Verified Error Bounds for Isolated Singular Solutions of Polynomial Systems

Nan Li

Key Laboratory of Mathematics Mechanization
Chinese Academy of Sciences

Joint work with Lihong Zhi

Oct. 27th, 2012, Beijing
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system with $f_i \in \mathbb{C}[x_1, \ldots, x_n]$.
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system with $f_i \in \mathbb{C}[x_1, \ldots, x_n]$.

Isolated Solutions

An **isolated** solution of $F(x) = 0$ is a point $\hat{x} \in \mathbb{C}^n$ which satisfies:

$$\exists \ 0 < \varepsilon \ll 1 : \left\{ y \in \mathbb{C}^n : \|y - \hat{x}\| < \varepsilon \right\} \cap F^{-1}(0) = \{\hat{x}\}.$$
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system with $f_i \in \mathbb{C}[x_1, \ldots, x_n]$.

Isolated Solutions

An isolated solution of $F(x) = 0$ is a point $\hat{x} \in \mathbb{C}^n$ which satisfies:

$$\exists 0 < \varepsilon \ll 1 : \{y \in \mathbb{C}^n : \|y - \hat{x}\| < \varepsilon\} \cap F^{-1}(0) = \{\hat{x}\}.$$

Singular Solutions

We call \hat{x} a singular solution of $F(x) = 0$ if and only if

$$\text{rank}(F_x(\hat{x})) < n,$$

where F_x denotes the Jacobian matrix of F with respect to x.

Nan Li (KLMM)
Let $d^\alpha_{\hat{x}} : \mathbb{C}[x] \rightarrow \mathbb{C}$ denote the differential functional defined by

$$d^\alpha_{\hat{x}}(g) = \frac{1}{\alpha_1! \cdots \alpha_n!} \cdot \frac{\partial^{\alpha}|g|}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}(\hat{x}), \quad \forall g(x) \in \mathbb{C}[x].$$
Let $d^\alpha_{\hat{x}} : \mathbb{C}[x] \to \mathbb{C}$ denote the differential functional defined by

$$d^\alpha_{\hat{x}}(g) = \frac{1}{\alpha_1! \cdots \alpha_n!} \cdot \frac{\partial^{\mid \alpha \mid} g}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}(\hat{x}), \quad \forall g(x) \in \mathbb{C}[x].$$

Local Dual Space

The local dual space of $l = (f_1, \ldots, f_n)$ at \hat{x} is defined by

$$\mathcal{D}_{\hat{x}} := \{ \Lambda \in \mathcal{D}_{\hat{x}} \mid \Lambda(f) = 0, \forall f \in l \},$$

where $\mathcal{D}_{\hat{x}} = \text{Span}_\mathbb{C}\{d^\alpha_{\hat{x}}, \alpha \in \mathbb{N}^n\}$ and $\dim(\mathcal{D}_{\hat{x}}) = \mu.$
Let \(d_{\hat{x}}^\alpha : \mathbb{C}[x] \to \mathbb{C} \) denote the differential functional defined by

\[
d_{\hat{x}}^\alpha(g) = \frac{1}{\alpha_1! \cdots \alpha_n!} \cdot \frac{\partial^{\mid\alpha\mid} g}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}(\hat{x}), \quad \forall g(x) \in \mathbb{C}[x].
\]

The local dual space of \(I = (f_1, \ldots, f_n) \) at \(\hat{x} \) is defined by

\[
\mathcal{D}_{\hat{x}} := \{ \Lambda \in \mathcal{D}_{\hat{x}} \mid \Lambda(f) = 0, \forall f \in I \},
\]

where \(\mathcal{D}_{\hat{x}} = \text{Span}_\mathbb{C}\{d_{\hat{x}}^\alpha, \alpha \in \mathbb{N}^n\} \) and \(\text{dim}(\mathcal{D}_{\hat{x}}) = \mu \).

\(\hat{x} \) is an isolated singular solution of \(F(x) = 0 \) \(\iff \) \(1 < \mu < \infty \).
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system in $\mathbb{R}[x]$ and $\bar{x} \in \mathbb{R}^n$.
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system in $\mathbb{R}[x]$ and $\tilde{x} \in \mathbb{R}^n$.

Theorem (Krawczyk69, Moore77, Rump83)

Given $0 \in X \subseteq \mathbb{R}^n$, and $M \subseteq \mathbb{R}^{n \times n}$ satisfies $\nabla f_i(\tilde{x} + X) \subseteq M_{i,:}$. If

$$-F_x^{-1}(\tilde{x})F(\tilde{x}) + (I - F_x^{-1}(\tilde{x})M)X \subseteq \text{int}(X),$$

- there is a unique $\hat{x} \in X$ with $F(\hat{x}) = 0$.
- every matrix $\tilde{M} \in M$ is nonsingular.
Let $F = \{f_1, \ldots, f_n\}$ be a polynomial system in $\mathbb{R}[x]$ and $\tilde{x} \in \mathbb{R}^n$.

Theorem (Krawczyk69, Moore77, Rump83)

Given $0 \in X \subseteq \mathbb{R}^n$, and $M \in \mathbb{R}^{n \times n}$ satisfies $\nabla f_i(\tilde{x} + X) \subseteq M_i$. If

$$-F^{-1}(\tilde{x})F(\tilde{x}) + (I - F^{-1}(\tilde{x})M)X \subseteq \text{int}(X),$$

- there is a unique $\hat{x} \in X$ with $F(\hat{x}) = 0$.
- every matrix $\tilde{M} \in M$ is nonsingular.

Requirements:
- square systems: $F(x) : \mathbb{R}^n \to \mathbb{R}^n$.
- regular solutions: $F_x(\hat{x})$ is nonsingular.
A singular solution $\hat{\mathbf{x}}$ of a square system $F(\mathbf{x}) = 0$ satisfies

$$\begin{cases} F(\mathbf{x}) = 0, \\ \det(F_{\mathbf{x}}(\mathbf{x})) = 0, \end{cases}$$

where \det denotes the determinant.
Deflation Techniques

Determinant

A singular solution \(\hat{x} \) of a square system \(F(x) = 0 \) satisfies

\[
\begin{align*}
F(x) &= 0, \\
\det(F_x(x)) &= 0,
\end{align*}
\]

where \(\det \) denotes the determinant.

Null Space

Let \(r = \text{rank}(F_x(\hat{x})) \), then there exists a unique \(\hat{\lambda} \) such that \((\hat{x}, \hat{\lambda}) \) is an isolated solution of

\[
\begin{align*}
F(x) &= 0, \\
F_x(x)B\lambda &= 0, \\
h^T\lambda &= 1,
\end{align*}
\]

where \(B \in \mathbb{C}^{n \times (r+1)} \), \(h \in \mathbb{C}^{r+1} \).
Deflation Techniques

Determinant
A singular solution \hat{x} of a square system $F(x) = 0$ satisfies

$$\begin{cases} F(x) = 0, \\ \det(F_x(x)) = 0, \end{cases}$$

where \det denotes the determinant.

Null Space
Let $r = \text{rank}(F_x(\hat{x}))$, then there exists a unique $\hat{\lambda}$ such that $(\hat{x}, \hat{\lambda})$ is an isolated solution of

$$\begin{cases} F(x) = 0, \\ F_x(x)B\lambda = 0, \\ h^T\lambda = 1, \end{cases}$$

where $B \in \mathbb{C}^{n \times (r+1)}$, $h \in \mathbb{C}^{r+1}$.

Theorem (LVZ06)

*Deflation \notin to derive a regular solution is strictly less than μ.***
Deflation Techniques

Determinant
A singular solution \(\hat{x} \) of a square system \(F(x) = 0 \) satisfies
\[
\begin{align*}
F(x) &= 0, \\
\det(F_x(x)) &= 0,
\end{align*}
\]
where \(\det \) denotes the determinant.

Null Space
Let \(r = \text{rank}(F_x(\hat{x})) \), then there exists a unique \(\hat{\lambda} \) such that \((\hat{x}, \hat{\lambda}) \) is an isolated solution of
\[
\begin{align*}
F(x) &= 0, \\
F_x(x)B\lambda &= 0, \\
h^T\lambda &= 1,
\end{align*}
\]
where \(B \in \mathbb{C}^{n \times (r+1)} \), \(h \in \mathbb{C}^{r+1} \).

Theorem (LVZ06)
Deflation \# to derive a regular solution is strictly less than \(\mu \).
Related Works

- Yuchi and Shin’ichi, 1999;

- Rump and Graillat, 2009;

- Mantzaflaris and Mourrain, 2011;

- Li and Zhi, 2012.
Related Works

- Yuchi and Shin’ichi, 1999;
 - the existence of “imperfect singular solutions”.

- Rump and Graillat, 2009;

- Mantzaflaris and Mourrain, 2011;

- Li and Zhi, 2012.
Related Works

- Yuchi and Shin’ichi, 1999;
 - the existence of “imperfect singular solutions”.

- Rump and Graillat, 2009;
 - the existence of double roots ($\mu = 2$).

- Mantzaflaris and Mourrain, 2011;

- Li and Zhi, 2012.
Related Works

- Yuchi and Shin’ichi, 1999;
 - the existence of "imperfect singular solutions".

- Rump and Graillat, 2009;
 - the existence of double roots ($\mu = 2$).

- Mantzaflaris and Mourrain, 2011;
 - the existence of singular solutions with given multiplicity structures.

- Li and Zhi, 2012.
Related Works

- Yuchi and Shin’ichi, 1999;
 - the existence of “imperfect singular solutions”.

- Rump and Graillat, 2009;
 - the existence of double roots ($\mu = 2$).

- Mantzaflaris and Mourrain, 2011;
 - the existence of singular solutions with given multiplicity structures.

- Li and Zhi, 2012.
 - the existence of breadth-one solutions ($\text{rank}(F_x(\hat{x})) = n - 1$).
Introduce $\mu - 1$ smoothing parameters $b_0, b_1, \ldots, b_{\mu - 2}$ and consider

\[
G(x, \lambda, b) = \begin{pmatrix}
\tilde{F}(x, b) = F(x) - p(x_1, b)e_1 \\
F_1(x, \lambda_1, b) \\
\vdots \\
F_{\mu - 1}(x, \lambda_1, \ldots, \lambda_{\mu - 1}, b)
\end{pmatrix},
\]

where $p(x_1, b) = \sum_{\nu=0}^{\mu-2} \frac{b_{\nu} x_1^\nu}{\nu!}$ and

\[
F_k(x, \lambda_1, \ldots, \lambda_k, b) = L_k \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, \lambda_1, \ldots, \lambda_k \right) \left[\tilde{F}(x, b) \right].
\]
Introduce $\mu - 1$ smoothing parameters $b_0, b_1, \ldots, b_{\mu-2}$ and consider

$$G(x, \lambda, b) = \begin{pmatrix}
\tilde{F}(x, b) = F(x) - p(x_1, b)e_1 \\
F_1(x, \lambda_1, b) \\
\vdots \\
F_{\mu-1}(x, \lambda_1, \ldots, \lambda_{\mu-1}, b)
\end{pmatrix},$$

where $p(x_1, b) = \sum_{\nu=0}^{\mu-2} \frac{b_\nu x_1^\nu}{\nu!}$ and

$$F_k(x, \lambda_1, \ldots, \lambda_k, b) = L_k \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, \lambda_1, \ldots, \lambda_k \right) \left[\tilde{F}(x, b) \right].$$

$$n_x + \mu - 1 + (\mu - 1)(n - 1) = \mu n.$$
Theorem (LiZhi12)

Suppose \(\hat{x} \) is an isolated solution of \(F(x) = 0 \) with \(\text{rank}(F_x(\hat{x})) = n - 1 \) and multiplicity \(\mu \). Assume

\[
\text{rank}(F_{x_2, \ldots, x_n}(\hat{x}), e_1) = n,
\]

then \(G_{x, \lambda, b}(\hat{x}, \hat{\lambda}, 0) \) is nonsingular.

After \(\mu - 1 \) deflations, we derive a regular solution of a square system.
Theorem (LiZhi12)

Suppose \(\hat{x} \) is an isolated solution of \(F(x) = 0 \) with \(\text{rank}(F_x(\hat{x})) = n - 1 \) and multiplicity \(\mu \). Assume

\[
\text{rank}(F_{x_2,\ldots,x_n}(\hat{x}), e_1) = n,
\]

then \(G_{x,\lambda,b}(\hat{x}, \hat{\lambda}, 0) \) is nonsingular.

After \(\mu - 1 \) deflations, we derive a regular solution of a square system.

Theorem (LiZhi12)

Suppose Theorem KMR is applicable to the \(\mu n \times \mu n \) system \(G(x, \lambda, b) \) and yields inclusions for \(\hat{x}, \hat{\lambda} \) and \(\hat{b} \) such that \(G(\hat{x}, \hat{\lambda}, \hat{b}) = 0 \). Then \(\hat{x} \) is an isolated breadth-one solution of \(\tilde{F}(x, \hat{b}) \) with multiplicity \(\mu \).
Consider a polynomial system

\[F = \{ x_1^2 x_2 - x_1 x_2^2, x_1 - x_2^2 \} \].

The system \(F \) has \((0, 0)\) as a 4-fold isolated zero.
Consider a polynomial system

\[F = \{ x_1^2 x_2 - x_1 x_2^2, x_1 - x_2^2 \}. \]

The system \(F \) has \((0, 0)\) as a 4-fold isolated zero.

Add \(p(x_2, b) = b_0 + b_1 x_2 + \frac{b_2}{2} x_2^2 \) to \(x_1^2 x_2 - x_1 x_2^2 \) to construct

\[
G(x, b, \lambda) = \begin{pmatrix}
 x_1^2 x_2 - x_1 x_2^2 - b_0 - b_1 x_2 - \frac{b_2}{2} x_2^2 \\
 x_1 - x_2^2 \\
 2\lambda_1 x_1 x_2 - \lambda_1 x_2^2 + x_1^2 - 2x_1 x_2 - b_1 - b_2 x_2 \\
 \lambda_1 - 2x_2 \\
 \lambda_1^2 x_2 + 2\lambda_1 x_1 - 2\lambda_1 x_2 + 2\lambda_2 x_1 x_2 - \lambda_2 x_2^2 - x_1 - b_2 \\
 \lambda_2 - 1 \\
 \lambda_1^2 + \lambda_1 \lambda_2 x_2 - \lambda_1 + 2\lambda_2 x_1 - 2\lambda_2 x_2 + 2\lambda_3 x_1 x_2 - \lambda_3 x_2^2 \\
 \lambda_3
\end{pmatrix}.
\]
Apply INTLAB function `verifynlss` with

\[
(0.002, 0.003, 0.002, 1.001, -0.01, 0, 0, 0)
\]

and yields inclusions

\[-10^{-14} \leq \hat{x}_i \leq 10^{-14}, \text{ for } i = 1, 2,
\]
\[-10^{-14} \leq \hat{b}_i \leq 10^{-14}, \text{ for } i = 0, 1, 2,
\]

which proves \(\tilde{F}(x, \hat{b}) \) \((|\hat{b}_i| \leq 10^{-14}, i = 0, 1, 2)\) has a 4-fold root \(\hat{x} \) within \(|\hat{x}_i| \leq 10^{-14}, i = 1, 2\), where

\[
\tilde{F}(x, \hat{b}) = \begin{pmatrix}
 x_1^2 x_2 - x_1 x_2^2 - \hat{b}_0 - \hat{b}_1 x_2 - \frac{\hat{b}_2}{2} x_2^2 \\
 x_1 - x_2^2
\end{pmatrix}.
\]
Let $\hat{x} \in \mathbb{C}^n$ be an isolated singular solution of $F(x) = 0$, then

$$\text{rank}(F_x(\hat{x})) = n - d, \ (1 < d \leq n).$$
Let $\hat{x} \in \mathbb{C}^n$ be an isolated singular solution of $F(x) = 0$, then
\[
\text{rank}(F_x(\hat{x})) = n - d, \quad (1 < d \leq n).
\]

Let $F_c(\hat{x})$ be obtained from $F_x(\hat{x})$ by deleting its c-th columns, s.t.
\[
\text{rank}(F_c(\hat{x})) = n - d, \quad \text{for } c = \{j_1, j_2, \ldots, j_d\}.
\]
Let $\hat{x} \in \mathbb{C}^n$ be an isolated singular solution of $F(x) = 0$, then
\[
\text{rank}(F_x(\hat{x})) = n - d, \quad (1 < d \leq n).
\]

Let $F_c(\hat{x})$ be obtained from $F_x(\hat{x})$ by deleting its c-th columns,
\[
\text{s.t. } \text{rank}(F_c(\hat{x})) = n - d, \quad \text{for } c = \{j_1, j_2, \ldots, j_d\}.
\]

Let $r = \{k_1, k_2, \ldots, k_d\}$ be an integer set,
\[
\text{s.t. } \text{rank}(F_c(\hat{x}), e_{k_1}, e_{k_2}, \ldots, e_{k_d}) = n.
\]
Let $\hat{x} \in \mathbb{C}^n$ be an isolated singular solution of $F(x) = 0$, then

$$\text{rank}(F_x(\hat{x})) = n - d, \quad (1 < d \leq n).$$

Let $F_c(\hat{x})$ be obtained from $F_x(\hat{x})$ by deleting its c-th columns,

s.t. $\text{rank}(F_c(\hat{x})) = n - d$, for $c = \{j_1, j_2, \ldots, j_d\}$.

Let $r = \{k_1, k_2, \ldots, k_d\}$ be an integer set,

s.t. $\text{rank}(F_c(\hat{x}), e_{k_1}, e_{k_2}, \ldots, e_{k_d}) = n$.

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{c} d = 2, \\ c = \{1, 2\}, \\ r = \{1, 2\}. \end{array}$$
Introduce d smoothing parameters b_1, b_2, \ldots, b_d and consider

$$G(x, \lambda, b) = \begin{cases}
F(x) - \sum_{i=1}^{d} b_i e_{k_i} = 0, \\
F_x(x)v = 0,
\end{cases}$$

where v consists of $n - d$ parameters λ and entries 1 at j_1, j_2, \ldots, j_d-th.
Introduce d smoothing parameters b_1, b_2, \ldots, b_d and consider

$$G(x, \lambda, b) = \begin{cases}
F(x) - \sum_{i=1}^{d} b_i e_{k_i} = 0, \\
F_x(x)v = 0,
\end{cases}$$

where v consists of $n - d$ parameters λ and entries 1 at j_1, j_2, \ldots, j_d-th.

- $F_x(\hat{x})v = 0$ has a unique solution $\hat{\lambda}$.
- $(\hat{x}, \hat{\lambda}, 0)$ is an isolated solution of $G(x, \lambda, b)$.
- If $(\hat{x}, \hat{\lambda}, 0)$ is singular, regard $G(x, \lambda, b)$ as $F(x)$ and repeat.
- Similar to Yamamoto84.
\[\begin{align*}
F(x) - l_r b_0 &= 0, \\
F_x(x)v_1 - l_r' b_1 &= 0, \\
G_{x,\lambda_1,b_0}(x, \lambda_1, b_0)v_2 &= 0,
\end{align*} \]
\[
\begin{align*}
F(x) - I_r b_0 &= 0, \\
F_x(x)v_1 - I_{r'} b_1 &= 0, \\
G_{x, \lambda_1, b_0}(x, \lambda_1, b_0)v_2 &= 0,
\end{align*}
\]
\(\Rightarrow\) “imperfect singular solutions”
\[
\begin{aligned}
\begin{cases}
 F(x) - l_r b_0 &= 0, \\
 F_x(x)v_1 - l_{r'} b_1 &= 0, \\
 G_{x,\lambda_1,b_0}(x, \lambda_1, b_0)v_2 &= 0,
\end{cases}
\end{aligned}
\]

\[\Rightarrow \text{“imperfect singular solutions”}\]
2nd Deflation

\[
\begin{align*}
 F(x) - l_r b_0 &= 0, \\
 F_x(x)v_1 - l_{r'} b_1 &= 0, \\
 G_{x, \lambda_1, b_0}(x, \lambda_1, b_0)v_2 &= 0,
\end{align*}
\]

⇒ “imperfect singular solutions”

\[
\begin{align*}
 F(x) - l_r b_0 - X b_1 &= 0, \\
 F_x(x)v_1 - l_{r'} b_1 &= 0, \\
 \tilde{G}_{x, \lambda_1, b_0}(x, \lambda_1, b_0, b_1)v_2 &= 0,
\end{align*}
\]

\(X\) consists of \(x_{c'(i)}e_{r'(i)}, \ i = 1, \ldots, d'\)
2nd Deflation

\[
\begin{align*}
F(x) - l_r b_0 &= 0, \\
F_x(x)v_1 - l_{r'} b_1 &= 0, \\
G_{x, \lambda_1, b_0}(x, \lambda_1, b_0)v_2 &= 0,
\end{align*}
\]
\[
\Rightarrow \text{"imperfect singular solutions"}
\]

\[
\begin{align*}
F(x) - l_r b_0 - X b_1 &= 0, \\
F_x(x)v_1 - l_{r'} b_1 &= 0, \\
\tilde{G}_{x, \lambda_1, b_0}(x, \lambda_1, b_0, b_1)v_2 &= 0,
\end{align*}
\]
\[
\Rightarrow \quad X \text{ consists of } x_{c'(i)}e_{r'(i)}, \ i = 1, \ldots, d'
\]

\[
\tilde{F}(x, b) = F(x) - l_r b_0 - X b_1
\]
2nd Deflation

\[
\begin{cases}
F(x) - l_r b_0 = 0, \\
F_x(x)v_1 - l_{r'} b_1 = 0, \\
G_{x,\lambda_1,b_0}(x, \lambda_1, b_0)v_2 = 0,
\end{cases}
\]

⇒ “imperfect singular solutions”

\[
\begin{cases}
F(x) - l_r b_0 - X b_1 = 0, \\
F_x(x)v_1 - l_{r'} b_1 = 0, \\
\tilde{G}_{x,\lambda_1,b_0}(x, \lambda_1, b_0, b_1)v_2 = 0,
\end{cases}
\]

\[
\tilde{F}(x, b) = F(x) - l_r b_0 - X b_1 \\
F_x(x)v_1 - l_{r'} b_1 = 0 \iff \tilde{F}_x(x, b)v_1 = 0
\]

\[X \text{ consists of } x_{c'(i)} e_{r'(i)}, i = 1, \ldots, d'\]
Modified Deflation

Theorem

After \(s \) deflations, we obtain

\[
\begin{align*}
\tilde{F}(\mathbf{x}, \mathbf{b}) &= 0, \\
\tilde{F}_x(\mathbf{x}, \mathbf{b})\mathbf{v}_1 &= 0, \\
\tilde{G}_{x, \lambda_1, \mathbf{b}_0}(\mathbf{x}, \lambda_1, \mathbf{b})\mathbf{v}_2 &= 0, \\
&\quad \cdots = 0,
\end{align*}
\]

and an isolated solution \((\hat{\mathbf{x}}, \hat{\lambda}, \mathbf{0})\), where

\[
\tilde{F}(\mathbf{x}, \mathbf{b}) = F(\mathbf{x}) - X_0\mathbf{b}_0 - X_1\mathbf{b}_1 - \cdots - X_s\mathbf{b}_s,
\]

and \(X_k \) consists of \(\frac{1}{k!} \cdot x^{k}_{c(k)(i)} \cdot e_{r(k)(i)}, i = 1, \ldots, d^{(k)} \).
After s deflations, we obtain

\[
\begin{align*}
\tilde{F}(x, b) &= 0, \\
\tilde{F}_x(x, b)v_1 &= 0, \\
\tilde{G}_{x, \lambda_1, b_0}(x, \lambda_1, b)v_2 &= 0, \\
&\vdots &= 0,
\end{align*}
\]

and an isolated solution $(\hat{x}, \hat{\lambda}, 0)$, where

\[
\tilde{F}(x, b) = F(x) - X_0 b_0 - X_1 b_1 - \cdots - X_s b_s,
\]

and X_k consists of \(\frac{1}{k!} \cdot x^{k}_{c(k)(i)} \cdot e^{r(k)(i)} \), \(i = 1, \ldots, d^{(k)} \).

Deflation $\#$ to derive a regular solution is strictly less than μ.
Suppose Theorem KMR is applicable to the modified system, and yields inclusions for \hat{x} and \hat{b}. Then the perturbed system $\tilde{F}(x, b)$ has an isolated singular solution at \hat{x}.
Suppose Theorem KMR is applicable to the modified system, and yields inclusions for \hat{x} and \hat{b}. Then the perturbed system $\tilde{F}(x, \hat{b})$ has an isolated singular solution at \hat{x}.

$(\hat{x}, \hat{\lambda}, \hat{b})$ is the unique regular solution of

$$
\begin{align*}
\tilde{F}(x, b) & = 0, \\
\tilde{F}_x(x, b)v_1 & = 0, \\
\tilde{G}_{x,\lambda_1,b_0}(x, \lambda_1, b)v_2 & = 0, \\
\vdots & = 0,
\end{align*}
$$

inside the inclusions.

$$
\tilde{F}_x(\hat{x}, \hat{b})\hat{v}_1 = 0 \quad \text{and} \quad \hat{v}_1 \neq 0 \Rightarrow \text{rank}(\tilde{F}_x(\hat{x}, \hat{b})) < n.
$$

\hat{x} is an isolated singular solution of $\tilde{F}(x, \hat{b})$.

Example DZ1

Example (DZ1, DZ05)

Consider a polynomial system

\[F = \{ x_1^4 - x_2 x_3 x_4, x_2^4 - x_1 x_3 x_4, x_3^4 - x_1 x_2 x_4, x_4^4 - x_1 x_2 x_3 \}. \]

The system \(F \) has \((0, 0, 0, 0)\) as a **131-fold** isolated zero.
Example DZ1

Example (DZ1, DZ05)

Consider a polynomial system

\[F = \{ x_1^4 - x_2x_3x_4, x_2^4 - x_1x_3x_4, x_3^4 - x_1x_2x_4, x_4^4 - x_1x_2x_3 \}. \]

The system \(F \) has \((0, 0, 0, 0)\) as a 131-fold isolated zero.

\(F_x(\hat{x}) \) is a zero matrix, we derive \(d = 4, c = r = \{1, 2, 3, 4\} \) and

\[
G(x, b_0) = \begin{cases}
F(x) - l_r b_0 = 0, \\
F_x(x)v_1 = 0, \\
v_1 = (1, 1, 1, 1)^T.
\end{cases}
\]

Its Jacobian matrix computes to

\[
G_{x,b_0}(0) = \begin{pmatrix}
O_{4,4} & -l_r \\
O_{4,4} & O_{4,4}
\end{pmatrix},
\]

so that \(d' = 4, c' = r' = \{1, 2, 3, 4\} \).
Example DZ1

\[
H(x, \lambda, b) = \begin{cases}
F(x) - l_r b_0 - X_1 b_1 = 0, \\
F_x(x)v_1 - l_r b_1 = 0, \\
\tilde{G}_{x,b_0}(x, b_0, b_1)v_2 = 0,
\end{cases}
\]

\((0, 0, 0, 0) \) is the unique solution of \(\tilde{G}_{x,b_0}(0)v_2 = 0 \).

\[
H_{x,\lambda,b}(0) = \begin{pmatrix}
O_{4,4} & O_{4,4} & O_{4,4} & -l_r \\
O_{4,4} & O_{4,4} & -l_{r'} & O_{4,4} \\
O_{4,4} & -l_{r'} & -l_{r'} & O_{4,4} \\
A & O_{4,4} & O_{4,4} & O_{4,4}
\end{pmatrix},
A = \begin{pmatrix}
0 & -2 & -2 & -2 \\
-2 & 0 & -2 & -2 \\
-2 & -2 & 0 & -2 \\
-2 & -2 & -2 & 0
\end{pmatrix}.
\]

\(H_{x,\lambda,b}(0) \) is nonsingular now, so we obtain \(H(x, \lambda, b) \) and

\[
\tilde{F}(x, b) = \begin{cases}
x_1^4 - x_2 x_3 x_4 - b_1 - b_5 x_1 \\
x_2^4 - x_1 x_3 x_4 - b_2 - b_6 x_2 \\
x_3^4 - x_1 x_2 x_4 - b_3 - b_7 x_3 \\
x_4^4 - x_1 x_2 x_3 - b_4 - b_8 x_4
\end{cases}.
\]
Apply INTLAB function `verifynlss` with

\[(0.003, 0.010, 0.003, 0.007, 0, 0, 0, 0, 0, \ldots, 0)\]

and yields inclusions

\[-10^{-321} \leq \hat{x}_i \leq 10^{-321}, \text{ for } i = 1, 2, 3, 4,\]

\[-10^{-321} \leq \hat{b}_i \leq 10^{-321}, \text{ for } i = 1, 2, \ldots, 8,\]

which proves that \(\tilde{F}(x, \hat{b}) (|\hat{b}_i| \leq 10^{-321}, i = 1, 2, \ldots, 8)\) has an isolated singular solution \(\hat{x}\) within \(|\tilde{x}_i| \leq 10^{-321}, i = 1, 2, 3, 4,\) where

\[
\tilde{F}(x, \hat{b}) = \left\{ \begin{array}{c}
 x_1^4 - x_2x_3x_4 - \hat{b}_1 - \hat{b}_5x_1 \\
 x_2^4 - x_1x_3x_4 - \hat{b}_2 - \hat{b}_6x_2 \\
 x_3^4 - x_1x_2x_4 - \hat{b}_3 - \hat{b}_7x_3 \\
 x_4^4 - x_1x_2x_3 - \hat{b}_4 - \hat{b}_8x_4 \\
\end{array} \right\}.
\]
Add two small perturbations to DZ1:

\[\{ x_1^4 - x_2 x_3 x_4 + 10^{-12}, x_2^4 - x_1 x_3 x_4, x_3^4 - x_1 x_2 x_4, x_4^4 - x_1 x_2 x_3 - 10^{-12} x_4 \} \]

This "approximate" system has no isolated singular solutions, but a "cluster" of roots near the original. Apply `verifynlss`, it yields

\[-10^{-25} \leq \hat{x}_i \leq 10^{-25}, \text{ for } i = 1, 2, 3, 4,\]

\[10^{-12} - 10^{-25} \leq \hat{b}_1 \leq 10^{-12} + 10^{-25},\]

\[-10^{-25} \leq \hat{b}_i \leq 10^{-25}, \text{ for } i = 2, 3, \ldots, 7,\]

\[-10^{-12} - 10^{-25} \leq \hat{b}_8 \leq -10^{-12} + 10^{-25},\]

which proves \(\tilde{F}(\mathbf{x}, \mathbf{b}) \) has an isolated singular solution \(\hat{\mathbf{x}} \) within above computed bounds.
Experiment

| System | n | μ | Breadth | $|\hat{x}|$ | $|X|$ | $|B|$ |
|---------|-----|-------|-----------|------------|-----|-------------|
| DZ1 | 4 | 131 | $4 \rightarrow 4 \rightarrow 0$ | e-3 | e-321 | e-321 |
| DZ2 | 3 | 16 | $2 \rightarrow 2 \rightarrow 1 \rightarrow 0$ | e-3 | e-14 | e-14 |
| cbms1 | 3 | 11 | $3 \rightarrow 0$ | e-3 | e-321 | e-321 |
| cbms2 | 3 | 8 | $3 \rightarrow 0$ | e-3 | e-321 | e-321 |
| mth191 | 3 | 4 | $2 \rightarrow 0$ | e-3 | e-14 | e-14 |
| KSS | 10 | 638 | $9 \rightarrow 0$ | e-3 | e-14 | e-14 |
| Caprассе | 4 | 4 | $2 \rightarrow 0$ | e-3 | e-14 | e-14 |
| RuGr09 | 2 | 4 | $1 \rightarrow 1 \rightarrow 1 \rightarrow 0$ | e-3 | e-14 | e-14 |
| LiZhi12 | 1000 | 3 | $1 \rightarrow 1 \rightarrow 0$ | e-4 | e-12 | e-12 |

n is the size of System, μ is the multiplicity, $|\hat{x}|$ is the number of correct digits for initial guess, $|X|$ and $|B|$ list the length of inclusions for \hat{x} and \hat{b}.

- $(2, -i\sqrt{3}, 2, i\sqrt{3})$ is a 4-fold isolated solution of Caprассе.
References

Thanks 谢谢