
ANALYTIC BESOV FUNCTIONS, PRE-SCHWARZIAN DERIVATIVES,
AND INTEGRABLE TEICHMÜLLER SPACES

KATSUHIKO MATSUZAKI AND HUAYING WEI

Abstract. We study the embedding of integrable Teichmüller spaces Tp into analytic
Besov spaces via pre-Schwarzian derivatives. In contrast to the Bers embedding by
Schwarzian derivatives, a significant difference arises between the cases p > 1 and p = 1.
In this paper we focus on the case p = 1 and extend previous results obtained for
p > 1. This provides a unified framework for the complex-analytic theory of integrable
Teichmüller spaces Tp for all p ≥ 1.

1. Introduction

The integrable Teichmüller space has been extensively studied as a subspace of the
universal Teichmüller space that carries the Weil–Petersson metric and parametrizes the
family of Weil–Petersson curves. Bishop’s recent characterization of Weil–Petersson curves
[4] is closely related to this theory from the complex-analytic viewpoint. Wang [33] defined
a Dirichlet energy arising from the Loewner ODE that generates SLE and showed that
the finiteness of this energy forces the evolving arcs to be Weil–Petersson. Moreover, this
Dirichlet energy coincides with the universal Liouville action on the integrable Teichmül-
ler space, which serves as a Kähler potential for the Weil–Petersson metric.

The integrable Teichmüller space T2 was introduced by Cui [5], and its Hilbert man-
ifold structure and Weil–Petersson geometry were subsequently developed by Takhtajan
and Teo [29]; foundational complex-analytic aspects were established by Shen [25]. This
space is the quotient of M2(H+), the space of square-integrable Beltrami coefficients on
H+ (where H± denote the upper/lower half-planes), by Teichmüller equivalence, and is
embedded homeomorphically into the Hilbert space A2(H−) by the Bers embedding. We
recall the definitions of these spaces and mappings below in the case p = 2. The Weil–
Petersson metric is induced either from the inner product on A2(H−) or equivalently from
the pairing ∫

H+

µ(z)ν(z)
dx dy

|Im z|2
for harmonic representatives µ, ν ∈ M2(H+) of tangent vectors of T2 at the origin.

2020 Mathematics Subject Classification. Primary 30C62, 30H25; Secondary 30F60, 30H35, 30H30.
Key words and phrases. integrable Beltrami coefficient, pre-Schwarzian derivative, analytic Besov func-

tion, Weil–Petersson metric, holomorphic split submersion, Bers fiber space, Zygmund condition.
Research supported by Japan Society for the Promotion of Science (KAKENHI 23K25775 and

23K17656) and the National Natural Science Foundation of China (grant no. 12271218 and 12571083).

1



2 K. MATSUZAKI AND H. WEI

For a parameter p ≥ 1, the p-integrable Teichmüller space Tp is modeled on p-integrable
Beltrami coefficients on the half-plane. Explicitly, we set

Mp(H+) =
{
µ ∈ M(H+) | ∥µ∥p =

(∫
H+

|µ(z)|p dx dy

|Im z|2
)1/p

< ∞
}
,

where M(H+) = {µ ∈ L∞(H+) | ∥µ∥∞ < 1} is the space of Beltrami coefficients, and
define Tp = {[µ] | µ ∈ Mp(H+)} as the set of Teichmüller equivalence classes, which is
included in the universal Teichmüller space T = {[µ] | µ ∈ M(H+)} (see Section 5). The
original theory concentrated on p = 2, was extended to p ≥ 2 by Guo [11], Tang and
Shen [30], and further to p > 1 by Wei and Matsuzaki [34]. In addition, it was proved
in [36, 37] that the Bers embedding α : Tp → Ap(H−), defined by α([µ]) = SFµ via the
Schwarzian derivative of the normalized conformal homeomorphism F µ : H− → C with
quasiconformal extension to the plane of dilatation µ ∈ Mp(H+), is a homeomorphism
onto its image for all p ≥ 1. Hence Tp inherits a natural complex structure modeled on
the Banach space

Ap(H−) =
{
Φ ∈ Hol(H−) | ∥Φ∥Ap =

(∫
H−

|(Im z)2Φ(z)|p dx dy

|Im z|2
)1/p

< ∞
}
,

where Hol(H−) denotes the holomorphic functions on H−.
This paper develops a unified embedding theory for integrable Teichmüller spaces via

the logarithm of derivative log(F µ)′ and the pre-Schwarzian derivative NFµ = (log(F µ)′)′,
including the endpoint p = 1. For the universal Teichmüller space T , this model is
intensively studied by Zhuravlev [40] on the unit disk D. The target on the function side
of Tp is the analytic Besov space on H−: for p > 1,

Bp(H−) =
{
Φ ∈ Hol(H−) | ∥Φ∥Bp =

(∫
H−

|(Im z) Φ′(z)|p dx dy

|Im z|2
)1/p

< ∞
}
,

while for p ≥ 1 we also set

B#
p (H−) =

{
Φ ∈ Hol(H−) | ∥Φ∥B#

p
=

(∫
H−

|(Im z)2Φ′′(z)|p dx dy

|Im z|2
)1/p

< ∞
}
.

Then we define
B̂p(H−) = B#

p (H−) ∩ BMOA(H−)

with norm ∥Φ∥B̂p
= ∥Φ∥B#

p
+ ∥Φ∥BMOA, where BMOA(H−) is the Banach space of holo-

morphic functions Φ on H− that are given by the Poisson integral of BMO functions on
the real line R. BMOA can also be characterized by Carleson measures (see Section 2).
Since B1(H−) collapses to constants, the appropriate target for the pre-Schwarzian at

p = 1 is B̂1(H−). Moreover, for p > 1, the norms ∥Φ∥Bp and ∥Φ∥B̂p
are equivalent. We

also recall the Besov spaces defined on D and prove that the Cayley transformation yields

a Banach space isomorphism between B̂p(H−) and B̂p(D) (Theorem 2.5).

Section 3 studies the pre-Schwarzian derivative map L : Mp(H+) → B̂p(H−) given by
L(µ) = log(F µ)′. A direct adaptation of the Schwarzian argument shows the holomorphy
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of L under certain constraints on p; to remove these constraints, we exploit the Schwarzian
derivative map S : Mp(H+) → Ap(H−), S(µ) = SFµ , together with sharp norm estimates
(Theorem 3.4). Using the existence of a local holomorphic right inverse to S, we prove
that the canonical holomorphic map J : L(Mp(H+)) → S(Mp(H+)), J(Ψ) = Ψ′′ − 1

2
(Ψ′)2,

is in fact biholomorphic (Theorem 3.10). Consequently, the three spacesMp(H+), B̂p(H−),
and Ap(H−) are uniformly linked for all p ≥ 1 in a manner that extends earlier results
(Theorem 3.12).

In Section 4 we revisit these results on D and the exterior unit disk D∗. Although the

Cayley transformation identifies B̂p(H−) with B̂p(D) as Banach spaces, the canonical map
J : L(Mp(D∗)) → S(Mp(D∗)) fails to be injective in this model. A modified statement
shows that J is a holomorphic split submersion (Theorem 4.4). We analyze the fiber
structure of L(Mp(D∗)) over S(Mp(D∗)), proving that L(Mp(D∗)) is a real-analytic disk
bundle (Theorem 4.6); for p > 1, a global real-analytic section identifies it with the
product S(Mp(D∗))× D∗ (Corollary 4.7).
Section 5 discusses the complex Banach manifold structure, the topological group struc-

ture, and the Weil–Petersson metric on Tp for p ≥ 1. In parallel with the Bers embedding

α : Tp → Ap(H−) via S, we introduce the pre-Bers embedding β : Tp → B̂p(H−) via L,
and prove that α and β induce biholomorphically equivalent complex structures (Theorem
5.1). Moreover, since the Weil–Petersson metric can be regarded as an invariant metric
obtained by right translation of the norm on α(Tp), an analogous construction on β(Tp)
yields an alternative Weil–Petersson metric with similar properties (Theorem 5.4).

Finally, Section 6 compares Tp (p ≥ 1) with the Teichmüller space T γ (0 < γ ≤
1) of circle diffeomorphisms whose derivatives are Hölder–Zygmund continuous. These
are defined by Beltrami coefficients on D∗ satisfying |µ(z)| = O((|z| − 1)γ) as |z| → 1,
corresponding to orientation-preserving circle diffeomorphisms h with h′ ∈ Cγ (for γ = 1,
h′ is continuous and satisfies the Zygmund condition). While T 1 ⊂ Tp for every p > 1 and
every h ∈ T1 is known to be a C1-diffeomorphism, there is no inclusion relation between
T 1 and T1 (Theorem 6.2).

Acknowledgements. The authors thank the referees for their careful reading of the
manuscript and for their valuable comments, which helped improve the clarity of this
work.

2. Analytic Besov functions

We denote by H either the upper or the lower half-plane. When necessary, we write
H+ for the upper half-plane and H− for the lower half-plane.

As a generalization of analytic Dirichlet functions (the case p = 2), we introduce the
following classes of holomorphic functions on H, which we call analytic Besov functions;
see [39, Chapter 5], where these functions are defined on D. As mentioned below, the semi-
norm ∥ · ∥Bp in the following definition is conformally invariant. However, the treatment
of ∥ · ∥B#

p
is more delicate.
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Definition 1. For p > 1, define the seminorm

∥Φ∥Bp =
(∫

H
|(Im z) Φ′(z)|p dx dy

|Im z|2
)1/p

for holomorphic functions Φ on H. The set of all such Φ with ∥Φ∥Bp < ∞ is denoted by
Bp(H). Moreover, for p ≥ 1, define the seminorm

∥Φ∥B#
p
=

(∫
H
|(Im z)2Φ′′(z)|p dx dy

|Im z|2
)1/p

.

The set of all such Φ with ∥Φ∥B#
p
< ∞ is denoted by B#

p (H).

Remark 1. If one applies the seminorm ∥ · ∥Bp with p = 1, then only constant functions
Φ satisfy ∥Φ∥B1 < ∞; see [39, p. 132].

A holomorphic function Φ on H is called a Bloch function if the seminorm satisfies

∥Φ∥B∞ = sup
z∈H

|(Im z) Φ′(z)| < ∞.

The set of all Bloch functions on H is denoted by B∞(H). Moreover, Φ is called a
BMOA function if |Im z| |Φ′(z)|2 dx dy is a Carleson measure on H. In general, a (possibly

infinite) measure m on H is said to be a Carleson measure if supI⊂R m(Î)/|I| < ∞, where

the supremum is taken over all bounded intervals I ⊂ R and Î ⊂ H denotes the Carleson
box (the square in H) above I. Accordingly, the BMOA seminorm of Φ is defined by

∥Φ∥BMOA =
(
sup
I⊂R

1

|I|

∫
Î

|(Im z) Φ′(z)|2 dx dy
|Im z|

)1/2

.

This definition of BMOA is equivalent to requiring that Φ be holomorphic and given by
the Poisson integral of a BMO function on R. On the unit disk D, the corresponding
equivalence is well known (see [9, Theorem 6.5]); on the half-plane H, it also holds (see
[8, p. 262]). The set of all BMOA functions on H is denoted by BMOA(H).
We next compare the above seminorms. For convenience, we include proofs of the

standard estimates.

Proposition 2.1. (i) For 1 < p ≤ q ≤ ∞, there exists a constant cp,q > 0 such that
∥Φ∥Bq ≤ cp,q ∥Φ∥Bp. (ii) There exists a constant c > 0 such that ∥Φ∥B∞ ≤ c ∥Φ∥BMOA.
(iii) For p > 1, there exists a constant c′p > 0 such that ∥Φ∥BMOA ≤ c′p ∥Φ∥Bp.
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Proof. (i) For z ∈ H, let ∆(z, |Im z|/2) ⊂ H be the disk centered at z with radius |Im z|/2.
By the integral mean inequality for holomorphic functions and the Hölder inequality,

|(Im z)Φ′(z)| ≤ 4

π|Im z|

∫
∆(z,|Im z|/2)

|Φ′(w)| du dv

≤ 4

π|Im z|

(π|Im z|2

4

)1−1/p(∫
∆(z,|Im z|/2)

|Φ′(w)|p du dv
)1/p

=
( 4
π

)1/p

|Im z|1−2/p
(∫

∆(z,|Im z|/2)
|Φ′(w)|p du dv

)1/p

. (1)

The last line is bounded by( 4
π

)1/p

|Im z|1−2/p
( 2p−2

|Im z|p−2

∫
∆(z,|Im z|/2)

|(Imw)Φ′(w)|p du dv

|Imw|2
)1/p

≤ 2
p
√
π
∥Φ∥Bp ,

whence ∥Φ∥B∞ ≤ cp,∞ ∥Φ∥Bp with cp = cp,∞ = 2/ p
√
π.

For p ≤ q < ∞, we have∫
H

( |(Im z)Φ′(z)|
∥Φ∥B∞

)q dx dy

|Im z|2
≤

∫
H

( |(Im z)Φ′(z)|
∥Φ∥B∞

)p dx dy

|Im z|2
,

i.e. ∥Φ∥qBq
/∥Φ∥qB∞

≤ ∥Φ∥pBp
/∥Φ∥pB∞

. It follows that

∥Φ∥Bq

∥Φ∥B∞

≤
( ∥Φ∥Bp

∥Φ∥B∞

)p/q

=
( 1

cp

)p/q(cp∥Φ∥Bp

∥Φ∥B∞

)p/q

≤
( 1

cp

)p/q cp∥Φ∥Bp

∥Φ∥B∞

.

Hence ∥Φ∥Bq ≤ cp,q ∥Φ∥Bp with cp,q = c
1−p/q
p .

(ii) This is sketched in [24, p. 92]; see also [9, Corollary 5.2]. From (2) with p = 2,

|(Im z)Φ′(z)| ≤ 2√
π

(∫
∆(z,|Im z|/2)

|Φ′(w)|2 du dv
)1/2

≤ 4√
π

( 1

2|Im z|

∫
I2(z,|Im z|)

|Imw| |Φ′(w)|2 du dv
)1/2

,

where I2(z, |Im z|) denotes the Carleson box square centered at z above the interval of
length 2|Im z| on R. Taking the supremum over z ∈ H yields ∥Φ∥B∞ ≤ c ∥Φ∥BMOA with
c = 4/

√
π.

(iii) Suppose that p > 2. For any bounded interval I ⊂ R, the Hölder inequality gives

1

|I|

∫
Î

|Imw||Φ′(w)|2dudv

≤ 1

|I|

(∫
Î

|(Imw)Φ′(w)|p dudv

|Imw|2
)2/p

·
(∫

Î

|Imw|p/(p−2) dudv

|Imw|2
)1−2/p

≤
(
1− 2

p

)1−2/p(∫
H
|(Imw)Φ′(w)|p dudv

|Imw|2
)2/p

.
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Taking the supremum over I yields ∥Φ∥BMOA ≤ c′p ∥Φ∥Bp with c′p = (1 − 2
p
)1/2−1/p. For

1 < p ≤ 2, combine this with (i). □

Arguing as in (i) above with the definition ∥Φ∥B#
∞
= supz∈H |(Im z)2Φ′′(z)| yields:

Proposition 2.2. For 1 ≤ p ≤ q ≤ ∞, there exists a constant c̃p,q > 0 such that
∥Φ∥B#

q
≤ c̃p,q ∥Φ∥B#

p
.

Definition 2. For 1 ≤ p < ∞, set

∥Φ∥B̂p
= ∥Φ∥B#

p
+ ∥Φ∥BMOA.

The collection of Φ with ∥Φ∥B̂p
< ∞ is denoted by B̂p(H); equivalently,

B̂p(H) = B#
p (H) ∩ BMOA(H).

Hereafter, to suppress multiplicative constants, we use the notation A(τ) ≲ B(τ) to
mean that there exists C > 0 such thatA(τ) ≤ C B(τ) uniformly in the relevant parameter
τ ; we write A(τ) ≍ B(τ) when both A(τ) ≲ B(τ) and A(τ) ≳ B(τ) hold.

By Proposition 2.2, we have ∥Φ∥B̂q
≲ ∥Φ∥B̂p

for 1 ≤ p ≤ q.

Proposition 2.3. Let 1 < p < ∞. Then ∥Φ∥B#
p
≲ ∥Φ∥Bp for Φ ∈ Bp(H). Conversely,

∥Φ∥Bp ≲ ∥Φ∥B#
p
+ ∥Φ∥B∞ for Φ ∈ B#

p (H) ∩ B∞(H). Hence, the seminorms ∥Φ∥Bp and

∥Φ∥B̂p
are equivalent.

Proof. For the first inequality, we adapt the proof of [27, Lemma 3.3]. By the Cauchy
integral formula,

|Φ′′(z)| ≤ 1

2π

∫
|ζ−z|=y/4

|Φ′(ζ)|
|ζ − z|2

|dζ| ≤ 4

y
max

|ζ−z|≤y/4
|Φ′(ζ)|

for z = x+ iy ∈ H+. Moreover,

|Φ′(ζ)|p ≤ 16

πy2

∫
|w−ζ|≤y/4

|Φ′(w)|p du dv

for w = u+ iv. Hence

y2p−2|Φ′′(z)|p ≲ yp−4

∫
|w−z|≤y/2

|Φ′(w)|p du dv ≤ yp−4

∫ 3y/2

y/2

∫ x+y/2

x−y/2

|Φ′(w)|p du dv.

With the change of variables (u, v) 7→ (ξ, η) by u = x + yξ and v = yη, the right-hand
side becomes

yp−2

∫ 3/2

1/2

∫ 1/2

−1/2

|Φ′(x+ yξ + iyη)|p dξ dη.
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Using the inequality of this form, we estimate ∥Φ∥B#
p
as

∥Φ∥p
B#
p
=

∫
H
y2p−2|Φ′′(z)|pdxdy

≲
∫ 3/2

1/2

∫ 1/2

−1/2

(∫
H
yp−2|Φ′(x+ yξ + iyη)|pdxdy

)
dξdη.

Again with the change of variables (x, y) 7→ (u, v) by u = x + yξ and v = yη, the last
integral turns out to be∫ 3/2

1/2

∫ 1/2

−1/2

(∫
H

(v
η

)p−2

|Φ′(w)|pdudv
η

)
dξdη =

(∫ 3/2

1/2

dη

ηp−1

)∫
H
vp−2|Φ′(w)|pdudv ≍ ∥Φ∥pBp

.

Thus, ∥Φ∥B#
p
≲ ∥Φ∥Bp is verified.

For the converse, [15, Lemma 3.2] essentially gives

∥Φ∥Bp ≲ ∥Φ∥B#
p
+ ∥Φ′′∥A∞ ,

where ∥Φ′′∥A∞ is defined later in (3) and satisfies ∥Φ′′∥A∞ ≍ ∥Φ∥B∞ by [26, Lemma 6.3].
This yields the stated bound. □

Remark 2. In the second statement, for p > 2 one even has ∥Φ∥Bp ≲ ∥Φ∥B#
p
for Φ ∈

B#
p (H) ∩ B∞(H). Indeed, from Φ′(x+ iy) = −i

∫ y0
y

Φ′′(x+ it) dt+Φ′(x+ iy0) and letting

y0 → ∞, we obtain

Φ′(x+ iy) = −i

∫ ∞

y

Φ′′(x+ it) dt (2)

for x+ iy ∈ H+ since limy0→∞ Φ′(x+ iy0) = 0 when Φ ∈ B∞(H). For p > 2 and 1 < q < 2
with 1/p+ 1/q = 1, this gives

|Φ′(x+ iy)| ≤
(∫ ∞

y

dt

t2−q/p

)1/q(∫ ∞

y

t2p−3|Φ′′(x+ it)|p dt
)1/p

,

hence

yp−2|Φ′(x+ iy)|p ≲
∫ ∞

y

t2p−3|Φ′′(x+ it)|p dt,

and integrating over H and exchanging the order of integrals yield ∥Φ∥Bp ≲ ∥Φ∥B#
p
.

Identifying functions that differ by a constant, we may regard Bp(H) and B̂p(H) as
normed spaces with norms ∥ · ∥Bp and ∥ · ∥B̂p

, respectively; under these norms they are

complex Banach spaces.

For the unit disk D, define Bp(D), B#
p (D), BMOA(D), and B̂p(D) analogously by replac-

ing the hyperbolic density 1/|Im z| on H with 2/(1−|z|2) on D. Let K(z) = (z− i)/(z+ i)
be the Cayley transformation, which maps H+ conformally onto D with K(i) = 0 (and
K(z) = (−z − i)/(−z + i) maps H− onto D with K(−i) = 0). For a function Φ on H,
write K∗(Φ) = Φ ◦K−1 for the push-forward to D. Then K∗ is an isometric isomorphism
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from Bp(H) onto Bp(D) for p > 1 (including p = ∞), by conformal invariance. For the

spaces B̂p(H) and B̂p(D), which involve Φ′′, the situation is subtler.

To show that K∗ gives a Banach isomorphism between B̂p(H) and B̂p(D), we prepare
the following lemma. For a holomorphic function Φ on H+, the seminorm defined by its
derivative in the Hardy space H1 is

∥Φ∥Ḣ1
1
= sup

y>0

∫ ∞

−∞
|Φ′(x+ iy)| dx, (3)

and write Ḣ1
1(H) for the corresponding space. Similarly, for a holomorphic function Φ∗

on D, set

∥Φ∗∥Ḣ1
1
= sup

0<r<1

1

2π

∫ 2π

0

|Φ′
∗(re

iθ)| dθ, (4)

and denote the space by Ḣ1
1(D).

Lemma 2.4. (i) Every Φ ∈ B∞(H) satisfies ∥Φ∥Ḣ1
1
≤ ∥Φ∥B#

1
. (ii) Every holomorphic

function Φ∗ on D satisfies ∥Φ∗∥Ḣ1
1
≤ C

(
∥Φ∗∥B#

1
+ ∥Φ∗∥B∞

)
for some absolute constant

C > 0.

Proof. (i) From (2),∫ ∞

−∞
|Φ′(x+ iy)| dx ≤

∫ ∞

−∞

∫ ∞

y

|Φ′′(x+ it)| dt dx ≤
∫
H
|Φ′′(z)| dx dy,

and taking the supremum over y > 0 gives the claim.
(ii) Likewise, Φ′

∗(re
iθ) =

∫ r

ε
Φ′′

∗(te
iθ) dt+ Φ′

∗(εe
iθ) for 0 < ε < r < 1. Hence

1

2π

∫ 2π

0

|Φ′
∗(re

iθ)| dθ ≤ 1

2π

∫ 2π

0

∫ r

ε

|Φ′′
∗(te

iθ)| dt dθ + 2

1− ε2
∥Φ∗∥B∞

≤ 1

2πε
∥Φ∗∥B#

1
+

2

1− ε2
∥Φ∗∥B∞ ,

which implies the claim with C = min0<ε<1max{ 1
2πε

, 2
1−ε2

}. □

We can now establish the expected correspondence between B̂p(H) and B̂p(D). An idea
for its proof is in [22, Section 9].

Theorem 2.5. The push-forward K∗ by the Cayley transformation is a Banach isomor-

phism from B̂p(H) onto B̂p(D) for p ≥ 1.

Proof. First, by conformal invariance, ∥K∗(Φ)∥BMOA ≍ ∥Φ∥BMOA: BMO functions on R
and S correspond under the Cayley transformation (see [8, Corollary. VI.1.3]), and BMOA
functions are holomorphic functions obtained by the Poisson integral of those functions.
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We estimate the B#
p -seminorms. Let Φ∗ = K∗(Φ) = Φ ◦ K−1. Changing variables

ζ = K(z) gives ∫
H
|(Im z)2Φ′′(z)|p dx dy

|Im z|2
(5)

=

∫
H
|(Im z)2 (Φ′′

∗ ◦K(z) ·K ′(z)2 + Φ′
∗ ◦K(z) ·K ′′(z))|p dx dy

|Im z|2

≤ 2p−1

∫
D

∣∣∣(1− |ζ|2

2

)2

Φ′′
∗(ζ)

∣∣∣p 4 dξ dη

(1− |ζ|2)2

+ 2p−1

∫
D

∣∣∣(1− |ζ|2

2

)
Φ′

∗(ζ)
∣∣∣p(1− |ζ|2

|1− ζ|

)p 4 dξ dη

(1− |ζ|2)2
.

Note that 1− |ζ|2 ≤ 2|1− ζ|.
Suppose Φ∗ ∈ B̂p(D). For p > 1, (2) yields

∥Φ∥p
B#
p
≤ 2p−1∥Φ∗∥pB#

p
+ 22p−1∥Φ∗∥pBp

.

Because ∥Φ∗∥Bp ≍ ∥Φ∗∥B#
p
+ |Φ′

∗(0)| ≲ ∥Φ∗∥B̂p
(see [38, p. 327]), we obtain ∥Φ∥B̂p

≲
∥K∗(Φ)∥B̂p

. When p = 1, the second integral in (2) becomes∫
D
|Φ′

∗(ζ)|
2 dξ dη

|1− ζ|
. (6)

By Lemma 2.4, Φ∗ ∈ Ḣ1
1(D). Moreover, dm∗ = 2 dξ dη/|1 − ζ| is a Carleson measure on

D. This can be verified by straightforward computation; indeed, it suffices to show that
for a disk ∆(1, r) with center at 1 and radius r > 0,

1

r

∫
∆(1,r)

dξdη

|1− ζ|
≤ π.

Here, we apply the Carleson embedding theorem (see [7, Theorem 9.3], [8, Theorem
II.3.9]). This in particular implies that for any holomorphic function Ψ in the Hardy space
H1(D) with norm ∥ · ∥H1 and for any Carleson measure dm∗ on D, there exists a constant
c′ > 0 depending only on dm∗ such that

∫
D |Ψ(ζ)|dm∗(ζ) ≤ c′∥Ψ∥H1 . Thus, integral (2) is

bounded by c′∥Φ∗∥Ḣ1
1
. Plugging this estimate into inequality (2) and using Lemma 2.4,

we obtain that

∥Φ∥B#
1
≤ ∥K∗(Φ)∥B#

1
+ c′∥K∗(Φ)∥Ḣ1

1
≲ ∥K∗(Φ)∥B̂1

.

This yields ∥Φ∥B̂1
≲ ∥K∗(Φ)∥B̂1

.
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Conversely, assume Φ ∈ B̂p(H). Likewise to the above computation, we have∫
D

∣∣∣(1− |ζ|2

2

)2

Φ′′
∗(ζ)

∣∣∣p 4 dξ dη

(1− |ζ|2)2

≤ 2p−1

∫
H
|(Im z)2Φ′′(z)|p dx dy

|Im z|2
+ 2p−1

∫
H
|(Im z) Φ′(z)|p

( 2 Im z

|z + i|

)p dx dy

|Im z|2
, (7)

where Im z ≤ |z + i|. For p > 1, (2) implies

∥K∗(Φ)∥pB#
p
≤ 2p−1∥Φ∥p

B#
p
+ 22p−1∥Φ∥pBp

,

and with Proposition 2.3 we get ∥K∗(Φ)∥B̂p
≲ ∥Φ∥B̂p

. When p = 1, the second integral

on the right of (2) equals ∫
H
|Φ′(z)|2 dx dy

|z + i|
. (8)

Since Φ ∈ Ḣ1
1(H) by Lemma 2.4 and dm = 2 dx dy/|z + i| is a Carleson measure on H,

the Carleson embedding theorem implies that (2) is bounded by c′′∥Φ∥Ḣ1
1
where c′′ > 0

depends only on dm. Using Lemma 2.4 again for this, we obtain from (2) that

∥K∗(Φ)∥B#
1
≤ ∥Φ∥B#

1
+ c′′∥Φ∥Ḣ1

1
≤ (1 + c′′)∥Φ∥B#

1
, (9)

which implies ∥K∗(Φ)∥B̂1
≲ ∥Φ∥B̂1

. □

We conclude the section with equivalent norms for ∥ · ∥B̂1
on B̂1(H) and B̂1(D).

Proposition 2.6. (i) On B̂1(D) the norm ∥Φ∗∥B̂1
is equivalent to ∥Φ∗∥B#

1
+ ∥Φ∗∥B∞ and

to ∥Φ∗∥B#
1
+ ∥Φ∗∥Ḣ1

1
. (ii) On B̂1(H) the norm ∥Φ∥B̂1

is equivalent to ∥Φ∥B#
1
+ ∥Φ∥B∞ and

to ∥Φ∥B#
1
+ ∥Φ∥Ḣ1

1
.

Proof. (i) By using the facts that ∥Φ∗∥B#
p
≲ ∥Φ∗∥B#

1
for any p > 1 (which is the same as

Proposition 2.2) and |Φ′
∗(0)| ≤ ∥Φ∗∥Ḣ1

1
, we obtain

∥Φ∗∥BMOA ≲ ∥Φ∗∥Bp ≍ ∥Φ∗∥B#
p
+ |Φ′

∗(0)| ≲ ∥Φ∗∥B#
1
+ ∥Φ∗∥Ḣ1

1
. (10)

Hence ∥Φ∗∥B̂1
≲ ∥Φ∗∥B#

1
+ ∥Φ∗∥Ḣ1

1
. The bound ∥Φ∗∥B#

1
+ ∥Φ∗∥B∞ ≲ ∥Φ∗∥B̂1

is immediate.

Finally, ∥Φ∗∥B#
1
+ ∥Φ∗∥Ḣ1

1
≲ ∥Φ∗∥B#

1
+ ∥Φ∗∥B∞ follows from Lemma 2.4.

(ii) Transfer the estimate for Φ∗ = K∗(Φ) on D back to Φ on H. From (2), ∥K∗(Φ)∥B#
1
≲

∥Φ∥B#
1
. Moreover, ∥K∗(Φ)∥Ḣ1

1
≲ ∥Φ∥Ḣ1

1
. Indeed, the line integral along the horizontal

line in (2) is transfered by K to the line integral along a horocycle in D tangent at 1,
which dominates the integral along the circle in (2); see the argument in [7, Section 11.1].
Thus, by (2),

∥Φ∥BMOA ≍ ∥K∗(Φ)∥BMOA ≲ ∥K∗(Φ)∥B#
1
+ ∥K∗(Φ)∥Ḣ1

1
≲ ∥Φ∥B#

1
+ ∥Φ∥Ḣ1

1
,

which implies ∥Φ∥B̂1
≲ ∥Φ∥B#

1
+ ∥Φ∥Ḣ1

1
. The remaining implications are as in (i), again

using Lemma 2.4. □
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Remark 3. Proposition 2.6 implies in particular that

B̂1(H) = B#
1 (H) ∩ B∞(H) = B#

1 (H) ∩ Ḣ1
1(H),

and in fact B#
1 (H) ⊈ B∞(H) and B#

1 (H) ⊈ Ḣ1
1(H). By contrast, B#

1 (D) ⊂ B∞(D) since
every function in B#

1 (D) is bounded (see [39, Theorem 5.19]), hence B#
1 (D) ⊂ Ḣ1

1(D) by
Lemma 2.4. Consequently, B#

1 (D) = B̂1(D) by Proposition 2.6.

Remark 4. In defining B̂p(H) we included the BMOA seminorm ∥Φ∥BMOA, but one could
equally well use ∥Φ∥B∞ or ∥Φ∥Ḣ1

1
. The specific choice is not essential; our goals are twofold:

(1) to ensure that the seminorm on B̂p(H) annihilates only constants, and (2) to preserve

the Banach isomorphism between B̂p(H) and B̂p(D) under the Cayley transformation.

3. The pre-Schwarzian derivative map

We consider the properties of conformal mappings induced by integrable Beltrami co-
efficients. A measurable function µ on H with ∥µ∥∞ < 1 is called a Beltrami coefficient.
The set of all Beltrami coefficients on H is denoted by M(H), which is the open unit ball
of L∞(H) with the supremum norm ∥µ∥∞.

Definition 3. For p ≥ 1, the space of p-integrable Beltrami coefficients is defined by

Mp(H) =
{
µ ∈ M(H) | ∥µ∥p =

(∫
H
|µ(z)|p dxdy

|Im z|2
)1/p

< ∞
}
.

We equip Mp(H) with the norm ∥µ∥p + ∥µ∥∞.

For µ ∈ Mp(H+), we denote by F µ the normalized conformal homeomorphism of H−

that extends quasiconformally to C with complex dilatation µ on H+. The normalization
is given by fixing the three points 0, 1, and ∞. For a conformal homeomorphism F :
H− → C, the pre-Schwarzian derivative NF and the Schwarzian derivative SF are defined
by

NF = (logF ′)′ ; SF = (NF )
′ − 1

2
(NF )

2.

For the conformal homeomorphism F µ of H− with µ ∈ M(H+), let L(µ) = log(F µ)′ and
S(µ) = SFµ . We call the maps L and S onM(H+) the pre-Schwarzian and the Schwarzian
derivative maps.
For p ≥ 1, we define the norm

∥Φ∥Ap =
(∫

H
|(Im z)2Φ(z)|p dxdy

|Im z|2
)1/p

(11)

for holomorphic functions Φ on H. For p = ∞, we set ∥Φ∥A∞ = supz∈H |(Im z)2Φ(z)|.
The set of all such Φ with ∥Φ∥Ap < ∞ is denoted by Ap(H), which is a complex Banach
space with this norm.

The Schwarzian derivative map S on Mp(H+) has been thoroughly studied. In addition,
we obtain the following result; see [36, Lemma 3.2]. Remark 5 below outlines the proof
of the first statement.
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Proposition 3.1. For p ≥ 1, there exists a constant C̃p > 0 such that the Schwarzian

derivative map S satisfies ∥S(µ)∥Ap ≤ C̃p∥µ∥p for every µ ∈ Mp(H+). Moreover, S :
Mp(H+) → Ap(H−) is holomorphic.

We note that the holomorphy of S follows from its local boundedness in this situation.
Since this result will be used repeatedly later, we state it in a more general form. Let
X and Y be complex Banach spaces and let W ⊂ X be a domain. A map J : W → Y
is called Gâteaux holomorphic if, for any w ∈ W and x ∈ X, the function J(w + ζx) is
holomorphic in ζ ∈ C into Y in some neighborhood of the origin. The following result is
known (see [6, Theorem 14.9]).

Proposition 3.2. If J : W → Y is locally bounded and Gâteaux holomorphic, then J is
holomorphic.

Moreover, when Y is a complex Banach space of holomorphic functions, the Gâteaux
holomorphy can be verified in several ways; see [14, Lemma V.5.1] and [35, Lemma 6.1].

We prove the same claim for the pre-Schwarzian derivative map L. First, we show it
under a special assumption on p. This is mentioned without proof in the proof of [37,
Theorem 6.10].

Lemma 3.3. For p > 2, there exists a constant Cp > 0 depending only on p such that the
pre-Schwarzian derivative map L satisfies ∥L(µ)∥Bp ≤ Cp∥µ∥p for every µ ∈ Mp(H+).

Proof. We first represent the directional derivative dµL(ν) of L at µ ∈ Mp(H+) in the
direction of a tangent vector ν. Let Ω+ = F (H+) and Ω− = F (H−) for the quasiconformal
extension F of F µ to C, and let ρ+ and ρ− denote their hyperbolic densities. For the
normalized Riemann mapping G : H+ → Ω+ associated with F , the push-forward of the
Beltrami coefficient ν on H+ by G is defined by

G∗(ν)(w) = ν(G−1(w))
(G−1)w̄
(G−1)w

(w ∈ Ω+).

As in the case of the Schwarzian derivative map (see [12, Lemma 5] and [29, Theorem
I.2.3]), we see that

dµL
′(ν)(F−1(ζ))(F−1)′(ζ) = − 2

π

∫
Ω+

G∗(ν)(w)

(w − ζ)3
dudv (ζ ∈ Ω−). (12)

Here, dµL
′(ν) stands for the derivative of the holomorphic function dµL(ν) in Bp(H−).

We estimate the norm of dµL(ν):

∥dµL(ν)∥pBp
=

∫
H−

|(Im z) dµL
′(ν)(z)|p dxdy

|Im z|2
(13)

=

∫
Ω−

|dµL′(ν)(F−1(ζ))(F−1)′(ζ)|pρ2−p
− (ζ)dξdη

=
( 2
π

)p
∫
Ω−

∣∣∣∫
Ω+

G∗(ν)(w)

(w − ζ)3
dudv

∣∣∣pρ2−p
− (ζ)dξdη.
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Then, applying the Hölder inequality to the absolute value of the inner integral, we obtain∣∣∣∫
Ω+

G∗(ν)(w)

(w − ζ)3
dudv

∣∣∣p ≤ (∫
Ω+

1

|w − ζ|4−qdudv

)p/q(∫
Ω+

|G∗(ν)(w)|p

|w − ζ|4
dudv

)
(14)

for 1/p + 1/q = 1. Here, we note the following inequalities for the hyperbolic densities
(see [14, p.6]):

ρ−(ζ) ≥
1

2d(ζ, ∂Ω−)
; ρ+(w) ≥

1

2d(w, ∂Ω+)
.

Then, by virtue of the condition q < 2, the first integral is bounded as follows:∫
Ω+

1

|w − ζ|4−q
dudv ≤

∫
|w−ζ|≥d(ζ,∂Ω−)

1

|w − ζ|4−q
dudv

=

∫ 2π

0

∫ ∞

d(ζ,∂Ω−)

1

r3−q
drdθ

=
2π

2− q

1

d(ζ, ∂Ω−)2−q
≤ 8π

2− q
ρ2−q
− (ζ). (15)

In the same way, we also have∫
Ω−

1

|w − ζ|4
dξdη ≤ 4πρ2+(w). (16)

The substitution of the above inequalities (3), (3), and (3) into (3) yields

∥dµL(ν)∥pBp
≤

( 2
π

)p( 8π

2− q

)p/q
∫
Ω−

∫
Ω+

( |G∗(ν)(w)|p

|w − ζ|4
dudv

)
(ρ2−q

− (ζ))p/qρ2−p
− (ζ)dξdη

≤
( 16

2− q

)p
∫
Ω+

(∫
Ω−

1

|w − ζ|4
dξdη

)
|G∗(ν)(w)|pdudv

≤
( 16

2− q

)p
∫
Ω+

4πρ2+(w)|G∗(ν)(w)|pdudv

= 4π
( 16

2− q

)p
∫
H+

|ν(z)|p dxdy

|Im z|2
= 4π

( 16

2− q

)p

∥ν∥pp. (17)

For µ ∈ Mp(H+), let Lµ(t) = L(tµ) for t ∈ [0, 1]. By the fundamental theorem of
calculus, we have

L(µ) = Lµ(1)− Lµ(0) =

∫ 1

0

dLµ

dt
(t)dt,

where dLµ

dt
(t) = dtµL(µ). Inequality (3) proved above shows that

∥dtµL(µ)∥pBp
≤ Cp

p∥µ∥pp
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for all t ∈ [0, 1], where Cp > 0 is the constant depending only on p. Hence,

∥L(µ)∥pBp
=

∫
H−

∣∣∣(∫ 1

0

dLµ

dt
(t)dt

)′
(z)

∣∣∣p|Im z|p−2dxdy

≤
∫
H−

(∫ 1

0

|dtµL′(µ)(z)|dt
)p

|Im z|p−2dxdy

≤
∫ 1

0

(∫
H−

|dtµL′(µ)(z)|p|Im z|p−2dxdy
)
dt = ∥dtµL(µ)∥pBp

,

which is bounded also by Cp
p∥µ∥pp. □

Remark 5. In the case of the Schwarzian derivative map S : Mp(H+) → Ap(H−), a
similar argument can be applied. This has been done in Theorem 2.3 and Lemma 2.9 of
[29, Chapter I]. The corresponding formula to (3) is

dµS(ν)(F
−1(ζ))(F−1)′(ζ)2 = − 6

π

∫
Ω+

G∗(ν)(w)

(w − ζ)4
dudv (ζ ∈ Ω−),

and (3) with the density ρ2−2p
− (ζ) turns out to be∣∣∣∫

Ω+

G∗(ν)(w)

(w − ζ)4
dudv

∣∣∣pρ2−2p
− (ζ) ≤

(∫
Ω+

1

|w − ζ|4dudv

)p/q(∫
Ω+

|G∗(ν)(w)|p

|w − ζ|4
dudv

)
ρ2−2p
− (ζ)

≤ (4π)p/q
∫
Ω+

|G∗(ν)(w)|p

|w − ζ|4
dudv

by using (3). This holds without any condition on p ≥ 1. In the case p = 1, the usual
modification is applied for q = ∞. The other parts of the proof are the same. This gives
the first statement of Proposition 3.1.

We remove the condition p > 2 in the statement of Lemma 3.3 and show the required
result in full generality with the aid of properties of the Schwarzian derivative map S.

Theorem 3.4. For p ≥ 1, the pre-Schwarzian derivative map L satisfies ∥L(µ)∥B#
p

≤
C#

p ∥µ∥p for every µ ∈ Mp(H+), where C#
p > 0 is a constant depending on p and ∥µ∥p.

Moreover, L : Mp(H+) → B̂p(H−) is holomorphic.

Proof. For any µ ∈ Mp(H+), let F = F µ. Then, using SF = (NF )
′ − 1

2
(NF )

2, we have

∥L(µ)∥p
B#
p
=

∫
H−

|(Im z)2(NF )
′(z)|p dxdy

|Im z|2

≤ 2p−1

∫
H−

|(Im z)2SF (z)|p
dxdy

|Im z|2
+

1

2

∫
H−

|(Im z)NF (z)|2p
dxdy

|Im z|2

≤ 2p−1∥S(µ)∥pAp
+ 1

2
∥L(µ)∥2pB2p

. (18)
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We first assume p > 1. By Proposition 3.1, Lemma 3.3, and ∥µ∥2p ≤ ∥µ∥p, inequality
(3) implies that

∥L(µ)∥p
B#
p
≤ 2p−1(C̃p∥µ∥p)p + 1

2
(C2p∥µ∥2p)2p

≤ 2p−1(C̃ p
p + C 2p

2p ∥µ∥pp)∥µ∥pp.

This yields ∥L(µ)∥B#
p
≤ C#

p ∥µ∥p for p > 1, where C#
p > 0 is a constant depending also

on ∥µ∥p.
In the case p = 1, we apply (3) again to have

∥L(µ)∥B#
1
≤ ∥S(µ)∥A1 + ∥L(µ)∥2B2

.

By using ∥µ∥2 ≤ ∥µ∥1, this implies that

∥L(µ)∥B#
1
≤ C̃1∥µ∥1 + (C2∥µ∥1)2.

Hence, we can also find C#
1 > 0 depending on ∥µ∥1 such that ∥L(µ)∥B#

1
≤ C#

1 ∥µ∥1. This
completes the proof of the first statement of the theorem.

For the second statement, we note that L : M(H+) → B∞(H−) satisfies ∥L(µ)∥B∞ ≤
3∥µ∥∞ (see [10, Proposition 5.3]). Then, combined with the first statement and Remark
4, this yields that

∥L(µ)∥B̂p
≍ ∥L(µ)∥B#

p
+ ∥L(µ)∥B∞ ≤ max {C#

p , 3}(∥µ∥p + ∥µ∥∞)

for every p ≥ 1. Hence, L : Mp(H+) → B̂p(H−) is in particular locally bounded. Under
this condition, the standard argument implies that L is in fact holomorphic in virtue of
Proposition 3.2. □

Remark 6. The continuity of L : Mp(H+) → B̂p(H−) can be proved directly as in [25,
Theorem 2.4] and [30, Theorem 2.4], from which holomorphy also follows. Indeed, for any
µ, ν ∈ Mp(H), the same argument as above gives

∥L(µ)−L(ν)∥p
B#
p
≤ 2p−1{∥S(µ)−S(ν)∥pAp

+(∥L(µ)∥pB2p
+∥L(ν)∥pB2p

)∥L(µ)−L(ν)∥pB2p
}.

Remark 7. Theorem 3.4 improves the statement of [37, Theorem 6.10] by replacing the
assumption p > 2 with p ≥ 1.

Corollary 3.5. For p ≥ 1, the derivative of the pre-Schwarzian derivative map L at the
origin satisfies ∥d0L(µ)∥B#

p
≤ C#

p ∥µ∥p for every µ ∈ Mp(H+).

Next, we link S and L by the canonical holomorphic map J : B∞(H) → A∞(H) defined
by Φ 7→ Φ′′ − (Φ′)2/2 for Φ ∈ B∞(H).

Lemma 3.6. For each p ≥ 1, every Φ ∈ B̂p(H) satisfies ∥J(Φ)∥Ap ≤ cp∥Φ∥B̂p
, where

cp > 0 is a constant depending on p and ∥Φ∥B̂p
. Moreover, J is holomorphic on B̂p(H)

with respect to ∥ · ∥B̂p
.
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Proof. We have

∥J(Φ)∥pAp
=

∫
H
|(Im z)2(Φ′′(z)− 1

2
Φ′(z)2)|p dxdy

|Im z|2

≤ 2p−1

∫
H
|(Im z)2Φ′′(z)|p dxdy

|Im z|2
+

1

2

∫
H
|(Im z)Φ′(z)|2p dxdy

|Im z|2

= 2p−1∥Φ∥p
B#
p
+ 1

2
∥Φ∥2pB2p

.

Since ∥Φ∥B2p ≍ ∥Φ∥B̂2p
≲ ∥Φ∥B̂p

by Propositions 2.2 and 2.3, this implies that ∥J(Φ)∥Ap ≤
cp∥Φ∥B̂p

for some cp > 0, and in particular, J is locally bounded. It is easy to see that

J : B̂p(H) → Ap(H) is Gâteaux holomorphic, and hence holomorphic by Proposition
3.2. □

We consider the holomorphic map J on the image L(Mp(H+)) of the pre-Schwarzian
derivative map. We note that J is injective on L(M(H+)). Since F µ is normalized by
fixing∞, it is determined by µ ∈ M(H+) up to post-composition by affine transformations
of C. Therefore, for µ, ν ∈ M(H+), SFµ = SF ν if and only if NFµ = NF ν . This shows the
injectivity of J on L(M(H+)), and hence on L(Mp(H+)).

The existence of a local holomorphic right inverse of the Schwarzian derivative map
S is a crucial fact for the holomorphy of J−1. The following claim has appeared in
[36, Theorem 4.1]. Its proof omits the argument of approximating a given Schwarzian
derivative by those extending holomorphically to the boundary; however, this part can
be verified by using [28, Proposition 3].

Proposition 3.7. Let S : Mp(H+) → Ap(H−) be the Schwarzian derivative map for
p ≥ 1. For each Ψ0 in S(Mp(H+)), there exists a neighborhood VΨ0 of Ψ0 in Ap(H−) and
a holomorphic map σ : VΨ0 → Mp(H+) such that S ◦ σ is the identity on VΨ0.

In addition, because the quasiconformal homeomorphism of H+ corresponding to Ψ ∈
VΨ0 can be explicitly represented by using a real-analytic quasiconformal reflection and
by solving the Schwarzian differential equation, it is a real-analytic diffeomorphism.

Proposition 3.8. For the local holomorphic right inverse σ : VΨ0 → Mp(H+) of S given
in Proposition 3.7, let µ = σ(Ψ) for any Ψ ∈ VΨ0. Then, the quasiconformal homeo-

morphism F̃ µ of H+ with F̃ µ(∞) = ∞ whose complex dilatation is µ is a real-analytic
diffeomorphism.

Proof. For Ψ0 ∈ Ap(H−), it is proved in [36, Lemma 4.3] that there exists ν ∈ Mp(H+)

such that S(ν) = Ψ0 and F̃ ν : H+ → Ω+ is a real-analytic bi-Lipschitz diffeomorphism
with respect to the hyperbolic metrics on H+ and its image domain Ω+ ⊂ C. Its conformal
extension is F ν : H− → Ω− = C \ Ω+. Then, the quasiconformal reflection r : Ω+ → Ω−

with respect to ∂Ω+ = ∂Ω− is defined by

r(ζ) = F ν
(
(F̃ ν)−1(ζ)

)
(ζ ∈ Ω+),
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which is a real-analytic bi-Lipschitz diffeomorphism.
For any Ψ ∈ VΨ0 , we consider the push-forward F ν

∗ (Ψ) by the conformal homeomor-
phism F ν : H− → Ω− and solve the differential equation 2w′′(z) + F ν

∗ (Ψ)(z)w(z) = 0 on
Ω−. Let w1 and w2 be linearly independent solutions so normalized that w1w

′
2−w2w

′
1 = 1.

Then, S(w1/w2) = F ν
∗ (Ψ) on Ω−, and the quasiconformal homeomorphism F̃ µ of H+

whose complex dilatation is µ = σ(Ψ) is given by the composition of F̃ ν : H+ → Ω+ with

w1(r(ζ)) + (ζ − r(ζ))w′
1(r(ζ))

w2(r(ζ)) + (ζ − r(ζ))w′
2(r(ζ))

,

which is a quasiconformal real-analytic diffeomorphism of Ω+. We can prove this by [28,

Lemma 4], together with its subsequent comment and remark. In particular, F̃ µ is a
real-analytic diffeomorphism of H+. □

Concerning a global right inverse of the Schwarzian derivative map S, the following
result is proved in [34, Theorem 1.4] in the case p > 1.

Proposition 3.9. For p > 1, there exists a real-analytic map Σ : S(Mp(H+)) → Mp(H+)
such that S ◦Σ is the identity on S(Mp(H+)). Moreover, every µ ∈ Mp(H+) in the image

of Σ induces a quasiconformal real-analytic diffeomorphism F̃ µ of H+.

We are ready to prove the desired claim.

Theorem 3.10. For p ≥ 1, the holomorphic map J : B̂p(H−) → Ap(H−) with J ◦ L = S
is a biholomorphic homeomorphism between L(Mp(H+)) and S(Mp(H+)).

Proof. Since J ◦L = S, the restriction J |L(Mp(H+)) of the holomorphic map J : Ap(H−) →
B̂p(H−) given in Lemma 3.6 sends L(Mp(H+)) into S(Mp(H+)) injectively. Conversely,
Proposition 3.7 shows that, for every Ψ0 ∈ S(Mp(H+)), there is a local holomorphic map
σ : VΨ0 → Mp(H+) such that S ◦ σ is the identity on VΨ0 ⊂ S(Mp(H+)). Then, J ◦ L ◦ σ
is the identity on VΨ0 , and hence L ◦ σ is a local holomorphic right inverse of J . This
implies that J is a biholomorphic homeomorphism of L(Mp(H+)) onto S(Mp(H+)). □

Corollary 3.11. For each Φ0 in L(Mp(H+)) with p ≥ 1, there exists a neighborhood UΦ0

of Φ0 in B̂p(H−) and a holomorphic map τ : UΦ0 → Mp(H+) such that L◦τ is the identity
on UΦ0.

Proof. Let Ψ0 = J(Φ0). We choose VΨ0 and σ : VΨ0 → Mp(H+) as in Proposition 3.7.
Then, UΦ0 = J−1(VΨ0) and τ = σ ◦ J possess the required properties. □

By Proposition 3.9, we also have that Σ ◦ J is a global real-analytic right inverse of the

pre-Schwarzian derivative map L : Mp(H+) → B̂p(H−) for p > 1.
As a by-product of the above arguments, we can also obtain a characterization of p-

integrable Beltrami coefficients in terms of the pre-Schwarzian and Schwarzian derivative
maps. This has been given in the case p = 2; see [27, Theorem 4.4]. We remark that the
reasoning of (3) ⇒ (1) in [37, Theorem 7.1] should be read as given below.
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Theorem 3.12. Let F : H− → C be a conformal map with F (∞) = ∞ that extends to
a quasiconformal homeomorphism of C. Then, the following conditions are equivalent for
every p ≥ 1:

(1) F extends quasiconformally to H+ so that its complex dilatation is in Mp(H+);

(2) logF ′ belongs to B̂p(H−);
(3) SF belongs to Ap(H−).

Proof. The implication (1) ⇒ (2) is obtained by Theorem 3.4, and (2) ⇒ (3) by Lemma
3.6. We may consider (3) ⇒ (1) on the unit disk because Schwarzian derivatives are
invariant under Möbius transformations. We have to show that SF ∈ Ap(D) implies that
F has the desired quasiconformal extension. However, the same proof as in [5, Theorem
2], relying on the local quasiconformal extension by Becker and Pommerenke [3, Satz 4],
applies for p ≥ 1. □

4. Fiber spaces in the unit disk model

Let S : Mp(D∗) → Ap(D) be the Schwarzian derivative map and L : Mp(D∗) → B̂p(D)
the pre-Schwarzian derivative map for p ≥ 1, defined in a similar way for D and D∗ = Ĉ\D.
Almost all statements in the previous section are also valid for these maps. The exception

occurs for the holomorphic map J : B̂p(D) → Ap(D) with J ◦ L = S. In fact, J maps
L(Mp(D∗)) onto S(Mp(D∗)) surjectively but not injectively. While the statements up to
Proposition 3.9 in the previous section can be translated directly to this case, Theorem
3.10 requires a modification regarding the injectivity of J : L(Mp(D∗)) → S(Mp(D∗)). We
will examine the structure of this map more closely.

First, we give the precise definition of the pre-Schwarzian derivative map L : M(D∗) →
B∞(D) in the present setting. We impose the following normalization on F µ. For µ ∈
M(D∗), let F µ be the conformal homeomorphism of D onto a bounded domain in C with
F µ(0) = 0 and (F µ)′(0) = 1 that extends to a quasiconformal self-homeomorphism of C
with complex dilatation µ on D∗. We assume F µ(∞) = ∞. This normalization uniquely
determines F µ by µ, and we use the same notation for its quasiconformal extension. Later,

its restriction to D∗ is denoted by F̃ µ to distinguish it from the conformal mapping on D.
Then the pre-Schwarzian derivative map L is defined by L(µ) = log(F µ)′, which belongs

to B∞(D). If µ ∈ Mp(D∗), then L(µ) ∈ B̂p(D).
The fact that J is not injective on L(Mp(D∗)) is seen from the following proposition,

which can be verified easily (see [21, Proposition 3.1]).

Proposition 4.1. (i) For µ, ν ∈ M(D∗), we have SFµ = SF ν if and only if F µ = W ◦ F ν

on D for some Möbius transformation W of Ĉ such that W ◦F ν(D) is a bounded domain in
C. Moreover, NFµ = NF ν if and only if F µ = W ◦F ν on D for some affine transformation
W of C. (ii) For any ν ∈ Mp(D∗) with p ≥ 1 and any Möbius transformation W such that
W ◦F ν(D) is a bounded domain, there exists some µ′ ∈ Mp(D∗) such that NW◦F ν = NFµ′ .
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Furthermore, the above variations of F ν by such Möbius transformations W with W ◦
F ν(D) bounded yield all Φ = log(W ◦ F ν)′ (Φ′ = NW◦F ν ) in B̂p(D) with J(Φ) = S(ν).
This is a special case of the more general result shown in [21, Lemma 3.3].

Proposition 4.2. The set of all holomorphic functions Φ = log(W ◦F µ)′ in B̂p(D), given
by Möbius transformations W of Ĉ and µ ∈ Mp(D∗), coincides with L(Mp(D∗)) for every
p ≥ 1.

Let Wa be a Möbius transformation that sends a ∈ F̃ ν(D∗) to ∞. Here and in the

sequel, F̃ ν stands for the quasiconformal extension of F ν to D∗. Since Wa ◦F ν is uniquely

determined by ν ∈ Mp(D∗) and a ∈ F̃ ν(D∗) up to post-composition by affine transforma-

tions of C, we can define a map L̃(ν, a) = log(Wa ◦ F ν)′ ∈ L(Mp(D∗)) on the fiber space
over Mp(D∗) given as a domain in the product manifold

M̃p(D∗) = {(ν, a) ∈ Mp(D∗)× Ĉ | a ∈ F̃ ν(D∗)}.

We note that L̃(ν,∞) = L(ν).
The arguments and results in the rest of this section are applied also to different kinds

of Teichmüller spaces (see [20, 21]).

Lemma 4.3. L̃ : M̃p(D∗) → L(Mp(D∗)) is holomorphic.

Proof. Let Φ0 = L̃(ν,∞) = log(F ν)′ and Φ = L̃(ν, a) = log(Wa ◦ F ν)′. Then a simple
computation yields

Φ′(z) = NWa◦F ν (z) = NWa ◦ F ν(z) · (F ν)′(z) +NF ν (z) =
−2(F ν)′(z)

F ν(z)− a
+ Φ′

0(z);

Φ′′(z) =
2(F ν)′(z)2

(F ν(z)− a)2
− 2(F ν)′′(z)

F ν(z)− a
+ Φ′′

0(z).

When a = ∞, these read as Φ′(z) = Φ′
0(z) and Φ′′(z) = Φ′′

0(z). We may assume a ̸= ∞.

Since a ∈ F̃ ν(D∗), the denominator F ν(z) − a with z ∈ D is bounded below by the
distance d(a, ∂F ν(D)), which is bounded away from 0 uniformly in z and locally uniformly
in a. Hence, it suffices to estimate the norms of ((F ν)′)2 and (F ν)′′ for ∥Φ − Φ0∥B̂p

≍
∥Φ− Φ0∥B#

p
+ ∥Φ− Φ0∥B∞ (see Remark 4).

First, we consider the B#
p -norm:

∥Φ− Φ0∥pB#
p
≲

∫
D
|(1− |z|2)2(F ν)′(z)2|p dxdy

(1− |z|2)2
+

∫
D
|(1− |z|2)2(F ν)′′(z)|p dxdy

(1− |z|2)2
.

The first term is estimated by∫
D
|(1− |z|2)2(F ν)′(z)2|p dxdy

(1− |z|2)2
=

∫
F ν(D)

δ(ζ)2p−2dξdη ≲ (diam(F ν(D)))2p, (19)
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where δ is the inverse of half the hyperbolic density in F ν(D), that is, δ(F ν(z)) = (1 −
|z|2)|(F ν)′(z)|. We note that δ(ζ) is comparable to the distance d(ζ, ∂F ν(D)) from ζ to
the boundary ∂F ν(D). For the second term, we apply the Cauchy–Schwarz inequality:∫

D
|(1− |z|2)2(F ν)′′(z)|p dxdy

(1− |z|2)2

=

∫
D

∣∣∣(1− |z|2)(F
ν)′′(z)

(F ν)′(z)

∣∣∣p · |(1− |z|2)(F ν)′(z)|p dxdy

(1− |z|2)2

≤
(∫

D
|(1− |z|2)NF ν (z)|2p dxdy

(1− |z|2)2
)1/2(∫

D
|(1− |z|2)(F ν)′(z)|2p dxdy

(1− |z|2)2
)1/2

≲
(
∥Φ0∥B2p diam(F ν(D))

)p

.

Here, we have applied (4) in the last line.
Next, we consider the B∞-norm dominated by B2p-norm by Proposition 2.1 (i):

∥Φ− Φ0∥B∞ ≲ ∥Φ− Φ0∥B2p

≲
(∫

D
|(1− |z|2)(F ν)′(z)|2p dxdy

(1− |z|2)2
)1/(2p)

≲ diam(F ν(D)),

where (4) is used again.

By the above computations, we see that ∥L̃(ν, a)∥B̂p
is bounded by a constant deter-

mined in terms of d(a, ∂F ν(D)), ∥L(ν)∥B̂p
, ∥L(ν)∥B2p , and diam(F ν(D)). For a given

(ν0, a0) ∈ M̃p(D∗), all these quantities vary within a bounded range when ν ∈ Mp(D∗)

and a ∈ F̃ ν0(D∗) move slightly from (ν0, a0). This shows that L̃ is locally bounded.

Under this local boundedness condition, if L̃ is Gâteaux holomorphic, then it is holo-
morphic by Proposition 3.2. As shown in [35, Lemma 6.1], the Gâteaux holomorphy of

L̃ follows from the condition that for each fixed z ∈ D, L̃(ν, a)(z) = log(Wa ◦ F ν)′(z) is
Gâteaux holomorphic as a complex-valued function. By the holomorphic dependence of
quasiconformal mappings on the Beltrami coefficients (see [1, V. Theorem 5]), this can be

verified. Thus, L̃ is holomorphic on M̃p(D∗). □

Now we state the replacement of Theorem 3.10 as follows.

Theorem 4.4. J : L(Mp(D∗)) → S(Mp(D∗)) is a holomorphic split submersion for p ≥ 1.

Proof. For any Φ ∈ L(Mp(D∗)), let Ψ0 = J(Φ) ∈ S(Mp(D∗)). Then there exists a
neighborhood VΨ0 of Ψ0 in S(Mp(D∗)) and a holomorphic map σ : VΨ0 → Mp(D∗) such
that S◦σ is the identity on VΨ0 , as in the case of H in Proposition 3.7. Let Φ0 = L◦σ(Ψ0),
which may be different from Φ. Since Φ0 can be represented as log(F σ(Ψ0))′, we have Φ =

log(Wa ◦ F σ(Ψ0))′ for some a ∈ F̃ σ(Ψ0)(D∗) by Proposition 4.1. Namely, Φ = L̃(σ(Ψ0), a).

Fix this a and define a map L̃(σ(·), a) : VΨ0 → L(Mp(D∗)) after shrinking VΨ0 if

necessary. By Lemma 4.3, this is a holomorphic map on VΨ0 . Since J ◦ L̃(σ(Ψ), a) = Ψ
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for every Ψ ∈ VΨ0 , the map L̃(σ(·), a) is a local holomorphic right inverse of J such that

L̃(σ(VΨ0), a) passes through the given point Φ = L̃(σ(Ψ0), a). This is equivalent to saying
that J is a holomorphic split submersion. □

The Bers fiber space T̃p over S(Mp(D∗)) is defined as

T̃p = {(Ψ, a) ∈ S(Mp(D∗))× Ĉ | Ψ = S(ν), a ∈ F̃ ν(D∗), ν ∈ Mp(D∗)}.
Theorem 5.1 in the next section identifies S(Mp(D∗)) with the Teichmüller space Tp.

We note that the quasidisk F̃ ν(D∗) is determined by Ψ independently of the choice of

ν ∈ Mp(D∗) with S(ν) = Ψ. We define a map λ : T̃p → L(Mp(D∗)) by λ(Ψ, a) = L̃(ν, a)
for S(ν) = Ψ. This is well defined independently of the choice of ν.

Note that the condition a ∈ F̃ ν(D∗) is equivalent to requiring that Wa◦F ν maps D onto
a bounded domain in C, and that a = ∞ if and only if Wa is an affine transformation of
C. Hence, by Proposition 4.1, λ is bijective. In fact, λ is bijective on each fiber. That is,

for each Ψ ∈ S(Mp(D∗)) with S(ν) = Ψ, λ(Ψ, ·) maps F̃ ν(D∗) bijectively onto J−1(Ψ) ⊂
L(Mp(D∗)). Here, J−1(Ψ) is a 1-dimensional complex submanifold of L(Mp(D∗)) since J
is a holomorphic split submersion by Theorem 4.4.

Lemma 4.5. λ : T̃p → L(Mp(D∗)) is a biholomorphic homeomorphism.

Proof. Choose any Ψ0 ∈ S(Mp(D∗)), and take VΨ0 and σ as in the proof of Theorem 4.4.
The restriction of λ to the domain

ṼΨ0 = {(Ψ, a) ∈ VΨ0 × Ĉ | a ∈ F̃ σ(Ψ)(D∗)} ⊂ T̃p

is explicitly represented as λσ(Ψ, a) = L̃(σ(Ψ), a). Then λσ is holomorphic on ṼΨ0 by
Lemma 4.3, and thus λ is a holomorphic bijection.

Moreover, for each fixed Ψ ∈ VΨ0 , the domain F̃ σ(Ψ)(D∗) of complex dimension 1
is mapped by λσ(Ψ, ·) holomorphically and bijectively onto the complex submanifold
J−1(Ψ) ⊂ L(Mp(D∗)). Hence, λσ(Ψ, ·) is a biholomorphic homeomorphism. It follows
from this fiberwise property that λ−1 is holomorphic, and thus λ is biholomorphic. □

The structure of the space L(Mp(D∗)) over S(Mp(D∗)) can be described precisely as
follows.

Theorem 4.6. L(Mp(D∗)) is a real-analytic disk bundle over S(Mp(D∗)) with projection
J .

Proof. We have seen that λσ(Ψ, a) = L̃(σ(Ψ), a) = log(Wa ◦ F σ(Ψ))′ is a biholomorphic

homeomorphism of ṼΨ0 ⊂ T̃p. Using this, we provide the structure of a disk bundle over
S(Mp(D∗)) for L(Mp(D∗)). For every Ψ0 ∈ S(Mp(D∗)), define

ℓσ : VΨ0 × D∗ → J−1(VΨ0) ⊂ L(Mp(D∗))

by ℓσ(Ψ, ζ) = λσ(Ψ, F̃ σ(Ψ)(ζ)). By Proposition 4.1, ℓσ is a bijection satisfying J◦ℓσ(Ψ, ζ) =

Ψ. Moreover, ℓσ is a real-analytic diffeomorphism since λσ is biholomorphic and F̃ σ(Ψ) is
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real-analytic by Proposition 3.8. Hence, ℓσ gives a local trivialization for the projection
J : L(Mp(D∗)) → S(Mp(D∗)). This implies that L(Mp(D∗)) possesses the structure of a
fiber bundle described in the statement. □

A global section of the bundle projection J can be obtained by using the global real-
analytic right inverse Σ of the Schwarzian derivative map S : Mp(D∗) → S(Mp(D∗)) for
p > 1, which is given in Proposition 3.9 for the case of H. Replacing the local right inverse
σ in the proofs of Theorems 4.4 and 4.6 with this Σ, we define a bi-real-analytic map

ℓΣ : S(Mp(D∗))× D∗ → L(Mp(D∗))

by ℓΣ(Ψ, ζ) = L̃(Σ(Ψ), F̃Σ(Ψ)(ζ)). Then, in the real-analytic category, the total space
L(Mp(D∗)) has the product structure, and the bundle becomes trivial.

Corollary 4.7. Let p > 1. Each ζ ∈ D∗ defines a global real-analytic section

ℓΣ(·, ζ) : S(Mp(D∗)) → L(Mp(D∗))

for the holomorphic bundle projection J : L(Mp(D∗)) → S(Mp(D∗)). Moreover, the total
space L(Mp(D∗)) is real-analytically equivalent to S(Mp(D∗)) × D∗ under ℓΣ, with J ◦
ℓΣ(Ψ, ζ) = Ψ.

Finally, we mention the characterization of Mp(D∗) in terms of B̂p(D) and Ap(D). The
difference in J from the case of H does not affect other statements for the disk model
substantially, and the result parallel to Theorem 3.12 can be stated as follows.

Corollary 4.8 (to Theorem 3.12). Let F : D → C be a conformal map onto a bounded
domain that extends to a quasiconformal homeomorphism of the extended complex plane

Ĉ. Then, the following conditions are equivalent for every p ≥ 1:

(1) F extends quasiconformally to D∗ so that its complex dilatation is in Mp(D∗);

(2) logF ′ belongs to B̂p(D);
(3) SF belongs to Ap(D).

We note that the equivalence of (1) and (3) follows from that in Theorem 3.12 by the
Möbius invariance of the Schwarzian derivative. However, despite the isomorphic relation

between B̂p(H) and B̂p(D) as in Theorem 2.5, the equivalence involving (2) does not follow
directly from Theorem 3.12. By preparing the disk versions of Theorem 3.4 and Lemma
3.6, we must repeat the same arguments as in Theorem 3.12 to obtain Corollary 4.8.

5. Structures of integrable Teichmüller spaces

The universal Teichmüller space T is the set of all normalized quasisymmetric homeo-
morphisms h : R → R that extend to quasiconformal homeomorphisms H(µ) : H → H
with complex dilatations µ ∈ M(H). Via the correspondence from Beltrami coefficients
µ to quasisymmetric homeomorphisms h through H(µ), we obtain a map π : M(H) → T ,
called the Teichmüller projection. When π(µ) = π(ν), we say that µ and ν are Teich-
müller equivalent. An element h(µ) = H(µ)|R of T can be represented by the Teichmüller
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equivalence class [µ] for µ ∈ M(H). We refer to [14, Chapter 3] for the basis of the
universal Teichmüller space.

Let F µ denote the normalized conformal homeomorphism of H− that extends quasi-
conformally to C with complex dilatation µ on H+, for µ ∈ M(H+). The Schwarzian
derivative map S : M(H+) → A∞(H−), where A∞(H−) is the Banach space of all holo-
morphic functions Ψ on H− with norm

∥Ψ∥A∞ = sup
z∈H−

|Im z|2|Ψ(z)| < ∞,

is defined by the correspondence µ 7→ SFµ , and the pre-Schwarzian derivative map L :
M(H+) → B∞(H−) by the correspondence µ 7→ log(F µ)′. It is well known that both S
and L are holomorphic split submersions onto their images with respect to the norm ∥·∥∞
of M(H+).
For µ and ν in M(H+), we have π(µ) = π(ν) if and only if F µ|H− = F ν |H− . This

induces well-defined injections α : T → A∞(H−) with α ◦ π = S, and β : T → B∞(H−)
with β ◦ π = L. We call α the Bers embedding and β the pre-Bers embedding. Then,
it follows from the property of split submersion that both α and β are homeomorphisms
onto their images.

For p ≥ 1, the p-integrable Teichmüller space Tp is defined by Tp = π(Mp(H)). The
topology on Tp is the quotient topology induced by π from that on Mp(H) with norm
∥ · ∥p+∥ · ∥∞. Under this stronger topology, the holomorphy of S : Mp(H) → Ap(H−) and

L : Mp(H) → B̂p(H−) claimed by Proposition 3.1 and Theorem 3.4 is still valid because

Ap(H−) ⊂ A∞(H−) and B̂p(H−) ⊂ B∞(H−) and the inclusions are continuous. Since
Tp ⊂ T , α and β are also defined on Tp by the restriction of these maps. The complex
Banach structure on Tp is induced by these embeddings α and β. Indeed, Proposition 3.7,
Theorem 3.10, Corollary 3.11, and Theorem 3.12 imply the following.

Theorem 5.1. Let p ≥ 1. The Bers embedding α is a homeomorphism onto the open set
α(Tp) = S(Mp(H+)) in Ap(H−). The pre-Bers embedding β is a homeomorphism onto

the open set β(Tp) = L(Mp(H+)) in B̂p(H−). These sets are given by

α(Tp) = α(T ) ∩ Ap(H−), β(Tp) = β(T ) ∩ B̂p(H−).

The topological embeddings α and β endow Tp with complex Banach structures that are
biholomorphically equivalent.

Remark 8. Using Mp(D∗) and Ap(D), the Bers embedding α is defined in the same way
and has the same properties as above. However, the pre-Bers embedding β cannot be
defined in this setting, because the analogue of Theorem 3.10 fails with respect to the
injectivity of J .

Next, we consider the metric structure of Tp. In the universal Teichmüller space T , the
Teichmüller distance is defined using the L∞-norm of Beltrami coefficients: the distance
from the origin to [µ] ∈ T is the infimum of log

(
(1 + ∥µ∥∞)/(1 − ∥µ∥∞)

)
taken over

all Beltrami coefficients µ in the Teichmüller equivalence class [µ], and this is extended
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to every point of T by right translations. We can provide a similar distance for Tp; in
particular, its underlying topological structure is defined in [36] as follows.

Definition 4. A sequence [µn] in Tp for p ≥ 1 converges to [ν] ∈ Tp if

inf {∥µn ∗ ν−1∥p | µn ∈ [µn], ν ∈ [ν]} → 0 (n → ∞),

where µ ∗ ν−1 denotes the complex dilatation of the quasiconformal self-homeomorphism
H(µ) ◦H(ν)−1 of H. We call this the Teichmüller topology.

We first show the following.

Proposition 5.2. For p ≥ 1, the Teichmüller topology Op on Tp coincides with the
quotient topology Qp,∞ induced from Mp(H) with norm ∥ · ∥p + ∥ · ∥∞.

Proof. To see that the quotient topology Qp,∞ is stronger than Op, we show that π :
Mp(H+) → (Tp,Op) is continuous. For each [ν] ∈ Tp, there is a representative ν ∈ Mp(H+)
such that F ν is a bi-Lipschitz self-diffeomorphism of H+ by [36, Lemma 3.4], and for such
ν the convergences ∥µn − ν∥p → 0 and ∥µn ∗ ν−1∥p → 0 as n → ∞ are equivalent by [36,
Lemma 3.1]. Hence, the projection π is continuous.

To see that Op is stronger than Qp,∞, we show that the identity map ι : (Tp,Op) →
(Tp,Qp,∞) is continuous. The fact that α : (Tp,Op) → Ap(H−) is continuous can be veri-
fied by an analogues argument of [29, I, Lemma 2.9] with the bi-Lipschitz representative
as above. Since α(Tp) ⊂ Ap(H−) is homeomorphic to (Tp,Qp,∞) by Theorem 5.1, the
identity map ι is continuous. □

Remark 9. In [36], a different Teichmüller topology Op,∞ is used, defined by replacing
∥µn ∗ ν−1∥p with ∥µn ∗ ν−1∥p + ∥µn ∗ ν−1∥∞ in the above definition. Obviously, Op,∞
is stronger than Op. However, since the continuity of π : Mp(H+) → (Tp,Op,∞) can be
proved in the same way, the two topologies coincide.

We now mention the topological group structure of Tp. The Teichmüller space Tp (as
well as T ) carries a group structure under the composition of quasisymmetric homeomor-
phisms. For h(µ) = π(µ) and h(ν) = π(ν) in Tp, the Teichmüller equivalence class of the
composition h(µ) ◦h(ν) is denoted by [µ] ∗ [ν], and the inverse h(µ)−1 by [µ]−1. For every
[ν] ∈ Tp, the right translation r[ν] : Tp → Tp is defined by [µ] 7→ [µ] ∗ [ν].
The following topological-group property is proved in [29, Theorem I.3.8] and [37, The-

orem 6.1]. The biholomorphic property is shown in [36, Section 4].

Proposition 5.3. For p ≥ 1, Tp is a topological group. Moreover, every right translation
r[ν] is a biholomorphic automorphism of Tp.

The Weil–Petersson metric on T2 is studied in [5] and [29]. This metric was generalized
to Tp for p ≥ 2 in [17]. In fact, the same definition also works for p ≥ 1. The p-Weil–
Petersson metric on the tangent bundle of Tp is easily defined by embedding Tp into Ap(H)
via the Bers embedding α and assuming that the tangent space T[ν](Tp) of Tp

∼= α(Tp) at
any point [ν] ∈ Tp is Ap(H). Then, at the origin of α(Tp), the norm of a tangent vector v
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in T[0](Tp) ∼= Ap(H) is defined to be ∥v∥Ap (or the norm of the adjoint operator v∗ acting
on Aq(H) for 1/p + 1/q = 1); see [16, Section 6.5]. For an arbitrary point [ν] ∈ Tp with
α([ν]) = Ψ, consider the conjugate of the right translation r−1

[ν] by α. Then α ◦ r−1
[ν] ◦α−1 is

a biholomorphic automorphism of α(Tp) sending Ψ to 0. The norm of a tangent vector v
in T[ν](Tp) ∼= Ap(H) is defined to be ∥dΨ(α◦r−1

[ν] ◦α−1)(v)∥Ap . This yields a Finsler metric

on the tangent bundle of Tp in a broad sense. From the definition, the p-Weil–Petersson
metric is invariant under the right translations of Tp. The distance induced by this metric
is called the p-Weil–Petersson distance, which dominates the Teichmüller topology on Tp.
We can also introduce a different invariant Finsler metric using the pre-Bers embedding

β : Tp → B̂p(H).

Definition 5. For any tangent vector u ∈ T[ν](Tp) ∼= B̂p(H) at [ν] ∈ Tp with β([ν]) = Φ
for p ≥ 1, the p-pre-Weil–Petersson metric is the Finsler metric on the tangent bundle of

Tp modeled on B̂p(H) given by ∥dΦ(β ◦ r−1
[ν] ◦ β−1)(u)∥B̂p

.

Theorem 5.4. The integrable Teichmüller space Tp for p ≥ 1 is complete with respect to
the p-pre-Weil–Petersson distance. Moreover, the p-pre-Weil–Petersson metric is contin-
uous on the tangent bundle of Tp and invariant under the right translations of Tp.

Proof. The proof can be reproduced by mimicking that for the Weil–Petersson metric in
[5, Theorem 5] and [17, Section 8]. The only gap for the pre-Bers embedding case is the
analogue of the Ahlfors–Weill section for the Schwarzian derivative map. However, this
is successfully filled by the following claim obtained in [10, Theorem 5.1] via the theory
of chordal Loewner chains on the half-plane. Alternatively for the latter statement, since
J : β(Tp) → α(Tp) is biholomorphic by Theorem 3.10, the results for the Bers embedding
transfer directly to the present case. □

Lemma 5.5. If Φ ∈ B∞(H−) satisfies ∥Φ∥B∞ < 1
2
, then µ(z) = −2 Im(z)|Φ′(z̄)| for

z ∈ H+ belongs to M(H+) and satisfies β([µ]) = Φ.

6. Relationship with Teichmüller spaces of diffeomorphisms

In this section, we study the relationship between the integrable Teichmüller spaces
Tp (p ≥ 1) and the Teichmüller spaces T γ (0 < γ ≤ 1) of orientation-preserving self-
diffeomorphisms of R and S, scaled by the regularity of their derivatives. Since T γ can
be characterized by the decay order of the supremum norm of Beltrami coefficients µ
(see [18], [19], [31], and [32]), we use this characterization of T γ. Moreover, because the
degeneration of the norm toward R and S leads to a discrepancy between the Teichmüller
spaces modeled on H and on D, we restrict attention here to the disk model.

For 0 < γ ≤ 1, the space Mγ(D∗) of γ-decay Beltrami coefficients consists of all
µ ∈ M(D∗) such that

ess sup
z∈D∗

((|z|2 − 1)−γ ∨ 1)|µ(z)| < ∞.

Then the Teichmüller space T γ of circle diffeomorphisms h : S → S whose derivatives h′

are γ-Hölder continuous turns out to be π(Mγ(D∗)). For 0 < γ < 1, this is revealed in [18,
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Theorems 1.1, 6.7], summarizing existing results. When γ = 1, the corresponding circle
diffeomorphisms h have continuous derivatives h′ satisfying the Zygmund condition:

|h′(ei(θ+t))− 2h′(eiθ) + h′(ei(θ−t))| = O(t) (t → 0).

The correspondence with M1(D∗) is shown in [31, Theorem 1.1].
For the image of Mγ(D∗) under the pre-Schwarzian derivative map L, we introduce the

space Bγ(D) of γ-decay Bloch functions Φ ∈ B∞(D) satisfying

sup
z∈D

(1− |z|2)2−γ|Φ′′(z)| < ∞.

When 0 < γ < 1, this is equivalent to supz∈D(1 − |z|2)1−γ|Φ′(z)| < ∞. As before, L is
defined by L(µ) = log(F µ)′ on D, where F µ is the normalized conformal homeomorphism
of D onto a bounded domain that extends quasiconformally to C with complex dilatation
µ on D∗.

It is proved in [18, Theorem 4.6] and [31, Theorem 1.1] that L(Mγ(D∗)) ⊂ Bγ(D).
Moreover,

L(Mγ(D∗)) = L(M(D∗)) ∩ Bγ(D), (20)

and, in particular, there exists a neighborhood of the origin in Bγ(D) contained in
L(Mγ(D∗)). This is the unique component in Bγ(D) arising from pre-Schwarzian de-
rivative maps with different normalizations of F µ; that is, the analogue of Proposition 4.2
holds. See [31, Theorem 1.3] and [32, Theorem 1.1].

A basic relation between T γ and Tp is as follows.

Proposition 6.1. If γp > 1, then T γ ⊂ Tp. In particular, T 1 ⊂ Tp for all p > 1.

Proof. This follows from the inclusion Mγ(D∗) ⊂ Mp(D∗) when γp > 1, which is verified
by a direct estimate. □

Thus, for γp > 1 we have the inclusion diagram

T 1 ⊂ T γ ⊂ · · · ⊂ lim
γ↘0

T γ (decay order)

∩ ∩
T1 ⊂ Tp ⊂ · · · ⊂ lim

p↗∞
Tp (integrability).

We focus on the relation between T 1 and T1. It is shown in [2] that every quasisymmetric
homeomorphism in the 1-integrable Teichmüller space T1 is a C

1-diffeomorphism of S onto
itself with nonvanishing derivative. One might expect T 1 ⊂ T1, but this is not the case.

Theorem 6.2. There is no inclusion relation between T 1 and T1.

Proof. It is shown in [13, p.17] that B1(D) and B#
1 (D) are incomparable. More explicitly,

Φ1(z) = a
∑∞

n=0 2
−nz2

n
belongs to B1(D) \ B#

1 (D), while Φ1(z) = a(1− z)(log 1/(1− z))2

belongs to B#
1 (D) \ B1(D) for any constant a ∈ C. In Remark 3, we observed that

B#
1 (D) = B̂1(D).
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For the pre-Schwarzian derivative map L defined on M1(D∗), we have

L(M1(D∗)) = L(M(D∗)) ∩ B̂1(D),

which follows from Corollary 4.8. Combining this with (6), we see that by choosing a > 0
sufficiently small, both Φ1 and Φ1 lie in L(M(D∗)) and satisfy

Φ1 ∈ L(M1(D∗)) \ L(M1(D∗)), Φ1 ∈ L(M1(D∗)) \ L(M1(D∗)).

Applying J : L(M(D∗)) → S(M(D∗)), which is not injective, we claim that

J(Φ1) ∈ S(M1(D∗)) \ S(M1(D∗)), J(Φ1) ∈ S(M1(D∗)) \ S(M1(D∗)). (21)

These two conditions yield the theorem, because S(M1(D∗)) is identified with T 1 via the
Bers embedding α : T 1 → S(M1(D∗)) by [19, Theorem 3], while S(M1(D∗)) is identified
with T1 by Theorem 5.1 and Remark 8.

It remains to prove (6). Set Φ1 = log(F µ)′ with µ ∈ M1(D∗) and J(Φ1) = S(µ).
Suppose, toward a contradiction, that J(Φ1) ∈ S(M1(D∗)). Then there exists ν ∈ M1(D∗)

such that S(ν) = S(µ). Proposition 4.1 (i) yields a Möbius transformation W of Ĉ such
that Φ1 = log(W ◦F ν)′ and W ◦F ν(D) is bounded, and then (ii) implies Φ1 ∈ L(M1(D∗)).
However, this contradicts Φ1 /∈ L(M1(D∗)). Thus J(Φ1) /∈ S(M1(D∗)), proving the first
inclusion in (6). The second follows by the same argument. □
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Mat. Iberoam. 36 (2020), 1333–1374.

[19] K. Matsuzaki, The complex structure of the Teichmüller space of circle diffeomorphisms in the
Zygmund smooth class, J. Math. Anal. Appl. 540 (2024), 128593.

[20] K. Matsuzaki, The complex structure of the Teichmüller space of circle diffeomorphisms in the
Zygmund smooth class II, J. Math. Anal. Appl. 555 (2026), 130035.

[21] K. Matsuzaki, A fiber bundle over BMO Teichmüller space, Proc. Amer. Math. Soc. Ser. B 12 (2025).
[22] V.V. Peller, Hankel operators of class Sp and their applications (rational approximation, Gaussian

processes, the problem of majarizing operators), Math. USSR-Sbornik 41 (1982), 443–479.
[23] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992.
[24] D. Sarason, Function Theory on the Unit Circle, Notes for lectures at Virginia Polytechnic Institute

and State University, 1978.
[25] Y. Shen, Weil–Petersson Teichmüller space, Amer. J. Math. 140 (2018), 1041–1074.
[26] Y. Shen, VMO-Teichmüller space on the real line, Ann. Fenn. Math. 47 (2022), 57–82.
[27] Y. Shen, S. Tang and L. Wu, Weil–Petersson and little Teichmüller spaces on the real line, Ann.

Acad. Sci. Fenn. Math. 43 (2018), 935–943.
[28] T. Sugawa, A remark on the Ahlfors–Lehto univalence criterion, Ann. Acad. Sci. Fenn. Math. 27

(2002), 151–161.
[29] L. Takhtajan and L.P. Teo, Weil–Petersson metric on the universal Teichmüller space, Mem. Amer.

Math. Soc. 183 (861), 2006.
[30] S. Tang and Y. Shen, Integrable Teichmüller space, J. Math. Anal. Appl. 465 (2018), 658–672.
[31] S. Tang and P. Wu, Teichmüller space of circle diffeomorphisms with Zygmund smooth, J. Math.

Anal. Appl. 498 (2021), 124975.
[32] S. Tang and P. Wu, On Teichmüller space of circle diffeomorphisms with Hölder continuous derivative,
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