈ ε−2, j ≥ 3. Then

�
∑

j≥3

� j z j =
∑

j≥3

�1� j

w1 j
+

∑

j≥3

�2� j

w2 j
� ε2.

Then the equation
∑5

j=3 � j z j = �345z3 + (�4 +�5)z34 +�5z45 and the fact that

z34 � ε2, z45 ≈ ε2 implies

�345z3 + (�4 + �5)z34 � ε2.

By Proposition 5.2, it follows that L345 = 0 and then �345 �= 0, �4 + �5 �= 0.
Then it holds that z3 ≈ z34 � ε2.

Finally, the equation
∑

j � j z j = 0 and the fact that z jk ≈ ε2, j �= k, j, k ∈
{1, 2, 4, 5} lead to

�3z3 + �1245z1 � ε2.

Hence, it holds that z1 ≈ z3 � ε2.
5. Diagram 5: By Proposition 5.2, it follows that L345 = 0 and �345 �= 0, �3+�4 �=

0.
Wefirst claim that the vertices 2 and 3 are notw-close, or,w23 ≈ ε−2, whose proof
will be given later. Since 1

w1 j
≈ ε2, j ≥ 2, we have �z1 = ∑5

j=2
� j
w1 j

� ε2. Note

that z12 � ε2, so z2 � ε2. Then it is easy to see z2 ∼ z3 ∼ z4 ∼ z5 � ε2 � z1.
By the claim, 1

w2 j
≈ ε2, j ≥ 3, so

�

5∑

j=3

� j z j =
5∑

j=3

�1� j

w1 j
+

5∑

j=3

�2� j

w2 j
� ε2.

By the equation
∑5

j=3 � j z j = ∑5
j=3 � j z3 + �4z34 + �5z35, we conclude that

∑5
j=3 � j = 0, which is a contradiction.

We now prove the claim by contradiction. Suppose that 2 and 3 are w-close. Rule
IV implies that

∑5
j=2 � j = 0. Note that 1

w1 j
− 1

w12
≺ ε2, j ≥ 3, so

�

5∑

j=2

� j z j =
5∑

j=2

�1� j

w1 j
= �1

5∑

j=2

� j

(
1

w12
+ 1

w1 j
− 1

w12

)
≺ ε2.

Then

ε2 �
5∑

j=2

� j z j =
∑

j=3,4,5

� j z2 j ⇒ �3z23 ∼ −�4z24 − �5z25 ≈ ε2.
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Note that the scenario is now the same as that described in Proposition 5.8, thus
impossible.

6. Diagram 6: By Proposition 5.4, it holds that �4 + �5 �= 0. There are two cases:

(a) � = ±1. Consider the isolated component {2, 3} of the w-diagram. Then
�4 + �5 = 0, which is a contradiction.

(b) � = ±i. Then L = 0.Consider the isolated component {4, 5}of the z-diagram.
Then �4�5 = L123. On the other hand, consider the isolated component {2, 3}
of the w-diagram. Then L145 = L123. Thus, it holds

�4�5 = L145 = �4�5 + �1(�4 + �5),

which is a contradiction.

7. Diagram 7: It is easy to see that w2 ∼ w3 ∼ w4 ∼ w5 ≈ ε−2, �1w1 + �2w2 ≺
ε−2, and

�3 + �4 + �5 = 0.

Set w2 ∼ bε−2. Then w1 ∼ −�2
�1
bε−2. We claim that �1 + �2 �= 0. Otherwise,

we have

�2w12 = �1w1 + �2w2 = �

⎛

⎝
5∑

j=3

� j�1

z j1
+

5∑

j=3

� j�2

z j2

⎞

⎠ ≺ ε2,

which contradicts with Proposition 4.1. Hence, �1 + �2 �= 0 and w12 ≈ ε−2.
By �z1 = ∑5

j=3
� j
w j1

+ �2
w21

and
∑5

j=3
� j
w j1

≺ ε2, it follows that

z1 ∼ − �1�2

b�(�1 + �2)
ε2.

Similarly, by w1 = �
∑5

j=3
� j
z j1

+ �2
z21

and
∑5

j=3
� j
z j1

≺ ε2, it follows that

z12 ∼ �1�

b
ε2.

Since
∑5

j=1 � j z j = 0, we obtain

5∑

j=3

� j z j = −(�1 + �2)z1 − �2z12 =
{∼ ( 1

�
− �

)
�1�2
b ε2 i f �2 �= 1;

≺ ε2, i f �2 = 1.

Note that
∑5

j=3 � j z j = �4z34 + �5z35 = �3z43 + �5z45. Set
z34
�5

∼ cε2.

Case 1. �2 = 1: Then z34
�5

∼ z45
�3

∼ z53
�4

∼ cε2. Note that �̄w3 ∼ �4
z43

+ �5
z53

and
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�̄w4 ∼ �3
z34

+ �5
z54

. Then

bc�4�5 + �2
4� − �2

5� = 0, bc�3�5 + �2
3(−�) + �2

5� = 0.

Eliminating bc, we obtain
(�3+�4)

(
�3�4−�2

5

)

�4
� = 0, which is a contradiction since

�3 + �4 = −�5 �= 0 and �3�4 − �2
5 = L345 �= 0.

Case 2. �2 �= 1: Then

z45
�3

∼
[
c +

(
1

�
− �

)
�1�2

b�3�5

]
ε2 ≈ ε2,

z35
�4

∼
[
−c +

(
1

�
− �

)
�1�2

b�4�5

]
ε2 ≈ ε2.

Note that �̄w3 ∼ �4
z43

+ �5
z53

and �̄w4 ∼ �3
z34

+ �5
z54

. Then

b2c2�4�
2
5� + bc�1�2�5�

2 − bc�1�2�5 + bc�2
4�5�

2 − bc�3
5�

2

+ �1�2�4�
3 − �1�2�4� = 0,

b2c2�3�
2
5� − bc�1�2�5�

2 + bc�1�2�5 − bc�2
3�5�

2 + bc�3
5�

2

+ �1�2�3�
3 − �1�2�3� = 0.

Eliminating bc, we obtain �2 = �1�2
�1�2+�3�4−�2

5
. Hence, �2 ∈ R. It must be −1,

and then � = ±√−1, L = 0, which is a contradiction since

L = �1�2 + (�1 + �2)(�3 + �4 + �5) + L345 = �1�2 + �3�4 − �2
5 .

8. Diagram 8: It is easy to see that �3 + �4 + �5 = 0, �1 + �2 = 0. Note that
1
z31

− 1
z j1

, 1
z32

− 1
z j2

≺ ε2, j ≥ 3, so

�̄(�1w1 + �2w2) = �1

5∑

j=3

� j

(
1

z31
+ 1

z j1
− 1

z31

)

+�2

5∑

j=3

� j

(
1

z32
+ 1

z j2
− 1

z32

)
≺ ε2.

Hence

ε2 � �1w1 + �2w2 = (�1 + �2)w1 + �2w12 = �2w12,

which contradicts with Proposition 4.1.
9. Diagram 9: By Considering the z- and w-diagrams, we obtain

�1 + �2 = 0, �3 + �4 = 0,
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and

�1z1 + �2z2 = �2z12 ≈ ε2, �3z3 + �4z4 = �4z34 ≈ ε2.

By
∑5

j=1 � j z j = 0, we see �5z5 � ε2, which is a contradiction.

7.2 The remaining 22 diagrams

1. Diagram 1: L345 = 0. This is the case of Roberts’ example.
2. Diagram 2: L345 = L245 = 0, or equivalently, L345 = 0, �2 = �3.

3. Diagram 3: � = ±1, L345 = L125 = 0.
It is easy to see that L345 = L125 = 0. We claim that � = ±1. Otherwise, we
have L = 0. Then

L = L125 + �3�4 + (�1 + �2 + �5)(�3 + �4)

= L125 + L345 + (�1 + �2)(�3 + �4) = (�1 + �2)(�3 + �4) = 0.

Without loss of generality, assume that �1 + �2 = 0. Then L125 = 0 implies that
�1�2 = 0, which is a contradiction. Hence, it holds that � = ±1.

4. Diagram 4: L345 = L1245 = 0.
5. Diagram 5: L345 = L = 0.
6. Diagram 6: L345 = 0.
7. Diagram 7: L345 = 0.
8. Diagram 8: L345 = 0, [�1(�3 + �4) − �2�5](�1 + �5)(�2 + �3 + �4) = 0.

It is easy to see L345 = 0. Set w3 ∼ w4 ∼ w5 ∼ aε−2. Then w1 ∼ −�5
�1
aε−2,

and w2 ∼ −�3+�4
�2

aε−2. If w12 ≺ ε−2, then

�1(�3 + �4) = �2�5.

We now assume thatw12 ≈ ε−2. Since z12 � ε2, it holds that z1 � ε2, or z2 � ε2.
Case I: z1 � ε2. Then ε2 ≺ �z1 = ∑5

j=3
� j
w j1

+ �2
w21

, and
∑5

j=3
� j
w j1

� ε2. If

�1 + �5 �= 0, then 1
w31

, 1
w41

, 1
w51

≈ ε2, which is a contradiction. Thus, we obtain

�1 + �5 = 0.

Case II: z2 � ε2. Then ε2 ≺ �z2 = ∑5
j=3

� j
w j2

+ �1
w12

, and
∑5

j=3
� j
w j2

� ε2. If

�2 + �3 + �4 �= 0, then 1
w32

, 1
w42

, 1
w52

≈ ε2, which is a contradiction. Thus, we
obtain

�2 + �3 + �4 = 0.

9. Diagram 9: L345 = 0.
10. Diagram 10: L2345 = 0.
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Fig. 16 The remaining 22 diagrams. They correspond to the first diagram of Fig. 5, the first diagram of
Fig. 6, the first diagram of Fig. 7, the first diagram of Fig. 9, the third diagram of Fig. 11, the fourth diagram
of Fig. 11, the first diagram of Fig. 11, the second diagram of Fig. 6, the second diagram of Fig. 11, the
first diagram of Fig. 10, the diagram of Fig. 12, the fourth diagram of Fig. 9, the diagram of Fig. 13, the
first diagram of Fig. 14, the first diagram of Fig. 2, the fourth diagram of Fig. 2, the third diagram of Fig. 7,
the second diagram of Fig. 3, the third diagram of Fig. 6, the fifth diagram of Fig. 5, the sixth diagram of
Fig. 11, and the second diagram of Fig. 14 respectively

11. Diagram 11: L1345 = L2345 = 0, or equivalently, L1345 = 0, �1 = �2.

12. Diagram 12: L2345 = 0 = �2 + �3.

13. Diagram 13: L2345 = 0.
14. Diagram 14: L = 0. It is easy to see that rkl ≈ ε2 for any k �= l, k, l ∈

{1, 2, 3, 4, 5}.
15. Diagram 15. � = ±1, �1 + �2 + �3 = 0, �1 + �4 + �5 = 0.

By Proposition 5.3, there are two cases:
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(a) � = ±1, then �1 + �2 + �3 = 0, and �1 + �4 + �5 = 0.
(b) � = ±i, then L = 0, and �2�3 = L145, �4�5 = L123. Then it holds

L = L145 + �2�3 + (�1 + �4 + �5)(�2 + �3)

= L145 + L123 + (�4 + �5)(�2 + �3)

= �2�3 + �4�5 + (�4 + �5)(�2 + �3) = L2345 = 0.

On the other hand, L = �1�2345 + L2345 = 0 implies that �2345 = 0, which
is a contradiction. Hence, this case is impossible.

16 Diagram 16: Consider the isolated component {4, 5} of the z-digram. By Proposi-
tion 5.3, it holds that �4 + �5 �= 0. There are two cases:

(a) � = ±1, then �1 + �2 + �3 = 0.
(b) � = ±i, then L = 0 and �4�5 = L123.

It is easy to see that

r14, r15, r24, r25, r34, r35 ≈ ε−2.

According to Proposition 5.3, z45 is amaximal stroke.We claim that w12, w13, w23
are all maximal strokes. Therefore, by Proposition 4.1,

r12, r13, r23, r45 ≈ 1.

Now, we prove the above claim, i.e., w1 � w2 � w3 � w1. Since, w41, w51 ≈
ε−2, by Proposition 5.6, it can not happen that w1 ∼ w2 ∼ w3. If exactly two of
w1, w2, w3 arew-close, without loss of generality, assume thatw12 ≺ ε−2, w13 ≈
ε−2. Then

�z1 = �2

w21
+

5∑

j=3

� j

w j1
� ε2, �z3 =

5∑

j=1, j �=3

� j

w j3
� ε2.

Hence, z13 ∼ −z1 � ε2, which contradicts with Proposition 4.1. Hence, the claim
is proved.

17. Diagram 17: � = ±i, L = 0 and L345 = L123.
Consider the isolated component {3, 4, 5} of the z-diagram and the component
{1, 2, 3} of the w-diagram. By Proposition 5.4, it holds that �4 + �5 �= 0 and
�1 + �2 �= 0. There are two cases:

(a) � = ±1, then �1 + �2 = 0, which is a contradiction. Hence, this case is
impossible.

(b) � = ±i, L = 0 and L345 = L123.

It is easy to see that

r14, r15, r24, r25 ≈ ε−2.
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According to Proposition 5.4, z45, w12 are maximal strokes. It is easy to see that
z34, z35, w23, w13 are all maximal stokes. By Proposition 4.1, it holds that

r12, r13, r23, r34, r35, r45 ≈ 1.

18. Diagram 18: �3�5 = �2�4. This is the case of Roberts’ example.
Consider the isolated component z23-edge. By Rule III, �2z2 + �3z3 ≺ ε−2.
Without loss of generality, assume z2 ∼ −�3aε−2 and z3 ∼ �2aε−2.Similarly,
we assume z4 ∼ −�5cε−2 and z5 ∼ �4cε−2, where a and c are two non-zero
complex constants. Since z34 ≈ z25 ≈ ε2 by the estimate of Proposition 4.1, we
obtain �2a = −�5b,−�3a = �4b. Hence, we obtain

�2�4 = �3�5.

Apply similar argument to the isolated component w25-edge. Then we have

z2 ∼ z5 ∼ −�3aε−2, z3 ∼ z4 ∼ �2aε−2,

w2 ∼ w3 ∼ −�5bε
−2, w4 ∼ w5 ∼ �2bε

−2,

where b is a non-zero complex constants. It follows that

�2�4 = �3�5.

If �2 + �3 + �4 + �5 �= 0, then (�5 + �2)(�2 + �3)(�3 + �4)(�4 + �5) �=
0. Otherwise, without loss of generality, assume �2 + �3 = 0, it follows that
�4 + �5 = 0, which contradicts with �2 + �3 + �4 + �5 �= 0.
In this case, it is easy to see that

r223 ∼ �2 + �3

−�
, r234 ∼ �3 + �4

−�
, r245 ∼ �4 + �5

−�
, r225 ∼ �2 + �5

−�
;

r224 ∼ (�2 + �3)(�2 + �5)abε
−4, r235 ∼ −(�2 + �3)(�2 + �5)abε

−4.;
r212 ∼ �3�5abε

−4, r213 ∼ −�2�5abε
−4, r214 ∼ �2�2abε

−4, r215 ∼ −�2�3abε
−4.

19. Diagram 19: �1(�3 + �4) = �2�5. Moreover, it holds that either |�1 + �2| +
|�1 + �5| = 0 or (�1 + �2)(�1 + �5) �= 0.
Consider the isolated component z12-edge. By Rule III, �1z1 + �2z2 ≺ ε−2.
Without loss of generality, assume z1 ∼ −�2aε−2 and z2 ∼ �1aε−2. Similarly,
we assume w1 ∼ −�5bε−2 and w5 ∼ �1bε−2, where a and b are two non-zero
complex constants. Then

z1 ∼ z5 ∼ −�2aε−2, z2 ∼ z3 ∼ z4 ∼ �1aε−2,

w1 ∼ w2 ∼ −�5bε−2, w3 ∼ w4 ∼ w5 ∼ �1bε−2.

Since
∑5

j=1 � j z j = 0, we obtain �1(�3+�4) = �2�5. Note that if �1+�2 = 0,
then �3 + �4 + �5 = 0; if �1 + �5 = 0, then �2 + �3 + �4 = 0.
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(a) If it holds that�1+�2 = 0 and�1+�5 = 0, i.e.,�1 = �3+�4 = −�2 = −�5.

It holds that z j ∼ �1aε−2, w j ∼ �1bε−2, z jk ≺ ε−2, w jk ≺ ε−2 for any
j, k ∈ {1, 2, 3, 4, 5}. Thus,

ε4 ≺ r12, r15, r23, r24, r35, r45 ≺ 1, r34 ≈ ε2,

ε4 ≺ r214 = z14w14 ≈ z45w45 ≺ ε−4, ε4 ≺ r13, r25 ≺ ε−4.

(b) If it holds that �1 + �2 �= 0 and �1 + �5 �= 0. It holds that z1 ∼ z5 ∼
−�2aε−2, z2 ∼ z3 ∼ z4 ∼ �1aε−2, w1 ∼ w2 ∼ −�5bε−2, w3 ∼ w4 ∼
w5 ∼ �1bε−2. Thus,

r234 ≈ ε4, r12, r35, r45 ≈ 1,

r15, r23, r24 ≈ 1, r214, r
2
13, r

2
25 ≈ ε−4.

(c) If it holds that�1+�2 = 0 and�1+�5 �= 0. It holds that z j ∼ �1aε−2, z jk ≺
ε−2 for any j, k ∈ {1, 2, 3, 4, 5}, w1 ∼ w2 ∼ −�5bε−2, w3 ∼ w4 ∼ w5 ∼
�1bε−2. Note that

�

5∑

j=3

� j z j =
5∑

j=3

�1� j

w1 j
+

5∑

j=3

�2� j

w2 j
=

5∑

j=3

�2� jw12

w1 jw2 j
≺ ε2

and
∑5

j=3 � j z j = ∑5
j=3 � j z3 + �4z34 + �5z35, z34 ≈ ε2. It holds that

z35 ≈ ε2,

which is a contradiction. Hence, this case is impossible.

20. Diagram 20: �1 + �2 = 0, �3 + �4 + �5 = 0.
21. Diagram 21: �1 + �2 = 0, �3 + �4 + �5 = 0.
22. Diagram 22: �1 + �2 + �3 + �4 + �5 = 0. It is easy to see that rkl ≈ ε2 for any

k �= l, k, l ∈ {1, 2, 3, 4, 5}.

8 Proofs of themain results

Proof of Theorem 1.1 Suppose that there are infinitely many solutions of system (13)
in the complex domain. At least one of the squared distances r2kl , say r212, must take
infinitely many values. By Lemma 4.1, r212 = z12w12 is dominating. There exists
a sequence of complex normalized central configurations such that r212 → 0. Then

z(n)
12 w

(n)
12 → 0, and either Z or W is unbounded along this sequence. We extract

a singular sequence, which must correspond to one of the 22 diagrams in Fig. 16.
Consequently, some explicit linear or quadratic relations on the five vorticities must
be satisfied.
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Consider first the case of relative equilibria. We can further exclude Diagram 17.
Recall that r212 is dominating. By pushing it to ∞, we cannot be in Diagram 14 or 22.
Thus, there are finitely many relative equilibria unless at least one of the following
fourteen polynomial systems holds. ( Recall that L j1,..., jn = ∑

1≤k<l≤n � jk� jl ),

L345 = 0;
L345 = 0, �2 = �3;
L345 = L125 = 0;
L345 = L1245 = 0;
L345 = L = 0;
L345 = 0, [�1(�3 + �4) − �2�5](�1 + �5)(�2 + �3 + �4) = 0;
L2345 = 0;
L1345 = 0, �1 − �2 = 0;
L2345 = 0, �2 + �3 = 0;
�1 + �2 + �3 = 0, �1 + �4 + �5 = 0;
�1 + �2 + �3 = 0;
�3�5 = �2�4;
�1(�3 + �4) = �2�5;
�1 + �2 = 0, �3 + �4 + �5 = 0.

(18)

Now consider the case of collapse configurations. In this case, we have an additional
constraint L = 0. It is straightforward to see that we can further exclude 10 diagrams,
namely, Diagram 3, 4, 10, 11, 12, 13, 15, 20, 21, and 22. Hence, for collapse con-
figurations, we have only 12 remaining diagrams: Diagram 1, 2, 5, 6, 7, 8, 9, 14, 16,
17, 18, and 19. Recall that r212 is dominating. By pushing it to ∞, we cannot be in
Diagram 14. Therefore, there are finitely many collapse configurations unless at least
one of the following seven polynomial systems holds,

L = 0, L345 = 0;
L = 0, L345 = 0, �2 = �3;
L = 0, L345 = 0, [�1(�3 + �4) − �2�5](�1 + �5)(�2 + �3 + �4) = 0;
L = 0, L123 = �4�5;
L = 0, L345 = L123;
L = 0, �3�5 = �2�4;
L = 0, �1(�3 + �4) = �2�5.

(19)

�

To further improve the above result, we first recall some simple tricks to estimate

the distances between vorticities when a singular sequence approaches one of the
diagrams in Fig. 16.
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By Proposition 4.1, it is easy to see the following: A zw-edge corresponds to a
distance rkl ≈ ε2. The other cases, no edge or a simple edge, i.e., a z-edge or a w-
edge, correspond to a distance rkl � ε2. A maximal simple edge corresponds to a
distance rkl ≈ 1. A simple edge is maximal if there is exactly one of its ends is circled
in one of z- and w-diagram. The non-maximal simple edges correspond to distances
rkl such that ε2 ≺ rkl ≺ 1. For distances rkl without edge, it holds ε2 ≺ rkl � ε−2.
For a distance rkl without edge that the two ends are not equally circled, it holds that
1 ≺ rkl , i.e., unbounded.

We will avoid further case-by-case analysis and use only these simple estimates,
along with those stated in Sect. 7. We call a 4-product a quantity pi j = r2i j r

2
klr

2
lmr

2
mk ,

where i, j, k, l,m are all the indices from 1 to 5 .

Proposition 8.1 In Diagram 5, 6, 7, 9, 10, 13 and 14, any 4-product is bounded.

Proof Note that all distances inDiagram5, 6, 7, 9, 13 and 14 are bounded. ForDiagram
10, we arrive the estimate by Proposition 4.1. �


In the following proof, we assume that
∑5

j=2 � j �= 0 in Diagram 18, otherwise its
constraint is a codimension 2 set. Similarly, we assume that it holds in Diagram 19
that �1 + �2 �= 0 and �1 + �5 �= 0. Hence, in Diagram 18 and 19, a simple edge
corresponds to a distance rkl ≈ 1, and no edge corresponds to a distance rkl ≈ ε−2.

Proof of Theorem 1.2 Part 1: For relative equilibria, repeating the first paragraph of the
proof of Theorem 1.1 shows that there is a singular sequence of complex normalized
central configurations approaching one of the 21 diagrams (the 22 diagrams minus
Diagram 17). Since each of Diagram 2, 3, 4, 5, 8, 11, 12, 15, 20, and 21 have two
independent constraints, which defines a codimension 2 set, we put them, and all the
similar sets obtained by renumbering the five vorticities, in the exceptional setA. We
assume that the singular sequence approaches one of Diagram 1, 6, 7, 9, 10, 13, 14,
16, 18, 19 and 22.

Suppose that it is Diagram 1. We number the vertices as in Fig. 16. Then r234 ≈ ε4,
and is a dominating function. Let r234 → ∞. Since all distances in Diagram 6, 7, 9,
13, 14 and 22 are bounded, we are in either Diagram 1 or in Diagram 10, 16, 18,
and 19. If we are in Diagram 1, it must be renumbered such that r34 is not in the
fully edged triangle, so there is a new independent constraint on the five vorticities.
In the remaining cases, there is always a new independent constraint. We add the
corresponding codimension 2 sets to the exceptional set A, and Diagram 1 is now
excluded.

Suppose that it is one of Diagram 6, 7, 9, 10 and 13. We number the vertices as in
Fig. 16. Then the 4-product p12 → 0, and is a dominating function. Let p12 → ∞.
By Proposition 8.1, we are in one of Diagram 16, 18, and 19. In either cases, there is
always a new independent constraint. We add the corresponding codimension 2 sets
to the exceptional set A, and Diagram 6, 7, 9, 10 and 13 are now excluded.

Suppose that it is one of Diagram 14 and 22. Then r234 ≈ ε4, and is a dominating
function. Let r234 → ∞. By the estimates from Sect. 7, we are in one of Diagram 16,
18, and 19. In either cases, there is also a new independent constraint. We add the
corresponding codimension 2 sets to the exceptional set A, and Diagram 14 and 22
are now excluded.
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Suppose that it is one of Diagram 16 and 18. We number the vertices as in Fig. 16.
Then r214 ≈ ε−4, and is a dominating function. Let r214 → 0. We are in Diagram 19.
There is a new independent constraint. We add the corresponding codimension 2 sets
to the exceptional set A, and Diagram 16 and 18 are now excluded.

Suppose that it is Diagram 19. We number the vertices as in Fig. 16. Then r234 → 0,
and is a dominating function. Let r234 → ∞. We are in Diagram 19, but it must be
renumbered such that r34 is not a zw-edge, so there is a new independent constraint on
the five vorticities.We add the corresponding codimension 2 sets to the exceptional set
A. This concludes the construction of A. The last possibility for a singular sequence
is now forbidden. There is no continuum of relative equilibria if the vorticities do not
belong to A.

Part 2: For collapse configurations, the vorticity space is now {(�1, . . . , �5) : �i ∈
R

∗, i = 1, . . . , 5,
∑

1≤i< j≤5 �i� j = 0}. Repeating the first paragraph of the proof of
Theorem 1.1 shows that there is a singular sequence of complex normalized central
configurations approaching one of the 12 diagrams (Diagram 1, 2, 5–9, 14, 16–19).
Since each of Diagram 2 and 8 have two independent constraints, which defines a
codimension 2 set, we put them, and all the similar sets obtained by renumbering
the five vorticities, in the exceptional set B. We assume that the singular sequence
approaches one of Diagram 1, 5, 6, 7, 9, 14, 16, 17, 18 and 19.

Suppose that it is Diagram 1. We number the vertices as in Fig. 16. Then r234 ≈ ε4,
and is a dominating function. Let r234 → ∞. Since all distances in Diagram 5, 6, 7, 9
and 14 are bounded, we are in either Diagram 1 or in Diagram 16, 17, 18, and 19. If we
are in Diagram 1, it must be renumbered such that r34 is not in the fully edged triangle,
so there is a new independent constraint on the five vorticities. In the remaining cases,
there is always a new independent constraint. We add the corresponding codimension
2 sets to the exceptional set B, and Diagram 1 is now excluded.

Suppose that it is one of Diagram 5, 6, 7, 9. We number the vertices as in Fig. 16.
Then the 4-product p12 → 0, and is a dominating function. Let p12 → ∞. By
Proposition 8.1, we are in one of Diagram 16, 17, 18, and 19. In either cases, there is
always a new independent constraint. We add the corresponding codimension 2 sets
to the exceptional set B, and Diagram 5, 6, 7, and 9 are now excluded.

Suppose that it is Diagram 19.We number the vertices as in Fig. 16. Then r234 ≈ ε4,
and is a dominating function. Let r234 → ∞. By the estimates from Sect. 7, we are
in one of Diagram 16, 17, 18, 19. If we are in Diagram 19, it must be renumbered
such that r34 is not a zw-edge, so there is a new independent constraint on the five
vorticities. In the remaining cases, there is always a new independent constraint. We
add the corresponding codimension 2 sets to the exceptional set B, and Diagram 19 is
now excluded.

Suppose that it is Diagram 16. We number the vertices as in Fig. 16. Then
r214 ≈ ε−4, and is a dominating function. Let r214 → 0. We are in Diagram 14,
where r212r

2
13r

2
23 ≈ ε12, and is a dominating function. Let r212r

2
13r

2
23 → ∞, then we are

in one of Diagram 16, 17, 18. If we are in Diagram 16, it must be renumbered such
that {1, 2, 3} is no longer one isolated component of the w-diagram, so there is a new
independent constraint on the five vorticities. In the remaining cases, there is always
a new independent constraint. We add the corresponding codimension 2 sets to the
exceptional set B, and Diagram 16 is now excluded.
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Suppose that it isDiagram17.Wenumber the vertices as in Fig. 16. Then r214 ≈ ε−4,
and is a dominating function. Let r214 → 0. We are in Diagram 14, where r212r

2
13r

2
23 ≈

ε12, and is a dominating function. Let r212r
2
13r

2
23 → ∞, then we are in one of Diagram

17, 18. If we are in Diagram 17, it must be renumbered such that {1, 2, 3} is no longer
one isolated component of the w-diagram, so there is a new independent constraint
on the five vorticities. If it is Diagram 18, there is a new independent constraint. We
add the corresponding codimension 2 sets to the exceptional set B, and Diagram 17 is
now excluded.

Suppose that it isDiagram18.Wenumber the vertices as in Fig. 16. Then r214 ≈ ε−4,
and is a dominating function.Let r214 → 0.Weare inDiagram14,where r223r

2
34r

2
45r

2
25 ≈

ε16, and is a dominating function. Let r223r
2
34r

2
45r

2
25 → ∞, then we are in one copy of

Diagram18. Itmust be renumbered such that one of the vertices {2, 3, 4, 5} is no longer
in the quadrilateral formed by the four simple edges, so there is a new independent
constraint on the five vorticities. We add the corresponding codimension 2 set to the
exceptional set B, and Diagram 18 is now excluded.

Suppose that it is Diagram 14.We number the vertices as in Fig. 16. Then r214 ≈ ε4,
and is a dominating function. Let r214 → ∞, which is impossible. This concludes the
construction of B. The last possibility for a singular sequence is now forbidden. There
is no continuum of collapse configurations if the vorticities do not belong to B. �


We also confirm the finiteness under the following restrictions of Theorem 1.3,
namely,

∑

j∈J

� j �= 0,
∑

j,k∈J , j �=k

� j�k �= 0, for any nonempty subset J of {1, 2, 3, 4, 5}.

Under the above restriction, a singular sequence can only approach Diagram 18
and 19.

Proof of Theorem 1.3 Suppose that there are infinitely many solutions of system (13)
in the complex domain. The argument in the proof of Theorem 1.1 implies that there is
a singular sequence corresponding to Diagram 18 or 19. In either case, the polynomial∏

j �=k r
2
jk approach ∞, which follows easily from the estimation of the distances of

Sect. 7. Then it is a dominating function. Push the polynomial to zero and extract a
singular sequence. However, the singular sequence would correspond to none of the
two diagrams. This is a contradiction. �
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