Decomposition of random graphs into complete bipartite graphs

Fan Chung∗ Xing Peng∗

Abstract

We consider the problem of partitioning the edge set of a graph G into the minimum number $\tau(G)$ of edge-disjoint complete bipartite subgraphs. We show that for a random graph G in $G(n, p)$, for $1/2 \geq p = \Omega(1)$, almost surely $\tau(G)$ is between $n - c_1 (\log n)^{3+\epsilon}$ and $n - c_2 \log n$ for any positive constant ϵ and some positive constants c_i.

1 Introduction

For a graph G, the bipartition number, denoted by $\tau(G)$, is the minimum number of complete bipartite subgraphs that are edge-disjoint and whose union is the edge set of G. In 1971, Graham and Pollak [6] proved that

$$\tau(K_n) = n - 1. \quad (1)$$

In particular, they showed that for a graph G on n vertices, the bipartition number $\tau(G)$ is bounded below as follows:

$$\tau(G) \geq \max \{ n_+, n_- \} \quad (2)$$

where n_+ is the number of positive eigenvalues and n_- is the number of negative eigenvalues of the distance matrix of G. Then, (1) follows from (2). Since then, there have been a number of alternative proofs for (1) by using linear algebra [10, 11, 12] or by using matrix enumeration [13, 14].

Let $\alpha(G)$ denote the independence number of G, which is the maximum number of vertices so that there are no edges among some set of $\alpha(G)$ vertices in G. A star is a special bipartite graph in which all edges share a common vertex which we call the center of the star. For a graph G on n vertices, the edge set of G can obviously be decomposed into $n - \alpha(G)$ stars. It follows immediately that

$$\tau(G) \leq n - \alpha(G). \quad (3)$$

Erdős conjectured (see [1]) that for a random graph G in $G(n, 1/2)$, the equality in (3) almost surely holds:

A conjecture of Erdős: Almost all graphs G on n vertices satisfy

$$\tau(G) = n - \alpha(G). \quad (4)$$

∗Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, (fan@ucsd.edu, x2peng@ucsd.edu). Research is supported in part by ONR MURI N000140810747, and AFSOR AF/SUB 552082.
We remark that the above conjecture by Erdős implies that a decomposition by stars is the best possible for almost all graphs.

A random graph almost surely has an independent set of order $c \log n$ and therefore $\tau(G) \leq n - c \log n$. For the lower bound, for a random graph G, it is well known that almost surely the number of positive and negative eigenvalues of the adjacency matrix of G is bounded above by $n/2 + c' \sqrt{n}$. The distance matrix M of G almost surely satisfies $M = A + 2\hat{A} = 2J - 2I + A$ where J, I, A and \hat{A} denote the all 1’s matrix, the identity matrix, the adjacency matrix of G, and the adjacency matrix of the complement graph \bar{G} of G, respectively. The distribution of eigenvalues of M, with the exception of one eigenvalue, is basically the same as the distribution for A up to a linear shift of -2. Wigner’s semi-circle law implies that any interval of length 1 contains at most $c' \sqrt{n}$ eigenvalues. Therefore $n_-, n_+ < n/2 + c'' \sqrt{n}$ for some constant c''. Consequently, the inequality in (2) yields a rather weak lower bound of $\tau(G) \geq n/2 + c' \sqrt{n}$. We will prove the following theorem which lends support to Erdős’ conjecture [4].

Theorem 1 For a random graph G in $G(n, p)$ with $p \leq \frac{1}{2}$ and $p = \Omega(1)$, almost surely the bipartition number $\tau(G)$ of G satisfies

$$n - o((\log n)^{3+\epsilon}) \leq \tau(G) \leq n - 2 \log n$$

for $b = \frac{1}{p}$ and any positive constant ϵ.

For sparse random graphs, we have the following theorem.

Theorem 2 For a random graph G in $G(n, p)$ with $p = o(1)$ and $p = \omega \left(\frac{\log^2 n}{\sqrt{n}} \right)$, almost surely the bipartition number $\tau(G)$ of G satisfies

$$n - o \left(\frac{\log^3 n}{p^2} \right)^{1+\eta} \leq \tau(G) \leq n - \frac{2 - \epsilon}{p} \log(np)$$

for any positive constants η and ϵ. Here \log denotes the natural logarithm.

We follow the standard notation that by $g(x) = \omega(f(x))$ we mean $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ and we write $g(x) = \Omega(f(x))$ if $f(x) \leq cg(x)$ for some positive constant c.

We remark that the difficulty for computing $\tau(G)$ is closely related to the intractability of computing $\alpha(G)$. In general, the problem of determining $\alpha(G)$ is an NP-complete problem, as one of the original 21 NP-complete problems in Karp [8]. If G does not contain a 4-cycle, then $\tau(G) = n - \alpha(G)$. Schrijver showed that the problem of determining $\alpha(G)$ for the family of C_4-free graphs G remains NP-complete [2]. Therefore the problem of determining $\tau(G)$ is also NP-complete. Nevertheless, Theorems 1 and 2 imply that for almost all graphs G, we can bound $\tau(G)$ within a relatively small range.

We also consider a variation of the bipartition number by requiring an additional condition that no complete bipartite graph in the partition is a star. We define the strong bipartition number, denoted by $\tau'(G)$, to be the minimum number of complete bipartite graphs (which are not stars) needed to partition the edge set of G. If there is no such a partition then we define $\tau'(G)$ as ∞; if $|V(G)| \leq 2$ then we define $\tau'(G)$ to be zero. We will show that for a random graph $G \in G(n, p)$, the strong bipartition number satisfies $\tau'(G) \geq 1.0001n$ if $p = 1/2$ and $p \leq \frac{1}{2}$, and $\tau'(G) \geq n$ if $p = o(1)$. This provides further evidence for Erdős’ conjecture in [4] that the best bipartition decomposition consists of all stars for almost all graphs. However, we can not rule out yet the case of the existence of a mixed bipartition decomposition achieving $\tau(G)$ but consisting of some stars and some complete bipartite graphs which are not stars.
The paper is organized as follows: In the next section, we state some definitions and basic facts that we will use later. In Section 3 we establish upper bounds for the number of edges incident to several specified families of complete bipartite subgraphs. In Section 4 we consider the remaining uncovered edges and give corresponding lower bounds that our main theorems need. In Section 5 we show that almost surely the strong bipartition number is at least $1.0001n$ for a random graph on n vertices. In Section 6 we use all the lemmas and the strong bipartition theorem to prove Theorem 1. Also Theorem 2 is proved in Section 7. A number of problems and remarks are mentioned in Section 8.

2 Preliminaries

Let $G = (V, E)$ be a graph. For a vertex $v \in V(G)$, the neighborhood $N_G(v)$ of v is the set \{u: u \in V(G) and (u, v) \in E(G)\} and the degree $d_G(v)$ of v is $|N_G(v)|$. For a hypergraph $H = (V, E)$ and $v \in V(H)$, we define the degree $d_H(v)$ to be $|\{F: v \in F and F \in E(H)\}|$. For $U \subseteq V(G)$, let $e(U)$ be the set of edges of G with both endpoints in U and $G[U]$ be the subgraph induced by U. Furthermore, 2^U denotes the power set of U. For two subsets A and B of V, we define $E(A, B) = \{(u, v) \in E: u \in A and v \in B\}$. We say A and B form a complete bipartite graph if $A \cap B = \emptyset$ and $(u, v) \in E(G)$ for all $u \in A$ and $v \in B$.

We will use the following versions of Chernoff’s inequality and Azuma’s inequality.

Theorem 3 [3] Let X_1, \ldots, X_n be independent random variables with

$$
\Pr(X_i = 1) = p_i, \quad \Pr(X_i = 0) = 1 - p_i.
$$

We consider the sum $X = \sum_{i=1}^n X_i$ with expectation $E(X) = \sum_{i=1}^n p_i$. Then we have

- **(Lower tail)** \(\Pr(X \leq E(X) - \lambda) \leq e^{-\lambda^2/2E(X)}\),
- **(Upper tail)** \(\Pr(X \geq E(X) + \lambda) \leq e^{-\lambda^2/2E(X)}\).

Theorem 4 [2] Let X be a random variable determined by m trials T_1, \ldots, T_m, such that for each i, and any two possible sequences of outcomes t_1, \ldots, t_i and $t_1, \ldots, t_{i-1}, t'_i$:

$$
|E(X|T_1 = t_1, \ldots, T_i = t_i) - E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = t'_i)| \leq c_i
$$

then

$$
\Pr(|X - E(X)| \geq \lambda) \leq 2e^{-\lambda^2/2\sum_{i=1}^m c_i^2}.
$$

The following lemma on edge density will be useful later.

Lemma 1 Almost surely a random graph G in $G(n, p)$ satisfies, for all $U \subset V(G)$ with $|U| \geq \sqrt{\log n}$,

$$
|e(U) - \frac{D}{2}|U|^2| \leq C|U|^3/2 \log^{1/2} n
$$

where C is some positive constant.

The lemma follows from Theorem 3.

The following lemma is along the lines of a classical result of Erdős for random graphs [4]. We include the statement and a short proof here for the sake of completeness.

Lemma 2 Almost surely all complete bipartite graphs $K_{A, B} G \in G(n, p)$ with $|A| \leq |B|$, $p \leq \frac{1}{2}$ and $p = \Omega(1)$ satisfy $|A| \leq 2 \log_b n$ where $b = 1/p$.

3
Proof: For two subsets A and B of $V(G)$, with $|A| = |B| = k$, the probability that A and B form a complete bipartite graph in $G(n, p)$ is at most p^{k^2}. There are at most $\binom{n}{k} \binom{n}{k}$ choices for A and B. For $k \geq 2 \log_n n$, we have

$$\binom{n}{k}^2 p^{k^2} = o(1)$$

as $p = \Omega(1)$. The lemma then follows. \qed

We note that Erdős’ result on Ramsey’s theorem \cite{Erdos1959} states that every 2-coloring of the edges of the complete graph K_n contains a monochromatic clique of order $\frac{1}{2} \log_2 n$. It is not hard to show along the same lines that $G(n, 1/2)$ contains a complete bipartite graph $K_{A,B}$ with $|A| = |B| = \frac{1}{2} \log_2 n$ and the bound in Lemma \ref{lemma:complete_bipartite} is tight up to a constant factor.

The upper bounds in Theorems \ref{theorem:random_graph} and \ref{theorem:independence_number} are immediate consequences of \cite{Bollobas1982} and the classical results on the independence number $\alpha(G)$ of a random graph. An upper bound for $\alpha(G)$ can be found in \cite{Bollobas1982}. The problem of determining the independence number for a random graph has been extensively studied in the literature. The asymptotic order of $\alpha(G)$ for G in $G(n, p)$ was determined in \cite{Bollobas1982, Janson2011}.

Theorem 5 For $G \in G(n, p)$ the independence number $\alpha(G)$ satisfies the following:

1. \cite{Bollobas1982} If $p < 1 - \epsilon$ and $p = \Omega(1)$, almost surely $\alpha(G)$ is of order

 $$\alpha(G) = 2 \log_b n + o(\log n)$$

 where $b = 1/p$ and $\epsilon > 0$.

2. \cite{Bollobas1982} If $p = o(1)$, $\alpha(G)$ almost surely satisfies

 $$\alpha(G) \geq \frac{2}{p} \log np - (1 + o(1)) \log \log np.$$

 where \log denotes the natural logarithm.

3 Edges covered by a given family of subsets

For a graph $G = (V, E)$ and $A \subset V$, we define

$$V(G, A) = \{v : v \in V(G) \setminus A \text{ and } \{u, v\} \in E \text{ for all } u \in A\}.$$

It immediately follows that A and B form a complete bipartite graph if B is contained in $V(G, A)$, namely, $B \subseteq V(G, A)$. We say an edge $(u, v) \in E$ is covered by A if either $u \in A$ and $v \in V(G, A)$ or $v \in A$ and $u \in V(G, A)$.

For $A = \{A_1, A_2, \ldots, A_k\} \subseteq 2^V$ and σ, a linear ordering of $[k]$, we define a function l as follows. For notational convenience, we use i to denote the i-th element under the ordering σ. For each $1 \leq i \leq k$, we define G_i and $l(i)$ recursively. We let $G_1 = G$ and let $l(1)$ be an arbitrary subset of $V(G_1, A_1)$. Given G_{i-1}, we let G_i be a new graph with the vertex set $V(G)$ and the edge set $E(G_{i-1}) \setminus E(A_{i-1}, l(i-1))$. We set $l(i)$ to be an arbitrary subset of $V(G_i, A_i)$. We define

$$f(G, A) = \max_{\sigma} \max_{l} \sum_{i=1}^{k} |E(A_i, l(i))|.$$
for $A = \{A_1, A_2, A_3\}$ with $A_1 = \{a, b\}, A_2 = \{b, c\}$, and $A_3 = \{c, d\}$. Here $f(G, A) = 4$ is achieved by $\sigma = \text{identity}$, $l(1) = \{e\}$, $l(2) = \emptyset$, and $l(3) = \{e\}$, or $\sigma = (213)$, $l(1) = \emptyset$ and $l(2) = l(3) = \{e\}$. We observe $f(G, A) \leq \sum_{i=1}^{k} |E(A_i, V(G, A_i))|$ as $l(i) \subseteq V(G, A_i)$. When $U \subset V(G)$ and $A \subset U$ for each $A \in \mathcal{A}$, we use $f(G, U, A)$ to denote $f(G[U], A)$. Note that $G[U]$ denotes the induced subgraph of G on a subset U of $V(G)$.

Lemma 3 Suppose that for $G \in G(n, p)$ and $U \subseteq V(G)$, \mathcal{A} is a family of 2-sets of U with $|\mathcal{A}| \leq |U|$. Then almost surely we have

$$f(G, U, \mathcal{A}) \leq 2p^2|\mathcal{A}||U| + 8|U|\sqrt{|U|\log n}$$

for $p \leq \frac{1}{2}$.

Proof: We list edges with both endpoints in U as e_1, e_2, \ldots, e_m where $m = \binom{|U|}{2}$. For each $e_i = (u_i, v_i)$ for $1 \leq i \leq m$, we consider $T_i \in \{H, T\}$ where $T_i = H$ means e_i is an edge and $T_i = T$ means e_i is not an edge. To simplify the notation we use X to denote the random variable $f(G, U, \mathcal{A})$ and notice that X is determined by T_1, \ldots, T_m. Given the outcome t_j of T_j for each $1 \leq j \leq i - 1$ we wish to establish an upper bound for

$$|E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = H) - E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = T)|. \quad (5)$$

Let \mathcal{K}_1 be the set of graphs over U such that e_j is given by t_j for each $1 \leq j \leq i - 1$ and e_i is a non-edge. Similarly, let \mathcal{K}_2 be the set of graphs over U such that e_j is given by t_j for each $1 \leq j \leq i - 1$ and e_i is an edge. We have $|\mathcal{K}_1| = |\mathcal{K}_2|$. Thus we get

$$E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = H) = \sum_{K \in \mathcal{K}_1} f(K, \mathcal{A})\Pr(K \in \mathcal{K}_1)$$

and

$$E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = T) = \sum_{K \in \mathcal{K}_2} f(K, \mathcal{A})\Pr(K \in \mathcal{K}_2).$$

Define a mapping $\mu : \mathcal{K}_1 \to \mathcal{K}_2$ such that $E(K)$ and $E(\mu(K))$ differ only by e_i for each $K \in \mathcal{K}_1$. We get μ is a bijection and $\Pr(K \in \mathcal{K}_1) = \Pr(\mu(K) \in \mathcal{K}_2)$. Therefore the expression (5) can be bounded from above by

$$\sum_{K \in \mathcal{K}_1} |f(K, \mathcal{A}) - f(\mu(K), \mathcal{A})|\Pr(K \in \mathcal{K}_1).$$

Notice that each edge can be covered by at most once. We observe $|f(K, \mathcal{A}) - f(\mu(K), \mathcal{A})| \leq 2$ because e_i and the other edge sharing one endpoint with e_i could be covered by \mathcal{A} in $\mu(K)$ but not in K. Therefore (5) is bounded above by 2.
Now we apply Theorem 4 for \(\lambda = 8|U| \sqrt{|U| \log n} \) and \(c_i = 2 \). Then we have
\[
\Pr \left(|X - E(X)| \geq 8|U| \sqrt{|U| \log n} \right) \leq 2e^{-64|U|^3 \log n / 2 \sum_{i=1}^m c_i^2} \leq 2e^{-4|U| \log n},
\]
using the fact \(m \leq \frac{|U|^2}{2} \). To estimate \(E(X) \), we note that \(E(f(G, U, A)) \leq 2p^2|U| \) for a fixed \(A \in \mathcal{A} \). Therefore,
\[
E(X) \leq \sum_{A \in \mathcal{A}} E(f(G, U, A)) \leq 2p^2|\mathcal{A}| |U|.
\]
Thus (6) implies
\[
\Pr \left(X \geq 2p^2|\mathcal{A}| |U| + 8|U| \sqrt{|U| \log n} \right) \leq \Pr \left(|X - E(X)| \geq 8|U| \sqrt{|U| \log n} \right)
\leq 2e^{-4|U| \log n}.
\]
Recall the assumptions \(|\mathcal{A}| \leq |U| \) and \(|A| = 2 \) for each \(A \in \mathcal{A} \). For a fixed size of \(U \), the number of choices for \(U \) and \(\mathcal{A} \) is at most \(n|U||U|^2 \) which is less than \(n^3|U| \). Therefore the probability that there are some \(U \) and \(\mathcal{A} \) which violate the assertion in the lemma is at most \(ne^{-4|U| \log n^3} < \frac{1}{2} \) for sufficiently large \(n \) as \(|U| \geq 2 \). The lemma is proved. \(\square \)

The following lemmas for other families of sets \(\mathcal{A} \) have proofs which are quite similar to the proof of Lemma 3. We will sketch proofs here.

Lemma 4 Suppose that for \(G \in G(n, p) \), \(\mathcal{A} \) is a family of subsets of \(U \subseteq V(G) \) satisfying \(|\mathcal{A}| \leq |U| \) and \(2 \leq |A| \leq 2 \log_2 n \) for each \(A \in \mathcal{A} \). Then almost surely we have
\[
f(G, U, \mathcal{A}) \leq 2p^2|\mathcal{A}| |U| + 8|U| \log_2 n \sqrt{|U| \log |U|}
\]
for \(p \leq \frac{1}{2} \).

Proof: We will use the Azuma’s inequality. For \(e_i = (u_i, v_i) \), we define \(K_1, K_2, \) and a bijection \(\mu \) similarly. The only difference is that \(|f(K, A) - f(\mu(K), A)| \leq 2 \log_2 n \) for each \(K \in K_1 \). This is because \(e_i \) and at most other \(2 \log_2 n - 1 \) edges sharing the same endpoint with \(e_i \) could be covered by \(A \) in \(\mu(K) \) but not in \(K \).

Therefore the corresponding expression for (6) can be upper bounded by \(2 \log_2 n \). We can then estimate \(X = f(G, U, \mathcal{A}) \) by applying Theorem 4 with
\[
\lambda = 8|U| \log_2 n \sqrt{|U| \log_2 n \log |U|}
\]
and \(c_i = 2 \log_2 n \).

This leads to
\[
\Pr \left(|X - E(X)| \geq 8|U| \log_2 n \sqrt{|U| \log_2 n \log |U|} \right) \leq 2e^{-4|U| \log_2 n \log |U|},
\]
Since \(E(X) \leq \sum_{A \in \mathcal{A}} E(f(G, U, A)) \leq 2p^2|\mathcal{A}| |U| \) and the number of choices for \(U \) and \(\mathcal{A} \) can be bounded from above by
\[
n^{1+|U||U|^2} \log_2 n,
\]
we can bound the probability in (7) by \(2e^{-4|U| \log_2 n \log |U| n^{1+|U||U|^2} \log_2 n} \leq \frac{1}{n} \) as \(|U| \geq 2 \). This completes the proof of the lemma. \(\square \)

Lemma 5 Suppose that for \(G \in G(n, p) \), \(\mathcal{A} \) is a family of subsets of \(U \subseteq V(G) \) satisfying \(|\mathcal{A}| \leq |U| \) and \(3 \leq |A| \leq 2 \log_2 n \) for each \(A \in \mathcal{A} \). Then almost surely we have
\[
f(G, U, \mathcal{A}) \leq 3p^3|\mathcal{A}| |U| + 8|U| \log_2 n \sqrt{|U| \log |U| \log_2 n}
\]
for \(p \leq \frac{1}{2} \).
Proof: The proof is similar to that of Lemma \[4\] The only difference is that we assume \(|A| \geq 3\) and therefore

\[
E(f(G, U, A)) \leq \sum_{A \in \mathcal{A}} E(f(G, U, A)) \leq 3p^3 |A||U|.
\]

We use Theorem \[3\] in a similar way as in the proof of Lemma \[4\] to complete the proof of Lemma \[5\].

Lemma 6 Suppose that for \(G \in G(n, p)\), \(\mathcal{A}\) is a family of subsets of \(U \subseteq V(G)\) satisfying \(|A| \leq |U|^{1+\delta}\) and \(\delta \log_b |U| \leq |A| \leq 2 \log_2 n\) for each \(A \in \mathcal{A}\), where \(b = \frac{1}{p}\) and \(\delta\) is some positive constant. Then almost surely we have

\[
f(G, U, A) \leq \delta |A||U|^{1-\delta} \log_b |U| + 8|U|^{(3+\delta)/2} \log_2 n \sqrt{\log |U|} \log_2 n
\]

provided \(p \leq \frac{1}{2}\).

Proof: We use the assumptions on \(|A|\) to derive

\[
E(f(G, U, A)) \leq \sum_{A \in \mathcal{A}} E(f(G, U, A)) \leq \delta \log_b |U|p^{\delta \log_b |U|} |A||U| \leq \delta |A||U|^{1-\delta} \log_b |U|.
\]

Then we bound the number of choices for \(U\) and \(A\) from above by

\[
n^{1+|U|/2|U|^{1+\delta} \log_2 n}
\]

Applying Theorem \[3\] for \(\lambda = 8|U|^{(3+\delta)/2} \log_2 n \sqrt{\log |U|} \log_2 n\) and \(c_i = 2 \log_2 n\), the lemma then follows.

We remark that we only use Lemma \[6\] when \(p = \Omega(1)\) for proving the main theorem.

4 Bounding uncovered edges

In order to prove the bipartite decomposition theorem, we also need to establish lower bounds for the number of uncovered edges for a given family \(\mathcal{A}\) of subsets.

First, we will derive a lower bound on the number of uncovered edges for a collection \(\mathcal{A}\) of \(2\)-sets of \(V(G)\). Let \(S_0\) be the set of \(u \in V(G)\) such that \(u\) is in only one \(A \in \mathcal{A}\). For \(u\) in \(S_0\), we denote the only \(2\)-set containing \(u\) by \(A_u\). Our goal is to give a lower bound on the number of uncovered edges with both endpoints in \(S_0\). To simplify the estimate, we impose some technical restrictions and work on a subset \(S\) of \(S_0\). To do so, we will lose at most a factor of \(2\) in the lower bound estimate (which is tolerable). To form \(S\), for each \(A_u = \{u, v\}\) with \(u, v \in S_0\), we delete one of \(u\) and \(v\) arbitrarily from \(S_0\). Let \(T = \cup_{u \in S} (A_u \setminus u)\). Clearly \(S\) and \(T\) are disjoint. Furthermore, \(|S| \geq |T|\).

We define \(E'\) to be the set of edges \((u, v)\) with \(u \in S\) and \(v \in T\) and \(E''\) to be the set of edges \((u, v)\) with \(u, v \in S\). We assume \(|E'| = p\). For a fixed ordering \(\sigma\) of edges in \(E'\) and an ordering \(\tau\) of edges in \(E''\), we define sets \(E'_i\) and \(E''_i\) for each \(0 \leq i \leq \tau\) recursively. Let \(E'_0 = E'\) and \(E''_0 = E''\). Given \(E'_{i-1}\) and \(E''_{i-1}\) for each \(1 \leq i \leq \tau\), we assume the first edge in \(E'_{i-1}\) is \(e = (u, v)\) with \(u \in S\) and \(v \in T\). Let \((u', v') \in E''_{i-1}\) be the first edge such that \(u = u'\) and \(A_{u'} = \{v, v'\}\). We note edges \((u, v)\) and \((u', v')\) are covered by \(\{v, v'\}\). We define \(E'_i = E'_{i-1} \setminus (u, v)\) and \(E''_i = E''_{i-1} \setminus (u', v')\). If there is no such an edge \((u', v')\) then we define \(E'_i = E'_{i-1} \setminus (u, v)\) and \(E''_i = E''_{i-1}\). Finally we define

\[
g(G, S, T) = \min_{\sigma} \min_{\tau} |E''_0|,
\]

where \(\sigma\) and \(\tau\) range over all orderings of edges in \(E(S, T)\) and \(E(S)\), respectively.
Lemma 7 Suppose that a graph G and each edge of G is contained in at most one of the complete bipartite graphs K_{A_i,B_i} with $|A_i| = 2 \leq |B_i|$. For $\mathcal{A} = \{ A : A = A_i \text{ for some } i \}$, let S and T denote two disjoint subsets of $V(G)$ satisfying the properties that (i) each $u \in S$ is in a unique $A \in \mathcal{A}$, (ii) S does not contain any A in \mathcal{A}, (iii) $T = \{ v : \{u,v\} \in \mathcal{A} \text{ for some } u \in S \}$. Then $g(G,S,T)$ is a lower bound for the number of uncovered edges by \mathcal{A} with both endpoints in S.

Proof: We can choose an arbitrary order σ on edges in $E(S,T)$. Suppose an edge $e = (u,v)$, with $u \in S$ and $v \in T$, is uniquely covered by A in \mathcal{A}. If $A = \{w,v\}$ for some w in S, we associate with e the edge $(u,w) \in E(S,S)$. In addition, we choose the order τ on $E(S,S)$ to be consistent with σ in the sense that the associated edges in $E(S,S)$ maintain the same order. If $A = \{w',v\}$ for some w' not in S or e is not covered by any A, then we do not associate any edge to e.

We note that if each edge $e' = (u',v') \in E(S,S)$ is contained in a unique bipartite graph $K_{A',B'}$, then A' is in \mathcal{A} from the assumptions (i) \sim (iii). From the definition of g, e' will be removed in the process. Thus, $g(G,S,T)$ is a lower bound for the number of uncovered edges by \mathcal{A}. \qed

Lemma 8 For $G \in G(n,p)$ and disjoint subsets S and T in $V(G)$, almost surely we have

$$g(G,S,T) \geq p^3 \left(\frac{|S|}{2} \right) - 5|S|\sqrt{|S|\log n}$$

for all choices of S and T, provided $p \leq \frac{1}{2}$ and $|S| \geq 4$.

Proof: We sketch the proof here which is similar to that of Lemma 7. We list edges with endpoints in $S \cup T$ as e_1, \ldots, e_m, where $m = \binom{|S| + |T|}{2}$. For each $e_i = (u_i, v_i)$ for $1 \leq i \leq m$, we consider $T_i \in \{H,T\}$ where $T_i = H$ means e_i is an edge and $T_i = T$ means e_i is not an edge. Let X denote the random variable $g(G,S,T)$ for $G \in G(n,p)$. We note that X is determined by T_1, \ldots, T_m. For the fixed outcome t_j of T_j for $1 \leq j \leq i - 1$, we consider

$$|E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = H) - E(X|T_1 = t_1, \ldots, T_{i-1} = t_{i-1}, T_i = T)|. \quad (8)$$

For $e_i = (u_i, v_i)$, if $u_i, v_i \in T$ then the outcome of T_i does not contribute to X. If $u_i, v_i \in S$ then the outcome of T_i can change by at most one depending on whether e_i is covered or not. If $u_i \in S$ and $v_i \in T$ then the outcome of T_i could effect X by at most one. This is because e_i could make another edge (u_i, w) covered by the 2-set $\{v_i, w\}$. Thus X is bounded above by one.

Applying Azuma’s theorem as stated in Theorem 3 with $\lambda = 5|S|\sqrt{|S|\log n}$ and $c_i = 1$, we have

$$\Pr \left(|X - E(X)| \geq 5|S|\sqrt{|S|\log n} \right) \leq 2e^{-6|S|\log n}, \quad (9)$$

using $m \leq 2|S|^2$. To estimate $E(X)$, we define $X_{u,v}$, for $u,v \in S$, to be the event $(u,v) \in E(G)$, $(u, A_u \setminus \{v\}) \not\subset E(G)$, and $(v, A_v \setminus \{u\}) \not\subset E(G)$. Here $G \in G(n,p)$ and A_v (resp. A_u) is the only 2-set containing v (resp. u). Let $I_{u,v}$ denote the random indicator variable for $X_{u,v}$. We note $\Pr(I_{u,v} = 1) = p^3$ and

$$E(X) \geq \sum_{u,v \in S} \Pr(I_{u,v} = 1) = p^3 \left(\frac{|S|}{2} \right).$$

Thus

$$\Pr \left(X \leq p^3 \left(\frac{|S|}{2} \right) - 5|S|\sqrt{|S|\log n} \right) \leq \Pr \left(X \leq E(X) - 5|S|\sqrt{|S|\log n} \right) \leq 2e^{-6|S|\log n}.$$
For a given size of S, there are at most $n^{2|S|}$ choices for S and T and $|S|^{2|S|}$ choices for σ and τ. By \cite{4}, the probability that there are some S and T which violate the lemma is at most $2n^{3|S|+1}e^{-6|S|\log n} < \frac{1}{n}$ provided n is sufficiently large and $|S| \geq 4$. This proves the lemma.

Next, we wish to establish a lower bound on the number of uncovered edges for general cases of \mathcal{A}.

For $W \subset U \subset V(G)$, we consider $L: W \to 2^U \setminus W$ with the property $L(w) \cap L(w') = \emptyset$ for $w, w' \in W$. We define $h(G, U, W, L)$ to be the number of edges (w, w') in G such that $w, w' \in W$, $(w, z) \notin E(G)$ for each $z \in L(w')$, and $(w', z') \notin E(G)$ for each $z' \in L(w)$. We will use the following Lemma (late we will show that $h(G, U, W, L)$ gives a lower bound for the number of uncovered edges).

Lemma 9 For $G \in G(n, p)$, $p = \Omega(1)$, $p \leq 1/2$, $b = \frac{1}{p}$, $|U| \geq 4$, suppose $W \subset U$ satisfies $|W| = |U|/\log^2 |U|$ and L as defined above satisfies $1 \leq |L(w)| \leq c\log_b |U|$ for some positive constant c. Then almost surely we have

$$h(G, U, W, L) \geq c' |U|^{2-2c}/\log^4_b |U| - 2|U|^{3/2} \sqrt{\log n}$$

for all choices of U, W and L, where c' is some positive constant.

Proof: For $u, v \in W$, let $X_{u,v}$ denote the event that $(u, v) \in E(G)$, $(u, w) \notin E(G)$ for each $w \in L(v)$, and $(v, z) \notin E(G)$ for each $z \in L(u)$. Here $G \in G(n, p)$. The random indicator variable for $X_{u,v}$ is written as $I_{u,v}$. From the definition of h, we have $h(G, U, W, L) = \sum_{u,v \in W} I_{u,v} = Y$ for $G \in G(n, p)$. Since $\Pr(I_{u,v} = 1) \geq b^{-1-2c\log_b |U|}$, we have

$$E(Y) \geq b^{-1-2c\log_b |U|} \left(\frac{|W|}{2} \right) \geq c' |U|^{2-2c}/\log^4_b |U|,$$

for some constant c'. From the definition of L, we have $X_{u,v}$ are independent of one another. By applying the Chernoff’s bound for the lower tail in Theorem \cite{3} with $\lambda = 2|U|^{3/2} \sqrt{\log n}$, we have

$$\Pr(Y \leq c' |U|^{2-2c}/\log^4_b |U| - 2|U|^{3/2} \sqrt{\log n}) \leq \Pr(Y \leq E(Y) - 2|U|^{3/2} \sqrt{\log n}) \leq e^{-\frac{4|U|^{3/2} \log n}{2E(Y)}} \leq e^{-2|U| \log n},$$

using the fact that $E(Y) \leq |U|^2$. For a given size $|U|$ of U, it is straightforward to bound the number of choices for U, W and L from above by

$$n^{|U||U|^{|U|^2|U|\log^2 |U|}|U|^{2|U|\log |U|}} < n^{4|U| |U|^{2|U|\log |U|}} \leq n^{1.5|U|},$$

when n is sufficiently large. The probability that there is some U, W and L which violate the lemma is at most $ne^{-2|U| \log n 1.5|U|} < \frac{1}{n}$ if n is large enough. This completes the proof of the lemma.

5 A theorem on strong bipartition decompositions

Recall the strong bipartition number $\tau'(G)$ is the minimum number of complete bipartite graphs whose edges partition the edge set of G and none of them is a star. We will prove the following theorem.

Theorem 6 Suppose that for $G \in G(n, p)$, $U \subseteq V(G)$ is a vertex subset with $|U| \geq \eta(\log n)^{3+b}$ where $b = 1/p$, η and ϵ are positive constants. For $p = \Omega(1)$ and $p \leq \frac{1}{3}$, almost surely we have

$$\tau'(G[U]) \geq 1.0001|U|.$$
The proof of Theorem \(\text{[5]} \) is based on several lemmas which we will first prove. In this section, we may assume that \(G \in G(n, p) \) satisfies the statements in all lemmas in the preceding sections. By Lemma \(\text{[1]} \) the number of edges in \(G[U] \) satisfies \(e(G[U]) = (\frac{e}{2} + o(1))u^2 \), here \(|U| = u \). We will prove Theorem \(\text{[6]} \) by contradiction. Suppose

\[
E(G[U]) = \bigcup_{i=1}^{m} E(K_{A_i, B_i})
\]

and \(m < \left(1 + \frac{1}{1000}\right) u \) where ‘\(\sqcup \)’ denotes the disjoint union. We assume further \(|A_i| \leq |B_i| \) for each \(1 \leq i \leq m \). Lemma \(\text{[2]} \) implies \(|A_i| \leq 2 \log_2 n \) for each \(1 \leq i \leq m \).

We define \(\mathcal{L} = \{ A_i : 1 \leq i \leq m \} \) and note that \(\mathcal{L} \) could be a multi-set. We consider three subsets of \(\mathcal{L} \) defined as follows:

\[
\mathcal{L}_1 = \{ A_i \in \mathcal{L} : |A_i| < \delta_1 \log_6 u \} \\
\mathcal{L}_2 = \{ A_i \in \mathcal{L} : |A_i| < \delta_2 \log_6 u \} \\
\mathcal{L}_3 = \{ A_i \in \mathcal{L} : |A_i| = 2 \},
\]

where

\[
\delta_1 = \min \left\{ \frac{e}{4(3 + e)} + \frac{1}{200} \right\} \quad \text{and} \quad \delta_2 = \frac{\delta_1}{10^4}.
\]

We have the following lemma.

Lemma 10: If \(|\mathcal{L}_2| \leq \left(\frac{1}{2} + \frac{1}{1500}\right) u \), then we have \(|\mathcal{L}_3| \geq \left(\frac{1}{2} + \frac{1}{3000}\right) u \).

Proof: We will first prove the following claim:

Claim 1: \(|\mathcal{L}_3| \geq \left(\frac{1}{2} - \frac{1}{250}\right) u \).

Proof of Claim 1: Suppose the contrary. By Lemma \(\text{[3]} \) the number of edges covered by \(\mathcal{L}_3 \) is at most

\[
2p^2 |\mathcal{L}_3| u + 8u \sqrt{u \log n}.
\]

By Lemma \(\text{[4]} \) the number of edges covered by \(\mathcal{L}_2 \setminus \mathcal{L}_3 \) (i.e., \(|A_i| \geq 3 \)) is at most

\[
3p^3 |\mathcal{L}_2 \setminus \mathcal{L}_3| u + 8u \log_2 n \sqrt{u \log u \log_2 n}.
\]

Therefore the total number of edges covered by \(\mathcal{L}_2 \) is at most

\[
2p^2 |\mathcal{L}_3| u + 3p^3 |\mathcal{L}_2 \setminus \mathcal{L}_3| u + 8u \sqrt{u \log n} + 8u \log_2 n \sqrt{u \log u \log_2 n}.
\]

Thus the number of edges which are not in any \(K_{A_i, B_i} \) with \(A_i \in \mathcal{L}_2 \) is at least

\[
\left(\frac{p}{2} + o(1)\right) u^2 - 2p^2 |\mathcal{L}_3| u - 3p^3 |\mathcal{L}_2 \setminus \mathcal{L}_3| u - 8u \sqrt{u \log n} - 8u \log_2 n \sqrt{u \log u \log_2 n}.
\]

Observe that the expression above is a decreasing function if we view \(|\mathcal{L}_3| \) as the variable. From the assumptions \(|\mathcal{L}_3| < \left(\frac{1}{2} - \frac{1}{250}\right) u \) and \(|\mathcal{L}_2| \leq \left(\frac{1}{2} + \frac{1}{1500}\right) u \), the number of edges which are not contained in any \(K_{A_i, B_i} \), with \(A_i \in \mathcal{L}_2 \) is at least

\[
\frac{p}{2} u^2 - \left(\frac{1}{2} - \frac{1}{250}\right) 2p^2 u^2 - 7 \frac{p^3}{500} u^2 + o(u^2) \geq \left(\frac{p^2}{125} - \frac{7p^3}{500} + o(1)\right) u^2
\]

when \(n \) is large enough. Here we note that \(u \log_2 n \sqrt{u \log u \log_2 n} = o(u^2) \) as we assume \(u \geq \eta(\log_6 n)^{3+\epsilon} \). Since \(p \leq \frac{1}{2} \) and \(p = \Omega(1) \), we get that \(\frac{p^2}{125} - \frac{7p^3}{500} \) is a positive constant.

Applying Lemma \(\text{[3]} \) with \(\delta = \delta_2 \), the number of edges covered by \(\mathcal{L} \setminus \mathcal{L}_2 \) (i.e., \(|A_i| \geq \delta_2 \log_6 n \)) is at most

\[
\delta_2 |\mathcal{L} \setminus \mathcal{L}_2| u^{1-\delta_2} \log_6 u + 8u^{(3+\delta_2)/2} \log_2 n \sqrt{\log u \log_2 n}.
\]
Since \(u^{(3+\delta_2)/2} \log n \sqrt{\log u \log_2 n} = o(u^2) \) by the choice of \(\delta_2 \), in order to cover the remaining edges, we need at least \(C_1 u^{1+\delta_2/2} \) extra complete bipartite graphs for some positive constant \(C_1 \), i.e., \(|C \setminus L_2| \geq C_1 u^{1+\delta_2/2} \). Since \(C_1 u^{1+\delta_2/2} > (1 + \frac{10000}{\sqrt{n}}) \) for sufficiently large \(n \), this leads to a contradiction. Thus we have \(|L_3| \geq (\frac{1}{2} - \frac{1}{2000}) u \) and the claim is proved.

Now we proceed to prove the lemma using the fact that \(|L_3| \geq (\frac{1}{2} - \frac{1}{2000}) u \). We consider a auxiliary graph \(U^* \) whose vertex set is \(U \) and edge set is \(L_3 \). It is possible that \(U^* \) has multiple edges. We partition the vertex set of \(U^* \) into three sets \(U_1, U_2, \) and \(U_3 \), where \(U_1 = \{ v \in V(U^*) : d_{U^*}(v) = 0 \} \), \(U_2 = \{ v \in V(U^*) : d_{U^*}(v) = 1 \} \), and \(U_3 = \{ v \in V(U^*) : d_{U^*}(v) \geq 2 \} \). We will prove the following.

Claim 2: The number of edges not contained in any \(K_{A_i,B_i} \) for \(A_i \in L_3 \) is at least \(p(\frac{|U_1|}{2}) + p^3(\frac{|U_2|}{2}) + o(u^2) \).

Proof of Claim 2: The first part of the sum follows from Lemma 11. For the second part of the sum, we let \(U_2' \subseteq U_2 \) such that for each \(v \in U_2' \), the neighbor of \(v \) in \(U^* \) is not in \(U_2 \). We have \(|U_2'| \geq |U_2|/2 \). Then we apply Lemma 5 with \(S = U_2' \) and \(T \) consisting of neighbors of \(S' \) in \(U^* \). To finish the proof of Claim 2, we use the facts \(u = \Omega(\log^3 n) \) and \(|S| \geq \Omega(\log n) \) and \(u = o(u^2) \).

We will prove Lemma 10 by contradiction. Suppose \(|L_3| \geq (\frac{1}{2} + \frac{1}{1000}) u \). This implies that the average degree of \(U^* \) is at most \(1 + \frac{1}{1000} \). We consider the following cases.

Case 1: \(|U_3| \geq \frac{1}{4} u \).

By considering the total sum of degrees of \(U^* \), we have
\[
2|U_3| + (u - |U_1| - |U_3|) \leq \left(1 + \frac{1}{1000} \right) u.
\]

Thus, \(|U_3| \geq \frac{1}{4} u \) implies \(|U_1| \geq \frac{1}{4} u \). Claim 2 together with this lower bound on \(|U_1| \) implies that the number of edges not in any \(K_{A_i,B_i} \) with \(A_i \in L_3 \) is at least \((\frac{1}{4} + o(1)) u^2 \). By Claim 1 we have \(|L_3| \geq (\frac{1}{2} - \frac{1}{2000}) u \), so the number of additional complete bipartite graphs \(K_{A_i,B_i} \) with \(A_i \in L_2 \setminus L_3 \) is at most \(\frac{10000}{\sqrt{n}} u \) using the assumption \(|L_3| \geq (\frac{1}{2} - \frac{1}{2000}) u \). These complete bipartite graphs can cover at most \((\frac{p^3}{500} + o(1)) u^2 \) edges by Lemma 5. Thus we conclude that the number of edges not covered by any of \(K_{A_i,B_i} \) with \(A_i \in L_2 \) is at least
\[
\left(\frac{p}{72} - \frac{7p^3}{500} + o(1) \right) u^2.
\]

Note that \(\frac{p}{72} - \frac{7p^3}{500} \) is a positive constant when \(p = \Omega(1) \) and \(p \leq \frac{1}{2} \). By applying Lemma 6 with \(\delta = \delta_2 \), the bipartite graphs \(K_{A_i,B_i} \) with \(A_i \in L \setminus L_2 \) (i.e., \(|A_i| \geq \delta_2 \log_2 n \)) can cover at most
\[
\delta_2 |L \setminus L_2| u^{1-\delta_2} \log_2 u + 8u^{(3+\delta_2)/2} \log_2 n \sqrt{\log u \log_2 n}
\]
edges. We note \(u^{(3+\delta_2)/2} \log_2 n \sqrt{\log u \log_2 n} = o(u^2) \) because of the choice of \(\delta_2 \). To cover the remaining edges, we need at least \(C'_1 u^{1+\delta_2/2} \) extra complete bipartite graphs \(K_{A_i,B_i} \) with \(A_i \in L \setminus L_2 \) for some positive constant \(C_1 \), i.e., \(|L \setminus L_2| \geq C'_1 u^{1+\delta_2/2} \). Since \(C'_1 u^{1+\delta_2/2} > (1 + \frac{10000}{\sqrt{n}}) u \) for \(n \) large enough, we get a contradiction to the assumption \(|L| \leq (1 + \frac{1}{10000}) u \).

Case 2: \(|U_3| < \frac{1}{4} u \).

In this case we have \(|U_1| + |U_2| \geq \frac{1}{4} u \). Note that the lower bound given by Claim 2 is minimized when \(|U_2| = \frac{1}{4} u \), i.e., the number of edges not contained in any \(K_{A_i,B_i} \)
with \(A_i \in \mathcal{L}_3 \) is at least \((\frac{33}{300}p^3 + o(1))u^2\). By the same argument as in Case 1 we can show the number of edges in \(K_{A_i,B_i} \) with \(A_i \in \mathcal{L}_2 \setminus \mathcal{L}_3 \) is at most \((\frac{33}{300}p^3 + o(1))u^2\). Now there are at least
\[
\left(\frac{33}{300}p^3 + o(1) \right) u^2
\]
edges which is not in any \(K_{A_i,B_i} \) with \(A_i \in \mathcal{L}_2 \). We note that \(\frac{33}{300}p^3 \) is a positive constant under the assumption \(p = \Omega(1) \). By using Lemma 10 with \(\delta = \delta_2 \), the bipartite graphs \(K_{A_i,B_i} \) with \(A_i \in \mathcal{L} \setminus \mathcal{L}_2 \) (i.e., \(|A_i| \geq \delta_2 \log_b n\)) can cover at most
\[
\delta_2 |\mathcal{L} \setminus \mathcal{L}_2| u^{1-\delta_2} \log_b u + o(u^2)
\]
edges. As in Case 1, we consider the number of extra bipartite graphs \(K_{A_i,B_i} \) with \(A_i \in \mathcal{L} \setminus \mathcal{L}_2 \) needed to cover the remaining edges, leading to the same contradiction to the assumption on \(\mathcal{L} \).

Therefore we have proved \(|\mathcal{L}_3| > (\frac{1}{2} + \frac{1}{2000})u\).

Lemma 11 Let \(H \) be a hypergraph with the vertex set \(U \) and the edge set \(\mathcal{L}_1 \). There is some positive constant \(C_2 \) such that there are \(C_2u \) vertices of \(H \) with degree less than \((\frac{1}{2} - \frac{1}{3000}) \log_b u\).

Proof: We consider several cases.

Case a: \(|\mathcal{L}_2| > (\frac{1}{2} + \frac{1}{1500})u\).

The sum of degrees in \(H \) is less than
\[
\delta_2 |\mathcal{L}_2| \log_b u + \delta_1 |\mathcal{L}_1 \setminus \mathcal{L}_2| \log_b u \leq \delta_2 \left(\frac{1}{2} + \frac{1}{1500} \right) u \log_b u + \delta_1 \left(\frac{1}{2} + \frac{1}{10000} - \frac{1}{1500} \right) u \log_b u
\]
\[
\leq \left(\frac{\delta_1}{2} - \frac{\delta_1}{2000} \right) u \log_b u.
\]

Here we used the assumption \(|\mathcal{L}_1| \leq |\mathcal{L}| = m < (1 + \frac{1}{1000})u \) and the choice of \(\delta_2 \).

Case b: \(|\mathcal{L}_2| \leq (\frac{1}{2} + \frac{1}{1500})u\).

By Lemma 10 \(|\mathcal{L}_3| \geq (\frac{1}{2} + \frac{1}{2000})u\). The sum of degrees is at most
\[
2 |\mathcal{L}_3| + \delta_1 |\mathcal{L}_1 \setminus \mathcal{L}_3| \log_b u \leq 2 \left(\frac{1}{2} + \frac{1}{2000} \right) u + \delta_1 \left(\frac{1}{2} + \frac{1}{10000} - \frac{1}{2000} \right) u \log_b u
\]
\[
\leq \left(\frac{\delta_1}{2} - \frac{\delta_1}{2000} \right) u \log_b u.
\]

We have proved that the sum of degrees of \(H \) is less than \((\frac{\delta_1}{2} - \frac{\delta_1}{3000}) u \log_b u \). Let \(U' \) be the set of vertices with degree at least \((\frac{\delta_1}{2} - \frac{\delta_1}{3000}) \log_b u \). We consider
\[
|U'| \left(\frac{\delta_1}{2} - \frac{\delta_1}{3000} \right) \log_b u \leq \left(\frac{\delta_1}{2} - \frac{\delta_1}{2000} \right) u \log_b u,
\]
which yields \(|U'| \leq (1 - C_2)u\) for some positive constant \(C_2 \). Each vertex in \(U \setminus U' \) has degree less than \((\frac{\delta_1}{2} - \frac{\delta_1}{3000}) \log_b u \) and \(|U \setminus U'| \geq C_2 u\). The lemma is proved.

We recall that \(G[U] \) is the subgraph of \(G \) induced by \(U \). We have the following lemma.

Lemma 12 The number of edges in \(G[U] \) which are not contained in any \(K_{A_i,B_i} \) with \(A_i \in \mathcal{L}_1 \) is at least \(C_3 u^{2 - \delta_1 - \delta_2 / 2000} \) for some positive constant \(C_3 \).
Proof: We consider the hypergraph H with the vertex set U and the edge set \mathcal{L}_1 as defined in Lemma 11. Let W be the set of vertices with degree less than $\left(\frac{1}{2} - \frac{3}{2000}\right) \log_2 u$ in H; we have $|W| \geq C_2 u$ for some positive constant C_2 by Lemma 11.

We will use Lemma 9 to prove Lemma 12. In order to apply Lemma 9, we will first find a subset W' of W such that for any $u, v \in W'$ there is no $A_i \in \mathcal{L}_1$ containing u and v. Also we will associate each $w \in W'$ with a set $L(w) \subset U \setminus W'$ satisfying the property that $L(w) \cap L(w') = \emptyset$ for each $w \neq w' \in W'$.

To do so, we consider an arbitrary linear ordering of vertices in W. Let $q = |W|/\log_2 u$, $W_0 = W$, $Z_0 = \emptyset$ and $H_0 = H$. For each $1 \leq i \leq q$, we recursively define a vertex v_i, a set W_i, a set and a hypergraph H_i as follows: For given W_{i-1} and H_{i-1}, we let v_i be the first vertex in W_{i-1} and define $F(v_i) = \{A \in E(H_{i-1}) : v_i \in A\}$. By the assumption on the size of sets in \mathcal{L}_1 and the degree upper bound for vertices in W, we have $|\bigcup_{A \in F(v_i)} A| \leq \log_2 u/2$. We define $Z_i = \{A \in E(H_{i-1}) : |A \setminus (\bigcup_{A' \in F(v_i)} A')| = 1\}$. Then $|\bigcup_{A \in Z_i, A \setminus (\bigcup_{A' \in F(v_i)} A')}| \leq \log_2 u/2$ since each $A' \in F(v_i)$ can contribute at most $\delta_1 \log_2 u$ to the sum and $|F(v_i)| \leq \frac{1}{8} \log_2 u$ because of the degree upper bound for vertices in W. We define $W_i = W_{i-1} \setminus \left(\bigcup_{A \in Z_i} A\right)$ and H_i to be the new hypergraph with the vertex set $V(H_i) = \left(\bigcup_{A \in Z_i} A\right)$ and $E(H_i) = E(H_{i-1}) \cup \bigcup_{A \in Z_i} E(A)$. If $A \in E(H_{i-1})$, then $|E(H_i)| = |E(H_{i-1})| + \log_2 u$ and $W_{i-1} \setminus \log_2 u$. Therefore, v_i is well-defined for $1 \leq i \leq q$. We write $W' = \{v_1, v_2, \ldots, v_q\}$.

For each $A \in F(v_i)$ and $A' \in F(v_j)$ with $i < j$ we have $A \cap A' = \emptyset$ as we delete the set $\bigcup_{A \in Z_i} A$ in step i. For each $v_i \in W'$ and each $A \in F(v_i)$, we let $f(A)$ be an arbitrary vertex other than v_i from A and $F'(v_i) = \bigcup_{A \in F(v_i)} f(A)$. It follows from the preceding definitions that $F'(v_i) \cap F'(v_j) = \emptyset$ for $1 \leq i \neq j \leq q$. Furthermore, for each v_i and each $A \in \mathcal{L}_1$ containing v_i, either A is in $F(v_i)$ or a subset of A with size at least two is in $F(v_i)$. Hence, $A \cap F'(v_i) \neq \emptyset$. For an edge (v_i, v_j), if (v_i, z) is a non-edge for each $z \in F'(v_i)$ and (v_j, z') is a non-edge for each $z' \in F'(v_i)$, then the edge (v_i, v_j) is uncovered by the family of sets \mathcal{L}_1. Suppose (v_i, v_j) is in $K_{A,B}$ for some $A \in \mathcal{L}_1$. We have either $v_i \in A$ or $v_j \in A$. In the former case we get $A \cap L(v_i) \neq \emptyset$ by the definition of $L(v_i)$. Let $z \in A \cap L(v_i)$. Then A and B does not form a complete bipartite graph since (v_j, z) is not an edge by the assumption. We get a contradiction and we have a similar argument for the later case. Therefore the function $h(G, U, W, L)$ gives a lower bound for the number of uncovered edges in G for the given family of sets \mathcal{L}_1.

Now we apply Lemma 9 with $U = V(H)$, $W = W'$, $L(v_i) = F'(v_i)$ for each v_i and $c = \frac{1}{2} - \frac{3}{2000}$. The lemma then follows.

We are ready to prove Theorem 6.

Proof of Theorem 6. Suppose that

$$E(G[U]) = \bigcup_{i=1}^m E(K_{A_i,B_i}).$$

If $m > (1 + \frac{1}{10000}) u$, then we are done. Otherwise, Lemma 12 implies that there are at least $C_3 u^{2 - \delta_1 + \delta_1/2000}$ edges uncovered after we delete the edges in K_{A_i,B_i} for each $A_i \in \mathcal{L}_1$. We then apply Lemma 9 with $\delta = \delta_1$ which gives an upper bound for the number of edges covered by $\mathcal{L} \setminus \mathcal{L}_1$ (i.e., $|A_i| \geq \delta_1 \log_2 u$) : $$(\delta_1 |\mathcal{L} \setminus \mathcal{L}_1| u^{1 - \delta_1} \log_2 u + 8u^{3+\delta_1/2}/\log_2 n \sqrt{\log u \log_2 n}.$$ Here we note that $u^{3+\delta_1/2} \log_2 n \sqrt{\log u \log_2 n} = o(u^{2-\delta_1 + \delta_1/2000})$ because of the choice of δ_1. Therefore we need at least $C_4 u^{1+\delta_1/2000}$ additional complete bipartite graphs K_{A_i,B_i} with $A_i \in \mathcal{L} \setminus \mathcal{L}_1$ to cover the remaining edges, where C_4 is some positive constant. Since $C_4 u^{1+\delta_1/2000} > 1.0001 u$ when n is sufficiently large and we get a contradiction. Theorem 6 is proved.
6 Proof of Theorem \[14\]

Before proving Theorem 1, we first prove the following lemma.

Lemma 13 Suppose that edges of G can be decomposed into k_1 complete bipartite graphs, of which k_2 complete bipartite graphs are stars for some $k_2 \leq k_1$. Then G has an edge decomposition $E(G) = \bigcup_{i=1}^{k} E(K_{A_i,B_i})$ with $k \leq k_1$ such that for $i \leq k_2$, K_{A_i,B_i} are stars and for $j > k_2$, we have $A_j, B_j \subseteq V(G) \setminus \bigcup_{i=1}^{k_1} A_i$.

Proof: For an edge decomposition $B = \{K_{A_1,B_1}, \ldots, K_{A_{k_1},B_{k_1}}\}$, we can modify B by the following algorithm.

Algorithm A

Input G and B.

Step 1: Set $G' = G$, $V' = \emptyset$ and $B' = \emptyset$.

Step 2: If none of $K_{A_i,B_i} \in B$ is a star, then stop and output B. Otherwise go to Step 3.

Step 3: For $i = 1, \ldots, k_1$, if K_{A_i,B_i} is a star, add the center of the star to V' and add K_{A_i,B_i} to B'.

Step 4: For each $K_{A_i,B_i} \in B \setminus B'$, replace it by $K_{A_i',B_i'}$ where $A_i' = A_i \setminus V'$ and $B_i' \setminus V'$. For each star $S = K_{A_i,B_i}$ in B' with $A_i = \{v_i\}$, define S_i to be the star centered at v_i containing all edges incident to v_i in $G \setminus \{v_1, \ldots, v_{i-1}\}$. Then we replace $S = K_{A_i,B_i}$ by S' in B.

Step 5: Output B.

We note that the cardinality of B does not increase throughout Algorithm A, although it is possible that some member of B might have no edge left. In that case, $|B|$ decreases. \[\square\]

Lemma 14 For a graph G, there is a subset $T \subseteq V(G)$ such that

$$\tau(G) = n - |T| + \tau'(G[T]).$$

Proof: We use the notation in the proof of Lemma 13. Note that for $k_1 = \tau(G)$, we have $k \geq k_1$ so that the output of Algorithm A have size $k = k_1$. We choose $T = V \setminus V'$. Then all non-stars in the decomposition in B are an edge decomposition for $G[T]$. Therefore, we have $\tau(G) = k = |V'| + \tau'(G[T])$. \[\square\]

We are ready to prove Theorem 1.

Proof of Theorem 1 The upper bound follows from the well known fact (see Theorem 5) that almost surely a random graph $G \in G(n,p)$ has an independent set I with size $2 \log_b n$ where $b = 1/p$ and $p = \Omega(1)$. We consider vertices v_1, \ldots, v_m with $m = n - 2 \log_b n$, which are not contained in I. For each $1 \leq i \leq m$ we define a star K_{A_i,B_i} with $A_i = \{v_i\}$ and $B_i = \{v_j \colon j > i \text{ and } (v_i,v_j) \in E(G)\}$. We have

$$E(G) = \bigcup_{i=1}^{m} E(K_{A_i,B_i}).$$

Therefore we have $\tau(G) \leq n - 2 \log_b n$.

For the lower bound, we may assume that $G \in G(n,p)$ satisfies all statements in the lemmas in the preceding sections. Suppose G has an edge decomposition:

$$E(G) = \bigcup_{i=1}^{k} E(K_{A_i,B_i}),$$

where
with $k = \tau(G)$ and assume that for some $l \leq k$, we have $A_i = \{v_i\}$ for $1 \leq i \leq l$.

Let $W = \{v_1, \ldots, v_l\}$. If $W = \emptyset$ then Theorem 1 follows from Theorem 3 directly. We need only to consider the case $W \neq \emptyset$. By Algorithm A we can assume $E(G') = \bigcup_{i=l+1}^k E(K_{A_i, B_i})$ where G' is the subgraph induced by $T = V(G) \setminus W$. We get

$$\tau(G) = |W| + \tau'(G').$$

(10)

We will prove $l > n - \eta(\log_b n)^{3+\epsilon}$ for some positive constants η and ϵ. Suppose $l \leq n - \eta(\log_b n)^{3+\epsilon}$. Thus, $|T| \geq \eta(\log_b n)^{1+\epsilon}$. By Theorem 3 we have $\tau'(G[T]) \geq (1 + \frac{1}{10000})|T|$. Therefore

$$\tau(G) = |W| + \tau'(G') \geq |W| + (1 + \frac{1}{10000})|T| \geq n,$$

which is a contradiction. Theorem 1 is proved. \hfill \Box

7 Proof of Theorem 2

It remains to deal with the sparse case that $p = o(1)$. By using the lemmas previously stated in preceding sections, the proof for the sparse case is shorter.

Proof of Theorem 2 For the lower bound, we prove the following:

Claim A: For $G \in G(n, p)$, $U \subset V(G)$ with $|U| \geq \zeta \left(\frac{\log^2 u}{p^2}\right)^{1+\eta}$, and $p = o(1)$, where ζ and η are positive constants, almost surely we have $\tau(G[U]) \geq |U|$.

Proof of Claim A: We write $|U| = u$ and assume the following partition

$$E(G[U]) = \bigcup_{i=1}^m E(K_{A_i, B_i})$$

(11)

for some $m < u$. We can assume further $|A_i| \leq |B_i|$. By Lemma 2 with $p = \frac{1}{2}$, almost surely we have $|A_i| \leq 2 \log n$ for $G \in G(n, p)$ when $p = o(1)$. By the assumption of the size of U and Lemma 3 we have $e(U) = \left(\frac{p}{2} + o(1)\right) u^2$. Applying Lemma 3 with $A = \{A_1, \ldots, A_m\}$ we get

$$|\bigcup_{i=1}^m E(K_{A_i, B_i})| \leq 2p^2 mu + 8u \log n \sqrt{u \log u \log \log n}.$$

We note $2p^2 mu = o(u^2)$ as $p = o(1)$ and $m < u$; also $u \log n \sqrt{2u \log u \log n} < \frac{mu^2}{2}$ by the assumption on u. We obtain a contradiction to (11) and we have proved Claim A.

The remaining proof for the lower bound is quite similar to the proof of Theorem 1 and will be omitted.

For the upper bound, a result by Frieze 1 states that in $G(n, p)$, with $p = o(1)$, almost surely there is an independence set with size at least $\frac{2+\epsilon}{p} \log np$ for any small positive constant ϵ. This completes the proof of Theorem 2. \hfill \Box

8 Problems and remarks

The conjecture of Erdős, that almost all graphs G satisfies $\tau(G) = n - \alpha(G)$ as stated in 4, remains unsolved. Here we state the following slightly weaker conjectures:

Conjecture 1: For a random graph $G \in G(n, p)$, with $1/2 \geq p = \Omega(1)$, almost surely

$$\tau(G) = n - (2 + o(1)) \log_b n$$
where \(b = 1/p \).

Conjecture 2: For a random graph \(G \in G(n, p) \), with \(p = o(1) \), almost surely

\[
\tau(G) = n - (1 + o(1)) \frac{2}{p} \log np,
\]

where \(\log \) denotes the natural logarithm.

Conjecture 3: For a random graph \(G \in G(n, p) \), with \(1/2 \geq p = \Omega(1) \), suppose that an edge decomposition \(E(G) = \bigcup_{i=1}^{k} E(K_{A_i, B_i}) \) achieves \(\tau(G) = k \). Then at least \(n - o(n) \) of the bipartite subgraphs \(K_{A_i, B_i} \) are stars.

In this paper, we have given rather crude estimates for the constants involved. In particular, for the strong bipartition number \(\tau'(G) \), a consequence of Theorem 6 states that for \(G \in G(n, 1/2) \), we have \(\tau'(G) \geq 1.0001n \). A natural question is to improve the constant here.

In the other direction, it is of interest to characterize graphs with specified upper bounds for \(\tau' \).

Problem 4: Characterize graphs \(G \) such that \(\tau'(G) \leq n \).

References

