ANALYTIC BESOV FUNCTIONS, PRE-SCHWARZIAN DERIVATIVES,
AND INTEGRABLE TEICHMULLER SPACES

KATSUHIKO MATSUZAKI AND HUAYING WEI

ABSTRACT. We study the embedding of integrable Teichmiiller spaces T}, into analytic
Besov spaces via pre-Schwarzian derivatives. In contrast to the Bers embedding by
Schwarzian derivatives, a significant difference arises between the cases p > 1 and p = 1.
In this paper we focus on the case p = 1 and extend previous results obtained for
p > 1. This provides a unified framework for the complex-analytic theory of integrable
Teichmiiller spaces T}, for all p > 1.

1. INTRODUCTION

The integrable Teichmiiller space has been extensively studied as a subspace of the
universal Teichmiiller space that carries the Weil-Petersson metric and parametrizes the
family of Weil-Petersson curves. Bishop’s recent characterization of Weil-Petersson curves
[4] is closely related to this theory from the complex-analytic viewpoint. Wang [33] defined
a Dirichlet energy arising from the Loewner ODE that generates SLE and showed that
the finiteness of this energy forces the evolving arcs to be Weil-Petersson. Moreover, this
Dirichlet energy coincides with the universal Liouville action on the integrable Teichmiil-
ler space, which serves as a Kahler potential for the Weil-Petersson metric.

The integrable Teichmiiller space Ty was introduced by Cui [5], and its Hilbert man-
ifold structure and Weil-Petersson geometry were subsequently developed by Takhtajan
and Teo [29]; foundational complex-analytic aspects were established by Shen [25]. This
space is the quotient of My(HT), the space of square-integrable Beltrami coefficients on
H* (where H* denote the upper/lower half-planes), by Teichmiiller equivalence, and is
embedded homeomorphically into the Hilbert space A(H™) by the Bers embedding. We
recall the definitions of these spaces and mappings below in the case p = 2. The Weil-
Petersson metric is induced either from the inner product on Ay (H™) or equivalently from

the pairing
—— dx dy
| ey
H+

|Im 2|2
for harmonic representatives u, v € My(HT) of tangent vectors of T, at the origin.
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For a parameter p > 1, the p-integrable Teichmdiiller space T}, is modeled on p-integrable
Beltrami coefficients on the half-plane. Explicitly, we set

dx dy \1/p

M0 = {pe € M) |l = ([ 1n(P 220 < oo}
where M(H') = {u € Loo(H") | ||ullo < 1} is the space of Beltrami coefficients, and
define T, = {[u] | n € M,(H")} as the set of Teichmiiller equivalence classes, which is
included in the universal Teichmiiller space T' = {[u] | p € M(H™')} (see Section 5). The
original theory concentrated on p = 2, was extended to p > 2 by Guo [11], Tang and
Shen [30], and further to p > 1 by Wei and Matsuzaki [34]. In addition, it was proved
in [36, 37] that the Bers embedding « : T, — A,(H"), defined by a([u]) = Spu« via the
Schwarzian derivative of the normalized conformal homeomorphism F* : H™ — C with
quasiconformal extension to the plane of dilatation p € M,(H™), is a homeomorphism
onto its image for all p > 1. Hence T, inherits a natural complex structure modeled on
the Banach space

1
A7) = {@ e Hol(e) [ally, = ([ m2peep )" < o),
r - |Im 2|2
where Hol(H™) denotes the holomorphic functions on H™.

This paper develops a unified embedding theory for integrable Teichmiiller spaces via
the logarithm of derivative log(F*)" and the pre-Schwarzian derivative Np. = (log(F*")"),
including the endpoint p = 1. For the universal Teichmiiller space T', this model is
intensively studied by Zhuravlev [40] on the unit disk D. The target on the function side
of T}, is the analytic Besov space on H™: for p > 1,

B,(H") = {cp € Hol(H™) | ||@||s, = (/ ((Im 2) /()7 22D )1/p 3 OO}’

H- [T 22

while for p > 1 we also set

BF(H™) = {cp € Hol(H") | |||z = (/H (Im 2)2 & ()| L2 >1/p 3 OO}‘

|Im 2|2

Then we define
B,(H™) = B#(H~) N BMOA(H")

with norm [|®|z = HQJHB# + ||®|lBmoa, where BMOA(H™) is the Banach space of holo-
morphic functions ¢ on H~ that are given by the Poisson integral of BMO functions on
the real line R. BMOA can also be characterized by Carleson measures (see Section 2).

Since By (H™) collapses to constants, the appropriate target for the pre-Schwarzian at
p = 1is By(H"). Moreover, for p > 1, the norms | @[5, and ||®||z are equivalent. We
also recall the Besov spaces defined on D and prove that the Cayley transformation yields
a Banach space isomorphism between B\p(H*) and gp(]D)) (Theorem 2.5).

Section 3 studies the pre-Schwarzian derivative map L : M,(H") — EP(H_) given by
L(p) =log(F*). A direct adaptation of the Schwarzian argument shows the holomorphy
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of L under certain constraints on p; to remove these constraints, we exploit the Schwarzian
derivative map S : M,(H*) — A,(H™), S(1) = Spu, together with sharp norm estimates
(Theorem 3.4). Using the existence of a local holomorphic right inverse to S, we prove
that the canonical holomorphic map J : L(M,(H")) — S(M,(H")), J(¥) = ¥ — 1(¥')?,
is in fact biholomorphic (Theorem 3.10). Consequently, the three spaces M,(H™), gp(H_),
and A,(H™) are uniformly linked for all p > 1 in a manner that extends earlier results
(Theorem 3.12).

In Section 4 we revisit these results on D and the exterior unit disk D*. Although the
Cayley transformation identifies B,(H ™) with B,(ID) as Banach spaces, the canonical map
J : L(M,(D*)) — S(M,(D*)) fails to be injective in this model. A modified statement
shows that J is a holomorphic split submersion (Theorem 4.4). We analyze the fiber
structure of L(M,(D*)) over S(M,(D*)), proving that L(M,(D*)) is a real-analytic disk
bundle (Theorem 4.6); for p > 1, a global real-analytic section identifies it with the
product S(M,(D*)) x D* (Corollary 4.7).

Section 5 discusses the complex Banach manifold structure, the topological group struc-
ture, and the Weil-Petersson metric on T}, for p > 1. In parallel with the Bers embedding
a: T, — A,(H") via S, we introduce the pre-Bers embedding 8 : T, — B,(H™) via L,
and prove that o and f induce biholomorphically equivalent complex structures (Theorem
5.1). Moreover, since the Weil-Petersson metric can be regarded as an invariant metric
obtained by right translation of the norm on «(7},), an analogous construction on 5(7},)
yields an alternative Weil-Petersson metric with similar properties (Theorem 5.4).

Finally, Section 6 compares 7, (p > 1) with the Teichmiiller space 77 (0 < v <
1) of circle diffeomorphisms whose derivatives are Hélder—Zygmund continuous. These
are defined by Beltrami coefficients on D* satisfying |u(2)] = O((|]z] — 1)7) as |z]| — 1,
corresponding to orientation-preserving circle diffeomorphisms h with &’ € C7 (for v = 1,
R’ is continuous and satisfies the Zygmund condition). While T* C T, for every p > 1 and
every h € Ty is known to be a C'-diffeomorphism, there is no inclusion relation between
T' and T; (Theorem 6.2).

Acknowledgements. The authors thank the referees for their careful reading of the
manuscript and for their valuable comments, which helped improve the clarity of this
work.

2. ANALYTIC BESOV FUNCTIONS

We denote by H either the upper or the lower half-plane. When necessary, we write
H* for the upper half-plane and H~ for the lower half-plane.

As a generalization of analytic Dirichlet functions (the case p = 2), we introduce the
following classes of holomorphic functions on H, which we call analytic Besov functions;
see [39, Chapter 5], where these functions are defined on D. As mentioned below, the semi-
norm || - ||, in the following definition is conformally invariant. However, the treatment
of || -l p¢ 1s more delicate.
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Definition 1. For p > 1, define the seminorm

p drdy \V
21, = ( [ 10m2) ¥ £22%) "

\ImzP

for holomorphic functions ® on H. The set of all such ® with ||®|[z, < oo is denoted by
B,(H). Moreover, for p > 1, define the seminorm

" dx dy \1/r
@l = ( [ 10m 27 &) %)

|Im 2|2
The set of all such ¢ with HCDHB# < 00 is denoted by B (H).

Remark 1. If one applies the seminorm || - ||, with p = 1, then only constant functions
O satisfy || Pz, < oo; see [39, p. 132].

A holomorphic function ® on H is called a Bloch function if the seminorm satisfies

|®||5. = Su]ll?l |(Im 2) ®'(2)| < 0.
ze

The set of all Bloch functions on H is denoted by B.(H). Moreover, @ is called a
BMOA function if [Im z| |®'(2)|? dz dy is a Carleson measure on H. In general, a (possibly

infinite) measure m on H is said to be a Carleson measure if sup; g m(I)/|I| < co, where

the supremum is taken over all bounded intervals I C R and I C H denotes the Carleson
box (the square in H) above I. Accordingly, the BMOA seminorm of ® is defined by

d:vd 1/2
1B]lsnon = sup|]|/|lmz Ok

ICR |Imz|

This definition of BMOA is equivalent to requiring that ® be holomorphic and given by
the Poisson integral of a BMO function on R. On the unit disk D, the corresponding
equivalence is well known (see [9, Theorem 6.5]); on the half-plane H, it also holds (see
8, p. 262]). The set of all BMOA functions on H is denoted by BMOA (H).

We next compare the above seminorms. For convenience, we include proofs of the
standard estimates.

Proposition 2.1. (i) For 1 < p < g < oo, there exists a constant c,, > 0 such that
@B, < cpgll®llB,. (ii) There ewists a constant ¢ > 0 such that ||®|/z, < c||®|Bmoa-
(iii) For p > 1, there exists a constant ¢, > 0 such that ||®||pmoa < ¢, [|®|5, -
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Proof. (i) For z € H, let A(z, |Im z|/2) C H be the disk centered at z with radius |Im z|/2.
By the integral mean inequality for holomorphic functions and the Holder inequality;,

4
Im 2)®' (2 §—/ Q' (w)| du dv
mawe < e [ )

4 I 2\1-1/p 1/p
< (Wl m 2] ) (/ |® (w)|P dudv)
7|Im 2| 4 A(z,Im z|/2)
4N\1/p 1/p
- <—) |1mz\1—2/p(/ 19 (w)[? du dv) . (1)
m Az |lm 2]/2)

The last line is bounded by

4\ 1/p B or—2 dudv \1/p 2
(2" 1 2/p<m/ ()@ () PPN < 2,
m |Tm 2| A(z|Im 2[/2) Tm w| Vs

whence | @[], < ¢poo |P|l5, With ¢, = ¢p00 = 2/ YT

For p < ¢ < o0, we have

/<|(Imz)<b’(z)|>q dx dy < /(|(Imz)<b’(z)|>l’ dx dy
A (4 [T z[2 = Jg\ (|95, [Tm 2>’
e Bl /1915, < ], /I8l 1t follows that

|®]|5, < (||<I>||Bp )p/q _ (l)p/Q<cp||<I>||Bp>p/q - <i>p/qcp||cl>||3p
1®lls — MPllsn Cp 1®lls /7~ e/ [19]ss

P
Hence ||®||s, < ¢y | ®[|5, with ¢, = ¢ /7.
(ii) This is sketched in [24, p. 92]; see also 9, Corollary 5.2]. From (2) with p = 2,

, 2 , 9 1/2
(Im 2)3'(2)] < ﬁ</( ) dudv)

: : oo 1/2
< —( ] [# () dudv)
V7 \2[Im 2| I2(z,|Im 2|)

where I?(z,|Im z|) denotes the Carleson box square centered at z above the interval of
length 2|Im 2| on R. Taking the supremum over z € H yields ||®||5. < ¢||®|smoa with

c=4/\T.

(iii) Suppose that p > 2. For any bounded interval I C R, the Holder inequality gives
1
|7| [|Imw\]®’(w)]2dudv

| | /| (Imw)® p_dudv /p. (/|Imw|P/(p—2) dudy )1_2/p
I 7

|Imw|2 |Tm w|?

1-2/ 2/
1—- p /|(Imw)<1>'(w)|p dudv ) g
p H

|Im w|?
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Taking the supremum over I yields [|®|smoa < ¢, ||®]|s, with ¢, = (1 — %)1/2_1/1). For
1 < p < 2, combine this with (i). O

Arguing as in (i) above with the definition ||®||z# = sup,gq [(Im 2)?®"(2)] yields:

Proposition 2.2. For 1 < p < g < oo, there exists a constant ¢,, > 0 such that
HCDHB# < Cpyg ”(I)HBf'

Definition 2. For 1 < p < o0, set
[/, = [©]55 + |@llmrion-

The collection of ® with [|®||z < oo is denoted by gp(H); equivalently,
B,(H) = B (H) N BMOA (H).

Hereafter, to suppress multiplicative constants, we use the notation A(r) < B(1) to
mean that there exists C' > 0 such that A(7) < C B(7) uniformly in the relevant parameter
7; we write A(7) < B(7) when both A(7) < B(7) and A(7) 2 B(r) hold.

By Proposition 2.2, we have [[®]|z < [|®[|z, for 1 <p <q.

Proposition 2.3. Let 1 < p < co. Then ||<I>HB# S || @], for @ € B,(H). Conversely,
|®lls, S HQJHB# + [|®||5,. for ® € B¥(H) N Bso(H). Hence, the seminorms ||®| s, and
|@l|g, are equivalent.

Proof. For the first inequality, we adapt the proof of [27, Lemma 3.3]. By the Cauchy
integral formula,

Iy [ <] e 910

(—z|=y/4 |C - Z|2 y I¢— Z|< /4
for z = x + iy € H'. Moreover,
16
()P < — @' (w)|P du dv
Ty? lw—¢|<y/4
for w = u + iv. Hence
3y/2 m+y/2
AP Syt [ @ )Pdude < / | dude
|lw—z|<y/2 xz—y/2

With the change of variables (u,v) — (£,1) by u = x + y§ and v = yn, the right-hand

side becomes
3/2
/ / (z 4+ y& +iyn)|P d€ dn.
~1/2
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Using the inequality of this form, we estimate ||®||;# as
p

1915 = [ 477219 () dady

3/2 p1/2
/ / ( / YR (2 4 yE + iyn)lpdfcdy> dédn.
—1/2 NJH

Again with the change of variables (x,y) — (u,v) by u = x + y& and v = yn, the last
integral turns out to be

3/2 1/2 dud 3/2 d
[ L LG w2y = ([ 58 [ oot < ol
1/2 n 12 NP H i

Thus, H<I>||B# S || @], is verified.
For the converse, [15, Lemma 3.2] essentially gives

1215, S 11®llgz + 1974w

where ||®”|| 4., is defined later in (3) and satisfies ||®”|| 4., =< ||®||5.. by [26, Lemma 6.3].
This yields the stated bound. 0

Remark 2. In the second statement, for p > 2 one even has [[®|[5, < [[®[lz for ® €
B (H) N Boo(H). Indeed, from &'(z + iy) = —i fyo O (x + it) dt + D' (x + iyo) and letting
Yo — 00, we obtain
Q' (z +iy) = —i/ Q" (z +it) dt (2)
Yy

for z +1iy € H' since limy, o, ®'(z +iyo) = 0 when ® € B (H). Forp >2and 1 < ¢ < 2
with 1/p+ 1/q = 1, this gives

© dt \Vay [ 1/p
el < ([ o) ([ e nra)”
Y Yy

PP S [ et
Y
and integrating over H and exchanging the order of integrals yield ||®||5, < H<I>||B#.

hence

Identifying functions that differ by a constant, we may regard B,(H) and gp(H) as
normed spaces with norms || - ||z, and || - [|5 , respectively; under these norms they are
complex Banach spaces. R

For the unit disk D, define B,(ID), B (D), BMOA(D), and B,(ID) analogously by replac-
ing the hyperbolic density 1/|Im z| on H with 2/(1—|z|*) on D. Let K(2) = (2 —1i)/(2+1)
be the Cayley transformation, which maps H* conformally onto D with K (i) = 0 (and
K(z) = (=2 —1i)/(—z + i) maps H~ onto D with K(—i) = 0). For a function ® on H],
write K,(®) = ® o K~! for the push-forward to D. Then K, is an isometric isomorphism
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from B,(H) onto B,(D) for p > 1 (including p = o00), by conformal invariance. For the

spaces B,(H) and gp(]D)), which involve ®” the situation is subtler.

To show that K, gives a Banach isomorphism between BAP(H) and gp(]D), we prepare
the following lemma. For a holomorphic function ® on H*, the seminorm defined by its
derivative in the Hardy space H; is

oo

@l =sup [ (8w + iy)] da, ®)
y>0

—0o0

and write H%(H) for the corresponding space. Similarly, for a holomorphic function ®,
on D, set
1 2m )
@l = sup o [ (@l (re?)] o, (W
0<r<1 4T Jo

and denote the space by H!(DD).

Lemma 2.4. (i) Every ® € Buo(H) satisfies |[®|5 < HCIDHB#. (ii) Ewvery holomorphic
function ®, on D satisfies || Pz < C(||(I>*||B# + [|®.||B..) for some absolute constant
¢ >0.

Proof. (i) From (2),
/ @' (z + 1y)| do < / / \@"(x+it)]dtdm§/ |D”(2)| dx dy,
—00 —oo Jy H

and taking the supremum over y > 0 gives the claim.
(i) Likewise, @/, (re) = [T ®(te’) dt + @, (ee) for 0 < e < r < 1. Hence

1 2 ) 1 2m T ]
— P (re’)| do < — P!/ (te')| dt df P,
5w | 1< 5o [ [ eieen] s+ =19 s,
1 2
< — ||, —— 1P« 8o
<+
which implies the claim with C' = ming,«1 max{ﬁ, %} O

We can now establish the expected correspondence between gp(H) and gp(]D). An idea
for its proof is in [22, Section 9].

Theorem 2.5. The push-forward K. by the Cayley transformation is a Banach isomor-
phism from B,(H) onto B,(D) for p > 1.

Proof. First, by conformal invariance, ||K.(®)|smoa =< ||P||Bmoa: BMO functions on R
and S correspond under the Cayley transformation (see [8, Corollary. VI.1.3]), and BMOA
functions are holomorphic functions obtained by the Poisson integral of those functions.
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We estimate the B#—seminorms. Let &, = K,(®) = ® o K~!. Changing variables
¢ = K(z) gives

/H (I )2 @(2) P22 % (5)

|Im 2|2

dx dy

|Im 2|2

- /H |(Im 2)* (@} 0 K (2) - K'(2)* + @, 0 K(2) - K"(2))

D— 1 - |C|2 2 " p 4d§ dT]
<27 [ [() 20l 7557

o [ g (LIt
+2 1/‘ * O (=) Toir

Note that 1 — [¢|* < 2|1 —(|.
Suppose @, € B,(D). For p > 1, (2) yields

], < 2@, + 27|, .

Because .|/, = HCD*HB;? + [PL0)] S [P, (see [38, p. 327]), we obtain |||z <
|K.(®)]|l5,- When p =1, the second integral in (2) becomes

/ @, Qdf d" (6)

By Lemma 2.4, ®, € H}(ID). Moreover, dm* = 2d¢ dn/|1 — (| is a Carleson measure on
D. This can be verified by straightforward computation; indeed, it suffices to show that
for a disk A(1,r) with center at 1 and radius r > 0,

L
r A(L,r) |1_C‘ N

Here, we apply the Carleson embedding theorem (see [7, Theorem 9.3|, [8, Theorem
11.3.9]). This in particular implies that for any holomorphic function ¥ in the Hardy space
7—[1( ) with norm || - ||, and for any Carleson measure dm* on ID, there exists a constant
¢ > 0 depending only on dm* such that [ [¥(¢)|dm*(¢) < ¢/||¥ls,. Thus, integral (2) is
bounded by ||®. HH% Plugging this estimate into inequality (2) and using Lemma 2.4,
we obtain that

121157 < KDl + IEAP) g S N1E (D),

This yields [|®[/z, < [|K.(®)]|5,-
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Conversely, assume ¢ € B,(H »(H). Likewise to the above computation, we have

1—|C|2 [P 4dEdn
[ e

1-1¢?)?
g2p—1/Hy(Imz)2q>"( ié T2 + 2P~ 1/H|(Imz><1>’(z>\p(

dx dy
where Im z < |z +i|. For p > 1, (2) implies
K@), <22, + 2 o,

21rnz>P dz dy
|z + |

(7)

|Tm 2|2’

and with Proposition 2.3 we get [|[K.(®)|z < [|®[lz. When p = 1, the second integral

on the right of (2) equals
2dx dy
' : 8
e 0

Since ® € H!(H) by Lemma 2.4 and dm = 2dx dy/|z + i| is a Carleson measure on H,
the Carleson embedding theorem implies that (2) is bounded by ¢”[|®|[;1 where ¢ > 0

depends only on dm. Using Lemma 2.4 again for this, we obtain from (2) that

(@)l 5z < @Ml + I Plly < (14 P52, (9)
which implies || K.(®)[/ < |||z, O
We conclude the section with equivalent norms for || - ||z on Bi(H) and B,(D).

Proposition 2.6. (i) On By(D) the norm [®.]|5, is equivalent to Hq)*HBf& +||D.||,, and
to ||¢)*||B# + [Pl (i) On Bi(H) the norm |®]|5, is equivalent to ||<I>||B# +[|®||5, and
to [|@] g + (@l

Proof. (i) By using the facts that ||<I>*||Bz¢ S Hq)*”zsf for any p > 1 (which is the same as
Proposition 2.2) and [®,(0)] < [|®.]|;1, we obtain

19 [lBmoa S s, < 1Pl + [PLON S sl gg + ([Pl (10)

Hence [|D. ||z, < [|Pullg# + [[Pullz2- The bound ||| g# + [|Pul5. S [|Pull5, is immediate.
1 1 1 1
Finally, H<I>*HB# +Pullin S HCID*HB# + ||, 5., follows from Lemma 2.4.
(ii) Transfer the estimate for ®, = K,(®) on D back to ® on H. From (2), || K.(P) “B?& <

HCIDHB#. Moreover, |[Ky(®)[lz1 < [|®ll;:- Indeed, the line integral along the horizontal

line in (2) is transfered by K to the line integral along a horocycle in D tangent at 1,
which dominates the integral along the circle in (2); see the argument in [7, Section 11.1].

Thus, by (2),
[PllBmoa = [«(®)llsymoa S (@)l g + [1K(P) 1y < 12l 55 + 19151

which implies ||®[[z < ||| s T |®]|31- The remaining implications are as in (i), again
using Lemma 2.4. 0
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Remark 3. Proposition 2.6 implies in particular that

B, (H) = BY (H) N Boo(H) = B} (H) N #} (B,
and in fact BY (H) ¢ Boo(H) and BY (H) ¢ Hi(H). By contrast, B} (D) C B (D) since
every function in B (D) is bounded (see [39, Theorem 5.19]), hence B (D) ¢ #!(D) by
Lemma 2.4. Consequently, B (D) = B,(D) by Proposition 2.6.

Remark 4. In defining B,(H) we included the BMOA seminorm ||®|gyoa, but one could
equally well use [|®[|,, or ||®|;;. The specific choice is not essential; our goals are twofold:
(1) to ensure that the seminorm on EP(H) annihilates only constants, and (2) to preserve
the Banach isomorphism between B,(H) and B,(D) under the Cayley transformation.

3. THE PRE-SCHWARZIAN DERIVATIVE MAP

We consider the properties of conformal mappings induced by integrable Beltrami co-
efficients. A measurable function p on H with |||l < 1 is called a Beltrami coefficient.
The set of all Beltrami coefficients on H is denoted by M (H), which is the open unit ball
of Lo (H) with the supremum norm ||]so-

Definition 3. For p > 1, the space of p-integrable Beltrami coefficients is defined by

My(E0) = {pn € M| Il = ([ o de) " < oo

We equip M, (H) with the norm ||g||, + ||1t]]0c-

For p € M,(H"), we denote by F* the normalized conformal homeomorphism of H~
that extends quasiconformally to C with complex dilatation x on Ht. The normalization
is given by fixing the three points 0, 1, and co. For a conformal homeomorphism F' :
H~ — C, the pre-Schwarzian derivative Nrp and the Schwarzian derivative Sz are defined
by

Np = (logF')'; Sp=(Np) — 5(Np)>.
For the conformal homeomorphism F* of H™ with p € M(H"), let L(u) = log(F*)" and
S(u) = Spu. We call the maps L and S on M (H™) the pre-Schwarzian and the Schwarzian
derivative maps.

For p > 1, we define the norm

210, = ([ lam2p ep )™ (11)

[Im 2|2

for holomorphic functions ® on H. For p = oo, we set ||| 4, = sup,cp |(Im2)? P(2)].
The set of all such ® with ||®[|4, < oo is denoted by A,(H), which is a complex Banach
space with this norm.

The Schwarzian derivative map S on M, (H™) has been thoroughly studied. In addition,
we obtain the following result; see [36, Lemma 3.2]. Remark 5 below outlines the proof
of the first statement.
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Proposition 3.1. For p > 1, there exists a constant ép > 0 such that the Schwarzian
derivative map S satisfies ||S(p)||a, < Cullplly for every p € M,(H"). Moreover, S :

M,(H") — A,(H™) is holomorphic.

We note that the holomorphy of S follows from its local boundedness in this situation.
Since this result will be used repeatedly later, we state it in a more general form. Let
X and Y be complex Banach spaces and let W C X be a domain. Amap J: W — Y
is called Gateauz holomorphic if, for any w € W and x € X, the function J(w + (z) is
holomorphic in ¢ € C into Y in some neighborhood of the origin. The following result is
known (see [6, Theorem 14.9]).

Proposition 3.2. If J: W — Y is locally bounded and Gateaux holomorphic, then J is
holomorphic.

Moreover, when Y is a complex Banach space of holomorphic functions, the Gateaux
holomorphy can be verified in several ways; see [14, Lemma V.5.1] and [35, Lemma 6.1].

We prove the same claim for the pre-Schwarzian derivative map L. First, we show it
under a special assumption on p. This is mentioned without proof in the proof of [37,
Theorem 6.10].

Lemma 3.3. For p > 2, there exists a constant C, > 0 depending only on p such that the
pre-Schwarzian derivative map L satisfies ||L(p)||s, < Cpllpllp for every p € My(H™).

Proof. We first represent the directional derivative d,L(v) of L at p € M,(H") in the
direction of a tangent vector v. Let Q* = F(H") and Q= = F(H™) for the quasiconformal
extension I’ of F* to C, and let p; and p_ denote their hyperbolic densities. For the
normalized Riemann mapping G : Ht — Q% associated with F', the push-forward of the
Beltrami coefficient v on H™ by G is defined by
(G a
(G
As in the case of the Schwarzian derivative map (see [12, Lemma 5| and [29, Theorem
1.2.3]), we see that

G.(v)(w) = V(G (w)) (we Q).

LOEOE O =2 [ E e o

Here, d,L'(v) stands for the derivative of the holomorphic function d,L(v) in B,(H™).
We estimate the norm of d,,L(v):

4,001, = [ 10 ) L) Pt

= [ LW E O e

Y 1L S i

, dzdy (13)
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Then, applying the Holder inequality to the absolute value of the inner integral, we obtain

’/Q+ %dudv)p = (/Q+ lw — C\iqdudvy/q (/Q+ %dl‘dv> (14)

for 1/p+ 1/q = 1. Here, we note the following inequalities for the hyperbolic densities
(see [14, p.6]):

1

Then, by virtue of the condition ¢ < 2, the first integral is bounded as follows:

1 1
/ —4_dUdU < / i dUdU
o+ Jw— (] lw—C|>d(¢,09-) |w ¢|

/ /d(CBQ )7”

- <
2—qd(C,39 )21 T 2—¢q

In the same way, we also have

1
|| mggeein < dmpt (w). (16)

The substitution of the above inequalities (3), (3), and (3) into (3) yields

a5, < (2)( 28_7Tq p/q/ /m |w CI4 GWWIF o) (2*7(C) /9> ()l

U =
J,

- d€dn) |G (v) (w) dudy
X A p’ (w)|Ga(v)(w) [Pdudy

16 \»
16 \»
2—q

§<2—_q)
<(3-,)

16 \» dxdy 16 \»
— p____ 7 _ - p
in(52) [ gt = (=) o (17)

For p € M,(H"), let L,(t) = L(tp) for t € [0,1]. By the fundamental theorem of
calculus, we have

L(p) = L(1) — L,,(0) :/0 %(t)dt,

Ly (4

where o

(t) = dy, L(pe). Inequality (3) proved above shows that
e ()|l < Cllpelly
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for all ¢ € [0, 1], where C,, > 0 is the constant depending only on p. Hence,

I, = [ ([ S ) @ 1y

0

1 p
< [ (] ko) e) i) P2y
H- 0
1
< [ ([t )Pl alrdndy) e = | L)
s

which is bounded also by CP||pul[?. O

Remark 5. In the case of the Schwarzian derivative map S : M,(H") — A,(H"), a
similar argument can be applied. This has been done in Theorem 2.3 and Lemma 2.9 of
29, Chapter I]. The corresponding formula to (3) is

BSOEHOEY( =2 [ CO S (cea),

and (3) with the density p> **(¢) turns out to be
G.(v)(w) P oo 1 r/a |G (V) (w)[? 2-2
‘/QJr (w—Q)* dudv‘ p-e) s </Q+ lw — {]4dudv) (/gﬁ lw — ¢|* dudv) p= 10

< (47T)p/q /m —|ﬁ:ﬁyj(§2|pdudv

by using (3). This holds without any condition on p > 1. In the case p = 1, the usual

modification is applied for ¢ = co. The other parts of the proof are the same. This gives
the first statement of Proposition 3.1.

We remove the condition p > 2 in the statement of Lemma 3.3 and show the required
result in full generality with the aid of properties of the Schwarzian derivative map S.
Theorem 3.4. For p > 1, the pre-Schwarzian derivative map L satisfies ||L(u)||8# <
CHlullp for every p € Mp/(\HJF), where C# > 0 is a constant depending on p and ||p||,.
Moreover, L : M,(H") — B,(H™) is holomorphic.

Proof. For any pu € M,(H"), let F' = F*. Then, using Sp = (Nr)" —

LG = [ lam =P ey P

|Im z|2

_ dxdy 1 dxdy
< or—1 I 2 p — I N T
<2 [ PSP+ 5 [ maNe P

< 2SI, + SIZWIE,. (18)

T(Np)?, we have
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We first assume p > 1. By Proposition 3.1, Lemma 3.3, and ||x]l2, < ||]lp, inequality
(3) implies that

ILGoNs < 27 Collullp)? + 3(Copllellzp) ™
< 27U G + Oy Il el

This yields ”L(M)Hﬁf < C¥||pllp for p > 1, where C# > 0 is a constant depending also

on |[p][p-
In the case p = 1, we apply (3) again to have

L) g < IS ()l + 1L,
By using [|p]]2 < ||gel|1, this implies that

1L g < Cullplly + (Collplh)?

Hence, we can also find C{* > 0 depending on ||u); such that ||L(u)||z# < C7|lue|li. This
completes the proof of the first statement of the theorem. '

For the second statement, we note that L : M(H") — B, (H™) satisfies ||L(u)||5, <
3||ielloo (see [10, Proposition 5.3]). Then, combined with the first statement and Remark
4, this yields that

1L llg, = L) llgg + LGl < max{CF, 3}l ellp + 12l s0)

for every p > 1. Hence, L : M,(H") — B\p(H*) is in particular locally bounded. Under
this condition, the standard argument implies that L is in fact holomorphic in virtue of
Proposition 3.2. 0

Remark 6. The continuity of L : M,(H") — EP(H_) can be proved directly as in [25,
Theorem 2.4] and [30, Theorem 2.4|, from which holomorphy also follows. Indeed, for any
w, v € M,(H), the same argument as above gives

1E() = L)l < 277 IS () = SO, + (LG5, + 120 L) = L) 5, }-

Remark 7. Theorem 3.4 improves the statement of [37, Theorem 6.10] by replacing the
assumption p > 2 with p > 1.

Corollary 3.5. For p > 1, the derivative of the pre-Schwarzian derivative map L at the
origin satisfies ||d0L(u)HBz¢ < C#|\ullp for every p € M,(H").

Next, we link S and L by the canonical holomorphic map J : By (H) — A (H) defined
by ® — @ — (®)?/2 for ® € B, (H).
Lemma 3.6. For each p > 1, every ® € gp(H) satisfies || J(®)[.4, < [Pz, where

¢p > 0 is a constant depending on p and ||®||z . Moreover, J is holomorphic on gp(H)
with respect to || - ||z, -
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Proof. We have

dxdy
_ 2 2
@)1, = [ Jm @) = 0PI
_ dxdy dxdy
<2p 1 I Qq)// I 2p
<2 [ |Imzpae) w5 [ 1 P

= 277|121, 2H<I>HB2,,

Since ||®||5,, < ||(I>||g2p < [|@]|5, by Propositions 2.2 and 2.3, this implies that [|J(®)([, <
¢||®||5, for some ¢, > 0, and in particular, J is locally bounded. It is easy to see that

J gp(H) — A,(H) is Gateaux holomorphic, and hence holomorphic by Proposition
3.2. 0

We consider the holomorphic map J on the image L(M,(H")) of the pre-Schwarzian
derivative map. We note that J is injective on L(M(H")). Since F* is normalized by
fixing oo, it is determined by p € M (H™) up to post-composition by affine transformations
of C. Therefore, for p,v € M(H"), Spx = Spv if and only if Npw = Npv. This shows the
injectivity of J on L(M(H")), and hence on L(M,(H")).

The existence of a local holomorphic right inverse of the Schwarzian derivative map
S is a crucial fact for the holomorphy of J~!. The following claim has appeared in
[36, Theorem 4.1]. Tts proof omits the argument of approximating a given Schwarzian
derivative by those extending holomorphically to the boundary; however, this part can
be verified by using [28, Proposition 3].

Proposition 3.7. Let S : M,(H") — A,(H") be the Schwarzian derivative map for
p > 1. For each Yy in S(M,(H™)), there exists a neighborhood Vi, of Vo in A,(H™) and
a holomorphic map o : Vi, — M,(HT) such that S o o is the identity on Vy,.

In addition, because the quasiconformal homeomorphism of H* corresponding to ¥ €
Vi, can be explicitly represented by using a real-analytic quasiconformal reflection and
by solving the Schwarzian differential equation, it is a real-analytic diffeomorphism.

Proposition 3.8. For the local holomorphic right inverse o : Vg, — M,(HY) of S given
in Proposition 3.7, let p = o(V) for any W € Vy,. Then, the quasiconformal homeo-
morphism jal of H* with ]*NW(OO) = oo whose complex dilatation is p s a real-analytic
diffeomorphism.

Proof. For ¥, € A,(H"), it is proved in [36, Lemma 4.3] that there exists v € M,(H")
such that S(v) = Uy and F¥ : HT — QF is a real-analytic bi-Lipschitz diffeomorphism
with respect to the hyperbolic metrics on H and its image domain Q* C C. Its conformal

extension is F” : H™ — Q= = C\ QF. Then, the quasiconformal reflection r : QF — Q-
with respect to 9Q+ = 9Q~ is defined by

Q) = F((F)(0) (e,
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which is a real-analytic bi-Lipschitz diffeomorphism.

For any ¥ € Vy,, we consider the push-forward F}(¥) by the conformal homeomor-
phism F” : H- — Q~ and solve the differential equation 2w”(z) + FY(¥)(2)w(z) = 0 on
Q7. Let wy and wy be linearly independent solutions so normalized that w;wh —wow] = 1.
Then, S(wy/wy) = F¥(¥) on Q~, and the quasiconformal homeomorphism F* of H*
whose complex dilatation is u = o(¥) is given by the composition of FY . H* — QF with

wi(r(¢)) + (¢ = r(Q)wi(r(Q))
w2 (r(€)) + (¢ = (Q)wa(r (<))
which is a quasiconformal real-analytic diffeomorphism of Q*. We can prove this be 28,

Lemma 4], together with its subsequent comment and remark. In particular, F* is a
real-analytic diffeomorphism of H™. 0

Concerning a global right inverse of the Schwarzian derivative map .S, the following
result is proved in [34, Theorem 1.4] in the case p > 1.

Proposition 3.9. For p > 1, there exists a real-analytic map ¥ : S(M,(HT)) — M,(HT)
such that S oX is the identity on S(M,(H™)). Moreover, every p € M,(H") in the image

of ¥ induces a quasiconformal real-analytic diffeomorphism F* of HT.
We are ready to prove the desired claim.

Theorem 3.10. For p > 1, the holomorphic map J : BAp(]HI_) — A,(H™) with JoL =S
is a biholomorphic homeomorphism between L(M,(H")) and S(M,(H™)).

Proof. Since Jo L = S, the restriction J|r(az, @+ of the holomorphic map J : A,(H™) —

B,(H~) given in Lemma 3.6 sends L(M,(H™)) into S(M,(H™)) injectively. Conversely,
Proposition 3.7 shows that, for every ¥, € S(M,(H")), there is a local holomorphic map
o : Vg, = M,(H") such that S o o is the identity on Vg, C S(M,(HT)). Then, JoLoo
is the identity on Vy,, and hence L o o is a local holomorphic right inverse of .J. This
implies that .J is a biholomorphic homeomorphism of L(M,(H")) onto S(M,(HT)). O

Corollary 3.11. For each ®q in L(M,(H")) with p > 1, there exists a neighborhood Usg,
of @y in B,(H™) and a holomorphic map 7 : Ug, — M,(H™) such that LoT is the identity
on Ug,.

Proof. Let Ug = J(®g). We choose Vg, and o : Vg, — M,(H") as in Proposition 3.7.
Then, Uy, = J ' (Vg,) and 7 = o o J possess the required properties. 0

By Proposition 3.9, we also have that X o J is a global real-analytic right inverse of the
pre-Schwarzian derivative map L : M,(H*) — B,(H™) for p > 1.

As a by-product of the above arguments, we can also obtain a characterization of p-
integrable Beltrami coefficients in terms of the pre-Schwarzian and Schwarzian derivative
maps. This has been given in the case p = 2; see [27, Theorem 4.4]. We remark that the
reasoning of (3) = (1) in [37, Theorem 7.1] should be read as given below.
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Theorem 3.12. Let F': H™ — C be a conformal map with F(co) = oo that extends to
a quasiconformal homeomorphism of C. Then, the following conditions are equivalent for
every p > 1:

(1) F extends quasiconformally to HY so that its complex dilatation is in M,(H");
(2) log F" belongs to B,(H™);
(3) Sk belongs to A,(H™).

Proof. The implication (1) = (2) is obtained by Theorem 3.4, and (2) = (3) by Lemma
3.6. We may consider (3) = (1) on the unit disk because Schwarzian derivatives are
invariant under Mobius transformations. We have to show that Sp € A,(ID) implies that
F has the desired quasiconformal extension. However, the same proof as in [5, Theorem
2], relying on the local quasiconformal extension by Becker and Pommerenke [3, Satz 4],
applies for p > 1. O

4. FIBER SPACES IN THE UNIT DISK MODEL

Let S : M,(D*) — A,(D) be the Schwarzian derivative map and L : M,(D*) — gp(]D))
the pre-Schwarzian derivative map for p > 1, defined in a similar way for D and D* = @\E
Almost all statements in the previous section are also valid for these maps. The exception
occurs for the holomorphic map J : gp(D) — A,(D) with Jo L = S. In fact, J maps
L(M,(D*)) onto S(M,(D*)) surjectively but not injectively. While the statements up to
Proposition 3.9 in the previous section can be translated directly to this case, Theorem
3.10 requires a modification regarding the injectivity of J : L(M,(D*)) — S(M,(D*)). We
will examine the structure of this map more closely.

First, we give the precise definition of the pre-Schwarzian derivative map L : M (D*) —
B (D) in the present setting. We impose the following normalization on F*. For p €
M(D*), let F* be the conformal homeomorphism of I onto a bounded domain in C with
Fr(0) = 0 and (F*)'(0) = 1 that extends to a quasiconformal self-homeomorphism of C
with complex dilatation p on D*. We assume F*(o0) = oo. This normalization uniquely
determines F'* by , and we use the same notation for its quasiconformal extension. Later,
its restriction to D* is denoted by F* to distinguish it from the conformal mapping on D.
Then the pre-Schwarzian derivative map L is defined by L(u) = log(F*)’, which belongs
to Buoo(ID). If yu € M,(D*), then L(y) € B, (D).

The fact that J is not injective on L(M,(ID*)) is seen from the following proposition,
which can be verified easily (see [21, Proposition 3.1]).

Proposition 4.1. (i) For p,v € M(D*), we have Spu = Spv if and only if F* = W o F¥
on D for some Mobius transformation W of@ such that Wo F¥(D) is a bounded domain in
C. Moreover, Npn = Npv if and only if F* = W o F¥ on D for some affine transformation
W of C. (ii) For any v € M,(D*) with p > 1 and any Mdébius transformation W such that
Wo F¥(D) is a bounded domain, there exists some p' € M,(D*) such that Nyopv = Np .
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Furthermore, the above variations of F* by such Mobius transformations W with W o
F”(D) bounded yield all ® = log(W o F¥) (® = Nwopv) in B,(D) with J(®) = S(v).
This is a special case of the more general result shown in [21, Lemma 3.3].

Proposition 4.2. The set of all holomorphic functions ® = log(W o F*)" in gp(ﬂ)), given

by Mébius transformations W of C and pu € M,(D*), coincides with L(M,(D*)) for every
p=>1

Let W, be a Mébius transformation that sends a € F ¥(D*) to co. Here and in the
sequel, F" stands for the quasiconformal extension of F to D*. Since W, o F is uniquely
determined by v € M,(D*) and a € F”(ID*) up to post-composition by affine transforma-

tions of C, we can define a map L(v,a) = log(W, o F*) € L(M,(D*)) on the fiber space
over M,(D*) given as a domain in the product manifold

M,(D*) = {(v,a) € M,(D*) x C | a € F*(D")}.

We note that L(v, 00) = L(v).
The arguments and results in the rest of this section are applied also to different kinds
of Teichmiiller spaces (see [20, 21]).

Lemma 4.3. L : ]\Ajp(ID)*) — L(M,(D*)) is holomorphic.

Proof. Let ®y = L(v,00) = log(F”) and ® = L(v,a) = log(W, o F*). Then a simple
computation yields
—2(Fv)
¥'(2) = Niore(2) = Nig, 0 F*(2) - (F")'(2) + Npu(2) = % + %2

2(£7)(2)* 2(7)"(2)
(F¥(z) —a)?  FY(z)—a
When a = oo, these read as ®'(z) = @4(2) and ®"(2) = ®((z). We may assume a # oo.
Since a € F”(D*), the denominator F¥(z) — a with z € D is bounded below by the

distance d(a, 0F" (D)), which is bounded away from 0 uniformly in z and locally uniformly
in a. Hence, it suffices to estimate the norms of ((F¥)')* and (F")” for ||® — Dol|g, =

1P — <I>0HB;§¢ +||® — Pg||s., (see Remark 4).

First, we consider the Bjf-norm:

Q" (z) = + ®p(2).

dxdy dxdy

| — %Hfﬁ §/D|(1 - \z|2)2(FV)/(z)2\P /| (1= |z (F")" (2 )|”( BWTITE

The first term is estimated by

10—yt = [ s e < ). (1)
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where ¢ is the inverse of half the hyperbolic density in F* (D), that is, 6(F”(2)) = (1 —
12]?)](F”)(2)]. We note that 6(¢) is comparable to the distance d(¢,0F"(D)) from ( to
the boundary 0F”(ID). For the second term, we apply the Cauchy—Schwarz inequality:

/ (1= PRy T

(1= 1]=)?
v ) dxdy
(1—|z[ )— (1= [2)(F¥)(2)] (1— |2[2)2

/ 0= )N P ) ([ 10 = Py P )
S (I190]15,, diam(F*(D)))".

Here, we have applied (4) in the last line.
Next, we consider the Bo-norm dominated by Ba,-norm by Proposition 2.1 (i):

1P = Polls. S ||¢’ - <I>0||62p

5 dxdy 1/(2p) ) Y
where (4) is used again.

By the above computations, we see that |L(v, )] 5, is bounded by a constant deter-
mined in terms of d(a,0F"(D)), [[L(v)|5,, [[IL(¥)|B,,, and diam(F*(D)). For a given

(vo,a9) € MP(D*), all these quantities vary within a bounded range when v € M,(D*)
and a € F"(D*) move slightly from (v, ap). This shows that L is locally bounded.

Under this local boundedness condition, if L is Gateaux holomorphic, then it is holo-
morphic by Proposition 3.2. As shown in [35, Lemma 6.1], the Gateaux holomorphy of

L follows from the condition that for each fixed z € D, L(v,a)(z) = log(W, o F*)(z) is
Gateaux holomorphic as a complex-valued function. By the holomorphic dependence of
quasiconformal mappings on the Beltrami coefficients (see [1, V. Theorem 5]), this can be

verified. Thus, L is holomorphic on M, »(D*). O
Now we state the replacement of Theorem 3.10 as follows.
Theorem 4.4. J : L(M,(D*)) — S(M,(D*)) is a holomorphic split submersion forp > 1.

Proof. For any ® € L(M,(D")), let ¥4 = J(®) € S(M,(D*)). Then there exists a
neighborhood Vg, of ¥y in S(M,(ID*)) and a holomorphic map o : Vg, — M,(D*) such
that Soo is the identity on Vy,, as in the case of H in Proposition 3.7. Let &g = Loo (W),
which may be different from ®. Since ® can be represented as log(F7(¥0)) we have ® =
log(W, o Fo(¥0)Y for some a € F7(Y0)(D*) by Proposition 4.1. Namely, ® = L(o(¥y), a).
Fix this a and define a map L(o(-),a) : Vo, — L(M,(D*)) after shrinking Vg, if

necessary. By Lemma 4.3, this is a holomorphic map on Vy,. Since J o L(o(¥),a) = ¥
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for every ¥ € Vy,, the map L(o(+), a) is a local holomorphic right inverse of J such that
L(o(Vi,), a) passes through the given point ® = L(0(¥y), a). This is equivalent to saying
that J is a holomorphic split submersion. 0

The Bers fiber space Tvp over S(M,(D*)) is defined as
T, ={(V,a) € S(M,(D*)) x C | ¥ = S(v), a € F*(D*), v e M,(D")}.

Theorem 5.1 in the next section identifies S(M,(ID*)) with the Teichmiiller space 7).
We note that the quasidisk F Y(D*) is determined by ¥ independently of the choice of
v € M,(D*) with S(v) = . We define a map A : Tp — L(M,(D*)) by AN(¥,a) = L(v,a)
for S(v) = W. This is well defined independently of the choice of v.

Note that the condition a € F ¥(D*) is equivalent to requiring that W, o F'¥ maps D onto
a bounded domain in C, and that a = oo if and only if W, is an affine transformation of
C. Hence, by Proposition 4.1, X is bijective. In fact, A is bijective on each fiber. That is,
for each U e S(M,(D*)) with S(v) = ¥, A(V, -) maps F¥(D*) bijectively onto J~1(¥) C
L(M,(D*)). Here, J~'(¥) is a 1-dimensional complex submanifold of L(M,(D*)) since J
is a holomorphic split submersion by Theorem 4.4.

Lemma 4.5. \: fp — L(M,(D*)) is a biholomorphic homeomorphism.

Proof. Choose any ¥, € S(M,(D*)), and take Vg, and ¢ as in the proof of Theorem 4.4.
The restriction of A to the domain

Vo, = {(V,a) € Vg, xC | a € FPM(D*)} C T,

is explicitly represented as Ay(¥,a) = L(o(¥),a). Then A, is holomorphic on 17\1,0 by
Lemma 4.3, and thus A is a holomorphic bijection.

Moreover, for each fixed ¥ € Vi,, the domain F7)(D*) of complex dimension 1
is mapped by A\, (¥,-) holomorphically and bijectively onto the complex submanifold
JH¥) C L(M,(D*)). Hence, A\,(¥,-) is a biholomorphic homeomorphism. It follows
from this fiberwise property that A\~! is holomorphic, and thus ) is biholomorphic. 0

The structure of the space L(M,(D*)) over S(M,(D*)) can be described precisely as
follows.

Theorem 4.6. L(M,(D*)) is a real-analytic disk bundle over S(M,(D*)) with projection
J.

Proof. We have seen that \;(¥,a) = L(o(V),a) = log(W, o F7™)Y is a biholomorphic
homeomorphism of Vy, C T,. Using this, we provide the structure of a disk bundle over
S(M,(D*)) for L(M,(D*)). For every ¥, € S(M,(D*)), define

by Vg, x D* — J 1 (V) C L(M,(D*))

by £y (U, ¢) = A (W, F7((¢)). By Proposition 4.1, £, is a bijection satisfying Jol, (¥, ¢) =
U. Moreover, /, is a real-analytic diffeomorphism since ), is biholomorphic and F7™) is
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real-analytic by Proposition 3.8. Hence, ¢, gives a local trivialization for the projection
J o L(M,(D*)) — S(M,(D*)). This implies that L(M,(D*)) possesses the structure of a
fiber bundle described in the statement. O

A global section of the bundle projection J can be obtained by using the global real-
analytic right inverse ¥ of the Schwarzian derivative map S : M,(D*) — S(M,(D*)) for
p > 1, which is given in Proposition 3.9 for the case of H. Replacing the local right inverse
o in the proofs of Theorems 4.4 and 4.6 with this >, we define a bi-real-analytic map

Uy, : S(M,(D*)) x D* — L(M,(D"))

by ls(U,¢) = L(S(P), FE™(¢)). Then, in the real-analytic category, the total space
L(M,(D*)) has the product structure, and the bundle becomes trivial.

Corollary 4.7. Let p > 1. Fach ( € D* defines a global real-analytic section
ls (- Q) + S(Mp(D")) — L(M,(ID"))
for the holomorphic bundle projection J : L(M,(D*)) — S(M,(ID*)). Moreover, the total

space L(My(D*)) is real-analytically equivalent to S(My(D*)) x D* wunder lx, with J o
le(V,¢) = V.

Finally, we mention the characterization of M,(ID*) in terms of gp(D) and A,(ID). The
difference in J from the case of H does not affect other statements for the disk model
substantially, and the result parallel to Theorem 3.12 can be stated as follows.

Corollary 4.8 (to Theorem 3.12). Let F' : D — C be a conformal map onto a bounded
domain that extends to a quasiconformal homeomorphism of the extended complex plane
C. Then, the following conditions are equivalent for every p > 1:

(1) F extends quasiconformally to D* so that its complex dilatation is in M,(D*);
(2) log F" belongs to B,(D);
(3) S belongs to A,(D).

We note that the equivalence of (1) and (3) follows from that in Theorem 3.12 by the
Mobius invariance of the Schwarzian derivative. However, despite the isomorphic relation
between EP(H) and gp(D) as in Theorem 2.5, the equivalence involving (2) does not follow
directly from Theorem 3.12. By preparing the disk versions of Theorem 3.4 and Lemma
3.6, we must repeat the same arguments as in Theorem 3.12 to obtain Corollary 4.8.

5. STRUCTURES OF INTEGRABLE TEICHMULLER SPACES

The universal Teichmiiller space T is the set of all normalized quasisymmetric homeo-
morphisms h : R — R that extend to quasiconformal homeomorphisms H(p) : H — H
with complex dilatations p € M (H). Via the correspondence from Beltrami coefficients
i to quasisymmetric homeomorphisms h through H (), we obtain a map 7 : M(H) — T,
called the Teichmiiller projection. When 7(u) = 7(v), we say that p and v are Teich-
miller equivalent. An element h(u) = H(p)|g of T can be represented by the Teichmiiller
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equivalence class [u] for p € M(H). We refer to [14, Chapter 3] for the basis of the
universal Teichmiiller space.

Let F* denote the normalized conformal homeomorphism of H~ that extends quasi-
conformally to C with complex dilatation p on H*, for p € M(HY). The Schwarzian
derivative map S : M(H") — Ay (H™), where A, (H™) is the Banach space of all holo-
morphic functions ¥ on H™ with norm

[P]|a. = sup [Imz[*|¥(2)] < oo,
z€H~
is defined by the correspondence p — Spu, and the pre-Schwarzian derivative map L :
M(H") — By (H™) by the correspondence p +— log(F*)'. It is well known that both S
and L are holomorphic split submersions onto their images with respect to the norm ||+ ||«
of M(HT).

For p and v in M(HY), we have n(u) = n(v) if and only if F¥|g- = F”|g-. This
induces well-defined injections o : " — A (H™) with aom =S, and g : T — B (H")
with S om = L. We call a the Bers embedding and (8 the pre-Bers embedding. Then,
it follows from the property of split submersion that both a and 5 are homeomorphisms
onto their images.

For p > 1, the p-integrable Teichmiiller space T, is defined by T, = w(M,(H)). The
topology on T, is the quotient topology induced by 7 from that on M,(H) with norm
| -1lp+ |l llo- Under this stronger topology, the holomorphy of S : M,(H) — A,(H~) and
L: M,H) — gp(H_) claimed by Proposition 3.1 and Theorem 3.4 is still valid because
A,(H™) € Ax(H™) and gp(H*) C Bo(H™) and the inclusions are continuous. Since
T, C T, o and 3 are also defined on 7, by the restriction of these maps. The complex
Banach structure on 7}, is induced by these embeddings « and /5. Indeed, Proposition 3.7,
Theorem 3.10, Corollary 3.11, and Theorem 3.12 imply the following.

Theorem 5.1. Let p > 1. The Bers embedding « is a homeomorphism onto the open set
a(T,) = S(M,(H")) in A,(H™). The pre-Bers embedding [ is a homeomorphism onto

the open set B(T,) = L(M,(HT)) in B\p(H_). These sets are given by
a(Ty) = a(T) N A(H), B(T,) = B(T) N B,(H").

The topological embeddings o and [ endow T, with complex Banach structures that are
biholomorphically equivalent.

Remark 8. Using M,(D*) and A,(ID), the Bers embedding « is defined in the same way
and has the same properties as above. However, the pre-Bers embedding # cannot be
defined in this setting, because the analogue of Theorem 3.10 fails with respect to the
injectivity of J.

Next, we consider the metric structure of 7},. In the universal Teichmiiller space 7', the
Teichmiiller distance is defined using the L..-norm of Beltrami coefficients: the distance
from the origin to [u] € T is the infimum of log((1 + ||pfle)/(1 — [|1llc)) taken over
all Beltrami coefficients p in the Teichmiiller equivalence class [p], and this is extended
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to every point of T' by right translations. We can provide a similar distance for 7},; in
particular, its underlying topological structure is defined in [36] as follows.

Definition 4. A sequence [u,] in T), for p > 1 converges to [v] € T,, if
inf {J|pn # v lp | i € [pal, v € W]} =0 (0 — o00),

where % =1 denotes the complex dilatation of the quasiconformal self-homeomorphism
H(u)o H(v)™! of H. We call this the Teichmiiller topology.

We first show the following.

Proposition 5.2. For p > 1, the Teichmiiller topology O, on T, coincides with the
quotient topology Qo induced from M,(H) with norm || - ||, + || - ||co-

Proof. To see that the quotient topology Q,  is stronger than O,, we show that 7 :
M,(H") — (T,, O,) is continuous. For each [v] € T}, there is a representative v € M, (H")
such that F” is a bi-Lipschitz self-diffeomorphism of H* by [36, Lemma 3.4], and for such
v the convergences ||u, — v, — 0 and ||p, * v ||, = 0 as n — oo are equivalent by [36,
Lemma 3.1]. Hence, the projection 7 is continuous.

To see that O, is stronger than Q, ., we show that the identity map ¢ : (7,,0,) —
(T, Qp.o) is continuous. The fact that a : (7,, O,) — A,(H™) is continuous can be veri-
fied by an analogues argument of [29, I, Lemma 2.9] with the bi-Lipschitz representative
as above. Since o(T,) C A,(H™) is homeomorphic to (7}, Q) by Theorem 5.1, the
identity map ¢ is continuous. 0

Remark 9. In [36], a different Teichmiiller topology O, ~ is used, defined by replacing
|t * v7Y|, with || * v, + ||t * 7| in the above definition. Obviously, O,
is stronger than O,. However, since the continuity of 7w : M,(H"%) — (7}, Op ) can be
proved in the same way, the two topologies coincide.

We now mention the topological group structure of 7). The Teichmiiller space T, (as
well as T') carries a group structure under the composition of quasisymmetric homeomor-
phisms. For h(p) = 7(p) and h(v) = m(v) in T}, the Teichmiiller equivalence class of the
composition h(u) o h(v) is denoted by [u] * [v], and the inverse h(u)~! by [u]~!. For every
[v] € T, the right translation 7y : T, = T}, is defined by [u] — [u] * [v].

The following topological-group property is proved in [29, Theorem 1.3.8] and [37, The-
orem 6.1]. The biholomorphic property is shown in [36, Section 4].

Proposition 5.3. Forp > 1, T}, is a topological group. Moreover, every right translation
Ty 8 a biholomorphic automorphism of T),.

The Weil-Petersson metric on 75 is studied in [5] and [29]. This metric was generalized
to T, for p > 2 in [17]. In fact, the same definition also works for p > 1. The p- Weil-
Petersson metric on the tangent bundle of T}, is easily defined by embedding 7, into A, (H)
via the Bers embedding a and assuming that the tangent space 7,)(7},) of T, = o(T},) at
any point [v] € T, is A,(H). Then, at the origin of a(7},), the norm of a tangent vector v
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in J(T,) = A,(H) is defined to be ||v||4, (or the norm of the adjoint operator v* acting
on A,(H) for 1/p +1/q = 1); see [16, Section 6.5]. For an arbitrary point [v] € T, with
a([v]) = ¥, consider the conjugate of the right translation 7“[;]1 by a. Then avo r[l_j]l oa~tis
a biholomorphic automorphism of a(7},) sending ¥ to 0. The norm of a tangent vector v
in 7,(T,) = Ay(H) is defined to be ||d\1,(ozor[_y]1 oa ') (v)].4,- This yields a Finsler metric
on the tangent bundle of T}, in a broad sense. From the definition, the p-Weil-Petersson
metric is invariant under the right translations of 7,,. The distance induced by this metric
is called the p- Weil-Petersson distance, which dominates the Teichmiiller topology on 7j,.

We can also introduce a different invariant Finsler metric using the pre-Bers embedding

BT, — B,(H).

Definition 5. For any tangent vector u € J,)(1,) = B\p(H) at [v] € T, with B([v]) = ®
for p > 1, the p-pre- Weil-Petersson metric is the Finsler metric on the tangent bundle of
T, modeled on B,(H) given by ||de (S o r[;]l o 5*1)(u)||gp.

Theorem 5.4. The integrable Teichmailler space T,, for p > 1 is complete with respect to
the p-pre- Weil-Petersson distance. Moreover, the p-pre- Weil-Petersson metric is contin-
uous on the tangent bundle of T, and invariant under the right translations of T),.

Proof. The proof can be reproduced by mimicking that for the Weil-Petersson metric in
[5, Theorem 5] and [17, Section 8]. The only gap for the pre-Bers embedding case is the
analogue of the Ahlfors—Weill section for the Schwarzian derivative map. However, this
is successfully filled by the following claim obtained in [10, Theorem 5.1] via the theory
of chordal Loewner chains on the half-plane. Alternatively for the latter statement, since
J : B(T,) = «a(T},) is biholomorphic by Theorem 3.10, the results for the Bers embedding
transfer directly to the present case. O

Lemma 5.5. If & € By (H") satisfies | ®||z. < 3, then p(z) = —2Im(z)|P'(2)| for
z € H* belongs to M(HT) and satisfies f([u]) = .

6. RELATIONSHIP WITH TEICHMULLER SPACES OF DIFFEOMORPHISMS

In this section, we study the relationship between the integrable Teichmiiller spaces
T, (p > 1) and the Teichmiiller spaces 77 (0 < v < 1) of orientation-preserving self-
diffeomorphisms of R and S, scaled by the regularity of their derivatives. Since T” can
be characterized by the decay order of the supremum norm of Beltrami coefficients u
(see [18], [19], [31], and [32]), we use this characterization of 7. Moreover, because the
degeneration of the norm toward R and S leads to a discrepancy between the Teichmiiller
spaces modeled on H and on D, we restrict attention here to the disk model.

For 0 < v < 1, the space M7(D*) of 7-decay Beltrami coefficients consists of all
w € M(D*) such that

esssup ((|z] — 1) v 1)|u(2)| < oo.
zeD*

Then the Teichmiiller space T of circle diffeomorphisms A : S — S whose derivatives b’/
are y-Holder continuous turns out to be 7(M7(ID*)). For 0 < v < 1, this is revealed in [18,
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Theorems 1.1, 6.7], summarizing existing results. When v = 1, the corresponding circle
diffeomorphisms h have continuous derivatives b’ satisfying the Zygmund condition:

W (") — 2B/ () 4+ W (e'P7D) = O(t)  (t — 0).
The correspondence with M*'(D*) is shown in [31, Theorem 1.1].

For the image of M7(D*) under the pre-Schwarzian derivative map L, we introduce the
space B7(D) of v-decay Bloch functions ® € B, (D) satisfying

sup (1 — [2[2)*77]@"(2)] < .
zeD

When 0 < v < 1, this is equivalent to sup,cp(1 — |2]*)'77|®’(2)] < co. As before, L is
defined by L(u) = log(F*)" on D, where F* is the normalized conformal homeomorphism
of D onto a bounded domain that extends quasiconformally to C with complex dilatation
1 oon D*.

It is proved in [18, Theorem 4.6] and [31, Theorem 1.1] that L(MY(D*)) C BY(D).
Moreover,

LM (D)) = L(M(D")) 1 B(D), (20)
and, in particular, there exists a neighborhood of the origin in BY(D) contained in
L(M"(D*)). This is the unique component in BY(D) arising from pre-Schwarzian de-
rivative maps with different normalizations of F*; that is, the analogue of Proposition 4.2
holds. See [31, Theorem 1.3] and [32, Theorem 1.1].

A basic relation between 77 and 7, is as follows.

Proposition 6.1. If yp > 1, then T” C T,. In particular, T* C T, for all p > 1.

Proof. This follows from the inclusion M7(D*) C M,(D*) when vp > 1, which is verified
by a direct estimate. O

Thus, for vp > 1 we have the inclusion diagram

T"CcT'C---C li{% T7 (decay order)
o]

N N
ncT,C---C lifm T, (integrability).
p oo

We focus on the relation between 7" and T;. It is shown in [2] that every quasisymmetric
homeomorphism in the 1-integrable Teichmiiller space T} is a C*-diffeomorphism of S onto
itself with nonvanishing derivative. One might expect T C T}, but this is not the case.

Theorem 6.2. There is no inclusion relation between T and T.

Proof. Tt is shown in [13, p.17] that B'(D) and B} (D) are incomparable. More explicitly,
d'(2) = ad 22, 272" belongs to BY(D) \ Bf (D), while ®,(2) = a(1 — 2)(log 1/(1 — 2))?
belongs to B (D) \ BY(D) for any constant a € C. In Remark 3, we observed that
BH(D) = Bu(D)
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For the pre-Schwarzian derivative map L defined on M;(D*), we have
L(M;(D")) = L(M(D")) N B(D),

which follows from Corollary 4.8. Combining this with (6), we see that by choosing a > 0
sufficiently small, both ® and ®; lie in L(M (D*)) and satisfy

o' € LM (D) \ LM (DY), @, € LOMy(D) \ L(M'(D")).
Applying J : L(M(D*)) — S(M(D*)), which is not injective, we claim that
J(@') € S(M'(D))\ S(M(D")),  J(®1) € S(Mi(D)) \ S(M'(D")).  (21)

These two conditions yield the theorem, because S(M!(D*)) is identified with 7" via the
Bers embedding o : 7' — S(M*(D*)) by [19, Theorem 3], while S(M;(D*)) is identified
with 77 by Theorem 5.1 and Remark 8.

It remains to prove (6). Set ®' = log(F*") with p € M'(D*) and J(®') = S(u).
Suppose, toward a contradiction, that J(®') € S(M;(D*)). Then there exists v € M;(D*)

such that S(v) = S(u). Proposition 4.1 (i) yields a M&bius transformation W of C such
that ®! = log(W o F") and W o F¥(D) is bounded, and then (ii) implies ®! € L(M;(D*)).
However, this contradicts ®' ¢ L(M;(D*)). Thus J(®') ¢ S(M;(D*)), proving the first
inclusion in (6). The second follows by the same argument. O
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