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Abstract

For the planar N -body problem, we introduce a class of moving coordinates
suitable for orbits near central configurations, especially for total collision orbits,
which is the main new ingredient of this paper. The moving coordinates allow
us to reduce the degeneracy of the N -Body problem from its intrinsic symmetrical
characteristic. First, we give a full answer to the infinite spin or Painlevé-Wintner
problem in the case corresponding to nondegenerate central configurations. Then
following some original ideas of C.L. Siegel, especially the idea of normal forms, and
applying the theory of central manifolds, we give a partial answer to the problem in
the case corresponding to degenerate central configurations. We completely answer
the problem in the case corresponding to central configurations with degree of
degeneracy one. Combining some results on the planar nonhyperbolic equilibrium
point, we give a criterion in the case corresponding to central configurations with
degree of degeneracy two. We further answer the problem in the case corresponding
to all known central configurations of four bodies. Therefore, we solve the problem
for almost every choice of the masses of the four-body problem. Finally, we give a
measure of the set of initial conditions leading to total collisions.
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CHAPTER 1

Introduction

We consider N particles with positive masses moving in an Euclidean plane R2

interacting under the law of universal gravitation. Let the k-th particle have mass
mk and position rk ∈ R2 (k = 1, 2, · · · ,N), then the equations of motion of the
N -body problem are written as

(1.1) mkr̈k =
�

1≤j≤N,j �=k

mkmj(rj − rk)

|rj − rk|3 , k = 1, 2, · · · ,N.

where | · | denotes the Euclidean norm in R2.
In the study of the N -body problem, collision singularities have shown to be

the main difficulties, and therefore they are among the center of interest.
It is relatively simple to understand binary collisions of the N -body problem.

Indeed, for the Newtonian two-body problem, one can change the variables and
rescale time so that a binary collision solution transforms to a regular solution of
equation of motions. Such a transformation is called a regularization of the binary
collision. The solution can then be extended through the singularity. Sundman [25]
showed that binary collisions can also be regularized in the three-body problem.
That is, one can transform the variables in such a way that the solution can be
continued through the binary collision as an analytic function of a new time variable.
This is also true for several binary collisions occurring simultaneously in the N -body
problem [24].

Collisions involving more than two particles are more complicated, only some
partial results are known. Consider the normalized configuration of the particles to
be the configuration divided by a norm which corresponds physically to the square
root of the moment of inertia. Sundman [25] showed that, for triple collision in
the three-body problem, the normalized configuration approaches the set of central
configurations (cf. [27] and Section 2 and Section 3 below). Wintner [27] observed
that Sundman’s techniques can be used to show that the normalized configurations
of solutions ending in total collision in the N -body problem also approach the set
of central configurations. This is also true for general collision singularity of the
N -body problem in which several clusters of particles collapse simultaneously [24].

It is natural to ask whether this implies that the normalized configuration of
the particles must approach a certain central configuration, or, may the normalized
configuration of the particles make an infinite number of revolutions before arriving
at a collision. This is a long standing open problem on the collision singularity of the
Newtonian N -body problem. This problem was posed by Painlevé and discussed by
Wintner [27, p.283] in the total collision of the N -body problem. So this problem
is usually called the Painlevé-Wintner problem or the problem of infinite spin.
For simplicity, the abbreviation “PISPW ” will be used to mean “the problem of
infinite spin or Painlevé-Wintner” in this paper.
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2 1. INTRODUCTION

Although there has been tremendous interest in the problem, so far, only few
progress has been made. Indeed, ones knew that PISPW could be solved in
the case corresponding to nondegenerate central configurations for a long time
[7,19,22]; for example, one of the ideas is to apply the theory of normally hyperbolic
invariant manifolds, and there are several papers mentioned this [19, etc]. On the
other hand, because little is known about central configurations for N > 3 [2; 8;
18; 23, etc], especially on the degeneracy of central configurations, PISPW is
completely solved only for the three-body problem.

All in all, though several claims of even stronger results were published [19, etc],
however, as pointed out in [1], the proofs in the corresponding papers could not be
found up till now. Thus recently Chenciner and Venturelli [1] asked for a solution to
PISPW even in the basic case: in the total collision of the planar N -body problem.

The main goal of this article is to study PISPW in the total collision of the
planar N -body problem. To this end, we introduce a class of moving coordinates
suitable for describing orbits near central configurations, especially for total collision
orbits.

In the moving coordinates, the degeneracy of the equations of motion from
intrinsic symmetrical characteristic of N -body problem can be easily reduced. As
a result, PISPW can be well described. In fact, once the moving coordinates are
successfully set, one can describe the motion of collision orbit effectively, and give
the equations of motion in a form suitable for PISPW .

As by-products, the moving coordinates are found useful in investigating other
questions of the planar N -body problem. Indeed, in addition to PISPW , we have
found that the moving coordinates are also useful in investigating the stability of
relative equilibrium solutions, degenerate central configurations and periodic orbits
of the planar N -body problem so far.

It is shown that orbits starting at total collision belong to unstable manifolds of
the origin with regard to a subsystem of equations. Unfortunately, results on stable
manifolds and unstable manifolds cannot be applied to PISPW directly. However
we find that some original ideas of Siegel [22] are applicable. The ideas are related
to normal forms, which is especially important for us. Since the original results on
normal forms in [22] can only be applied to the case corresponding to nondegenerate
central configurations, it is necessary to generalize the results of normal forms in [22]
to the case corresponding to degenerate central configurations. Thus the theory of
central manifolds is also introduced to explore the case corresponding to degenerate
central configurations.

First we give a full answer to PISPW in the case corresponding to nonde-
generate central configurations: the normalized configuration of the particles must
approach a certain central configuration without undergoing infinite spin for total
collision orbits. This result is an immediate application of the theory of hyperbolic
dynamics, or equivalently, the theory of normal forms. Therefore, as a separate
method, we give a new rigorous and simple proof of the above result in this paper.

However, PISPW in the case corresponding to degenerate central configura-
tions, is unexpectedly difficult.

Therefore, in the paper, we mainly study PISPW corresponding to central
configurations with degree of degeneracy two or less. We completely solve the
problem in the case corresponding to central configurations with degree of degener-
acy zero or one: the configuration of the particles must approach a certain central
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configuration without undergoing infinite spin. Combining some results on the pla-
nar nonhyperbolic equilibrium point, we give a criterion for the case corresponding
to central configurations with degree of degeneracy two.

Because it has been shown that for the four-body problem the exceptional
masses corresponding to degenerate central configurations form a proper algebraic
subset of the mass space [16], we conclude that, for almost every choice of the
masses of the four-body problem, the configuration of the particles must approach
a certain central configuration without undergoing infinite spin for collision orbits.
Furthermore, based upon our investigation of a kind of symmetrical degenerate
central configurations of four bodies, we answer PISPW in the case corresponding
to all known central configurations of four bodies.

After PISPW is investigated, we naturally study the manifold of all the col-
lision orbits (i.e., the set of initial conditions leading to total collisions). We show
that this set is a finite union of real submanifold in the neighbourhood of the col-
lision instant, and the dimensions of the submanifolds depend upon the index of
the limiting central configuration (i.e., the number of positive eigenvalues of the
limiting central configuration).

Finally, we examine the question of whether orbits can be extended through
total collision from the viewpoint of Sundman and Siegel, that is, whether a single
solution can be extended as an analytic function of time. We only consider the case
corresponding to nondegenerate central configurations.

The paper is structured as follows. In Chapter 2, we introduce some notations,
and some preliminary results of central configurations; in particular, we introduce
the moving coordinates. In Chapter 3, it will be seen that collision orbits are well
described in the moving coordinates. In particular, PISPW can be expressed in
a form suitable for deeper investigation. In Chapter 4, we investigate PISPW .
In Chapter 5, we investigate the set of initial conditions leading to total collisions
locally and examines the question whether a single solution can be extended as an
analytic function of time. In Chapter 6, we summarize the main results and give
some interesting open questions. Finally, in Appendix A, we give a criterion for the
degeneracy of central configurations by using the cartesian coordinates; in Appendix
B, we investigate degenerate central configurations of the planar four-body problem
with an axis of symmetry; in Appendix C, we show how to diagonalize the linear
part of the equations of motion in detail; in Appendix D, we give the theory of
normal forms (or reduction theorems) to simplify equations of the problem in this
paper; in Appendix E, we discuss some aspects of planar equilibrium points.





CHAPTER 2

Preliminaries

In this chapter we fix notations and give some definitions, in particular, we will
introduce moving coordinates to describe motions near central configurations.

2.1. Central Configurations

Let (R2)N denote the space of configurations for N point particles in the Eu-
clidean plane R2: (R2)N = {r = (r1, · · · , rN )|rj ∈ R2, j = 1, · · · , N}. In this
paper, unless otherwise specified, the cartesian space (R2)N is considered as a col-
umn space. In particular, when necessary, one may identify R2 with C and (R2)N

with CN and so on.
For each pair of indices j, k ∈ {1, . . . , N}, let ∆(j,k) = {r ∈ (R2)N |rj = rk}

denote the collision set of the j-th and k-th particles. Let ∆ =
�

j,k ∆(j,k) be the

collision set in (R2)N . Then (R2)N\∆ is the space of collision-free configurations.
The mass scalar product in the space (R2)N is defined as:

�r, s� =
N�

j=1

mj(rj, sj),

where r = (r1, · · · , rN) and s = (s1, · · · , sN ) are two configurations in (R2)N , and
(·, ·) denotes the standard scalar product in R2. We denote �·� the Euclidean norm
associated to the mass scalar product, that is

�r� =
�

�r, r�.
Given a configuration r, let r̂ := r

�r� be the unit vector corresponding to r

henceforth. In particular, the unit vector r̂ is called the normalized configura-
tion of the configuration r.

Let rc =
�N

k=1 mkrk

m be the center of mass, where m =
�N

k=1 mk is the total
mass. Observe that the equations (1.1) of motion are invariant by translation, so
without loss of generality, we can assume that the center of mass is fixed at the
origin. Let X denote the space of configurations whose center of mass is at the
origin; that is r ∈ X, where we define:

X = {r = (r1, · · · , rN ) ∈ (R2)N |
N�

k=1

mkrk = 0}.

Then X is a 2(N − 1)-dimensional subspace of the Euclidean space (R2)N . The
subset X\∆ is open in X, and it is called the space of collision-free configurations
with center of mass at the origin.

Let us recall the important concept of central configurations [27]:
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6 2. PRELIMINARIES

Definition 2.1. A configuration r ∈ X\∆ is called a central configuration if
there exists a constant λ ∈ R such that

(2.1)

N�
j=1,j �=k

mjmk

|rj − rk|3 (rj − rk) = −λmkrk, 1 ≤ k ≤ N.

The coefficient λ in (2.1) is uniquely determined, and is given by

λ =
U(r)

I(r)
,

where U is the opposite of the potential energy (or force function) and I is the
moment of inertia with respect to the origin. These two functions are defined as:

U(r) =
�

1≤k<j≤N

mkmj

|rk − rj | ,

I(r) =

N�
j=1

mj |rj |2.

Hereafter, for given mj(j = 1, 2, · · · , N) and a fixed λ, let CCλ be the set of central
configurations satisfying (2.1).

Although there were a lot of works on central configurations, many significant
problems of central configurations are open up to now. Among these open problems,
the most famous one is the conjecture on the Finiteness of Central Configurations
[23]: for any given masses m1, · · · ,mN , is the number of central configurations in
the associated N -body Problem finite? Note that if r ∈ X\∆ is a central configura-
tion, so is zr for any z ∈ C∗(:= C\{0}), where we set zr = (zr1, zr2, · · · , zrN ). The
transformation z defines an equivalence relation on X. Thus when counting central
configurations, we actually count the equivalence classes of them.

We remark that ir is just r rotated anticlockwise by an angle π
2 , where i is the

imaginary unit; and U = {eiθ|θ ∈ R}, the unit circle in C, is identified with the
special orthogonal group SO(2) of the plane.

There are several equivalent definitions of central configurations. One of the
equivalent definitions considers a central configuration as a critical point of the

normalized potential �U := I
1
2 U. In fact, it is easy to see that the equations (2.1)

are equivalent to

∇U(r) = −λr,

where ∇f is the gradient of a differentiable function f on X (or X\∆) with respect
to the mass scalar product, i.e., given r ∈ X,

df(r)(v) = �∇f(r),v�, ∀v ∈ TrX,

where TrX is the tangent space of X at the point r; note that TrX is naturally
identified with X, since X is a vector space. Then it follows from

∇�U(r) = I− 1
2 (r)U(r)r + I

1
2 (r)∇U(r),

that a central configuration is exactly a critical point of �U.

In the following, let D2�U(r) be the Hessian of �U at the point r, i.e., the linear

operator D2�U(r) : TrX → TrX characterized by

d2�U(r)(u,v) = �D2�U(r)u,v�, ∀u,v ∈ TrX.
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It is well known that the critical points of �U are not isolated but rather occur
as manifolds of critical points. Thus these critical points are always degenerate

in the ordinary sense. More specifically, let r ∈ X\∆ be a critical point of �U. By�U(zr) = �U(r) for any z ∈ C∗, it follows that the set {zr|z ∈ C∗} is a critical manifold

points of �U; furthermore, the Hessian of �U evaluated at a central configuration r
must contain the real plane

Pr := {zr|z ∈ C}
in its kernel. Taking into account these facts, a central configuration r will be

called nondegenerate, if the kernel of the Hessian of �U evaluated at r is exactly
Pr. Obviously, this definition of nondegeneracy is equivalent to the one used by
Palmore in his study of planar central configurations [18]. Furthermore, in this
paper, we call a central configuration is isolated, if it is an isolated critical point of

the function �U in the sense of equivalence classes of central configurations. It is well
known that, due to a result of Shub on compactness of the set of normalized central
configurations [21], the famous conjecture on the Finiteness of Central Configura-
tions is equivalent to the following problem: for any given masses m1, · · · ,mN , is
every central configuration in the associated N -body Problem isolated?

If all the central configurations are nondegenerate for any choice of positive
masses, then the conjecture on the Finiteness of Central Configurations is correct.
However, it has been shown that degenerate central configurations exist in the N -
body problem for any N > 3. Indeed, in the N -body problem, the set of masses for
which a degenerate central configuration exists has a positive (N − 1)-dimensional
(Haussdorff) measure, provided N > 3 [18,28]. Despite all this, it is conjectured
that all the central configurations are nondegenerate for almost every choice of
positive masses [15,18]. Unfortunately, no practical progress has been made for
this open problem so far, except for N = 4. For the four-body problem it has been
shown by Moeckel [16] that the exceptional masses for which the degenerate central
configuration exists form a proper algebraic subset of the mass space.

In this paper, the following concept of degree of degeneracy for central
configurations is important.

Definition 2.2. Given a central configuration r ∈ X\∆, consider the dimen-

sion of the kernel of D2�U(r). The number

n0 := dimKerD2�U(r) − 2

is called the degree of degeneracy of r. In particular, a central configuration with
degree of degeneracy zero is nondegenerate.

Given a central configuration r0 ∈ X\∆, let P⊥
r0

be the orthogonal complement
of Pr0

in X, i.e.,

X = Pr0
⊕ P⊥

r0
.

It is noteworthy that Pr0
and P⊥

r0
are both complex vector subspaces of X(� CN−1).

Note that Pr0
is an invariant subspace of D2�U(r0), because �U is invariant under

the action of the transformation z, i.e., �U(zr) = �U(r) for any z ∈ C∗ and for any

r ∈ X\∆. By the fact that the Hessian D2�U(r0) is a symmetric linear operator, it

follows that P⊥
r0

is also an invariant subspace of D2�U(r0). Therefore, D2�U(r0) can

be diagonalized in an orthogonal basis of X consisting of eigenvectors of D2�U(r0),
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where the first two vectors of the basis can be chosen as r0 and ir0, in Pr0 ; and the
remaining 2N − 4 vectors

{E1, E2, · · · , E2N−5, E2N−4}
of the basis are in P⊥

r0
.

Assume

(2.2) D2�U(r0)Ej = µjEj , j ∈ {1, 2, · · · , 2N − 4}.
It is noteworthy that the values of µj (j ∈ {1, · · · , 2N − 4}) depend on the central

configuration r0. Indeed, the Hessian D2�U(r0) is homogeneous of degree −2, i.e.,

D2�U(ρr0) =
1

ρ2
D2�U(r0), ∀ρ > 0.

Furthermore, by the invariance of �U under the action of the transformation z, it
follows that

(2.3) D2�U(ρeiθr0) =
1

ρ2
eiθD2�Ue−iθ, ∀ρ > 0, ∀θ ∈ R.

Similarly, it is easy to see that

(2.4) ∇�U(ρeiθr) =
eiθ

ρ
∇�U(r), ∀ρ > 0, ∀θ ∈ R, ∀r ∈ X\∆.

By definition of n0, the cardinality of the set of j ∈ {1, · · · , 2N − 4} such that
µj = 0 is equal to n0. Let np be the cardinality of the set of j ∈ {1, · · · , 2N − 4}
such that µj > 0. By (2.3), it follows that n0 and np are invariant under the action
of the transformation z, i.e.,

n0(zr0) = n0(r0), np(zr0) = np(r0).

Note that, by a classic result (see [14,18]), it follows that np ≥ N − 2.
The degeneracy of central configurations can also be described in a specific

coordinate system of (R2)N . In particular, this method offers some convenience at
practical calculations of degeneracy of central configurations, for more detail please
refer to Appendix A and Appendix B.

Obviously, {r̂0, ir̂0, Ê1, · · · , Ê2N−4} is an orthonormal basis of X. Every config-

uration r ∈ X can be written uniquely as r = yr0 r̂0 + yir0 ir̂0 +
�2N−4

j=1 yj Êj . The

equations (1.1) of motion can be expressed clearly in these coordinates, which would
be especially useful in studying relative equilibrium solutions of the Newtonian N -
body problem. However, we will adopt another coordinate system originating from
a kind of moving frame, which is more suitable for collision orbits and relative
equilibrium solutions.

2.2. Moving Coordinates

In this subsection, we shall introduce moving coordinates to describe the or-
bits near central configurations. Here we say a configuration r is near the central
configuration r0, if r is near the SO(2)-orbit S of r0, where S = {eiθr0|θ ∈ R}.

The notations in this subsection are inherited from the previous subsection.
For any configuration r ∈ X\P⊥

r0
, set r = �r�, then r = rr̂. It is easy to see

that there exist θ(r) ∈ R, unique up to integer multiple of 2π, such that

�e−iθ(r)r̂, ir̂0� = 0
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and

�e−iθ(r)r̂, r̂0� > 0.

Moreover, by decomposing e−iθ(r)r̂ with respect to the basis {r̂0, ir̂0, Ê1, · · · ,

Ê2N−4}, and denoting z = (z1, · · · , z2N−4)
� the coordinates with respect to the

vectors Ê1, · · · , Ê2N−4, it holds

(2.5) r = rr̂ = reiθ(r)(
�

1 − |z|2r̂0 +

2N−4�
k=1

zkÊk);

where “�” denotes transposition of matrices, and

|z|2 = z�z =

2N−4�
j=1

z2
j .

Indeed, we have defined a real analytic diffeomorphism:

(0, +∞) × U × B2N−4 → X\P⊥
r0

;

(r, eiθ, z) �→ r = reiθ(
�

1 − |z|2r̂0 +

2N−4�
k=1

zkÊk),

where B2N−4 is the (2N − 4)-dimensional unit ball in R2N−4. Therefore, the total
set of the variables r, θ, z can be thought as the coordinates of r ∈ X\P⊥

r0
, and r, θ, z

are referred as the moving coordinates.

2.3. Invariant Set

Let us finish the section by recalling some well known notions of differential
equations [4,9,20].

Given a differential system

(2.6) q̇ = v(q),

where v : Ω → Rn is a continuously differentiable vector field and Ω is an open
set in Rn. For any p ∈ Ω, let φ(t, p) be the solution of (2.6) passing through p at
t = 0, i.e., if q(t) = φ(t, p), then q̇(t) = v(q(t)) and q(0) = p. We also call φ the
flow of (2.6) if φ(t, p) is defined for all t ∈ R and all p ∈ Ω. The orbit O(p) of
(2.6) through p is defined by O(p) = {q = φ(t, p) | t ∈ R}, the positive semiorbit
through p is O+(p) = {q = φ(t, p) | t ≥ 0} and the negative semiorbit through p is
O−(p) = {q = φ(t, p) | t ≤ 0}.

An equilibrium point of (2.6) is a point p such that v(p) = 0. A set Σ in
Ω is called an invariant set of (2.6) if O(p) ⊂ Σ for any p ∈ Σ. Any orbit O of
(2.6) is obviously an invariant set of (2.6). A set Σ in Ω is called positively (resp.
negatively) invariant if O+(p) ⊂ Σ (resp. O−(p) ⊂ Σ) for any p ∈ Σ.

Definition 2.3. The positive or ω-limit set of an orbit O is the set

ω(O) =
�
p∈O

O+(p).

where the bar denotes closure. Similarly, The negative or α-limit set of a point p
is the set

α(O) =
�
p∈O

O−(p).
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Recall that ω(O) and α(O) are invariant and closed, and if φ(t, p) for t ≥ 0 (resp.
t ≤ 0) is bounded, then ω(O) (resp. α(O)) is nonempty compact and connected,
furthermore, φ(t, p) → ω(O) (resp. α(O)) as t → +∞ (resp. t → −∞), that is,
dist(φ(t, p), ω(O)) → 0 (resp. dist(φ(t, p), α(O)) → 0) as t → +∞ (resp. t → −∞),
here dist(p, q) denotes the distance of p, q ∈ Rn.

Definition 2.4. The stable set of a positively invariant set Σ is the set

Ws(Σ) = {p ∈ Ω | dist(φ(t, p), Σ) → 0 as t → +∞};
The unstable set of a negatively invariant set Σ is the set

Wu(Σ) = {p ∈ Ω | dist(φ(t, p), Σ) → 0 as t → −∞};
In particular, in case of Σ consisting of one equilibrium point p0, we have

Definition 2.5. The stable set of an equilibrium point p0 is the set

Ws(p0) = {p | φ(t, p) → p0 as t → +∞};

The unstable set of an equilibrium point p0 is the set

Wu(p0) = {p | φ(t, p) → p0 as t → −∞}.

In a small neighbourhood of an equilibrium point p0, we can expand v in a
Taylor series

v(p0 + q) =
∂v(p0)

∂q
q + · · · .

Let us consider the following linearized system of the system (2.6)

q̇ =
∂v(p0)

∂q
q.

Definition 2.6. The equilibrium point p0 of (2.6) is hyperbolic if all of the

eigenvalues of ∂v(p0)
∂q

have nonzero real parts. Otherwise, i.e., if at least one of

the eigenvalues of ∂v(p0)
∂q is on the imaginary axis, the equilibrium point p0 is non-

hyperbolic. Furthermore, if at least one of the eigenvalues of ∂v(p0)
∂q is zero, the

equilibrium point p0 is degenerate.

It is well known that if the equilibrium point p0 of (2.6) is hyperbolic, then the
system (2.6) is topologically equivalent to its linearized system in a small neigh-
bourhood of p0. This is the famous Hartman-Grobman Theorem. Moreover, by
Hartman-Grobman Theorem it follows that the stable (resp. unstable) set Ws(p0)
(resp. Wu(p0)) is an immersed submanifold and it is called stable (resp. unstable)
manifold of the hyperbolic equilibrium point p0.

However, the behavior near a nonhyperbolic equilibrium point is more compli-
cated. In particular, if the equilibrium point p0 is degenerate, it is generally very
difficult to understand the system (2.6) near p0. For instance, we could not find

any literature on system (2.6) with three vanishing eigenvalues of ∂v(p0)
∂q .



CHAPTER 3

Equations of Motion
for Collision Orbits and PISPW

Let us recall the concepts of the kinetic energy, the total energy, and the angular
momentum, respectively, defined by

K(ṙ) =

N�
j=1

1

2
mj |ṙj |2,

H(r, ṙ) = K(ṙ) − U(r),

J(r) =

N�
j=1

mjrj × ṙj ,

where × denotes the standard cross product in R2. Note that

K(ṙ) =
1

2
�ṙ, ṙ�,

J(r) = �ir, ṙ�,
and the total energy and the angular momentum are first integrals for the N -body
problem.

Recall that, an orbit r(t) of the N -body problem starts (resp. arrives) at a total
collision at some instant t0 if and only if r(t) → 0 as t → t0+ (resp. t → t0−),
that is to say, r(t) = �r(t)� → 0 as t → t0+ (resp. t → t0−). Without loss of
generality, assume the instant t0 = 0 and we consider only that r(t) → 0 as t → 0+
henceforth.

Some classical results concerning the total collision orbits can be found in [27].
We summarize the results as follows.

Theorem 3.1. Suppose a solution r(t) of the N-body problem arrives at a total
collision at the instant 0, then there exists a constant κ > 0, such that

• I(r(t)) ∼ ( 3
2
)

4
3 κ

2
3 t

4
3 , İ(r(t)) ∼ (12)

1
3 κ

2
3 t

1
3 , Ï(r(t)) ∼ (2

3
)

2
3 κ

2
3 t−

2
3 as t →

0+.
• U(r(t)) ∼ ( 1

18
)

1
3 κ

2
3 t−

2
3 , K(ṙ(t)) ∼ ( 1

18
)

1
3 κ

2
3 t−

2
3 as t → 0+.

• r̂(t) → CCλ (i.e., dist(r̂(t),CCλ) → 0) as t → 0+, where λ = κ
2
.

• J(r(t)) ≡ 0.

Therefore, it is natural to ask whether there exists a certain central configura-
tion s0 ∈ CCλ such that

r̂(t) → s0, as t → 0 + .

The point is that:

11
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(1) if the number of central configurations is infinite for given masses m1, · · · ,
mN , then it would be possible that the normalized configuration r̂(t)
comes closer and closer to more than one central configuration, which are
not in the same equivalence classes, in such a way as to oscillate between
these central configurations;

(2) if the number of central configurations is finite for given masses m1, · · · ,
mN , then it would be possible that the normalized configuration r̂(t)
moves in spirals without asymptotes (or in other words, make an infinite
number of revolutions) as t → 0+. This is the so-called problem of infinite
spin.

For more detail please refer to [27, p.282–p.283].
To investigate the problem of infinite spin or Painlevé-Wintner (abbreviated

“PISPW ”), we will focus on a collisions solution t �→ r(t) such that r̂(t) converges
to the SO(2)-orbit S of an isolated central configuration r0 = r̂0 ∈ CCλ. As a
result, it is easy to see that PISPW explores whether there exists a fixed central
configuration eiθ0r0 ∈ S such that r̂(t) → eiθ0r0 as t → 0+.

3.1. Equations of Motion

In this subsection we will write equations of motion for total collision orbits by
using McGehee’s coordinates and the moving coordinates.

3.1.1. McGehee Equations. In the subsection let us write equations of mo-
tion in McGehee’s coordinates.

First the equations (1.1) of motion can be written:

(3.1)

�
ṙ = v,

v̇ = ∇U(r),

where (r,v) ∈ T(X\∆) = (X\∆) × X. Equations (3.1) determine a vector field on
T(X\∆).

It is well known that the total energy and the angular momentum are conserved:
along solutions of the equation (3.1),

H =
1

2
�v,v� − U(r) ≡ constant,

J = �ir,v� ≡ constant.

We now introduce the following McGehee’s variables:

r = �r�,
r̂ = r

r
,

Υ = r
1
2 �v, r̂�,

R = r
1
2 v − Υr̂,

note that R is orthogonal to r̂ with respect to the mass scalar product. Certainly,
the old variables can be written in terms of the new variables:�

r = rr̂,

v = r− 1
2 (Υr̂ + R).
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Hence the velocity v has been decomposed into a radial component Υ and a tangen-
tial component R. Furthermore, the relations of the total energy and the angular
momentum become:

1

2
(Υ2 + �R�2) − �U(r̂) = rH,

r
1
2 �ir̂,R� = J.

Let us introduce the time transformation:

(3.2) dt = r
3
2 dτ.

Differentiation with respect to time t is denoted by ˙ : df
dt

= ḟ in the previous pages.
Similarly, differentiation with respect to the new variable τ will be denoted by
� : df

dτ
= f � henceforth. Note that

ḟ = r− 3
2 f �, f̈ = r−3f �� − 3

2
r−4r�f �.

Now a straightforward computation shows that the equations (3.1) of motion
become

(3.3)



r� = rΥ,

r̂� = R,

Υ� = 1
2
Υ2 + �R�2 − �U(r̂),

R� = ∇�U(r̂) − �R�2r̂ − 1
2ΥR.

In the calculation, please note that

U(r), �U(r), ∇U(r), ∇�U(r)

are homogeneous and use Euler’s formula.

3.1.2. Equations of Motion for Collision Orbits. Given a central config-
uration r0, let us describe the motion of a total collision orbit near r0 by using the
system of coordinates r, θ, z introduced in subsection 2.2. Without loss of generality,
assume r̂0 = r0 below, i.e., �r0� = 1.

Following the notations introduced in subsection 2.2, consider the decomposi-
tion of r̂:

r̂ = eiθ(
�

1 − |z|2r0 +

2N−4�
k=1

zkÊk).

For the sake of compact notations, we temporarily set

z0 =
�

1 − |z|2, z =

2N−4�
k=1

zkÊk,

By differentiating

r̂ = eiθ(z0r0 + z)

with respect to τ , it follows that

R = eiθ(z�
0r0 + Θz0ir0 + Θiz + z),

where Θ = θ� and z = z�.
By Theorem 3.1, the relation of the angular momentum reduces to

�ir̂,R� = Θ + �iz, z� = 0.
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Consequently,

Θ = −�iz, z� = �z, iz�,
Θ� = −�iz, z��.

Therefore, by (2.4) and z2
0 + �z�2 = 1, a straightforward computation shows

that the equations (3.3) become:
(3.4)

r� = rΥ,

Υ� = 1
2
Υ2 + z�2

0 − Θ2 + �z�2 − �U(z0r0 + z),

z� = z,

z� = [Θ2 − z�2
0 − �z�2](z0r0 + z) − 1

2
Υ(z�

0r0 + Θz0ir0 + Θiz + z)

−[(z��
0 − Θ2z0)r0 + (Θ�z0 + 2Θz�

0)ir0 − Θ2z + Θ�iz + 2Θiz] + ∇�U(z0r0 + z);

and

(3.5)


θ� = Θ,

Θ = �z, iz�,
Θ� = −�iz, z��.

Note that z, iz, z, iz, z� ∈ P⊥
r0

. By considering the projection of the last equation in

(3.4) along the directions Rr0, Rir0 and P⊥
r0

, it follows that the equations (3.4) can
be reduced to

(3.6)



r� = rΥ,

Υ� = 1
2
Υ2 + z�2

0 − Θ2 + �z�2 − �U(z0r0 + z),

z� = z,

z� = ∇�U(z0r0 + z) − �∇�U(z0r0 + z), r0�r0 − �∇�U(z0r0 + z), ir0�ir0

+[2Θ2 − z�2
0 − �z�2]z − ( 1

2ΥΘ + Θ�)iz − 1
2Υz − 2Θiz,

where

�∇�U(z0r0 + z), r0� = (�z�2 + z�2
0 − 2Θ2)z0 + 1

2
Υz�

0 + z��
0 ,

�∇�U(z0r0 + z), ir0� = 1
2
ΥΘz0 + Θ�z0 + 2Θz�

0.

It is noteworthy that, the last three equations in (3.6) is a closed subsystem in
Υ, z, z. Once the subsystem of Υ, z, z is solved, the variables r, θ can be solved by
using r� = rΥ, θ� = �z, iz�.

Now let us use the variables z,Z = z� to write the equations above in a more

concise form. Set qjk = �Êj , iÊk�, then the square matrix

Q := (qjk)(2N−4)×(2N−4)

is an anti-symmetric orthogonal matrix. Since

�U(z0r0 + z) = �U(
�

1 − |z|2r0 +

2N−4�
k=1

zkÊk)
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only contains the variables zj (j = 1, · · · , 2N − 4), we will simply write it as U(z)
henceforth. As a result, it is easy to see that the equations of motion above become:
(3.7)

z� = Z,

Z� = ∂U(z)
∂z

− Υ
2
Z + (

z��
0

z0
+ Υ

2
z�
0

z0
)z − (Υ

2
z�QZ + z�QZ �)Qz − 2(z�QZ)QZ,

r� = rΥ,

Υ� = 1
2
Υ2 + (z�Z)2

1−|z|2 + |Z|2 − (z�QZ)2 − U(z),

θ� = Θ,

where
z�
0

z0
= − z�Z

1−|z|2 ,

z��
0

z0
= − z�Z�+|Z|2

1−|z|2 − (z�Z)2

(1−|z|2)2 ,

and

Θ = z�QZ.

In fact, it suffices to note that

∂U(z)

∂zi
= �∇�U(z0r0+z),

∂

∂zi
(z0r0+z)� =

∂z0

∂zi
�∇�U(z0r0+z), r0�+�∇�U(z0r0+z), Êi�.

Remark 3.2. Equations (3.7) look more complex than the Newtonian equa-
tions (1.1), however, an advantage of using equations (3.7) is that there is no de-
generacy according to intrinsic symmetrical characteristic of the N -body problem.
More specifically, the subsystem of (3.7) below

z� = Z,

Z� = ∂U(z)
∂z

− Υ
2
Z + (

z��
0

z0
+ Υ

2
z�
0

z0
)z − (Υ

2
z�QZ + z�QZ �)Qz − 2(z�QZ)QZ,

Υ� = 1
2
Υ2 + (z�Z)2

1−|z|2 + |Z|2 − (z�QZ)2 − U(z),

is a reduction of (1.1) with the aid of the 6 classical integrals of the planar N -body
problem (i.e., the four center of mass integrals, the angular momentum integral and
the total energy integral) and the “scale invariance” of the N -body problem (i.e., the

Newton equations (1.1) are invariant under the transformation (r, t) �→ (ρr, ρ
3
2 t)).

Remark 3.3. To solve Z � in (3.7), note that the equation below

Z � =
∂U(z)

∂z
− Υ

2
Z + (

z��
0

z0
+

Υ

2

z�
0

z0
)z − (

Υ

2
z�QZ + z�QZ �)Qz − 2(z�QZ)QZ

is equivalent to

(I +
zz�

1 − |z|2 + Qzz�Q)Z � = v(z,Z, Υ),

where

v(z, Z, Υ) =
∂U(z)

∂z
− Υ

2
Z − (

|Z|2
1 − |z|2 +

(z�Z)2

(1 − |z|2)2 − Υ

2

z�
0

z0
)z

− (
Υ

2
z�QZ)Qz − 2(z�QZ)QZ.
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It is easy to see that the symmetric matrix I + zz�
1−|z|2 + Qzz�Q is positive

definite and thus is invertible when |z| < 1. Moreover, by

� zz�

1 − |z|2 + Qzz�Q� ≤ |z|2
1 − |z|2 + |z|2,

it is easy to see that, if

|z| <

√
5 − 1

2
,

then

(I +
zz�

1 − |z|2 + Qzz�Q)−1 =
∞�

k=0

(−1)k(
zz�

1 − |z|2 + Qzz�Q)k;

consequently, when |z| <
√

5−1
2

,
(3.8)

Z� = v(z, Z, Υ)−(
zz�

1 − |z|2 +Qzz�Q)v(z,Z, Υ)−(
zz�

1 − |z|2 +Qzz�Q)2v(z, Z, Υ)+· · · .

As a result, when considering Taylor Expansion, if v(z,Z, Υ) has no constant term,
then it is obvious that the quadratic terms in v(z, Z, Υ) are exactly the quadratic
terms of the right side of (3.8).

Incidentally, the relation of total energy becomes

(3.9) 2rH = Υ2 + [
(z�Z)2

1 − |z|2 + |Z|2 − (z�QZ)2] − 2U(z),

or

2rH = Υ� +
1

2
Υ2 − U(z).

Remark 3.4. Consider the system of the first four equations of (3.7) in (z,Z,
r, Υ) ∈ B2N−4 × R2N−4 × [0, +∞) × R. It is easy to see that the system does not
have singularities at r = 0 and has an invariant manifold {r = 0}. Set

NH = {(z,Z, r, Υ) ∈ B2N−4 × R2N−4 × [0, +∞) × R | (3.9) holds}
for a fixed real number H. Then NH is an invariant manifold of the system. Similar
to results in [13], one can show that the flow of the system restricted to the invariant
manifold

{r = 0}
�

NH

= {(z,Z, 0, Υ) ∈ NH | Υ2 + [
(z�Z)2

1 − |z|2 + |Z|2 − (z�QZ)2] − 2U(z) = 0}

is gradient-like with respect to

πΥ : {r = 0}
�

NH → R; (z, Z, 0, Υ) �→ −Υ.

For more detail please refer to [13].
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We conclude this subsection with some discussions of U(z) near the point z = 0.
First, we can expand U(z) as
(3.10)

U(z) = U(z0r̂0 +
�2N−4

j=1 zj Êj) = �U(z0r̂0 +
�2N−4

j=1 zj Êj)

= �U(r̂0) +
�2N−4

k=1 d�U|r̂0
(Êk)zk + d�U|r̂0

(r̂0)(z0 − 1)

+ 1
2
[
�2N−4

j,k=1 d2�U|r̂0
(Êj , Êk)zjzk + 2

�2N−4
k=1 d2�U|r̂0(r̂0, Êk)(z0 − 1)zk]

+ 1
3!

�2N−4
i,j,k=1 d3�U|r̂0

(Êi, Êj , Êk)zizjzk + · · · ,

where “· · · ” denotes power-series in zj (j = 1, · · · , 2N − 4) starting with quartic

terms, and d�U|r̂0
, d2�U|r̂0

, d3�U|r̂0
denote the differential, second order differential,

third order differential of �U at r̂0 respectively. The computation to expand U(z) is
straightforward if one notes

z0 =
�

1 − |z|2 = 1 − |z|2
2

+ O(|z|4).

Then, by d�U|r̂0
(·) = 0, d2�U|r̂0

(r̂0, ·) = 0 and (2.2), it follows that

(3.11) U(z) = λ +
1

2

2N−4�
k=1

µkz2
k +

1

6

2N−4�
i,j,k=1

aijkzizjzk + · · · ,

where aijk = d3�U|r̂0
(Êi, Êj , Êk), thus aijk is symmetric with respect to the sub-

scripts i, j, k. We remark that

aijk = d3�U|r̂0
(Êi, Êj, Êk) = d3U|r̂0

(Êi, Êj , Êk) =
∂3U(0)

∂zi∂zj∂zk
.

By (3.11), if the Hessian of U(z) is nondegenerate, that is, the central con-
figuration r̂0 is nondegenerate or n0 = 0, then the function U(z) has exactly one
critical point z = 0 in some small neighbourhood of the point z = 0. However, even
if the central configuration r̂0 is degenerate, the function U(z) still has exactly one
critical point z = 0 in a small neighbourhood of z = 0 provided r̂0 is an isolated
central configuration.

Proposition 3.5. The function U(z) has exactly one critical point z = 0 in a
small neighbourhood of z = 0, provided that the central configuration r0 is isolated.

Proof. Note that U(z) = U(z0r̂0 +
�2N−4

j=1 zj Êj) = �U(z0r̂0 +
�2N−4

j=1 zj Êj),

thus U is the composition of the two analytic functions �U and π, where the function

π : B2N−4 → S2N−4
+ ; z �→ z0r̂0 +

2N−4�
j=1

zj Êj

is a diffeomorphism between B2N−4 and upper hemisphere S2N−4
+ in span{r0, P

⊥
r0

}.
Therefore, a critical point of U in a small neighbourhood of z = 0 corresponds
precisely to a central configuration in a small neighbourhood of r̂0 confined to the
upper hemisphere S2N−4

+ . It is easy to see that in such a small neighbourhood r̂0

is the only central configuration.
So the proposition is proved. �



18 3. EQUATIONS OF MOTION FOR COLLISION ORBITS AND P ISP W

An argument similar to the above proof, if we note that the space span{r0, P
⊥
r0

}
has removed the rotation freedom of eiθ, shows an extension of Proposition 3.5
below.

Proposition 3.6. The function U(z) has finitely many isolated critical points
in B2N−4, provided that the number of central configurations in the N -body Problem
is finite for given masses m1, · · · ,mN .

3.2. The Problem of Infinite Spin or Painlevé-Wintner (PISPW )

In order to make preparations for resolving PISPW , we need to write the
equations of motion for collision orbits in a form as simple as possible. Let us first
describe some features of total collision orbits in the variables z,Z, r, Υ.

3.2.1. Notes on Collision Orbits. When considering a total collision orbit
r(t) such that r̂(t) converges to the SO(2)-orbit of an isolated central configuration
r0, we have legitimate rights to use the moving coordinates. By Sundman’s theo-
rem, the coordinates r(t), θ(t), z(t) of the total collision orbit r(t) are real analytic
functions for t > 0; and by Theorem 3.1, it is easy to see that r(t), θ(t), z(t) satisfy
the following relations:

(3.12)



r(t) ∼ (3
2
)

2
3 κ

1
3 t

2
3 , as t → 0+

ṙ(t) ∼ (2
3 )

1
3 κ

1
3 t−

1
3 , as t → 0+

r̈(t) ∼ −( 2
81

)
1
3 κ

1
3 t−

4
3 , as t → 0+

z → 0, as t → 0+

As a result, the total collision solution r(t) of equations (1.1) corresponds to a
solution (z,Z, r, Υ, θ) of the equations (3.7) such that r → 0, z → 0. Furthermore,
we have

Proposition 3.7. The total collision orbit r(t) of equations (1.1) corresponds
exactly to a solution (z(τ ), Z(τ ), r(τ ), Υ(τ ), θ(τ )) of equations (3.7) such that

z → 0, Z → 0, r → 0, Υ → κ
1
2 , θ� = Θ → 0, asτ → −∞.

Proof. We only need to prove that a solution (z(τ ), Z(τ ), r(τ ), Υ(τ ), θ(τ )) of
equations (3.7) corresponding to the total collision orbit r(t) satisfies

Z → 0, Υ → κ
1
2 .

First, by (3.12), it is easy to show that Υ → κ
1
2 .

Denote by α(r) the α-limit set of the solution (z(τ ), Z(τ ), r(τ ), Υ(τ ), θ(τ )).
Then

α(r) ⊂ {(z, Z, r, Υ, θ)|r = 0, Υ = κ
1
2 , z = 0}.

Let us investigate the maximum invariant set included in

{(z, Z, r, Υ, θ)|r = 0, Υ = κ
1
2 , z = 0}.

It is easy to show that this set is precisely

{(z, Z, r, Υ, θ)|r = 0, Υ = κ
1
2 , z = 0, Z = 0}.

The relation Z → 0 therefore follows from the following fact

α(r) ⊂ {(z, Z, r, Υ, θ)|r = 0, Υ = κ
1
2 , z = 0, Z = 0}. �



3.2. THE PROBLEM OF INFINITE SPIN OR PAINLEVÉ-WINTNER (P ISP W) 19

Remark 3.8. For an isolated central configuration r0, it follows from Propo-
sition 3.5 that all the equilibrium points of equations (3.7), which geometrically

constitute a circle, satisfy z = 0, Z = 0, r = 0, Υ = ±κ
1
2 , θ = const so long as z is

small.

Let us investigate all the solutions of equations (3.7) satisfying the above as-
ymptotic conditions in Proposition 3.7.

Now define a new variable γ = Υ − κ
1
2 and substitute γ into equations (3.7).

By (3.8), it follows that

(3.13)

z�

Z �

γ�

 = A

z
Z
γ

 +

 0
χZ(z, Z, γ)
χ0(z, Z, γ)

 ;

(3.14) r� = r(κ
1
2 + γ);

(3.15) θ� = z�QZ;

where

A =

0 I
Λ −κ

1
2

2
I

κ
1
2


denotes the square matrix of the coefficients of the linear terms, Λ = diag(µ1, · · · ,
µ2N−4); χZ = (χ1, · · · , χ2N−4)

� and the functions χ0, χk (k = 1, · · · , 2N − 4) are
power-series in the 4N − 7 real variables z,Z, γ starting with quadratic terms and
all converge for sufficiently small z, Z, γ:

χk(z,Z, γ) = 1
2
[akkkz2

k + 2
�2N−4

j=1,j �=k ajkkzkzj(3.16)

+
�2N−4

i,j=1,i,j �=k aijkzizj − γZk] + · · ·
= 1

2
[
�2N−4

i,j=1, aijkzizj − γZk] + · · · ,

χ0(z,Z, γ) =
1

2
γ2 + |Z|2 − 1

2
z�Λz + · · · .(3.17)

As a result, the total collision orbit r(t) corresponds exactly to a solution of
equations (3.13), (3.14) and (3.15), (z(τ ), Z(τ ), r(τ ), γ(τ ), θ(τ )), such that

z → 0, Z → 0, r → 0, γ → 0, θ� = Θ → 0, as τ → −∞.

In particular, PISPW explores exactly whether θ(τ ) approaches a fixed limit as
τ → −∞ if (z(τ ), Z(τ ), γ(τ )) is a solution of equations (3.13) such that

z → 0, Z → 0, γ → 0, as τ → −∞.

We conclude this subsection with an interesting characterization for total col-
lision orbits of the planar N -body problem.

Given masses m1, . . . , mN , suppose that there are n central configurations.
Then it is easy to see that

Theorem 3.9. A total collision orbit r(t) of equations (1.1) reduces exactly
to a solution (z(τ ), Z(τ ), γ(τ )) of equations (3.13) corresponding to some central
configuration r0 such that

z → 0, Z → 0, γ → 0 as τ → −∞.
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Therefore, the set of all the total collision orbits corresponds exactly to the union
of the unstable set of the origin of the n systems similar to (3.13).

3.2.2. PISPW . Now PISPW can be formulated as:

Problem 3.10 (PISPW ). for all the solutions of equations (3.13) satisfying

(3.18) z → 0, Z → 0, γ → 0

does θ(τ ) in (3.15) approach a fixed limit as τ → −∞?

Let α(z,Z, γ) denote the α-limit set of the solution (z, Z, γ) of equations (3.13)
and α(z, Z, γ, θ) denote the α-limit set of the solution (z,Z, γ, θ) of equations (3.13)
(3.15). Then PISPW can also be stated as following:

Problem 3.11. given a solution (z,Z, γ) of equations (3.13), does the impli-
cation

α(z,Z, γ) = {0} ⇒ α(z,Z, γ, θ) is a single point,

hold?

We remark that there is exactly one equilibrium point (z, Z, γ) = 0 of equations
(3.13) in some small neighbourhood of the original point (z, Z, γ) = 0 according to
isolation of the central configuration r0. A complete answer to PISPW is given if
we can prove that

Wu(Σ) =
�
p∈Σ

Wu(p)

where Σ = {(z,Z, γ, θ)|z = 0, Z = 0, γ = 0, θ ∈ R} is the set of all the equilibrium
points of equations (3.13) (3.15).

Before discussing formally the above problem, we wish to give some examples
to illustrate some ideas proper or not for PISPW .

Example 1. Consider the system of differential equations

(3.19)

�
u� = −u2(u2 + 1)v

v� = v

The set of all the equilibrium points of the above equations is the u-axis Σ =
{(u, v)|v = 0} and forms an invariant manifold, furthermore, Σ is a central manifold
(see [6,20]). We cannot simply utilize the theory of central manifolds to prove that
Wu(Σ) =

�
p∈Σ Wu(p), that is, it does not simply follow from the theory of central

manifolds that v(τ ) → 0 implies that u(τ ) approaches a fixed limit as τ → −∞.
Indeed, the solution �

1
u + arctanu = exp τ + π

2

v = exp τ

or phase portrait of equations (3.19) in Figure 3.1 shows that

Wu(Σ) �=
�
p∈Σ

Wu(p).

Remark 3.12. The example also reveals one of difficulties of the application of
the theory of normally hyperbolic invariant manifold to v-flow, the flow generated
by a vector field v. Indeed, for an invariant manifold Σ of v to be normally
hyperbolic, except the case of Σ = onepoint, even if Σ is a circle, the condition
that the linearized vector field of v at Σ have “its normal (to Σ) eigenvalues off the
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Figure 3.1. Phase portrait of equations (3.19) in Example 1

imaginary axis is neither necessary nor sufficient for the v-flow. It thus remains an
open, fuzzy question to formulate an integrated conditions on v at Σ that guarantee
normally hyperbolicity of the v-flow” [11, p.8].

Example 2. Consider the following functionsu(τ ) = 1√
τ ln τ

sin τ,

v(τ ) = 1√
τ ln τ

cos τ.

Then u(τ ), v(τ ), u�(τ ), v�(τ ) approach zero as τ → +∞, however, it is easy to
see that all the following improper integrals� +∞

u(τ )v�(τ )dτ,

� +∞
v(τ )u�(τ )dτ,

� +∞
u(τ )v�(τ ) − v(τ )u�(τ )dτ

are not convergent.
Similarly, we cannot simply claim that θ(τ ) approaches a fixed limit as τ →

−∞, although
z → 0, Z → 0,

and
�

−∞ Z(τ )dτ is convergent.

Let us finish the section with further simplifying equations (3.13) to make
preparations for resolving PISPW .

The aim is to diagonalize the linear part of equations (3.13). More specifically,
it is well known that the (4N − 7) × (4N − 7) square matrix A in equations (3.13)
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Figure 3.2. plots in Example 2

is generically diagonalizable, that is, A is similar to a diagonal matrix, provided
that A has 4N − 7 distinct eigenvalues; on the other hand, A is always “almost”
diagonalizable, that is, for any � > 0, there exists an upper triangular matrix, such
that all the elements above the diagonal are less than � in absolute value, is similar
to A. However, to avoid complexifying the system (3.13), it is enough to find a
block diagonal matrix C similar to A. Indeed, in Appendix C we show that for any
� > 0, we find that a (4N − 8) × (4N − 8) invertible square matrix P such that if
we set

C =

�
P−1

1

�
A

�
P

1

�
,

then C is in block-diagonal form.
Consequently, after applying the linear substitution

(3.20)

�
z
Z

�
= Pq

to the equations (3.13), we arrive at the following equations:

(3.21)

�
q�

γ�

�
= C

�
q
γ

�
+ ϕ(q, γ),

see again Appendix C.
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After applying the above linear substitution to equations (3.15), it follows that

(3.22) θ� = z�QZ =
�

1≤k≤n0

n0+np�
j=n0+1

qkj µ̃jqkqj +

n0+np�
j,k=n0+1

qkj µ̃jqkqj + · · · ,

the right hand side is a quadratic form of q, where “· · · ” denotes all the quadratic
terms which contain at least one of qk (k > n0 + np) as a factor.

To simplify notations, by applying a permutation, C is reduced to the following
block-diagonal form:

C =

C0

C+

C−

 ,

where C0 is the n0 ×n0 null matrix, C+ is a (np +1)×(np +1) diagonal matrix with
positive diagonal elements, C− is a matrix such that all eigenvalues have negative
real part; correspondingly, the components of (q, γ) are reordered as (q0, q+, q−),
and the components of ϕ are reordered as (ϕ0, ϕ+, ϕ−). More specifically,

q0 = (q1, · · · , qn0
)�,

q+ = (γ, qn0+1, · · · , qn0+np
)�,

q− = (qn0+np+1, · · · , q2N−4, q2N−3, · · · , q4N−8)
�,

ϕ0 = (ϕ1, · · · , ϕn0
)�,

ϕ+ = (ϕ0, ϕn0+1, · · · , ϕn0+np
)�,

ϕ− = (ϕn0+np+1, · · · , ϕ2N−4, ϕ2N−3, · · · , ϕ2N−8)
�.

Consequently, the system (3.21) can be rewritten as the following system of
equations:

(3.23)


q�0 = ϕ0(q0, q+, q−),

q�+ = C+q+ + ϕ+(q0, q+, q−),

q�− = C−q− + ϕ−(q0, q+, q−).

Please refer to Appendix C for more detail.





CHAPTER 4

Resolving PISPW

Let us turn to discuss PISPW in this section. As the work of Siegel [22]
indicates, the theory of normal forms is useful for discussing PISPW . Furthermore,
in the discussion of PISPW for the case corresponding to central configurations
with degree of degeneracy two, it is natural to investigate equilibrium points in
two-dimensional systems and degenerate central configurations of the planar four-
body problem. To avoid disrupting the flow of the discussion, these materials are
deferred to Appendix B, D and E.

The main result on PISPW is the following theorem.

Theorem 4.1. For given masses of the N -body problem, if all the central con-
figurations are isolated and have degree of degeneracy less than or equal to two, and
central configurations with degree of degeneracy two satisfy the condition (4.16),
then the normalized configuration of any total collision orbit of the given N-body
problem approaches a certain central configuration as time t approaches the collision
instant.

Remark 4.2. For collision orbits of the four-body problem, PISPW is now
unanswered in very few cases corresponding to central configurations with degree
of degeneracy two. Recall that the masses for which the degenerate central config-
uration exists form a proper algebraic subset of the mass space for the four-body
problem [16]. Furthermore, following a crude dimension count, almost all degen-
erate central configurations have degree of degeneracy one, and the masses that
admit central configurations with degree of degeneracy two should form a subset of
the mass space consisting of finite points.

Indeed in Appendix B.4 we venturesomely conjectured that:

Conjecture. All the four-body central configurations except the degenerate
equilateral central configuration have degree of degeneracy equal or less than one.

Here, the degenerate equilateral central configuration is a configuration with
three particles m1,m2,m3 lying at three vertices of a regular triangle and the fourth
particle m4 lying at the center, here m1 = m2 = m3 = m4

(64
√

3+81)/249
, see Appendix

B.2 for more detail.
As a result, we have the following corollary.

Corollary 4.3. If the above conjecture is correct, the normalized configuration
of any total collision orbit of the four-body problem approaches a certain central
configuration as time t approaches the collision instant.

In the following we divide the proof of Theorem 4.1 into several cases according
to the degree of degeneracy of central configurations. One of the key points is to
estimate the speed of convergence to the origin for z,Z or q, γ; if n0 = 0, the system

25
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(3.23) is hyperbolic, then it is easy to estimate the speed; if n0 = 1, the system (3.23)
is nonhyperbolic, however, the center manifold of (3.23) is one-dimensional, then it
is not difficult to estimate the speed; if n0 = 2, the system (3.23) is nonhyperbolic
and its center manifold is two-dimensional, thanks to the fact that the origin is an
isolated equilibrium, one can successfully estimate the speed under fairly general
conditions. Unfortunately, if n0 ≥ 3, the dimension of center manifold of the system
(3.23) exceeds two, then it is too difficult to estimate the speed; indeed, it is even
too difficult to understand orbits on the center manifold qualitatively.

4.1. n0 = 0

First, let us discuss what happen if n0 = 0, i.e., the central configuration r0 is
nondegenerate.

Now the problem reduces to the following form:

Problem 4.4. given a solution (q(τ ), γ(τ )) of the system (3.23) such that

(q(τ ), γ(τ )) → 0 as τ → −∞,

if θ(τ ) satisfies (3.22) then does θ(τ ) approach a fixed limit as τ → −∞?

By solving the above problem, we have the following theorem.

Theorem 4.5. Given a total collision orbit of the N -body problem, if the orbit
converges to the SO(2)-orbit of a nondegenerate central configuration r0, then the
normalized configuration of the orbit approaches a certain central configuration as
time t approaches the collision instant.

Proof. It is well known that an orbit on the unstable manifold of a hyperbolic
equilibrium point approaches the hyperbolic equilibrium point exponentially fast
as τ → −∞ (for example, see Corollary D.9). Since the origin is hyperbolic for the
system (3.23), it follows that, for a fixed τ0, there are two positive constants �1

and σ such that

�u� ≤ �1e
στ ∀τ ≤ τ0,

where

u = (γ, q1, · · · , q4N−8)
�

and

�u� =
�

|γ|2 + |q1|2 + · · · + |q4N−8|2.
Thanks to the equation (3.22), θ� is a quadratic form in the variable u. It

follows that there exists a positive constants �2 such that

|θ�| ≤ �2�u�2.

Then

|θ�| ≤ �2�
2
1e

2στ ∀τ ≤ τ0.

It follows from Cauchy’s test for convergence that θ(τ ) approaches a fixed limit as
τ → −∞.

In conclusion, the proof of Theorem 4.5 is completed. That is, we have solved
PISPW for nondegenerate central configurations. �
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4.2. n0 > 0

When n0 > 0, i.e., the central configuration r0 is degenerate, the problem
reduces to the following form:

Problem 4.6. given a solution (q(τ ), γ(τ )) of the system (3.23) such that

(q(τ ), γ(τ )) → 0 as τ → −∞,

if θ(τ ) satisfies (3.22) then does θ(τ ) approach a fixed limit as τ → −∞?

4.2.1. Preliminaries of Proof.

(A) The first step to solve the above problem is to simplify equations (3.23)
by using the reduction theorems (see Appendix D). The idea is as follows: for any
given orbit on the center-unstable manifold of the system (3.23), we can find an
orbit on the center manifold of the system (3.23) approaching it exponentially fast.

It follows from Corollary D.5 that we can introduce a nonlinear substitution in
the form of

(4.1)


u0 = γ,

uk = qk, k ∈ {1, · · · , n0 + np}
uk = qk − F cu

k (q0, q+), k ∈ {n0 + np + 1, · · · , 4N − 8}
so that the system (3.23) can be written as the simpler form below

(4.2)


u�0 = ϕ0(u0, u+, F cu(u0, u+)) + ψ0(u)u−,

u�+ = C+u+ + ϕ+(u0, u+, F cu(u0, u+)) + ψ+(u)u−,

u�− = C−u− + ψ−(u)u−,

where
u0 = (u1, · · · , un0

)�

u+ = (u0, un0+1, · · · , un0+np
)�

u− = (un0+np+1, · · · , u4N−8)
�,

the equation

q− = F cu(q0, q+)

defines a center-unstable manifold of class C l, moreover F cu and all the partial
derivative of F cu are vanishing at (q0, q+) = 0. The functions ψ0, ψ+ are C l-smooth
and ψ− is Cl−1-smooth; in addition, all the functions ψ0, ψ+, ψ− are vanishing at
the origin, i.e., ψ∗(0) = 0, where ∗ ∈ {0, +, −}.

By Theorem D.3, an orbit such that (q(τ ), γ(τ )) → 0 as τ → −∞ is necessarily
contained on any center-unstable manifold, so that u−(τ ) vanishes identically.

Therefore, for a solution of Problem 4.6 the system (4.2) reduces to

(4.3)

�
u�0 = ϕ0(u0, u+, F cu(u0, u+)),

u�+ = C+u+ + ϕ+(u0, u+, F cu(u0, u+)).

Then it follows from the Theorems D.7 and D.8 that there exists a solution
υ(τ ) = (υ1(τ ), · · · , υn0

(τ ))� of the following system

(4.4) u�0 = ϕ0
�
u0, F c(u0), F cu

�
u0, F c(u0)

��
,
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such that

(4.5)

�
u0(τ ) = υ(τ ) + O(eστ )

u+(τ ) = F c(υ(τ )) + O(eστ )
as τ → −∞,

where the equation u+ = F c(u0) defines a center manifold of class C l, moreover
F c and all the partial derivative of F c are vanishing at u0 = 0; the term σ > 0 is a
constant depending only on C+.

(B) Let us first simplify the Equation (3.22) by using the variables υ.
Due to the equation (3.22) and the nonlinear substitution (4.1), now we have

(4.6)
θ� =

�
u0, u+, F cu(u0, u+)

��
P�

�
I
0

�
Q

�
0 I

�
P

�
u0, u+, F cu(u0, u+)

�
=

�n0

j=1

�n0+np

k=n0+1 qjkµ̃kukuj +
�n0+np

j,k=n0+1 qjkµ̃kukuj + · · ·
where “· · · ” denotes all the terms which contain at least one of F cu

k (k > n0 + np)
as a factor.

By Taylor’s formula, the equation (4.6) can be rewritten as

(4.7) θ� =

n0�
k=1

n0+np�
j=n0+1

qkj µ̃jukuj +

n0+np�
j,k=n0+1

qkj µ̃jukuj +

l�
|α|=3

bα(u0+)α + ol(u
0+),

where ol denotes the reminder term which vanishes at the origin along with the
first l derivatives,

u0+ = (u0, u+) = (u1, · · · , un0
, u0, un0+1, · · · , un0+np

)�,

α = (α0, α+) = (α1, · · · , αn0
, α0, αn0+1, · · · , αn0+np

)

is a multiindex and

|α| = α1 + · · · + αn0
+ α0 + αn0+1 + · · · + αn0+np

.

Obviously, to determine the coefficients bα, by Theorem D.3, it suffices to find
the coefficients of F cu(q0, q+) according to the following relationship:

(4.8)

C−F cu(q0, q+) + ϕ−(q0, q+, F cu(q0, q+))

= ∂F cu(q0,q+)
∂q0 ϕ0(q0, q+, F cu(q0, q+))

+ ∂F cu(q0,q+)
∂q+

�
C+q+ + ϕ+(q0, q+, F cu(q0, q+))

�
.

As a matter of fact, we can use the method of undetermined coefficients to find

cα, the coefficient of (q0)α0

(q+)α+

in F cu(q0, q+). Suppose that we have already
determined all coefficients in F cu(q0, q+) of total degrees 2, · · · , |α| − 1. Then, by

equating the coefficients of (q0)α0

(q+)α+

in the above equation, we determine cα

from the following recurrence formula:

C−cα + {ϕ−(q0, q+, F cu(q0, q+))}α

= {∂F cu(q0,q+)
∂q0 ϕ0(q0, q+, F cu(q0, q+))}α

+ (α+, C+)cα + {∂F cu(q0,q+)
∂q+ ϕ+(q0, q+, F cu(q0, q+))}α,

this is because C− − (α+, C+)I is an invertible matrix; where

(α+, C+) = α0κ
1
2 + αn0+1µ̃n0+1 + · · · + αn0+np

µ̃n0+np
> 0,
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{f}α stands for the coefficient of the term (q0)α0

(q+)α+

in the Taylor expansion
of f . Note that three terms {f}α in the above recurrence formula only involve
coefficients in F cu of total degrees 2, · · · , |α| − 1. If we consider |α| = 2, then it is
easy to see that

(C− − (α+, C+)I)cα = −{ϕ−(q0, q+, F cu(q0, q+))}α,

and

{ϕ−(q0, q+, F cu(q0, q+))}α = {ϕ−(q0, q+, 0)}α.

Consequently, we can explicitly compute the coefficients bα for |α| = |α0| = 3,
where |α0| = α1 + · · · + αn0

. To this end, it suffices to pay attention to the terms
in “· · · ” in (4.6) containing ujF

cu
k (u0, u+) such n0 ≥ j > 0 and k > n0 + np. More

precisely, a straightforward computation shows that

(4.9)
�

|α|=|α0|=3

bα(u0)α0

=
�

|α|=|α0 |=2

(u0)� �
In0

0
�
QP

�
0, 0, cα(u0)α0

�
,

where In0
is the identity matrix of order n0.

Similarly, the relation

(4.10)
C+F c(u0) + ϕ+

�
u0, F c(u0), F cu(u0, F c(u0))

�
= ∂F c(u0)

∂u0 ϕ0
�
u0, F c(u0), F cu(u0, F c(u0))

�
gives an algorithm for computing the Taylor’s coefficients of F c(u0). Here only the
quadratic terms are computed explicitly.

Proposition 4.7. The quadratic form in Taylor’s formula of F c
k (u0) is

(4.11)

0, k = 0,�n0
i,j=1 aijkuiuj

4µ̃k

√
µk+ κ

16

, k = n0 + 1, · · · , n0 + np;

the quadratic form of ϕ0
k

�
u0, F c(u0), F cu

�
u0, F c(u0)

��
for k = 1, · · · , n0 is�n0

i,j=1 aijkuiuj√
κ

.

Proof. Suppose that aα0 is the coefficient of (u0)α0

in F c(u0), and bα0 is

the coefficient of (u0)α0

in ϕ0
�
u0, F c(u0), F cu

�
u0, F c(u0)

��
. By comparing the

coefficients of (u0)α0

in (4.10), we obtain the following recurrence formula:

C+aα0 + {ϕ+
�
u0, F c(u0), F cu(u0, F c(u0))

�}α0

= {∂F c(u0)
∂u0 ϕ0

�
u0, F c(u0), F cu(u0, F c(u0))

�}α0 .

If we consider |α0| = α1 + · · · + αn0
= 2, then it is easy to see that

C+aα0 = −{ϕ+
�
u0, F c(u0), F cu(u0, F c(u0))

�}α0 ,

bα0 = {ϕ0
�
u0, F c(u0), F cu(u0, F c(u0))

�}α0 = {ϕ0
�
u0, 0, 0

�}α0 ,

and

{ϕ+
�
u0, F c(u0), F cu(u0, F c(u0))

�}α0 = {ϕ+
�
u0, 0, 0

�}α0 .
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By the substitutions (3.20) and (4.1), recall that,

zk = qk + · · · = uk + · · · , k ∈ {1, · · · , n0}
zk = · · · , k ∈ {n0 + 1, · · · , 2N − 4}
Zk = · · · , k ∈ {1, · · · , 2N − 4}
γ = u0 = · · · ,

where “· · · ” denotes all the terms which contain at least one of uk (k = 0, n0 +
1, · · · , 4N − 8) as a factor. As a result, if we set

uk = 0, for k = 0, n0 + 1, · · · , 4N − 8,

it follows that 

zk = uk, k ∈ {1, · · · , n0}
zk = 0, k ∈ {n0 + 1, · · · , 2N − 4}
Zk = 0, k ∈ {1, · · · , 2N − 4}
γ = 0.

Then, by (3.16), (3.17) and (C.6), we have
ϕk

�
u0, 0, 0

�
=

1
2 [

�n0
i,j=1, aijkzizj ]

2
√

µk+ κ
16

+ · · · =
�n0

i,j=1, aijkuiuj

4
√

µk+ κ
16

+ · · · ,

k ∈ {1, · · · , n0 + np}

ϕ0

�
u0, 0, 0

�
= −1

2
u�

0 Λ0u0 + · · · = 0 + · · · ,

where “· · · ” denotes all the terms of degree higher than or equal to 3.
Thus we have proved the proposition. �
Consequently, based on the Taylor expansion, the system (4.4) can be written

as

(4.12) υ�
k =

�n0
i,j=1 aijkυiυj√

κ
+ · · · + ol(υ), k ∈ {1, · · · , n0}.

where “· · · ” denotes all the terms of degrees from 3 to l.
Taking into consideration of (4.5), by (4.9) and (4.11), it follows that the equa-

tion (4.7) can be further rewritten as

θ� =

n0+np�
k=n0+1

n0�
j,m,n=1

qjkamnkυjυmυn

4
�

µk + κ
16

+
�

|α|=|α0|=3

bαυα0

+ · · · + ol(υ) + O(eστ ).

where “· · · ” denotes all the terms of degree from 4 to l. Obviously, we can discard
the term O(eστ ) without affecting the convergence of the integral

� τ0

−∞ θ�(τ )dτ .
Therefore it suffices to consider

(4.13) θ� =

n0+np�
k=n0+1

n0�
j,m,n=1

qjkamnkυjυmυn

4
�

µk + κ
16

+
�

|α|=|α0|=3

bαυα0

+ · · · + ol(υ)

to establish the convergence of θ(τ ) as τ → −∞.
As a result, by (4.5) it is easy to see that Problem 4.6 reduces to
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Problem 4.8. given a solution υ(τ ) of the system (4.4) or (4.12) such that

υ(τ ) → 0 as τ → −∞,

if θ(τ ) satisfies (3.22) or (4.13) then does θ(τ ) approach a fixed limit as τ → −∞?

(C) In general, the quadratic forms in (4.12) may be zero. However, we claim
that the Taylor’s coefficients of the right side of (4.12) are not all zero, that is,

Proposition 4.9. For sufficiently large l, there exists some nonzero Taylor’s
coefficient in the Taylor expansion of the right side of the system (4.4) or (4.12).

Proof. The proposition is an inference of the fact that the origin is an isolated
equilibrium. However, since it is probable that ϕ0

�
u0, F c(u0), F cu

�
u0, F c(u0)

��
is

not an analytic function, the proof is not immediate.
It suffices to prove the proposition in the case of formal power series.
If the statement is false, then

ϕ0
�
u0, F c(u0), F cu

�
u0, F c(u0)

�� ≡ 0

in the sense of formal power series.
It follows from (4.10) that

C+F c(u0) + ϕ+
�
u0, F c(u0), F cu(u0, F c(u0))

� ≡ 0

By (4.8), it turns out that

C−F cu(u0, F c(u0)) + ϕ− �
u0, F c(u0), F cu(u0, F c(u0))

� ≡ 0

As a result, u0 and two formal power series

f1(u
0) = F c(u0), f2(u

0) = F cu(u0, F c(u0))

satisfy 
ϕ0

�
u0, f1, f2

�
= 0,

C+f1 + ϕ+
�
u0, f1, f2

�
= 0,

C−f2 + ϕ− �
u0, f1, f2

�
= 0.

It is noteworthy that the two equations�
C+f1 + ϕ+

�
u0, f1, f2

�
= 0,

C−f2 + ϕ− �
u0, f1, f2

�
= 0,

are enough to determine f1(u
0), f2(u

0); furthermore, by the fact that ϕ+(u0, u+, u−)
and ϕ− �

u0, u+, u−�
are two analytic functions, it follows from the analytic version

of implicit function theorem that f1(u
0), f2(u

0) are more than just formal power
series, they are really analytic functions of u0.

Therefore, we have infinitely many critical points of the system (3.23) in a
small neighbourhood of the origin. However, we know that the origin is an isolated
equilibrium point of the system (3.23). This leads to a contradiction. �
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4.2.2. n0 = 1. By solving the Problem 4.8 for n0 = 1, we completely solve
PISPW for n0 ≤ 1 in this subsection. That is

Theorem 4.10. Given a total collision orbit of the N -body problem, if the
orbit converges to the SO(2)-orbit of an isolated central configuration r0 and r0 has
degree of degeneracy one, then the normalized configuration of the orbit approaches
a certain central configuration as time t approaches the collision instant.

Proof. Consider Problem 4.8 for n0 = 1.
As a matter of notational convenience, set υ1 = w. Then the system (4.12)

becomes
w� = c2w

2 + · · · + clw
l + ol(w).

By Proposition 4.9, suppose

c2 = · · · = cm−1 = 0, cm �= 0, 2 ≤ m < l,

then

(4.14) w� = cmwm + · · · + clw
l + ol(w).

If w(τ ) = 0 for some τ , then w(τ ) ≡ 0, and (4.13) becomes θ�(τ ) = 0, therefore
θ(τ ) is obviously convergent as τ → −∞.

So we consider w(τ ) �= 0 as τ → −∞. Without loss of generality, we assume
w(τ ) > 0, i.e., w(τ ) → 0+ as τ → −∞.

According to L’Hópital’s rule, it follows from (4.14) that

lim
τ→−∞

1

τwm−1
= (1 − m)cm,

or

w =

�
1

(1 − m)cmτ

� 1
m−1

+ o((
1

−τ
)

1
m−1 ) as τ → −∞.

We cannot prove the convergence of θ(τ ) by (4.13), but a proof based on the
original equation (3.15) will be given right now.

By substitutions (3.20), (4.1) and (4.5), it is simple to show that for every
j = 1, · · · , 2N − 4,

Zj = cj,2w
2 + · · · + cj,lw

l + ol(w).

If cj,2, · · · , cj,l are all zero, then it is easy to show that

|Zj | = O((
1

−τ
)1+

2
l−2 ),

it follows that the improper integral
� τ0

−∞ |Zj |dτ converges. If at least one of
cj,2, · · · , cj,l is not zero, then Zj takes the following form

Zj = c̃j(
1

−τ
)

mj
m−1 + o((

1

−τ
)

mj
m−1 ),

where mj ∈ {2, · · · , l}. So Zj converges to zero with constant sign. Then it follows

from z�
j = Zj that the improper integral

� τ0

−∞ |Zj |dτ also converges.

As a result, the improper integral
� τ0

−∞ |Zj |dτ converges for every j = 1, · · · ,
2N − 4. Consequently, the improper integral

|
� τ0

−∞
θ�(τ )dτ | ≤

� τ0

−∞

2N−4�
j,k=1

| qkj || Zj || zk | dτ
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also converges.
Therefore θ(τ ) is obviously convergent as τ → −∞.
In conclusion, the proof of Theorem 4.10 is completed. �
4.2.3. n0 = 2. Due to the intrinsic difficulty of degenerate or nonhyperbolic

differential equations, the difficulty of the problem increases rapidly for n0 ≥ 2.
Indeed, we cannot completely resolve PISPW even in the case of n0 = 2. The
main difficulty comes from estimating the speed of tending to the equilibrium point
for an orbit on a center-unstable manifold.

In particular, we could not apply a similar method as that of n0 = 1, because
generally we can not prove that every Zj (j = 1, · · · , 2N − 4) converges with
constant sign to zero. Indeed, in general, Zj can converges to zero with alternating
signs as shown in Example 2.

Naturally, one hopes that researches on central configurations would help for
resolving PISPW . Unfortunately, the problem of central configurations is also very
difficult, as indicated by researches on this topic in the past decades. Therefore, we
can only utilize results of central configurations in some special cases.

We consider Problem 4.8 for n0 = 2 in this subsection. First, we give a criterion
for the case of n0 = 2; then we give an answer to PISPW for all known degenerate
central configurations of four bodies. Therefore, for almost every choice of the
masses of the four-body problem, PISPW is answered.

Theorem 4.11. Given a total collision orbit of the N-body problem, if the orbit
converges to the SO(2)-orbit of an isolated central configuration r0 and r0 has degree
of degeneracy two and satisfies the condition (4.16), then the normalized configu-
ration of the orbit approaches a certain central configuration as time t approaches
the collision instant.

As an example, we have the following result:

Corollary 4.12. Given a total collision orbit of the four-body problem, if
the orbit converges to the SO(2)-orbit of r0, where r0 is the degenerate equilateral
central configuration discovered by J. Palmore in [18], then the normalized config-
uration of the orbit approaches a certain central configuration as time t approaches
the collision instant.

Proof of Theorem 4.11. Consider Problem 4.8 for n0 = 2.
As a matter of notational convenience, set (υ1, υ2) = (ζ, η). Then the system

(4.12) becomes

(4.15)

�
ζ � = c1ζ

2 + 2c2ζη + c3η
2 + o(ζ2 + η2)

η� = c2ζ
2 + 2c3ζη + c4η

2 + o(ζ2 + η2)

where
c1 =

a111√
κ

, c2 =
a112√

κ
, c3 =

a122√
κ

, c4 =
a222√

κ
.

Let us introduce polar coordinates as in Appendix E

ζ = ρ cos ϑ, η = ρ sin ϑ,

then the system (4.15) becomes�
ρ� = ρ2Φ(ϑ) + o(ρ2),

ϑ� = ρΨ(ϑ) + o(ρ),
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where�
Φ(ϑ) = c1 cos3 ϑ + 3c2 cos2 ϑ sin ϑ + 3c3 cos ϑ sin2 ϑ + c4 sin3 ϑ,

Ψ(ϑ) = c2 cos3 ϑ + (2c3 − c1) cos2 ϑ sin ϑ + (c4 − 2c2) cos ϑ sin2 ϑ − c3 sin3 ϑ;

thus Φ, Ψ are homogeneous polynomials of degree 3 in cosϑ, sin ϑ.
To prove the theorem, we need two lemmas.

Lemma 4.13. Assume c1, c2, c3, c4 are not all zero. Then

ϑ0 = lim
τ→−∞ ϑ(τ ) exists (and is finite)

and Ψ(ϑ0) = 0.

Lemma 4.14. Assume

c2
1c

2
4 − 6c1c2c3c4 + 4c1c

3
3 + 4c3

2c4 − 3c2
2c

2
3 �= 0.

Then Φ(ϑ0) �= 0 and moreover

ρ = − 1

τΦ(ϑ0)
+ o(

1

τ
),

where ϑ0 is defined in Lemma 4.13.

Note that (4.13) becomes

θ� = P3(ζ, η) + o(ρ3),

where P3(ζ, η) is a homogeneous polynomial of degree 3. It follows that |θ�| ≤ σρ3

for sufficiently small ρ, where σ is some positive number. Then it follows from
Lemma 4.14 and Cauchy’s test for convergence that θ(τ ) approaches a fixed limit
as τ → −∞, provided that

c2
1c

2
4 − 6c1c2c3c4 + 4c1c

3
3 + 4c3

2c4 − 3c2
2c

2
3 �= 0,

i.e.,

(4.16) a2
111a

2
222 − 6a111a112a122a222 + 4a111a

3
122 + 4a3

112a222 − 3a2
112a

2
122 �= 0.

In conclusion, the proof of Theorem 4.11 is completed. �
Proof of Lemma 4.13. Since the origin is an isolated equilibrium point of

the system (3.23), and the system (4.12) is just the restriction of the system (3.23)
to the center manifold u+ = F c(u0), it follows that the origin is also an isolated
equilibrium point of the system (4.12).

A routine computation gives rise to

Ψ(ϑ) =
c2 + c4

4
cos ϑ +

−c1 − c3

4
sin ϑ +

3c2 − c4

4
cos 3ϑ +

3c3 − c1

4
sin 3ϑ.

As a result, Ψ(ϑ) ≡ 0 if and only if

c2 + c4 = 0,

−c1 − c3 = 0,

3c2 − c4 = 0,

3c3 − c1 = 0,

or
c1 = c2 = c3 = c4 = 0.

The lemma is now a direct consequence of the Theorem E.3. �
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Proof of Lemma 4.14. Obviously, c1, c2, c3, c4 are not all zero. Therefore

ϑ0 = limτ→−∞ ϑ(τ ) exists (and is finite)

and

Ψ(ϑ0) = 0.

Furthermore, we claim that Φ(ϑ0) �= 0. Otherwise, it is easy to see that�
c1ζ

2 + 2c2ζη + c3η
2 = 0

c2ζ
2 + 2c3ζη + c4η

2 = 0

for ζ = cos ϑ0, η = sinϑ0.
If sinϑ0 �= 0, we conclude that�

c1w
2 + 2c2w + c3 = 0

c2w
2 + 2c3w + c4 = 0

for w = cos ϑ0

sin ϑ0
. By the fact that the resultant of two polynomials having a common

root vanishes (see [26, p.104]), it follows that the resultant��������
c1 2c2 c3 0
0 c1 2c2 c3

c2 2c3 c4 0
0 c2 2c3 c4

��������
is zero, i.e.,

c2
1c

2
4 − 6c1c2c3c4 + 4c1c

3
3 + 4c3

2c4 − 3c2
2c

2
3 = 0.

This is contrary to the assumption of the lemma.
If sin ϑ0 = 0, then cos ϑ0 �= 0. Using the same argument as above, we can

always obtain Φ(ϑ0) �= 0.
The lemma is now a direct consequence of Theorem E.5. �

Proof of Corollary 4.12. We only need to verify the condition (4.16) for
the degenerate equilateral central configurations.

As in Appendix B.2, we consider

m1 = m2 = m3 = 1, m4 =
81 + 64

√
3

249
.

Recall that

aijk = d3U|r0
(Êi, Êj , Êk), i, j, k ∈ {1, 2},

and

E5 = r0 = (−
√

3
2 , −1

2 ,
√

3
2 , −1

2 , 0, 1, 0, 0)�,

E6 = ir0 = (1
2 , −

√
3

2 , 1
2 ,

√
3

2 , −1, 0, 0, 0)�,

E1 =
�

64
√

3+81
498

, −741
√

3+908
1494

, 64
√

3+81
498

, 741
√

3+908
1494

, 0, 0, −1, 0
��

,

E2 =
�

165
√

3+179
747 , −371

√
3+738

2241 , −165
√

3+179
747 , − 371

√
3+738

2241 , 0, 2
√

3+9
27 , 0, 1

��
.

Some tedious computation yields

a111 = 0,
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a112 = −6630331032

�
2

13129701006956661
√

3 + 22740709543896356
,

a122 = 0,

a222 = 3269394

�
2

6312834009
√

3 + 10926270656
.

Obviously,

a2
111a

2
222 − 6a111a112a122a222 + 4a111a

3
122 + 4a3

112a222 − 3a2
112a

2
122 �= 0.

The proof is completed. �

4.3. Summary

We conclude this section with simply proving Theorem 4.1 and Corollary 4.3.
Obviously, by Theorem 4.5, Theorem 4.10 and Theorem 4.11, it follows that

Theorem 4.1 is correct. By Corollary 4.12, it follows that Corollary 4.3 is correct.



CHAPTER 5

Manifold of Collision Orbits

Based upon the work on PISPW , we can consider now the manifold of all the
collision orbits or the set of initial conditions leading to total collisions locally. We
also have to divide the discussion into several cases according to the value of n0.

5.1. n0 = 0

First, let us consider the case that all the central configurations of the given
N -body problem are nondegenerate.

Theorem 5.1. For the planar N -body problem, the manifold of all collision
orbits corresponding to a fixed nondegenerate central configuration is a real analytic
manifold of dimension np +3 in a neighbourhood of the collision instant. Therefore
the set of initial conditions leading to total collisions is locally a finite union of real
analytic submanifolds in a neighbourhood of the collision instant, here the dimension
of each submanifold depends upon the index of the limiting central configuration and
is at most 2N − 1.

Proof. Recall that, given a total collision orbit r(t), there is a central con-
figuration r0 such that r̂(t) → S = {eiθr0|θ ∈ R} as t → 0+. The orbit r(t) now
reduces to a solution, such that (q(τ ), γ(τ )) → 0 as τ → −∞, of the following
equations of motion:

(5.1)

�
q�+ = C+q+ + ϕ+(q+, q−),

q�− = C−q− + ϕ−(q+, q−);

and

(5.2)


r� = r(κ

1
2 + γ),

θ� = z�QZ = q�P�
�

I
0

�
Q

�
0 I

�
Pq.

Since the origin is a hyperbolic equilibrium point of the subsystem (5.1), it
follows that (q(τ ), γ(τ )) is exactly a solution in the (real analytic) unstable manifold
of the origin, for the system (5.1). This unstable manifold has dimension np + 1.

Since the map r �→ (z,Z, γ, r, eiθ) is an analytic diffeomorphism, and the map
(z,Z, γ, r, θ) �→ (q, γ) is a submersion, we conclude that the set of initial conditions
leading to a total collision with normalized configuration approaching S is a real
analytic manifold of dimension np + 3 in a neighbourhood of the collision instant.

Here, for the fixed nondegenerate central configuration r0, np satisfies N − 2 ≤
np ≤ 2N − 4. Hence

np + 3 ≤ 2N − 1 < 4N − 4 forN ≥ 2,

37
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i.e., the dimension of each above collision manifold is strictly less than that of the
phase space TX.

As a result, the set of initial conditions leading to total collisions is locally a
finite union of real analytic submanifolds in a neighbourhood of the collision instant,
and the dimension of each submanifolds depends upon the index np of the limiting
central configuration and is at most 2N − 1 for the N -body problem.

The proof is completed. �

5.2. n0 > 0

Let us consider the case that central configurations of the given N -body prob-
lem are assumed isolated but possibly degenerate.

Theorem 5.2. The set of initial conditions leading to total collisions is included
in a finite union of real submanifolds in a neighbourhood of the collision instant, and
the dimension of each submanifolds depends upon the index of the limiting central
configuration and is at most 2N − 1 for the N -body problem.

Remark 5.3. Since 2N − 1 < 4N − 4 for N ≥ 2, we get the result that the set
of initial conditions leading to total collisions has zero measure in a neighbourhood
of the collision instant. Since the invariant set J ≡ 0 is of dimension 4N − 5, it
follows that the set of initial conditions leading to total collisions has zero measure
even when restricted to the invariant set J ≡ 0 for N ≥ 3. However, let us quote
a remark by Siegel in [22]:“We remark that since our solutions are described only
near t = 0, the above description of the collision orbits is purely local. It is not
possible to describe the manifold of collision orbits in the large, that is, for all t, by
our method.”

Proof. Given a total collision orbit r(t), there is a central configuration r0

such that r̂(t) → S as t → 0+. The orbit r(t) reduces to a solution, such that
(q(τ ), γ(τ )) → 0 as τ → −∞, of the following equations of motion:

(5.3)


q�0 = ϕ0(q0, q+, q−),

q�+ = C+q+ + ϕ+(q0, q+, q−),

q�− = C−q− + ϕ−(q0, q+, q−),

and

(5.4)


r� = r(κ

1
2 + γ),

θ� = q�P�
�

I
0

�
Q

�
0 I

�
Pq.

Although we cannot completely resolve PISPW in this case, we could give a
measure of the set of initial conditions leading to total collisions.

Obviously, (q(τ ), γ(τ )) is a solution in a (smooth) center-unstable manifold
of the origin, for the system (5.3). This center-unstable manifold has dimension
n0 + np + 1. Similar to the argument used in Theorem 5.1, we conclude that the
set of initial conditions leading to total collisions with normalized configuration
approaching S is a subset of a real smooth manifold of dimension no more than
n0 + np + 3 in a neighbourhood of the collision instant.
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Here, for the fixed nondegenerate central configuration r0, we have

n0 + np + 3 ≤ 2N − 1 < 4N − 4 forN ≥ 2,

i.e., the dimension of each above collision set is strictly less than that of the phase
space TX.

As a result, the set of initial conditions leading to total collisions is included
in a finite union of real smooth submanifolds in a neighbourhood of the collision
instant, and the dimension of each submanifolds depends upon the index n0 +np of
the limiting central configuration and is at most 2N − 1 for the N -body problem.

The proof is completed. �

Remark 5.4. In Theorem 5.1 and 5.2, if we remove the assumption that the
center of mass is fixed at the origin, then each present dimension need to be in-
creased by 4.

5.3. Analytic Extension

Finally, let us examine the question of whether orbits can be extended through
total collision from the viewpoint of Sundman and Siegel, that is, whether a single
solution can be extended as an analytic function of time. The problem has been
studied by Sundman and Siegel in the case of the three-body problem.

It is easy to show that the nature of the singularity corresponding to a total

collision depends on the arithmetical nature of the eigenvalues κ
1
2 , µ̃1, · · · , µ̃np

.
Here we discuss only the case corresponding to rhombic central configurations for
the four-body problem as a demonstration.

Recall the facts (B.17) and (B.16). For simplicity, we consider only the case√
3 < ζ < ζ1 ≈ 1.7889580612081344, then

0 < κ
1
2 < µ1 < µ2 < µ4 < µ3.

It is clear that κ
1
2 , µ1, µ2, µ3, µ4 are nonresonant for almost all ζ ∈ (

√
3, ζ1).

On the other hand, one can show that the coordinate functions q, γ, r, θ of a
collision orbit are regular analytic functions of the following variables

ũ0 = c0e
κ

1
2 τ , ũ1 = c1e

µ̃1τ , ũ2 = c2e
µ̃2τ , ũ3 = c3e

µ̃3τ , ũ4 = c4e
µ̃4τ .

As a matter of fact, since rhombic central configurations are nondegenerate, the
equations of motion reduce to an analytic system with a hyperbolic equilibrium,
then the proof is straightforward by the celebrated Poincaré- Lyapunov Theorem
on analytic invariant manifolds, for more detail please refer to [22].

Furthermore, it follows from (2.5), (3.2) and (3.20) that r, ṙ are regular analytic
functions of the following variables

ǔ0 = c0t
2
3 , ǔ1 = c1t

(2µ̃1)/(3κ
1
2 ), ǔ2 = c2t

(2µ̃2)/(3κ
1
2 ),

ǔ3 = c3t
(2µ̃3)/(3κ

1
2 ), ǔ4 = c4t

(2µ̃4)/(3κ
1
2 ).

Since all the numbers κ
1
2 , µ1, µ2, µ3, µ4 and their ratios are irrational for almost

all ζ ∈ (
√

3, ζ1), thus generically we have an essential singularity at collision instant
t = 0. In this case it is not possible to continue the solutions analytically beyond
the collision.
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Remark 5.5. Although one can conclude that the eigenvalues µj (j = 1, · · · ,
2N − 4) depend continuously upon the value of the masses mk (k = 1, · · · , N), it is
obvious that one can not simply claim that there must exist values of mk yielding
some µj being irrational, since we can not simply exclude the case in which µj are
constant as mk vary.



CHAPTER 6

Conclusion and Questions

For the planar N -body problem, based on the moving coordinates, which al-
lows us to describe the motion of collision orbit effectively, we discussed PISPW :
whether the normalized configuration of the particles must approach a certain cen-
tral configuration without undergoing infinite spin for a total collision orbit. In the
cases corresponding to central configurations with degree of degeneracy less than
or equal to one, we completely solve the problem. We also give a criterion of the
problem for the case corresponding to central configurations with degree of degen-
eracy two; we further give an answer to the problem in the case corresponding to
all known degenerate central configurations of four bodies. Therefore, for almost
every choice of the masses of the four-body problem, PISPW is solved. For all the
solved cases, we conclude that the normalized configuration of the particles must
approach a certain central configuration without undergoing infinite spin for a total
collision orbit. Finally, we give a measure of the set of initial conditions leading to
total collisions: the set has zero measure in the neighbourhood of collision instant.

This work indicates the fact that PISPW is the link of many interesting sub-
jects in dynamical system. It is our hope that this work may spark interest to
the problems on degenerate central configurations and/or degenerate equilibrium
points etc.

Many questions remain to be answered. For example, some concrete questions
are the following:

(i) In the cases corresponding to central configurations with three or higher
degrees of degeneracy, how should one study PISPW ?

(ii) For the spatial N -body problem, how should one study PISPW ?
(iii) If a solution of a strongly degenerate system (there are many zeros in

the eigenvalues of linear part of the system at an equilibrium point O)
approaches O, how should one estimate the speed of tending to the equi-
librium point O?

(iv) Is it true that all the four-body central configurations except the degen-
erate equilateral central configuration have degree of degeneracy equal or
less than one?

We hope to explore some of these questions in future work.
By the way, this work hints the fact that the moving coordinates will be useful

when we study the Newtonian N -body problem near relative equilibrium solutions.
Inspired by this, we will investigate the stability of relative equilibrium solutions in
future work by making use of the moving coordinates. Indeed, it is shown that the
theory of KAM is successfully applied to study the N -body problem near relative
equilibrium solutions.
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APPENDIX A

Degeneracy of Central Configurations

A.1. Degeneracy of a Constrained Critical Point

Let f and gk be smooth functions defined on Ω, 1 ≤ k ≤ m < n, where Ω is an
open set in Rn. Assume M is a smooth submanifold given as the common zero-set
of the m smooth functions gk, 1 ≤ k ≤ m.

The classical approach to find the critical points of f̃ := f |M , which is the
restriction of f on M, involves the well-known method of Lagrange multipliers. The
method avoids looking for local coordinates on the submanifold M, but consists
of introducing m “undetermined multipliers” λk, defining the following auxiliary
function

L = f +

m�
k=1

λkgk

and finding its critical points; i.e., by regarding L as a function of

(x, λ̄) = (x1, · · · , xn, λ1, · · · , λm) ∈ Ω × Rm.

The critical points are obtained by solving the equations

∇L = 0.

Similarly, one can investigate the degeneracy of a critical point in a straight-
forward manner: assume a is a critical point of f̃ , let (a, λ) be the corresponding
auxiliary critical point of L; by regarding L as a function of (x, λ̄), the degeneracy

of f̃ at a is the same as that of L at (a, λ), i.e., we have the following result (please
refer to [10] for more detail)

Theorem A.1 ([10]). The nullity (i.e., the dimension of the kernel) of the

Hessian D2f̃(a) equals the nullity of the Hessian D2L(a, λ).

Note that the Hessian D2f̃(a) is an (n−m)×(n−m) symmetric matrix, and the
Hessian D2L(a, λ), called the bordered Hessian, is an (n+m)× (n+m) symmetric
matrix.

A.2. Degeneracy of Central Configurations

When investigating the degeneracy of central configurations, the method in
A.1 is certainly useful. For example, X is the submanifold of (R2)N such that the

center of mass is at the origin; then the nullity of the Hessian D2 �U in X is naturally
reduced to that in (R2)N × R2. The benefit of this approach is that we do not
need to look for local coordinates of X for various masses. As it happens often, it
is difficult to find appropriate local coordinates for concrete problems.
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In the following, we use the cartesian coordinates of (R2)N to give a slightly
better criterion than the bordered Hessian in (R2)N × R2 for investigating the
degeneracy of central configurations.

First of all, recall that r̂ = r
�r� for any configuration r, and given a central

configuration r0, {E1, E2, · · · , E2N−5, E2N−4, r0, ir0} is an orthogonal basis of X

composed by eigenvectors of D2�U(r0).
Let

{e1, · · · , e2N}
be the standard basis of (R2)N , where ej ∈ (R2)N has unity at the j-th component
and zero at all others. Then every N-body configuration r ∈ (R2)N can be written
as

r =

2N�
j=1

xjej ,

and

(x1, x2, · · · , x2N )�

are coordinates of r in the standard basis. It is also true that rj = (x2j−1, x2j)�

for j = 1, 2, · · · ,N . Then

X = {r ∈ (R2)N |�r, E2N−1� = 0, �r, E2N � = 0},

where

E2N−1 =

N�
j=1

e2j−1 = (1, 0, · · · , 1, 0)�, E2N =

N�
j=1

e2j = (0, 1, · · · , 0, 1)�.

Let M be the matrix

diag(m1,m1,m2,m2, · · · , mN ,mN ),

where “diag” means diagonal matrix. Then

�r, r� = r�Mr.

Given a central configuration r0 = (r1, · · · , rN) ∈ X\∆, a straightforward com-

putation shows that the Hessian D2�U(r0) with respect to the mass scalar product

in (R2)N , that is the linear operator D2�U(r0) satisfying

�D2�U(r0)u,v� = d2�U(r0)(u,v), for any u,v ∈ (R2)N ,

is

I
1
2 (λI + M−1B) − 3I− 1

2 λr0r
�
0 M,

where λ = U(r0)
I(r0)

, B is the Hessian of U evaluated at r0 with respect to the standard

scalar product of (R2)N , that is the linear operator B satisfying

u�Bv = d2U(r0)(u,v), for any u,v ∈ (R2)N .

B can be viewed as an N × N array of 2 × 2 blocks:

B =

B11 · · · B1N

...
. . .

...
BN1 · · · BNN


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The off-diagonal blocks are given by:

Bjk =
mjmk

r3
jk

[I − 3(rk − rj)(rk − rj)
�

r2
jk

],

where rjk = |rk − rj |, and I is the identity matrix of order 2. However, as a matter
of notational convenience, the identity matrix of any order will always be denoted
by I, and the order of I can be determined according to the context. The diagonal
blocks are given by:

Bkk = −
�

1≤j≤N,j �=k

Bjk.

Set

E2N−3 = r0, E2N−2 = ir0.

Then

Pr0
= span{E2N−3, E2N−2}, P⊥

r0
= span{E1, · · · , E2N−4},

and {E1, E2, E3, E4, E5, · · · , E2N} is just an orthogonal basis of (R2)N such that

D2�U(r0)Ej = µjEj , j = 1, · · · , 2N,

µ2N−1 = µ2N = I
1
2 λ = I− 1

2 U, µ2N−3 = µ2N−2 = 0.

Thus

{Ê1, Ê2, Ê3, Ê4, · · · , Ê2N}
is an orthonormal basis of the space (R2)N , for the scalar product �, �, consisting

of eigenvectors of D2�U(r0), that is,

(Ê1, Ê2, Ê3, Ê4, · · · , Ê2N )�M(Ê1, Ê2, Ê3, Ê4, · · · , Ê2N ) = I.

By

D2�U(r0)(Ê1, · · · , Ê2N ) = diag(µ1, µ2, · · · , µ2N )(Ê1, · · · , Ê2N ),

it follows that
(A.1)

(Ê1, · · · , Ê2N )�(I
1
2 (λM+B)−3I− 1

2 λMr0r
�
0 M)(Ê1, · · · , Ê2N ) = diag(µ1, · · · , µ2N ).

Thanks to

(Ê1, · · · , Ê2N )�(ME2N−3E
�
2N−3M)(Ê1, · · · , Ê2N ) = diag(0, 0, · · · , I, 0, 0, 0),

(Ê1, · · · , Ê2N )�(ME2N−2E
�
2N−2M)(Ê1, · · · , Ê2N ) = diag(0, 0, · · · , 0, I, 0, 0),

(Ê1, · · · , Ê2N )�(ME2N−1E
�
2N−1M)(Ê1, · · · , Ê2N ) = diag(0, 0, · · · , 0, 0, m, 0),

and

(Ê1, · · · , Ê2N )�(ME2NE�
2NM)(Ê1, · · · , Ê2N ) = diag(0, 0, · · · , 0, 0, 0, m),

where recall that m =
�N

k=1 mk is the total mass, we have
(A.2)

(Ê1, · · · , Ê2N )�(λM + B)(Ê1, · · · , Ê2N ) = diag(
µ1

�r0� , · · · ,
µ2N−4

�r0� , 3λ, 0, λ, λ),

(A.3)
(Ê1, · · · , Ê2N )�(λM + B + ME2N−2E

�
2N−2M)(Ê1, · · · , Ê2N)

= diag( µ1

�r0� , · · · , µ2N−4

�r0� , 3λ, I, λ, λ),
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(A.4) (Ê1, · · · , Ê2N )�(λM + B − 3λ
I ME2N−3E

�
2N−3M − λ

mME2N−1E
�
2N−1M

− λ
m

ME2NE�
2NM)(Ê1, · · · , Ê2N ) = diag( µ1

�r0� , · · · , µ2N−4

�r0� , 0, 0, 0, 0).

These results will be useful in investigating the degeneracy of central configu-
rations. For example, the nullity of λM+B+ME2N−2E

�
2N−2M in (A.3) is just the

degree of degeneracy of r0; when investigating central configurations of four bodies
with degree of degeneracy two, the problem reduces to show that the matrix

λM + B − 3λ

I
ME2N−3E

�
2N−3M − λ

m
ME2N−1E

�
2N−1M − λ

m
ME2NE�

2NM

is a positive semi-definite matrix with rank 2 by (A.4).
Of course, if one finds a basis of P⊥

r0
, say F1, F2, · · · , F2N−4, then it is simpler

to consider the nullity of

(F1, · · · , F2N−4)
�(λM + B)(F1, · · · , F2N−4).

Starting from these considerations, in the next section we will investigate the de-
generacy of central configurations with an axis of symmetry and in the four body
problem.



APPENDIX B

Central Configurations of Four Bodies

Viewing as a preliminary study on the problem of degeneracy, in the section
let us investigate the degeneracy of central configurations with an axis of symmetry
in the four body problem. They consist of systems of point particles in R2 whose
configurations have the following geometric properties:

(1) There are 2 particles m3, m4 lying on a fixed line which is the axis of
symmetry of problem, which is supposed to coincide with the y-axis.

(2) Two other particles m1,m2 are symmetric with respect to the y-axis.

This kind of configurations are usually called kite configurations. It is easy
to see that m1 = m2 is a necessary condition to have a kite central configuration.
Geometry of kite configurations may be seen in Figure B.1.

Without loss of generality, suppose

m1 = m2 = 1,

r1 = (−s, −t)�,

r2 = (s, −t)�,

r3 = (0, u)�,

r4 = (0, u − 1)�,

where s > 0 and u = 2t+m4

m3+m4
.

Then

E5 = r0 = (−s, −t, s, −t, 0, u, 0, u − 1)�,

E6 = ir0 = (t, −s, t, s, −u, 0, 1 − u, 0)�,

and the central configurations equation (2.1) becomes:

(B.1)



1
4s3 + m3

[s2+(u+t)2]
3
2

+ m4

[s2+(u+t−1)2]
3
2

= λ

m3(u+t)

[s2+(u+t)2]
3
2

+ m4(u+t−1)

[s2+(u+t−1)2]
3
2

= λt

2(u+t)

[s2+(u+t)2]
3
2

+ m4 = λu

2(u+t−1)

[s2+(u+t−1)2]
3
2

− m3 = λ(u − 1).
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It is easy to see that it follows from the system (B.1) that

(B.2)



1
4s3 + m3

[s2+(u+t)2]
3
2

+ m4

[s2+(u+t−1)2]
3
2

= λ,

m3(u+t)

[s2+(u+t)2]
3
2

+ m4(u+t−1)

[s2+(u+t−1)2]
3
2

+ 2(u+t)

[s2+(u+t)2]
3
2

+ m4 = λ(u + t),

m3(u+t)

[s2+(u+t)2]
3
2

+ m4(u+t−1)

[s2+(u+t−1)2]
3
2

+ 2(u+t−1)

[s2+(u+t−1)2]
3
2

− m3 = λ(u + t − 1).

We remark that, in fact, by u = 2t+m4

m3+m4
the systems (B.1) and (B.2) are equivalent.

The proof of the equivalence is not immediate, please refer to the following Remark
B.3 for more detail.

By considering (B.2) as a linear system on m3 and m4, it follows that

(B.3)



1
4s3 + m3

[s2+(u+t)2]
3
2

+ m4

[s2+(u+t−1)2]
3
2

= λ,�
1

[s2+(u+t)2]
3
2

− 1

�
m3 = 2 (u + t − 1)

�
1

8s3 − 1

[s2+(u+t−1)2]
3
2

�
,�

1 − 1

[s2+(u+t−1)2]
3
2

�
m4 = 2 (u + t)

�
1

8s3 − 1

[s2+(u+t)2]
3
2

�
.

An easy argument shows that, except the cases s =
√

3
2

, t = 1
2
, u = 1 and

s =
√

3
2

, t = −1
2
, u = 0, the masses can be presented by geometric elements of the

central configuration:

m3 =
2(u+t−1)

�
1

8s3 − 1

[s2+(u+t−1)2]
3
2

�
1

[s2+(u+t)2]
3
2

−1
,

m4 =
2(u+t)

�
1

8s3 − 1

[s2+(u+t)2]
3
2

�
1− 1

[s2+(u+t−1)2]
3
2

.

For instance, if

(B.4)
1

[s2 + (u + t)2]
3
2

− 1 = 0,

then we have s =
√

3
2 , t = − 1

2 , u = 0. As a matter of fact, by (B.3) it follows that

(u + t − 1)

�
1

8s3
− 1

[s2 + (u + t − 1)2]
3
2

�
= 0.

Note that, the relation u + t − 1 = 0 is conflict with (B.4), since they imply that
s = 0. Thus we have

(B.5)
1

8s3
− 1

[s2 + (u + t − 1)2]
3
2

= 0.

By (B.4) and (B.5), it follows that�
s2 + (u + t)2 = 1,

(u + t − 1)2 = 3s2.
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It is easy to see that it holds that

(B.6)

�
s =

√
3

2
,

u + t = − 1
2 .

By substituting (B.6) into the equation�
1 − 1

[s2 + (u + t − 1)2]
3
2

�
m4 = 2 (u + t)

�
1

8s3
− 1

[s2 + (u + t)2]
3
2

�
in (B.3), it follows that

m4 = 1.

Then, by considering the equation

2(u + t)

[s2 + (u + t)2]
3
2

+ m4 = λu

in (B.1), we arrive at the conclusion that s =
√

3
2 , t = − 1

2 , u = 0. A similar argument
shows that, if

1 − 1

[s2 + (u + t − 1)2]
3
2

= 0,

then we have s =
√

3
2

, t = 1
2
, u = 1.

Central configurations in the cases s =
√

3
2 , t = 1

2 , u = 1 and s =
√

3
2 , t =

−1
2 , u = 0 are formed by the three particles at the vertices of an equilateral triangle

and a fourth particle at the centroid. We shall call them equilateral central
configurations.

Therefore, provided that equilateral central configurations are ruled out of our
discussion, the system (B.3) can be written as

(B.7)



m3 =
2(u+t−1)

�
1

8s3 − 1

[s2+(u+t−1)2]
3
2

�
1

[s2+(u+t)2]
3
2

−1
,

m4 =
2(u+t)

�
1

8s3 − 1

[s2+(u+t)2]
3
2

�
1− 1

[s2+(u+t−1)2]
3
2

,

λ = 1
4s3 + m3

[s2+(u+t)2]
3
2

+ m4

[s2+(u+t−1)2]
3
2
.

The main results obtained on kite central configurations are as follows:

Theorem B.1. A degenerate equilateral central configuration has degree of de-
generacy two. Except equilateral central configurations, if a kite central configura-
tion is degenerate, then the degree of degeneracy is one.

Theorem B.2. All the rhombic central configurations are nondegenerate.
Moreover, for almost every rhombic central configuration, all the corresponding

values κ
1
2 , µ1, µ2, µ3, µ4 and their ratios are irrational.

Here, we remark that a rhombic central configuration is a kite central configu-
ration with four particles located at vertices of a rhombus.
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B.1. Preliminaries

First, recall that

M = diag(m1,m1,m2,m2,m3,m3,m4,m4) = diag(1, 1, 1, 1, m3, m3, m4, m4),

and

B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 ,

where

B11

=

m3(2s2−(t+u)2)
(s2+(t+u)2)5/2 +

m4(2s2−(t+u−1)2)
(s2+(t+u−1)2)5/2 + 1

4s3 3s
�

m3(t+u)

(s2+(t+u)2)5/2 + m4(t+u−1)

(s2+(t+u−1)2)5/2

�
3s

�
m3(t+u)

(s2+(t+u)2)5/2 + m4(t+u−1)

(s2+(t+u−1)2)5/2

�
−m3(s2−2(t+u)2)

(s2+(t+u)2)5/2 − m4(s2−2(t+u−1)2)
(s2+(t+u−1)2)5/2 − 1

8s3

,

B22

=

m3(2s2−(t+u)2)
(s2+(t+u)2)5/2 +

m4(2s2−(t+u−1)2)
(s2+(t+u−1)2)5/2 + 1

4s3 − 3m3s(t+u)

(s2+(t+u)2)5/2 − 3m4s(t+u−1)

(s2+(t+u−1)2)5/2

− 3m3s(t+u)

(s2+(t+u)2)5/2 − 3m4s(t+u−1)

(s2+(t+u−1)2)5/2 −m3(s2−2(t+u)2)
(s2+(t+u)2)5/2 − m4(s2−2(t+u−1)2)

(s2+(t+u−1)2)5/2 − 1
8s3

,

B33 =

m3

�
4s2−2(t+u)2

(s2+(t+u)2)5/2 − m4

�
0

0 2m3

�
m4 + 2(t+u)2−s2

(s2+(t+u)2)5/2

� ,

B44 =

m4

�
4s2−2(t+u−1)2

(s2+(t+u−1)2)5/2 − m3

�
0

0 2m4

�
m3 + 2(t+u−1)2−s2

(s2+(t+u−1)2)5/2

� ,

B12 = B21 =

�− 1
4s3 0
0 1

8s3

�
,

B13 = B31 =

−m3(2s2−(t+u)2)
(s2+(t+u)2)5/2 − 3m3s(t+u)

(s2+(t+u)2)5/2

− 3m3s(t+u)

(s2+(t+u)2)5/2

m3(s2−2(t+u)2)
(s2+(t+u)2)5/2

 ,

B14 = B41 =

−m4(2s2−(t+u−1)2)
(s2+(t+u−1)2)5/2 − 3m4s(t+u−1)

(s2+(t+u−1)2)5/2

− 3m4s(t+u−1)

(s2+(t+u−1)2)5/2

m4(s2−2(t+u−1)2)
(s2+(t+u−1)2)5/2

 ,

B23 = B32 =

−m3(2s2−(t+u)2)
(s2+(t+u)2)5/2

3m3s(t+u)

(s2+(t+u)2)5/2

3m3s(t+u)

(s2+(t+u)2)5/2

m3(s2−2(t+u)2)
(s2+(t+u)2)5/2

 ,

B24 = B42 =

−m4(2s2−(t+u−1)2)
(s2+(t+u−1)2)5/2

3m4s(t+u−1)

(s2+(t+u−1)2)5/2

3m4s(t+u−1)

(s2+(t+u−1)2)5/2

m4(s2−2(t+u−1)2)
(s2+(t+u−1)2)5/2

 ,

B34 = B43 =

�
m3m4 0

0 −2m3m4

�
.
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Set

V = (−1, 0, 1, 0, 0, 0, 0, 0)�,

P = (0, −1, 0, −1, 0, 2
m3+m4

, 0, 2
m3+m4

)�,

Ṽ = V − �V, E5�
�E5, E5�E5, P̃ = P − �P, E5�

�E5, E5�E5.

Then

iV = (0, −1, 0, 1, 0, 0, 0, 0)�,

iP = (1, 0, 1, 0, − 2
m3+m4

, 0, − 2
m3+m4

, 0)�,

iṼ = iV − �iV, E6�
�E6, E6�E6, iP̃ = iP − �iP, E6�

�E6, E6�E6.

By the fact that {r0, V, P} is a C-linearly independent family, it is easy to see that

{Ṽ, P̃, iṼ, iP̃} is a basis of P⊥
r0

. And a straightforward computation shows that

Ṽ�(λM + B)iṼ = 0,

Ṽ�(λM + B)iP̃ = 0,

P̃�(λM + B)iṼ = 0,

P̃�(λM + B)iP̃ = 0,

to verify the above relations, we only point out that,

�iV, E5� = �iP, E5� = 0,

�V, E6� = �P, E6� = 0,

�V, P� = �iV, iP� = 0,

�V, iV� = �V, iP� = 0,

�P, iV� = �P, iP� = 0,

V�B(iV) = 0,
V�BiP = 0,

P�B(iV) = 0,
P�B(iP) = 0,

and by (A.2) it follows that

BE5 = 2λME5,

BE6 = −λME6.

Consequently,

(Ṽ, P̃, iṼ, iP̃)�(λM + B)(Ṽ, P̃, iṼ, iP̃) =

�
H1

H2

�
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where

H1 =

�
h11 h12

h21 h22

�
:= (Ṽ, P̃)�(λM + B)(Ṽ, P̃)

=

�
V�(λM + B)V − 3λ|�V,E5�|2

�E5,E5� V�(λM + B)P − 3λ�V,E5��P,E5�
�E5,E5�

P�(λM + B)V − 3λ�V,E5��P,E5�
�E5,E5� P�(λM + B)P − 3λ|�P,E5�|2

�E5,E5�

�

=

�
V�BV + λ�V, V� − 3λ|�V,E5�|2

�E5,E5� V�BP − 3λ�V,E5��P,E5�
�E5,E5�

P�BV − 3λ�V,E5��P,E5�
�E5,E5� P�BP + λ�P, P� − 3λ|�P,E5�|2

�E5,E5�

�
,

H2 =

�
h33 h34

h43 h44

�
:= (iṼ, iP̃)�(λM + B)(iṼ, iP̃)

= (iV, iP)�(λM + B)(iV, iP)

=

�
(iV)�B(iV) + λ�V, V� (iV)�B(iP)

(iP)�B(iV) (iP)�B(iP) + λ�P, P�
�

.

A routine computation shows that

�E5, E5� = I = 2(s2 + t2) + 4t2+m3m4

m3+m4
,

�V, V� = 2,

�P, P� = 2 + 4
m3+m4

,

�V, E5� = 2s,

�P, E5� = 2t + 2u − 2m4

m3+m4
= 2t + 4t

m3+m4
,

V�BV = 2m3

[s2+(u+t)2]
3
2

( 3s2

s2+(u+t)2
− 1) + 2m4

[s2+(u+t−1)2]
3
2

( 3s2

s2+(u+t−1)2
− 1) + 1

s3 ,

V�BP = P�BV = 6m3s(u+t)

[s2+(u+t)2]
5
2

( 2
m3+m4

+ 1) + 6m4s(u+t−1)

[s2+(u+t−1)2]
5
2

( 2
m3+m4

+ 1),

P�BP = [ 2m3

[s2+(u+t)2]
3
2

( 3(u+t)2

s2+(u+t)2 − 1) + 2m4

[s2+(u+t−1)2]
3
2

( 3(u+t−1)2

s2+(u+t−1)2 − 1)]

· ( 2
m3+m4

+ 1)2,

(iV)�B(iV) = 2m3

[s2+(u+t)2]
3
2

( 3(u+t)2

s2+(u+t)2 − 1) + 2m4

[s2+(u+t−1)2]
3
2

· ( 3(u+t−1)2

s2+(u+t−1)2 − 1) − 1
2s3 ,

(iV)�B(iP) = (iP)�B(iV)

= −6m3s(u+t)

[s2+(u+t)2]
5
2

( 2
m3+m4

+ 1) + −6m4s(u+t−1)

[s2+(u+t−1)2]
5
2

( 2
m3+m4

+ 1),
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Figure B.1. equilateral central configuration

(iP)�B(iP) = [ 2m3

[s2+(u+t)2]
3
2

( 3s2

s2+(u+t)2
− 1) + 2m4

[s2+(u+t−1)2]
3
2

( 3s2

s2+(u+t−1)2
− 1)]

· ( 2
m3+m4

+ 1)2.

By (B.1), it follows that
(B.8)

h11 = 6s2

�
m3

[s2+(u+t)2]
5
2

+ m4

[s2+(u+t−1)2]
5
2

− 2λ
I

+ 1
4s5

�
,

h12 = h21 = 6s( 2
m3+m4

+ 1)

�
m3(u+t)

[s2+(u+t)2]
5
2

+ m4(u+t−1)

[s2+(u+t−1)2]
5
2

− 2λt
I

�
,

h22 = 6( 2
m3+m4

+ 1)2
�

m3(u+t)2

[s2+(u+t)2]
5
2

+ m4(u+t−1)2

[s2+(u+t−1)2]
5
2

− 2λt2

I
+ 1

12s3 − 2λ
3(2+m3+m4)

�
,

(B.9)

h33 = 6

�
m3(u+t)2

[s2+(u+t)2]
5
2

+ m4(u+t−1)2

[s2+(u+t−1)2]
5
2

�
,

h34 = h43 = −6s( 2
m3+m4

+ 1)

�
m3(u+t)

[s2+(u+t)2]
5
2

+ m4(u+t−1)

[s2+(u+t−1)2]
5
2

�
,

h44 = 6s2( 2
m3+m4

+ 1)2
�

m3

[s2+(u+t)2]
5
2

+ m4

[s2+(u+t−1)2]
5
2

+ 1
12s5 − 2λ

3s2(2+m3+m4)

�
.

In conclusion, by (A.2), the central configuration E5 is degenerate if and only
if one of the 2 × 2 matrixes H1 and H2 is degenerate.

B.2. Equilateral Central Configurations

In this subsection, let us investigate the degeneracy of equilateral central con-

figurations, i.e., s =
√

3
2

, t = 1
2
, u = 1 or s =

√
3

2
, t = −1

2
, u = 0. Without loss of

generality, we only investigate the case s =
√

3
2 , t = 1

2 , u = 1 as illustrated in Figure
B.1.

Then m3 = 1, and the central configurations equation (B.1) becomes:

λ =
1√
3

+ m4.
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It is a classical result that m4 = (64
√

3+81)/249 is the unique value of the mass
parameter m4 corresponding to degenerate central configurations, and the degree
of degeneracy is two by Palmore [17,18]. In the following we shall reproduce this
result and further find the corresponding vectors {E1, E2, E3, E4}.

A straightforward computation shows that the H1 and H2 become 1
2

�
3m4 +

√
3
� (

√
3m4−1)(3+m4)

2+2m4

(
√

3m4−1)(3+m4)
2+2m4

(m4+3)(9m2
4+(11

√
3−45)m4+9

√
3)

18(m4+1)2


and  1

2

�
3m4 +

√
3
� − (m4+3)(3

√
3m4+1)

2(m4+1)

− (m4+3)(3
√

3m4+1)
2(m4+1)

(m4+3)(81m2
4+(11

√
3+171)m4+9

√
3)

18(m4+1)2


respectively. Since both of the determinants of the above two matrices are

m4 (m4 + 3)
��

5
√

3 − 18
�
m4 + 3

√
3 + 2

�
3 (m4 + 1) 2

,

the central configuration E5 is degenerate if and only if

(5
√

3 − 18)m4 + 3
√

3 + 2 = 0.

Obviously, m4 = 3
√

3+2
18−5

√
3

= 81+64
√

3
249

is the unique solution of above equation. And

in the meantime, it is clear that the corresponding degree of degeneracy is two.
Furthermore, it is easy to see that the 4 × 4 matrix

(Ṽ, P̃, iṼ, iP̃)�(λM + B)(Ṽ, P̃, iṼ, iP̃) =

�
H1

H2

�
is positive definite for 0 < m4 < 81+64

√
3

249
and indefinite for m4 > 81+64

√
3

249
. So

the equilateral central configuration is a local minimum of the function I
1
2 U for

0 < m4 < 81+64
√

3
249

, and the equilateral central configuration is a saddle point of

the function I
1
2 U for m4 > 81+64

√
3

249
.

As a result of (A.2), {E1, E2, E3, E4} can be obtained by calculating eigenvectors
of the matrix λI + M−1B.

A straightforward computation shows that, for the case m4 = 81+64
√

3
249 ,

(B.10)

E1 =
�

64
√

3+81
498

, −741
√

3+908
1494

, 64
√

3+81
498

, 741
√

3+908
1494

, 0, 0, −1, 0
��

,

E2 =
�

165
√

3+179
747

, −371
√

3+738
2241

, −165
√

3+179
747

, − 371
√

3+738
2241

, 0, 2
√

3+9
27

, 0, 1
��

,

E3 =
�

275
√

3+243
1494 , 9

√
3+49
166 , 275

√
3+243

1494 , −9
√

3+49
166 , − 1

3
√

3
, 0, −1, 0

��
,

E4 =
�

9
√

3+49
166

, 81−19
√

3
1494

, − 9
√

3+49
166

, 81−19
√

3
1494

, 0, 211
√

3+162
747

, 0, −1
��

.

The corresponding eigenvalues of the matrix λI + M−1B are

µ1√
3

= 0,
µ2√

3
= 0,

µ3√
3

=
799

√
3 + 1233

498
,

µ4√
3

=
799

√
3 + 1233

498
.

The computation above was performed with the aid of the software Mathemat-

ica. For example, by inputting B, M, s =
√

3
2 , t = 1

2 , u = 1, λ = 1√
3

+ m4, m3 = 1
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and m4 = (64
√

3 + 81)/249, Mathematica outputs λI + M−1B as following

               3
3
0
5
√

3
+

2
1
8
7

2
9
8
8

8
1
√

3
+

2
7
5

3
3
2

−
2

3
√

3
0

1

1
2
√

3
−

1 4

5
(6

4
√

3
+

8
1
)

−
9
9
6

3
(2

7
√

3
+

6
4
)

−
3
3
2

8
1
√

3
+

2
7
5

3
3
2

1
6
5
5
√

3
+

7
2
9

2
9
8
8

0
1

3
√

3
−

1 4
−

5

1
2
√

3

3
(2

7
√

3
+

6
4
)

−
3
3
2

6
4
√

3
+

8
1

9
9
6

−
2

3
√

3
0

3
3
0
5
√

3
+

2
1
8
7

2
9
8
8

−
8
1
√

3
+

2
7
5

3
3
2

1

1
2
√

3

1 4

5
(6

4
√

3
+

8
1
)

−
9
9
6

3
(2

7
√

3
+

6
4
)

3
3
2

0
1

3
√

3
−

8
1
√

3
+

2
7
5

3
3
2

1
6
5
5
√

3
+

7
2
9

2
9
8
8

1 4
−

5

1
2
√

3

3
(2

7
√

3
+

6
4
)

3
3
2

6
4
√

3
+

8
1

9
9
6

1

1
2
√

3
−

1 4
1

1
2
√

3

1 4
5

6
√

3
0

6
4
√

3
+

8
1

2
4
9

0

−
1 4

−
5

1
2
√

3

1 4
−

5

1
2
√

3
0

8
1

8
3

+
2
0
6
5

4
9
8
√

3
0

2
(6

4
√

3
+

8
1
)

−
2
4
9

−
5 4

−
3
√

3
4

−
5 4

3
√

3
4

1
0

9
8
√

3
+

3
0
3

1
6
6

0

−
3
√

3
4

1 4
3
√

3
4

1 4
0

−2
0

9
8
√

3
+

3
0
3

1
6
6

               

and by calling the command Eigensystem, Mathematica outputs the Ej and µj as
above.

B.3. Rhombic Central Configurations

Let us investigate the degeneracy of rhombic central configurations in this sub-
section, that is, t = 0, u = 1

2 for (B.1). Then m3 = m4, and the central configura-
tions equation (B.1) becomes:

(B.11)


1

4s3 + 2m̃
r̃3 = λ

2
r̃3 + 2m̃ = λ
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where m̃ = m3 = m4, r̃ =
�

s2 + 1
4
. Note that, (r̃, s) forms a part of a hyperbola,

and the two variables r̃, s can be rationally parameterized simultaneously by the
following transformations

(B.12)

r̃ = ζ2+1
4ζ ,

s = ζ2−1
4ζ

.

Since s > 0, we assume that ζ > 1.

Proof of Theorem B.2. It is easy to see that the 4×4 matrix (Ṽ, P̃, iṼ, iP̃)�

· (λM + B)(Ṽ, P̃, iṼ, iP̃) becomes
12m̃s2

r̃5 + 3
2s3 − 12λs2

2s2+ m̃
2

0

0 (3m̃
r̃5 + 1

2s3 − 2λ
m̃+1

)( 1
m̃

+1)2

3m̃
r̃5 0

0 (12m̃s2

r̃5 + 1
2s3 − 2λ

m̃+1 )( 1
m̃ +1)2

,

so the central configuration E5 is degenerate if and only if

(B.13) (
12m̃s2

r̃5
+

3

2s3
− 12λs2

2s2 + m̃
2

)(
3m̃

r̃5
+

1

2s3
− 2λ

m̃ + 1
)(

12m̃s2

r̃5
+

1

2s3
− 2λ

m̃ + 1
) = 0.

Note that r̃ = 1 is impossible for the equation (B.11). Then, by the equation
(B.11), we have

(B.14)


m̃ =

r̃3

8s3 −1

r̃3−1
,

λ = 2
r̃3 + 2m̃ =

2r̃3

8s3 − 2
r̃3

r̃3−1 .

By the rational transformations (B.12), it follows that (B.14) becomes

(B.15)


m̃ =

−8ζ3(ζ2−3)(7ζ4−6ζ2+3)
(ζ2−1)3(ζ2−4ζ+1)(ζ4+4ζ3+18ζ2+4ζ+1)

,

λ =
16ζ3(ζ12+6ζ10−512ζ9+15ζ8+1536ζ7+20ζ6−1536ζ5+15ζ4+512ζ3+6ζ2+1)

(ζ4−1)3(ζ6+3ζ4−64ζ3+3ζ2+1)
.

Note that
m̃ > 0 ⇔

√
3 < ζ <

√
3 + 2.

Therefore, all rhombic central configurations are�
− ζ2−1

4ζ , 0, ζ2−1
4ζ , 0, 0, 1

2 , 0, −1
2

�
, for

√
3 < ζ <

√
3 + 2.

By (B.12) and (B.15), a routine computation shows that the equation (B.13)
becomes

[(ζ2 − 3)(7ζ10 − 45ζ8 + 70ζ6 + 256ζ5 − 90ζ4 + 35ζ2 − 9)

(7ζ16 − 88ζ14 − 448ζ13 − 44ζ12 + 12352ζ11 + 184ζ10 − 37504ζ9 − 70ζ8

+ 34176ζ7 − 296ζ6 − 13248ζ5 − 12ζ4 + 576ζ3 + 72ζ2 − 9)

(17ζ16 − 56ζ14 − 2432ζ13 − 4ζ12 + 14720ζ11 + 248ζ10 − 32768ζ9 + 70ζ8

+ 30720ζ7 − 136ζ6 − 14976ζ5 + 60ζ4 + 2688ζ3 + 72ζ2 − 15)]/[
�
ζ2 − 4ζ + 1

��
ζ12 − 120ζ9 − 3ζ8 + 408ζ7 − 360ζ5 + 3ζ4 + 136ζ3 − 1

��
ζ12 − 4ζ10 − 64ζ9 + 5ζ8 + 224ζ7 − 160ζ5 − 5ζ4 + 64ζ3 + 4ζ2 − 1

�
] = 0
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By the software Mathematica, there is no solution in the interval (
√

3,
√

3 + 2) for
the above equation. Therefore, we claim that all the rhombic central configurations
are nondegenerate.

Moreover, by (A.2) and some tedious computation (with the aid of Mathemat-
ica), it follows that the eight eigenvalues of the matrix λI + M−1B of a rhombic

central configuration
�
− ζ2−1

4ζ
, 0, ζ2−1

4ζ
, 0, 0, 1

2
, 0, − 1

2

�
are

3λ, 0,
µ7√

I
= λ,

µ8√
I

= λ;

and
(B.16)

µ1√
I

= − 48ζ3(7ζ10−45ζ8+70ζ6+256ζ5−90ζ4+35ζ2−9)
(ζ2−1)3(ζ2+1)2(ζ6+3ζ4−64ζ3+3ζ2+1)

,

µ2√
I

=
384ζ3(ζ12−4ζ10−64ζ9+5ζ8+224ζ7−160ζ5−5ζ4+64ζ3+4ζ2−1)

(ζ2−1)3(ζ2+1)3(ζ6+3ζ4−64ζ3+3ζ2+1)
,

µ3√
I

=


16ζ3(7ζ16 − 88ζ14 − 448ζ13 − 44ζ12 + 12352ζ11 + 184ζ10 − 37504ζ9

−70ζ8 + 34176ζ7 − 296ζ6 − 13248ζ5 − 12ζ4 + 576ζ3 + 72ζ2 − 9)

/
�
1 − ζ2

�3 �
ζ2 + 1

�5 �
ζ6 + 3ζ4 − 64ζ3 + 3ζ2 + 1

�
,

µ4√
I

=


16ζ3(17ζ16 − 56ζ14 − 2432ζ13 − 4ζ12 + 14720ζ11 + 248ζ10 − 32768ζ9

+70ζ8 + 30720ζ7 − 136ζ6 − 14976ζ5 + 60ζ4 + 2688ζ3 + 72ζ2 − 15)

/
�
ζ2 − 1

�3 �
ζ2 + 1

�5 �
ζ6 + 3ζ4 − 64ζ3 + 3ζ2 + 1

�
.

where

I =
(ζ2+1)2(ζ12−4ζ10−64ζ9+5ζ8+224ζ7−160ζ5−5ζ4+64ζ3+4ζ2−1)

8ζ2(ζ2−1)3(ζ6+3ζ4−64ζ3+3ζ2+1)
.

A straightforward computation shows that

κ
1
2√
I

=
√

2λ√
I

= 16
�

ζ5(ζ12+6ζ10−512ζ9+15ζ8+1536ζ7+20ζ6−1536ζ5+15ζ4+512ζ3+6ζ2+1)

(ζ2+1)5(ζ12−4ζ10−64ζ9+5ζ8+224ζ7−160ζ5−5ζ4+64ζ3+4ζ2−1)
,

and

(B.17)

0 < κ
1
2 , µ1 < µ2 < µ3, µ4, for

√
3 < ζ <

√
3 + 2

µ1 <
√

κ, for ζ1 < ζ < ζ2

µ1 =
√

κ, for ζ = ζ1, ζ2

µ1 >
√

κ, for
√

3 < ζ < ζ1 or < ζ2 < ζ <
√

3 + 2

µ4 < µ3, for
√

3 < ζ <
√

2 + 1

µ3 < µ4, for
√

2 + 1 < ζ <
√

3 + 2

µ3 = µ4, for ζ =
√

2 + 1

whereζ1 ≈ 1.7889580612081344, ζ2 ≈ 3.705602221466667.
It is clear that all the numbers κ

1
2 , µ1, µ2, µ3, µ4 and their ratios are irrational

for almost all ζ ∈ (
√

3,
√

3 + 2), since each of them is rational only for countably
many ζ.

In conclusion, Theorem B.2 holds. �
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B.4. Central Configurations With Degree of Degeneracy Two

Let us investigate central configurations with degree of degeneracy two in this
subsection. Note that equilateral and rhombic central configurations are ruled out
of our discussion in the following.

Proof of Theorem B.1. First, let us introduce the following rational trans-
formation: �

u + t = s ξ2−1
2ξ

,

u + t − 1 = sη2−1
2η

.

Without losing generality, we may assume that ξ > η > 0. Then

�
s2 + (u + t)2 = s ξ2+1

2ξ ,�
s2 + (u + t − 1)2 = sη2+1

2η
,

s = 1
ξ2−1
2ξ − η2−1

2η

.

By (B.7), it follows that

m3 =
−(η−1)(η+1)(η2−4η+1)(η4+4η3+18η2+4η+1)(ξ2+1)

3
(η−ξ)2(ηξ+1)2

32(η2+1)3ξ2(η2ξ+2η−ξ)(η4ξ2−3η3ξ3+η3ξ+3η2ξ4−2η2ξ2+η2+3ηξ3−ηξ+ξ2)
,

m4 =
(η2+1)3

(ξ−1)(ξ+1)(ξ2−4ξ+1)(ξ4+4ξ3+18ξ2+4ξ+1)(η−ξ)2(ηξ+1)2

32η3(ξ2+1)3(2ηξ−ξ2+1)(η4ξ2−η3ξ3+η3ξ+η2ξ4−2η2ξ2+η2+3ηξ3−3ηξ+3ξ2)
,

λ = 1
4s3 + 8ξ3m3

(ξ2+1)3s3 + 8η3m4

(η2+1)3s3 .

Note that m3 > 0 ⇔ (1 − η)
�
η2 − 4η + 1

� �
η2ξ + 2η − ξ

�
> 0,

m4 > 0 ⇔ (ξ − 1)
�
ξ2 − 4ξ + 1

� �
2ηξ − ξ2 + 1

�
> 0.

By u = 2t+m4

m3+m4
, it follows that

t =
(m3 + m4)(u + t) − m4

2 + m3 + m4
=

(m3 + m4)(s
ξ2−1
2ξ

) − m4

2 + m3 + m4
.

Thus the variables s, u, t, m3,m4 and λ are all explicit rational functions of the
variables ξ and η.

Remark B.3. We claim that the system (B.1) is equivalent to the system (B.7).
To prove the claim, it suffices to show the fact that the system (B.1) holds when
the six variables s, u, t, m3,m4 and λ are substituted by the obtained functions in
terms of ξ and η. Indeed, this fact is proved by a routine computation with the aid
of the software Mathematica.

It is clear now that the entries of the matrixes H1 and H2 are rational functions
of two variables ξ, η, which can be well handled by the symbolic computation of
the software Mathematica. This is one reason of introducing the above rational
transformation.

Below we investigate only the degeneracy in the cases corresponding to ξ, η �=
1, 2 ± √

3 and ξη �= 1. Since it is easy to see that
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• If ξ = 1 or η = 1, then the corresponding configurations are formed by the
three particles on a common straight line but the fourth particle not on
the straight line. By the well-known perpendicular bisector theorem [14],
they cannot be central configurations.

• If ξη = 1, then the corresponding configurations are rhombus.
• If ξ = 2 ± √

3 , then m4 = 0 or the corresponding configurations are
equilateral configurations; similarly, if η = 2 ± √

3, then m3 = 0 or the
corresponding configurations are equilateral configurations.

By (B.9), it holds

h33 = 6m3(u+t)2

[s2+(u+t)2]
5
2

+ 6m4(u+t−1)2

[s2+(u+t−1)2]
5
2

> 0.

Therefore, the 2 × 2 matrix H2 is not zero. As a result, central configurations with
degree of degeneracy two satisfy

(B.18) H1 =

�
0 0
0 0

�
or

(B.19)

DetH1 = 0,

DetH2 = 0.

We claim that there is no solution for the equation (B.18) (resp. (B.19)) such
that

(B.20) (ξ − 1)(ξ2 − 4ξ + 1)(η − 1)(η2 − 4η + 1)(ξη − 1) �= 0

and ξ > η > 0.
We remark that it is necessary to include computer-aided proofs in this part,

due to the size of the polynomials we are working with. We will not write all the
explicit expressions of the polynomials. Instead, we shall provide the steps followed
to calculate all the important polynomials.

A. The Case for (B.18).
By (B.8), the equation (B.18) becomes

m3

[s2+(u+t)2]
5
2

+ m4

[s2+(u+t−1)2]
5
2

− 2λ
I

+ 1
4s5 = 0,

m3(u+t)

[s2+(u+t)2]
5
2

+ m4(u+t−1)

[s2+(u+t−1)2]
5
2

− 2λt
I = 0,

m3(u+t)2

[s2+(u+t)2]
5
2

+ m4(u+t−1)2

[s2+(u+t−1)2]
5
2

− 2λt2

I + 1
12s3 − 2λ

3(2+m3+m4) = 0.

It follows that

(B.21)



(1 − u)

�
m3u

[s2+(u+t)2]
5
2

+ (u+t−1)t
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

�
= 0,

u

�
m4(1−u)

[s2+(u+t−1)2]
5
2

+ (u+t)t
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

�
= 0,

2λu(1−u)
I

+ (u+t−1)(u+t)
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

= 0.

By u = 2t+m4

m3+m4
, (B.1) and (B.21), it is easy to shows that,

u(1 − u) = 0
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yields

s =

√
3

2
, t =

1

2
, u = 1 or s =

√
3

2
, t = −1

2
, u = 0.

They are equilateral central configurations ruled out by us.
Therefore, the equation (B.18) becomes

m3u

[s2+(u+t)2]
5
2

+ (u+t−1)t
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

= 0,

m4(1−u)

[s2+(u+t−1)2]
5
2

+ (u+t)t
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

= 0,

2λu(1−u)
I

+ (u+t−1)(u+t)
4s5 + 1

12s3 − 2λ
3(2+m3+m4)

= 0,

or 

Q11(ξ, η) := m3u

[s2+(u+t)2]
5
2

+ (u+t−1)t
4s5 + 1

12s3 − 2λ
3(2+m3+m4) = 0,

Q12(ξ, η) := − m3u

[s2+(u+t)2]
5
2

+ m4(1−u)

[s2+(u+t−1)2]
5
2

+ t
4s5 = 0,

Q22(ξ, η) := 2λ(1−u)
I

+ (u+t−1)
4s5 − m3

[s2+(u+t)2]
5
2

= 0.

It is clear that Q11, Q12, Q22 are rational functions of ξ, η.
Let P11, P12, P22 be the numerators of the following rational functions

Q11(ξ,η)
(η−ξ)6(ηξ+1)5 ,

Q12(ξ,η)
(η−1)(η+1)(ξ−1)(ξ+1)(η−ξ)7(ηξ−1)(ηξ+1)6 ,

Q22(ξ,η)
(η−1)(η+1)(ξ−1)(ξ+1)(η−ξ)7(ηξ+1)6

respectively. By calling the command Solve of Mathematica for seeking solutions
of

(B.22) P11(ξ, η) = P12(ξ, η) = P22(ξ, η) = 0

such that

ξ > η > 0,

we arrive at the conclusion that there is no solution for the equation (B.22), this
computation takes less than half a minute on a desktop computer. Therefore, there
is no solution for the equation (B.18).

It is noteworthy that we can clearly demonstrate that there is no solution for
(B.18) by using a Gröbner basis of polynomials. As a matter of fact, it is well known
that the set of polynomials in a Gröbner basis have the same collection of roots
as the original polynomials. Therefore, by calling the command GroebnerBasis of
Mathematica for P11, P12, P22, one finds that it also holds

(B.23) G(η,ξ)(ξ) = G(ξ,η)(η) = 0,

where

G(η,ξ)(ξ) = (ξ − 1)3ξ4(ξ + 1)3
�
ξ2 + 1

�7 �
ξ2 − 4ξ + 1

� �
ξ4 + 4ξ3 + 18ξ2 + 4ξ + 1

�
is the first element of the list in the GroebnerBasis of P11, P12, P22 for the ordered
{η, ξ}, and

G(ξ,η)(η) = (η − 1)2η5(η + 1)2
�
η2 + 1

�7 �
η2 − 4η + 1

� �
η4 + 4η3 + 18η2 + 4η + 1

�
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is that for the ordered {ξ, η}. Note that it is not easy to find a Gröbner basis in gen-
eral, for more detail please refer to https://reference.wolfram.com/language/

ref/GroebnerBasis.html. It is now clear that there is no solution for the equation
(B.23), thus there is no solution for the equation (B.18), under the condition that

ξ, η �= 1, 2 ± √
3 and ξ > η > 0.

B. The Case for (B.19).
By (B.8) and (B.9), the equation (B.19) becomes

Q1(ξ, η):=

�
m3(u+t)2

[s2+(u+t)2]
5
2

+ m4(u+t−1)2

[s2+(u+t−1)2]
5
2

− 2λt2

I + 1
12s3 − 2λ

3(2+m3+m4)

�
·
�

m3

[s2+(u+t)2]
5
2

+ m4

[s2+(u+t−1)2]
5
2

− 2λ
I

+ 1
4s5

�
−

�
m3(u+t)

[s2+(u+t)2]
5
2

+ m4(u+t−1)

[s2+(u+t−1)2]
5
2

− 2λt
I

�2

= 0,

Q2(ξ, η):=

�
m3

[s2+(u+t)2]
5
2

+ m4

[s2+(u+t−1)2]
5
2

+ 1
12s5 − 2λ

3s2(2+m3+m4)

�
�

m3(u+t)2

[s2+(u+t)2]
5
2

+ m4(u+t−1)2

[s2+(u+t−1)2]
5
2

�
−

�
m3(u+t)

[s2+(u+t)2]
5
2

+ m4(u+t−1)

[s2+(u+t−1)2]
5
2

�2

= 0.

Similarly, let P1, P2 be the numerators of the following rational functions

Q1(ξ,η)
(η2−1)(η2−4η+1)(η4+4η3+18η2+4η+1)(ξ2−1)(ξ2−4ξ+1)(ξ4+4ξ3+18ξ2+4ξ+1)(η−ξ)14(ηξ+1)13

,

Q2(ξ,η)
(η2−1)(η2−4η+1)(η4+4η3+18η2+4η+1)(ξ2−1)(ξ2−4ξ+1)(ξ4+4ξ3+18ξ2+4ξ+1)(η−ξ)14(ηξ+1)13

,

respectively.
It is noteworthy that using the resultant of two polynomials can evidently

reduce calculating time. Let Rξ (resp. Rη) be the resultant of P1 and P2 for the
variable ξ (resp. η). Then the equation (B.19) reduces to

(B.24) P1(ξ, η) = P2(ξ, η) = Rξ(η) = Rη(ξ) = 0.

By calling the command Solve of Mathematica for seeking solutions of (B.24)
such that

ξ > η > 0,

we obtain two solutions

ξ =
1√
3
, η = 2 −

√
3; ξ =

√
3 + 2, η =

√
3.

this computation takes less than ten seconds on a desktop computer. However, the
two solutions should be excluded, since, for example, (B.20) does not hold for them.
Thus we arrive at the conclusion that there is no solution for the equation (B.19).

In conclusion, Theorem B.1 holds. �

Following the result obtained and a crude dimension count, we can venture-
somely conjecture that:

All the four-body central configurations except equilateral central configurations
have degree of degeneracy equal or less than one.

That is to say, we believe that the equilateral central configurations founded
by Palmore [17,18] are the only degenerate central configurations with degree of
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degeneracy two for the four-body problem, although we cannot prove it now. This
conjecture is important for resolving PISPW of the four-body problem. Indeed, if
this conjecture is true, one can completely solve PISPW of the four-body problem,
please see Corollary 4.3.

Remark B.4. The results and method in this section are novel according to
what I know, even though for kite central configurations, Leandro [12] has inves-
tigated a more general case, including works on degenerate central configurations.
Indeed the above rational transformations are inspired by his work. However, the
definition of degeneracy in his work is different from ours, thus the results in [12]
cannot be directly applied. The point is that the degenerate central configuration
by his definition is still degenerate by our definition; the opposite, however, isn’t
necessarily true. The problem can be explained in this way:

Given a function f defined on a manifold Ω, x ∈ Ω is a critical point of the
function f . Let Ω1 be a submanifold of Ω and x ∈ Ω1, although the point x may
still be a critical point of the function f restricted to Ω1, the degeneracy of the
critical point x may change.



APPENDIX C

Diagonalization of the Linear Part

The aim of the section is to discuss the diagonalization of the linear part of
equations (3.13) in detail.

Without loss of generality, suppose that the eigenvalues µ1, · · · , µ2N−4 of Λ
satisfy

µj = 0 for j ∈ {1, · · · , n0},

µj > 0 for j ∈ {n0 + 1, · · · , n0 + np},
0 > µj > − κ

16
for j ∈ {n0 + np + 1, · · · , n0 + np + n1},

µj < − κ

16
for j ∈ {n0 + np + n1 + 1, · · · , n0 + np + n1 + n2},

µj = − κ

16
for j ∈ {n0 + np + n1 + n2 + 1, · · · , 2N − 4}.

Thus np is the number of positive eigenvalues µj (counted with their multiplicity),
n1 is the number of eigenvalues contained in the interval (− κ

16 , 0), n2 is the number
of eigenvalues strictly smaller than − κ

16
, and therefore the multiplicity of − κ

16
is

equal to 2N − 4 − (n0 + np + n1 + n2 + 1).
To simplify the notation, let

d0 = n0, dp = n0+np, d1 = n0+np+n1, d2 = n0+np+n1+n2, d = 2N −4.

Set

µ̃±
j = −κ

1
2

4
±

�
µj +

κ

16

for any j ∈ {1, · · · , d}; note that, if µj + κ
16

< 0, we agree on that�
µj +

κ

16
= i

�
|µj +

κ

16
|,

hence 

µ̃+
j = 0, µ̃−

j = −κ
1
2

2
, if j ∈ {1, · · · , d0};

µ̃+
j > 0 > µ̃−

j , if j ∈ {d0 + 1, · · · , dp};

Reµ̃±
j < 0, if j ∈ {dp + 1, · · · , d};

0 > µ̃+
j > µ̃−

j , if j ∈ {dp + 1, · · · , d1};

µ̃+
j = µ̃−

j , if j ∈ {d1 + 1, · · · , d2};

µ̃+
j = µ̃−

j = −κ
1
2

4 , if j ∈ {d2 + 1, · · · , d}.
Here and below “·” denotes the notation of complex conjugate.

Let
{e1, · · · , ed}

63
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be the standard basis of Rd, it is obvious that

Λej = µjej , ∀j ∈ {1, · · · , d}.
Then a straightforward computation shows that

Λ̃v±
j = µ̃±

j v±
j , ∀j ∈ {1, · · · , d},

where

Λ̃ =

�
0 I
Λ −κ

1
2

2
I

�
, v±

j =

�
ej

µ̃±
j ej

�
.

To obtain a basis of R2d starting from the eigenvectors v±
j of Λ̃, let us introduce

the vectors

p±
j = v±

j , if j ∈ {1, · · · , d1};

p+
j = Imv+

j =

�
0�|µj + κ

16 |ej

�
, if j ∈ {d1 + 1, · · · , d2};

p−
j = Rev+

j =

�
ej

−κ
1
2

4 ej

�
, if j ∈ {d1 + 1, · · · , d2};

p+
j = v+

j =

�
ej

−κ
1
2

4 ej

�
, if j ∈ {d2 + 1, · · · , d};

p−
j = v−

j +

�
0

�ej

�
=

�
ej

(� − κ
1
2

4 )ej

�
, if j ∈ {d2 + 1, · · · , d}.

It is easy to see that the family {p±
j }j∈{1,··· ,d} is a basis of R2d and moreover, it

holds 

Λ̃p±
j = µ̃±

j p±
j , if j ∈ {1, · · · , d1};

Λ̃p+
j = −κ

1
2

4
p+

j +
�|µj + κ

16
|p−

j , if j ∈ {d1 + 1, · · · , d2};

Λ̃p−
j = −�|µj + κ

16 |p+
j − κ

1
2

4 p−
j , if j ∈ {d1 + 1, · · · , d2};

Λ̃p+
j = −κ

1
2

4
p+

j , if j ∈ {d2 + 1, · · · , d};

Λ̃p−
j = �p+

j − κ
1
2

4
p−

j , if j ∈ {d2 + 1, · · · , d}.

Now set

P = (p+
1 , · · · ,p+

d ,p−
1 , · · · ,p−

d ),

D1 = diag(µ̃+
1 , · · · , µ̃+

d1
),

D2 = diag

�
1�

µ1 + κ
16

, · · · ,
1�

µd1
+ κ

16

�
,

D3 = diag

�
1�|µd1+1 + κ

16 | , · · · ,
1�|µd2
+ κ

16 |

�
,

D4 = D−1
3 = diag

��
|µd1+1 +

κ

16
|, · · · ,

�
|µd2

+
κ

16
|
�

,
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then

P =



I I
0 I

I I
D1 −κ

1
2

2
I − D1

D4 −κ
1
2

4 I
−κ

1
2

4
I (� − κ

1
2

4
)I


,

and P is invertible for any � > 0. It holds that

P−1Λ̃P =



D1

−κ
1
2

4
In2

−D4

−κ
1
2

4
I �I

−κ
1
2

2
I − D1

D4 −κ
1
2

4 In2

−κ
1
2

4
I


,

where

P−1 =



1
2
I + κ

1
2

8
D2

1
2
D2

κ
1
2

4
D3 D3

(1 − κ
1
2

4� )I − I
�

1
2
I − κ

1
2

8
D2 − 1

2
D2

I 0
κ

1
2

4� I I
�


.

As a result, set

q = (q1, · · · , q2N−4, q2N−3, · · · , q4N−8)
�,

and by applying the linear substitution

�
z
Z

�
= Pq,



66 C. DIAGONALIZATION OF THE LINEAR PART

the equations (3.13) are transformed to the following equations

q�
k = φk(q, γ), k ∈ {1, · · · , d0}

q�
2N−4+k = −κ

1
2

2
q2N−4+k − φk(q, γ), k ∈ {1, · · · , d0}

(C.1)

q�
k = µ̃kqk + φk(q, γ), k ∈ {d0 + 1, · · · , d1}

q�
2N−4+k = (−κ

1
2

2
− µ̃k)q2N−4+k − φk(q, γ), k ∈ {d0 + 1, · · · , d1}

(C.2)

q�
k = −κ

1
2

4 qk − �|µk + κ
16 |q2N−4+k + φk(q, γ), k ∈ {d1 + 1, · · · , d2}

q�
2N−4+k =

�|µk + κ
16

|qk − κ
1
2

4
q2N−4+k, k ∈ {d1 + 1, · · · , d2}

(C.3)

q�
k = −κ

1
2

4
qk + �q2N−4+k + φk(q, γ), k ∈ {d2 + 1, · · · , d}

q�
2N−4+k = −κ

1
2

4 q2N−4+k − φk(q, γ), k ∈ {d2 + 1, · · · , d}
(C.4)

γ� = κ
1
2 γ + φ0(q, γ),(C.5)

where the functions ϕk, ϕ0 are power-series in the 4N − 7 variables q, γ starting
with quadratic terms:

(C.6)



φk(q, γ) = 1

2
√

µk+ κ
16

χk(z,Z, γ), k ∈ {1, · · · , d1}

φk(q, γ) = 1√
|µk+ κ

16 |χk(z, Z, γ), k ∈ {d1 + 1, · · · , d2}

φk(q, γ) = −1
�
χk(z, Z, γ), k ∈ {d2 + 1, · · · , 2N − 4}

φ0(q, γ) = χ0(z, Z, γ);

and the equation (3.15) is transformed to (3.22):

θ� = z�QZ = q�P�
�

I

0

�
Q

�
0 I

�
Pq

=
�

1≤k≤n0

�n0+np

j=n0+1 qkj µ̃jqkqj +
�n0+np

j,k=n0+1 qkj µ̃jqkqj + · · · ,

where “· · · ” denotes all the quadratic terms which contain at least one of qk (k >
n0 + np) as a factor.

To simplify the notations, the equations (C.1), (C.2), (C.3), (C.4) and (C.5)
can be rewritten in the compact form (3.21):

�
q�

γ�

�
= C

�
q
γ

�
+ ϕ(q, γ),
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where

ϕ = (ϕ1, · · · , ϕ2N−4, ϕ2N−3, · · · , ϕ4N−8, ϕ0)
�,

ϕk = φk(q, γ), k ∈ {0}�{1, · · · , d};
ϕ2N−4+k = 0, k ∈ {d1 + 1, · · · , d2};

ϕ2N−4+k = −φk(q, γ), k ∈ {1, · · · , d1}
�{d2 + 1, · · · , d};

C =

�
P−1

1

�
A

�
P

1

�

=



D1

−κ
1
2

4
In2

−D4

−κ
1
2

4
I �I

−κ
1
2

2
I − D1

D4 −κ
1
2

4 In2

−κ
1
2

4
I

κ
1
2


.

By applying the permutation
qk �→ qk, k ∈ {1, · · · , n0};

qk �→ qk+1, k ∈ {n0 + 1, · · · , 4N − 9};
q4N−8 �→ γ,

γ �→ qn0+1,

it is easy to see that C is reduced to the following block-diagonal form:

C =

C0

C+

C−

 ,

and the system (3.21) can be rewritten as the system (3.23):
q�0 = ϕ0(q0, q+, q−),

q�+ = C+q+ + ϕ+(q0, q+, q−),

q�− = C−q− + ϕ−(q0, q+, q−);

where

C0 =

µ̃+
1

. . .

µ̃+
n0

 = 0,

C+ =


κ

1
2

µ̃+
n0+1

. . .

µ̃+
n0+np

 ,
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(C.7) C− =



Λ̃1

−κ
1
2

4
In2

−D4

−κ
1
2

4 I �I
−κ

1
2

2 I − D1

D4 −κ
1
2

4
In2

−κ
1
2

4
I


,

q0 = (q1, · · · , qn0
)�,

q+ = (γ, qn0+1, · · · , qn0+np
)�,

q− = (qn0+np+1, · · · , q2N−4, q2N−3, · · · , q4N−8)
�,

ϕ0 = (ϕ1, · · · , ϕn0
)�,

ϕ+ = (ϕ0, ϕn0+1, · · · , ϕn0+np
)�,

ϕ− = (ϕn0+np+1, · · · , ϕ2N−4, ϕ2N−3, · · · , ϕ2N−8)
�.

Note that the eigenvalues of the matrix C0 are all on the imaginary axis, the
eigenvalues of the matrix C+ lie to the right of the imaginary axis, and the eigen-
values of the matrix C− lie to the left of the imaginary axis.



APPENDIX D

Normal Forms

One of the key ideas of resolving PISPW is estimating the speed of convergence
to zero in (3.18) to ensure that θ(τ ) approaches a fixed limit as τ → −∞. For this
purpose, we need to further simplify equations (3.13) by the theory of normal forms
(or reduction theorems).

Note that equations in (C.1) are degenerate when n0 > 0 as a result of the de-
generacy of central configuration. In general, degenerate equations are very difficult
to handle.

Based on some original ideas of Siegel [22], we develop some results of normal
forms, more general than that of [22], to explore PISPW involving with degenerate
equations.

Here is one reminder on the notations of this section. To simplify the notation,
we shall utilize some notations used in previous sections, but with meanings slightly
different.

Suppose the origin 0 is an equilibrium point of (2.6), then it follows from Taylor
expansion near the origin that

v(q) =
∂v(0)

∂q
q + o(q),

the system (2.6) becomes

q̇ = Cq + ϕ(q),

where C = ∂v(0)
∂q

, and ϕ(q) = o(q), i.e., ϕ(0) = 0, ∂ϕ(0)
∂q

= 0.

If the function v is Cm-smooth, then ϕ can be expanded as:

ϕ(q) = ϕ2(q) + · · · + ϕm(q) + om(q),

where each ϕk(q) is a homogeneous polynomial of degree k; hereafter om(q) stands
for terms which vanish at the origin along with the first m derivatives. Furthermore,
if v is analytic, then ϕ can be expanded as:

ϕ(q) = ϕ2(q) + · · · + ϕm(q) + · · · ,

which is a power-series starting with quadratic terms.
Consider the system

(D.1) q� = Cq + ϕ(q).

When one of the eigenvalues µ1, · · · , µn of the matrix C is on the imaginary
axis, we have to consider some smooth change of variables to simplify the system
(D.1), even though the right side of the system (D.1) is an analytic function in the
n independent variables q1, · · · , qn. Suppose ϕ(q) is Cl-smooth (1 ≤ l ≤ ∞) in
q1, · · · , qn in the following.

69



70 D. NORMAL FORMS

Suppose the matrix C in the system (D.1) is in block-diagonal form

C =

C0

C+

C−

 .

Set
q0 = (q1, · · · , qn0

)�,

q+ = (qn0+1, · · · , qn0+m)�,

q− = (qn0+m+1, · · · , qn)�;

ϕ0 = (ϕ1, · · · , ϕn0
)�,

ϕ+ = (ϕn0+1, · · · , ϕn0+m)�,

ϕ− = (ϕn0+m+1, · · · , ϕn)�.

Then the system (D.1) has the form

(D.2)


q�0 = C0q0 + ϕ0(q0, q+, q−),

q�+ = C+q+ + ϕ+(q0, q+, q−),

q�− = C−q− + ϕ−(q0, q+, q−).

Suppose the eigenvalues of the matrix C0 are all on the imaginary axis, the eigen-
values of the matrix C+ lie to the right of the imaginary axis, and the eigenvalues
of the matrix C− lie to the left of the imaginary axis.

It is well known that the following results hold (our main reference on this issue
is [20]).

Theorem D.1 (Center-Stable Manifold,[20, p.281]). In a small neighbor-
hood of the origin there exists an (n−m)-dimensional invariant center-stable man-
ifold Wcs

loc : q+ = F cs(q0, q−) of class C l (l < ∞), which contains the origin and
which is tangent to the subspace q+ = 0 at the origin. The manifold Wcs

loc contains
all orbits which stay in a small neighborhood of the origin for all positive times.
Though the center-stable manifold is not defined uniquely, for any two center-stable
manifolds Wcs

1 and Wcs
2 the functions F cs

1 and F cs
2 have the same Taylor expansion

at the origin (and at each point whose positive semiorbit stays in a small neighbor-
hood of the origin).

Remark D.2. Note that even if the system is C∞-smooth, the center-stable
manifold has, in general, only finite smoothness. Of course, if the original system is
C∞-smooth, it is Cl-smooth for any finite l. Therefore, in this case one may apply
the center-stable manifold theorem with any given l which implies that: for any
finite l there exists a neighborhood Nl of 0 where Wcs

loc is Cl-smooth. In principle,
however, these neighborhoods may shrink to zero as l → ∞.

Theorem D.3 (Center-Unstable Manifold, [20, p.281]). In a small neigh-
borhood of the origin there exists an (n0+m)-dimensional invariant center-unstable
manifold Wcu

loc : q− = F cu(q0, q+) of class Cl (l < ∞), which contains the origin
and which is tangent to the subspace q− = 0 at the origin. The manifold Wcu

loc

contains all orbits which stay in a small neighborhood of the origin for all negative
times. Though the center-unstable manifold is not defined uniquely, for any two
center-unstable manifolds Wcu

1 and Wcu
2 the functions F cu

1 and F cu
2 have the same

Taylor expansion at the origin (and at each point whose negative semiorbit stays in
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a small neighborhood of the origin). In the case where the system is C∞-smooth,
the center-unstable manifold has, in general, only finite smoothness.

Note that the condition of invariance of the manifolds Wcs
loc and Wcu

loc may be
expressed as

q�+ = ∂F cs(q0,q−)
∂q0 q�0 + ∂F cs(q0,q−)

∂q− q�− when q+ = F cs(q0, q−),

q�− = ∂F cu(q0,q+)
∂q0 q�0 + ∂F cu(q0,q+)

∂q+ q�+ when q− = F cu(q0, q+),

or

(D.3)

C+F cs(q0, q−) + ϕ+(q0, F cs(q0, q−), q−)

= ∂F cs(q0,q−)
∂q0 [C0q0 + ϕ0(q0, F cs(q0, q−), q−)]

+ ∂F cs(q0,q−)
∂q− [C−q− + ϕ−(q0, F cs(q0, q−), q−)],

C−F cu(q0, q+) + ϕ−(q0, q+, F cu(q0, q+))

= ∂F cu(q0,q+)
∂q0 [C0q0 + ϕ0(q0, q+, F cu(q0, q+))]

+ ∂F cu(q0,q+)
∂q+ [C+q+ + ϕ+(q0, q+, F cu(q0, q+))].

The above relations yield an algorithm for computing the invariant manifolds.

Corollary D.4 (Reduction Theorem). One can introduce new variables:

(D.4)


u0 = q0

u+ = q+ − F cs(q0, q−)

u− = q−

so that we can write the system (D.2) in the simpler form

(D.5)


u�0 = C0u0 + ϕ0(u0, F cs(u0, u−), u−) + ψ0(u)u+,

u�+ = C+u+ + ψ+(u)u+,

u�− = C−u− + ϕ−(u0, F cs(u0, u−), u−) + ψ−(u)u+

where the functions ψ0, ψ− are C l-smooth and ψ+ is C l−1-smooth; in addition, all
the functions ψ0, ψ+, ψ− are vanishing at the origin, i.e., ψ(0) = 0.

Proof. As a matter of fact, for the new variables, it is easy to see that

(D.6)


u�0 = C0u0 + ϕ0(u0, u+ + F cs(u0, u−), u−),

u�+ = q�+ − ∂F cs(q0,q−)
∂q0 q�0 − ∂F cs(q0,q−)

∂q− q�−,

u�− = C−u− + ϕ−(u0, u+ + F cs(u0, u−), u−),
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By (D.3), the second equation in (D.6) may be rewritten as

u�+ = C+u+ + C+F cs(u0, u−) + ϕ+(u0, u+ + F cs(u0, u−), u−)

− ∂F cs(u0, u−)

∂u0
[C0u0 + ϕ0(u0, u+ + F cs(u0, u−), u−)]

− ∂F cs(u0, u−)

∂u− [C−u− + ϕ−(u0, u+ + F cs(u0, u−), u−)]

= C+u+ + [ϕ+(u0, u+ + F cs(u0, u−), u−) − ϕ+(u0, F cs(u0, u−), u−)]

− ∂F cs(u0, u−)

∂u0
[ϕ0(u0, u+ + F cs(u0, u−), u−) − ϕ0(u0, F cs(u0, u−), u−)]

− ∂F cs(u0, u−)

∂u− [ϕ−(u0, u+ + F cs(u0, u−), u−) − ϕ−(u0, F cs(u0, u−), u−)]

Since

ϕ∗(u0, u+ + F cs(u0, u−), u−) − ϕ∗(u0, F cs(u0, u−), u−)

= [
� 1

0
∂ϕ∗(u0,tu++F cs(u0,u−),u−)

∂q+ dt]u+,

where ∗ ∈ {0, +, −}, it follows that (D.6) becomes
u�0 = C0u0 + ϕ0(u0, F cs(u0, u−), u−) + ψ0(u)u+,

u�+ = C+u+ + ψ+(u)u+,

u�− = C−u− + ϕ−(u0, F cs(u0, u−), u−) + ψ−(u)u+,

where

ψ0(u) =

� 1

0

∂ϕ0(u0, tu+ + F cs(u0, u−), u−)

∂q+
dt,

ψ−(u) =

� 1

0

∂ϕ−(u0, tu+ + F cs(u0, u−), u−)

∂q+
dt

are C l-smooth, and

ψ+(u) =
� 1

0
∂ϕ+(u0,tu++F cs(u0,u−),u−)

∂q+ dt

− � 1

0
∂F cs(u0,u−)

∂u0

∂ϕ0(u0,tu++F cs(u0,u−),u−)
∂q+ dt

− ∂F cs(u0,u−)
∂u−

∂ϕ−(u0,tu++F cs(u0,u−),u−)
∂q+ dt

is C l−1-smooth. Moreover, by virtue of ϕ(0) = 0 and ∂ϕ(0)
∂q = 0, ψ(0) = 0 holds.

Therefore, we can write the system (D.2) in the simpler form (D.5) by the
transformation (D.4). �

Similarly, we have

Corollary D.5 (Reduction Theorem). One can introduce new variables:
u0 = q0

u+ = q+

u− = q− − F cu(q0, q+)
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so that we can write the system (D.2) in the simpler form
u�0 = C0u0 + ϕ0(u0, u+, F cu(u0, u+)) + ψ0(u)u−,

u�+ = C+u+ + ϕ+(u0, u+, F cu(u0, u+)) + ψ+(u)u−,

u�− = C−u− + ψ−(u)u−,

where the functions ψ0, ψ+ are C l-smooth and ψ− is C l−1-smooth; in addition, all
the functions ψ0, ψ+, ψ− are vanishing at the origin, i.e., ψ(0) = 0.

In fact, a stronger version of reduction theorem holds:

Theorem D.6 (Reduction Theorem, [20, p.283]). By a Cl−1-smooth trans-
formation the system (D.2) can be locally reduced to the simpler form

u�0 = C0u0 + ψ0
0(u)u0 + ψ0

+(u)u+ + ψ0−(u)u−,

u�+ = C+u+ + ψ+(u)u+,

u�− = C−u− + ψ−(u)u−,

where the functions ψ0
0 , ψ

0
+, ψ0− are C l−1-smooth and vanishing at the origin; the

functions ψ+, ψ− are Cl-smooth and vanishing at the origin. Furthermore, ψ0
+

vanishes identically at u− = 0, and ψ0
− vanishes identically at u+ = 0.

However, we will not utilize this stronger version of reduction theorem in this
paper. Instead, we will directly utilize a version of theorem of center manifold.

When we investigate orbits on the center-unstable manifold, that is, orbits such
that q− = F cu(q0, q+) or u− = 0, the system is reduced to a form

(D.7)

u�0 = C0u0 + ϕ0(u0, u+, F cu(u0, u+)),

u�+ = C+u+ + ϕ+(u0, u+, F cu(u0, u+)).

Note that this system is of class Cl. For this kind of system, it is well known
that the following theorem holds.

Theorem D.7 (Center Manifold, [20, p.271]). Consider the system (D.7), in
a small neighborhood of 0 there exists an n0-dimensional invariant center manifold
Wc

loc : u+ = F c(u0) of class Cl, which contains 0 and which is tangent to the
subspace u+ = 0 at 0. The manifold Wc

loc contains all orbits which stay in a small
neighborhood of 0 for all times. Though the center manifold is not defined uniquely,
for any two manifolds Wc

1 and Wc
2 the functions F c

1 and F c
2 have the same Taylor

expansion at 0 (and at each point whose orbit stays in a small neighborhood of 0).
In the case where the system is C∞-smooth, the center manifold has, in general,
only finite smoothness.

Note also that the condition of invariance of the manifold Wc
loc may be ex-

pressed as

u�+ =
∂F c(u0)

∂u0
u�0 when u+ = F c(u0)

or
C+F c(u0) + ϕ+(u0, F c(u0), F cu(u0, F c(u0)))

= ∂F c(u0)
∂u0 [C0u0 + ϕ0(u0, F c(u0), F cu(u0, F c(u0)))].
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The above relation yields an algorithm for computing the center manifolds which
will be used in the following.

The existence of a center manifold allows some problems related to the nonhy-
perbolic equilibrium to be reduced to the study of an n0-dimensional system

(D.8) u�0 = C0u0 + ϕ0
�
u0, F c(u0), F cu

�
u0, F c(u0)

��
In particular, when an orbit on the center-unstable manifold approaches the

origin for τ → −∞, we have the following result:

Theorem D.8 ([6, p.4, Th.2]). Let (u0(τ ), u+(τ )) be a solution of the system
(D.7). Suppose that

(u0(τ ), u+(τ )) → 0 as τ → −∞,

then there exists a solution υ(τ ) of the system (D.8) such that as τ → −∞

(D.9)

u0(τ ) = υ(τ ) + O(eστ ),

u+(τ ) = F c(υ(τ )) + O(eστ ).

where σ > 0 is a constant depending only on C+.

A direct implication of Theorem D.8 is the well known result that an orbit on
the unstable manifold of a hyperbolic equilibrium point exponentially approaches
the hyperbolic equilibrium point, i.e., the following result holds.

Corollary D.9 ([20, p.66]). Consider the system (D.1), assume that the
origin q = 0 is a hyperbolic equilibrium point. Let q(τ ) be a solution on the unstable
manifold of the origin, i.e.,

q(τ ) → 0 as τ → −∞,

then there are two positive constants c and σ such that

dist(q(τ ), 0) ≤ ceστ

for sufficiently small τ , and σ depends only on C+.



APPENDIX E

Plane Equilibrium Points

In this section, we will discuss some aspects of plane equilibrium points. In
particular, for those orbits tending to the equilibrium points, we estimate their
speed of convergence.

Let us consider an autonomous system on the plane R2

(E.1)

�
ζ � = f(ζ, η),

η� = g(ζ, η),

where f, g are continuous for small ζ, η and

f(0, 0) = g(0, 0) = 0.

One can introduce polar coordinates

ζ = ρ cos ϑ, η = ρ sin ϑ

to transform the system (E.1) into

(E.2)

�
ρ� = f(ρ cosϑ, ρ sin ϑ) cosϑ + g(ρ cosϑ, ρ sin ϑ) sin ϑ,

ρϑ� = −f(ρ cos ϑ, ρ sin ϑ) sin ϑ + g(ρ cos ϑ, ρ sin ϑ) cos ϑ.

As in [9], a direction ϑ = ϑ0 at the origin is called characteristic for the
system (E.1), if there exists a sequence (ρ1, ϑ1), (ρ2, ϑ2), · · · such that:

1) ρk → 0+, ϑk → ϑ0 as k → ∞;
2) (fk, gk) is not (0, 0), and the angle (mod π) between the vectors (fk, gk)

and (cos ϑk, sin ϑk) tends to zero as k → ∞, i.e.,

(E.3)
gk cos ϑk−fk sin ϑk√

f2
k+g2

k

→ 0 as k → ∞.

Where ρk → 0+ denotes ρk → 0 and ρk > 0; (fk, gk) is the vector field (f, g)
evaluated at (ζk, ηk) = (ρk cos ϑk, ρk sin ϑk).

The following two lemmas in [9] are important for the investigation of plane
equilibrium points.

Lemma E.1. Let f, g be continuous for small ζ, η and f2(ζ, η) + g2(ζ, η) > 0
except at the origin, that is, the origin is an isolated equilibrium point of the system
(E.1). Let the system (E.1) possess a solution (ζ(τ ), η(τ )) for −∞ < τ ≤ 0 such
that

ζ2(τ ) + η2(τ ) → 0 + as τ → −∞,

Let ρ(τ ) =
�

f2(ζ, η) + g2(ζ, η) > 0 and ϑ(τ ) be a continuous determination of the
angle between the ζ-axis and the vector (ζ(τ ), η(τ )). Let ϑ = ϑ0 be a noncharac-
teristic direction. Then either ϑ�(τ ) > 0 or ϑ�(τ ) < 0 for all τ near −∞ for which
ϑ(τ ) = ϑ0 mod 2π.
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� - �0

� characteristic orbit

�

spiral orbit

Figure E.1. Lemma E.2

Lemma E.2. Let f, g and (ζ(τ ), η(τ )) be as in Lemma E.1. Suppose that every
ϑ-interval, α < ϑ < β, contains a noncharacteristic direction. Then either

(E.4) ϑ0 = limτ→−∞ ϑ(τ ) exists (and is finite)

or (ζ(τ ), η(τ )) is a spiral; i.e.,

(E.5) |ϑ(τ )| → ∞ as τ → −∞.

In the case (E.4), ϑ(τ ) = ϑ0 is a characteristic direction.

In the following, let us further assume that the functions f, g are�
f = Pm(ζ, η) + pm(ζ, η),

g = Qm(ζ, η) + qm(ζ, η),

where Pm,Qm are homogeneous polynomials of degree m > 1 and

p2
m(ρ cos ϑ, ρ sin ϑ) + q2

m(ρ cosϑ, ρ sin ϑ) = o(ρ2m) as ρ → 0.

In terms of polar coordinates, define�
Φ(ϑ) = ρ−m (Pm(ρ cos ϑ, ρ sin ϑ) cos ϑ + Qm(ρ cosϑ, ρ sin ϑ) sin ϑ) ,

Ψ(ϑ) = ρ−m (Qm(ρ cos ϑ, ρ sin ϑ) cos ϑ − Pm(ρ cos ϑ, ρ sin ϑ) sin ϑ) ;

then Φ, Ψ are homogeneous polynomials of cosϑ, sin ϑ of degree m + 1.
In terms of polar coordinates, (E.2) can be written as

(E.6)

�
ρ� = ρmΦ(ϑ) + o(ρm),

ϑ� = ρm−1Ψ(ϑ) + o(ρm−1).

Theorem E.3. Assume Ψ(ϑ) �≡ 0 and m is an even number. Let f, g and
(ζ(τ ), η(τ )) be as in Lemma E.1. Then

(E.7) ϑ0 = limτ→−∞ ϑ(τ ) exists (and is finite)

and Ψ(ϑ0) = 0.
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Proof. Our first goal is to show (E.7). By Lemma E.2, it suffices to exclude
the possibility of (E.5).

By using reduction to absurdity, suppose that (ζ(τ ), η(τ )) is a spiral, i.e., (E.5)
holds.

Without loss of generality, suppose

(E.8) ϑ(τ ) → ∞ as τ → −∞.

According to Ψ(ϑ) �≡ 0, it has only a finite number of zeros (mod 2π). Because
Ψ are homogeneous polynomials of cosϑ, sin ϑ of degree m + 1, we have

(E.9) Ψ(ϑ + π) = −Ψ(ϑ).

As a result, the plane is split into several angular sectors, ϑk < ϑ < ϑk+1 (k =
1, · · · , n), such that

n ≥ 1, ϑn+1 = ϑ1 + 2π, Ψ(ϑk) = 0

and

Ψ(ϑ) �= 0, for ϑk < ϑ < ϑk+1.

It follows from (E.9) that we can assume Ψ(ϑ) > 0 for ϑ1 < ϑ < ϑ2. Then
there exists an angular sector, α1 < ϑ < α2 included in ϑ1 < ϑ < ϑ2, such that

Ψ(ϑ) > σ, for α1 < ϑ < α2,

where σ > 0 is a constant.

Note that o(ρm−1)
ρm−1 tend to zero uniformly in ϑ as ρ → 0. It follows that, there

exists a sufficiently small ρ0 > 0 such that

ρm−1σ + o(ρm−1) > 0 for any 0 < ρ < ρ0.

Since there exists a real number τ0 < 0 such that

0 < ρ(τ ) < ρ0 for any τ ≤ τ0.

Taking into consideration (E.8), we know that there exists a sequence of τ -intervals

(β1, γ1), (β2, γ2), · · ·
such that

(E.10)



γk+1 < βk < γ1 < τ0,

βk, γk → −∞ as k → ∞;

ϑ�(τ ) > 0 for τ ∈ [βk, γk]

[ϑ(βk), ϑ(γk)] ⊂ (ϑ1 − 2nkπ, ϑ2 − 2nkπ) for some nk ∈ N.

We claim that

ϑ(τ ) ≤ ϑ(
β1 + γ1

2
) < ϑ(γ1)

for any τ ≤ β1+γ1

2
. Obviously, this is a contradiction with (E.8). So (E.7) will be

proved if we can show the claim.
Set

Ω = {τ̃ |ϑ(τ ) ≤ ϑ(
β1 + γ1

2
) for any τ ∈ (τ̃ , γ1]}.

Let τi = inf Ω be the infimum of above set. Following from (E.10), it is clear that
τi < β1.
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The above claim will be proved by showing that τi = −∞. Otherwise, τi is a
certain negative number. It follows that

ϑ(β1) < ϑ(τi) = ϑ(
β1 + γ1

2
) < ϑ(γ1)

However, it is easy to prove that τi is not the infimum of Ω by above inequality.
This leads to a contradiction.

Our task now is to show Ψ(ϑ0) = 0. Following from Lemma E.2, ϑ(τ ) = ϑ0

is a characteristic direction. If Ψ(ϑ0) �= 0, It is straightforward to show that (E.3)
reduces to the following

Ψ(ϑ0)√
Φ2(ϑ0)+Ψ2(ϑ0)

= 0.

This leads to a contradiction.
The theorem is now evident from what we have proved. �

Using the same argument as in the proof of above theorem, we can prove the
following more general result:

Corollary E.4. Let f, g and (ζ(τ ), η(τ )) be as in Lemma E.1. Assume Ψ(ϑ)
has both positive and negative values. Then

ϑ0 = limτ→−∞ ϑ(τ ) exists (and is finite)

and Ψ(ϑ0) = 0.

So a spiral of the system (E.1) can occur only when Ψ is invariably nonnegative
or nonpositive and m is an odd number.

Theorem E.5. Under the conditions in Theorem E.3, if Φ(ϑ0) �= 0, then
Φ(ϑ0) > 0 and

ρ = (
1

(m − 1)Φ(ϑ0)
)

1
m−1 (

1

−τ
)

1
m−1 + o((

1

−τ
)

1
m−1 ).

Proof. Let us consider the first equation of (E.6):

ρ� = ρmΦ(ϑ) + o(ρm).

Since

ρ(τ ) → 0 + as τ → −∞,

it is easy to see that Φ(ϑ0) > 0.
According to L’Hópital’s rule, it follows that

lim
τ→−∞

1

τρm−1
= (1 − m)Φ(ϑ0),

or

ρ =

�
1

(1 − m)Φ(ϑ0)τ

� 1
m−1

+ o((
1

−τ
)

1
m−1 ).

The proof of the theorem is now complete. �

Similarly, when m is an odd number, one can prove the following theorem:

Theorem E.6. Let f, g and (ζ(τ ), η(τ )) be as in Lemma E.1. If Φ(ϑ) �= 0 for
any ϑ, then there exists a positive number c such that

ρ ≤ c(
1

−τ
)

1
m−1 .
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Proof. By Φ(ϑ) �= 0 for any ϑ, it follows that there exists a positive number
σ such that

|Φ(ϑ)| ≥ σ.

According to
ρ(τ ) → 0 + as τ → −∞,

it follows that
Φ(ϑ) ≥ σ.

Let us consider the first equation of (E.6):

ρ� = ρmΦ(ϑ) + o(ρm).

It is clear that there exists a real number τ0 < 0 such that

ρmΦ(ϑ) + o(ρm) ≥ σ

2
ρm for any τ ≤ τ0.

Then
ρ1−m(τ ) ≥ ρ1−m(τ0) +

σ

2
(m − 1)(τ0 − τ ) for any τ ≤ τ0.

As a result, it is evident to see that the theorem holds. �
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