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The Rogers-Ramanujan identities

Theorem (Rogers-Ramanujan)

For |q| < 1,

> S ) R S—

S (=g =g (1=q7) 15 (1—g¥ (1 g/t
qn2+n o0

2. (I-—q-g)(1-¢q) H 5J+2 — i) {2

n>0 :0

.

These two identities were first proved by Rogers in 1894 and
rediscovered by Ramanujan a few years later.

@ Ramanujan’s comment: It would be difficult to find more
beautiful formulas than the Rogers-Ramanujan’ identities.

@ Hans Rademacher clearly was in agreement with Ramanujan’s
comments.
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@ There is a beautiful story
about the discovery of the
Rogers-Ramanujan
identities.

@ Rogers' reputation as a
mathematician rests
almost entirely on the
discovery of these two
identities.

@ how they found these two
identities have appeared in
Baxter's exact solution to
the hard hexagon model in
statistical mechanics.
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The connection with representation theory of Lie algebras

@ The connection between RR identities and the representation
theory of Lie algebras was initiated by J. Lepowsky, R.L.
Wilson, S. Milne.

B
[

J. Lepowsky and S. Milne, Lie algebraic approaches to classical
partition identities, Adv. Math. 29 (1978), 15-59

J. Lepowsky and R. L. Wilson, A new family of algebras underlying
the Rogers-Ramanujan identities, Proc. Nat. Acad. Sci. USA 78
(1981) 7254-7258.

J. Lepowsky and R. L. Wilson, The structure of standard modules I:
universal algebras and the Rogers—Ramanujan identities, Invent.
Math. 77 (1984), 199-290.

J. Lepowsky and R. L. Wilson, The structure of standard modules Il:
the case Agl), principal gradation, Invent. Math. 79 (1985), 417-442.
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Integer partitions

Definition
A partition of a positive integer n is a finite nonincreasing sequence
of positive integers (w1, 7o, ..., m¢) such that

T+ 7o + -+ 7 = N

Example: There are five partitions of 4, which are

(4),(3,1),(2,2),(2,1,1),(1,1,1,1).
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MacMahon's combinatorial interpretation

Theorem (MacMahon)

@ Let Ai(—;1,2,2;n) denote the number of partitions of n into parts = 1,4
(mod 5) (equivalently, # 0,£2 (mod 5));

@ Let Bi(—;1,2,2;n) denote the number of partitions m = (w1, 72, ..., T)
of n with wi —wiz1 > 2 for1 <i</l—1.

Then for n > 0,

Ai1(—;1,2,2;n) = Bi(—;1,2,2;n).

1
Al(—:1,2,2n)¢ = ———
g ( ) (9,9% 4°) o

=1+434---+2n—1)

2
(RRl)Z q - :231(7;1,2,2;n)q"

Notation:

(aq)h=(1-2a)(1~-aq) - (1-ag"") (a9 = lim (aq)n,

(a1,a2,..., 3k 9)n = (a1;9)n(32; Q) - - (ak; Q-
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MacMahon's combinatorial interpretation

Theorem (MacMahon)
o Let Ai(—;1,2,1;n) denote the number of partitions of n into
parts = 2,3 (mod 5) (equivalently, # 0,£1 (mod 5));
o Let Bi(—;1,2,1;n) denote the number of partitions
m = (m1,m2,...,mg) of nwith mj — i1 > 2 for1 <i<{—1
and wy > 2.
Then for n > 0,

Al(_v 17 27 17 n) = Bl(_* 17 27 1/ n)‘

> Ai(=51,2,1n)q" = ( !

2 A3- 45
n>0 q,q,q)oo

(REZ) e qn +n (=244+4---+2n)

= Z Bi(—;1,2,1;n)q".

n=0 (q’ q)n n>0
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Gordon's combinatorial generalization

Theorem (Rogers-Ramanujan-Gordon, 1961)
@ For k>r>1, let Ai(—;1, k, r;n) denote the number of
partitions of n into parts # 0, £r (mod 2k + 1).
@ Fork>r>1, let Bi(—; 1,k r,n) denote the number of

partitions of n of the form (my,...,ms), where
Tj — Tjyk—1 = 2, and at most r — 1 of the «; are equal to 1.

Then, fork>r>1 and n> 0,

Al(_, 17 ka r n) = Bl(i' 17 k7 r n)’

A

When k = 2 and r= 2,1, this identity reduces to (RR1) or (RR2).
Note: Gordon's theorem was independently discovered by G.E. Andrews, see
G.E. Andrews, Some debts | owe.

@ B. Gordon, A combinatorial generalization of the Rogers-Ramanujan
identities, Amer. J. Math 83 (1961) 393-399.
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The corresponding g-identity due to Andrews

Andrews found the following g-identity, which can be viewed as a
companion to Gordon's partition identity.

Theorem (Andrews, 1974)
Fork>r>1,

qN§+-~~+I\Ii,1+N,+-~-+Nk,1

>

NIZ"'ZNI(—lZO (q’ q)Nl—N2 T (q7 q)Nk_Q—Nk—l (q’ q)Nk_l

oo

-

n=1
nZ0,+r (mod 2k+1)

1—qg"

v

When k=2 and r= 2,1 this identity reduces to (RR1) and (RR1).

@ G.E. Andrews, An analytic generalization of the Rogers-Ramanujan
identities for odd moduli, Proc. Nat. Acad. Sci. USA 71 (1974)

4082-4085.
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The sketch of the proof given by Andrews

Andrews first introduced the following function

0o anqkn2+(k—r+1)n(_1)nq(;) (1 _ qu(2n+1)r)
Jir(05 %, q) =
09 =2 (@0 )

n=0

He then proved that for 1 < i< k,|q| < 1,

)

oo
Jir(051;q) = ZAl(—§1ak,’"a”)qn: H 1_o
n>0 n=1 q
n#Z0,+r (mod 2k+1)

J05159) = Y Bi(=i1,k rn)q"
n>0

Je0Lg) = Y ?

Ny >Ny >0 (q; q)leNz T (q; q)Nk727Nk71(q; q)Nk—l

NE NG N4 Ny

12/64



Kursungo6z's combinatorial proof

By introducing the notion of the Gordon marking of a partition,
and defining the forward move and the backward move, Kursungéz
gave a combinatorial proof of the following generating function.

For k>i>1,
Z Bi(—; 1,k r;n)q"
n>0
Z qN$+N§+~~+N£,1+N,-+-~~+Nk_1
B (@ D —n (G Dy - (S DNy

Ni>No>... >Nj_1>0

M K. Kursungéz, Parity considerations in Andrews-Gordon
identities, European J. Combin. 31 (2010) 976-1000.
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Bressoud’s combinatorial generalization

Bressoud observed that Gordon's partition identity only focused on
the parts modular the odd numbers. He addressed the case
involving the even numbers and derived the following partition
identity.

Theorem (Bressoud-Rogers-Ramanujan, 1979)

@ For k>r>1, let Ay(—;1, k, r;n) denote the number of
partitions of n into parts # 0, +r (mod 2k).

@ For k>r>1, let By(—;1, k,r;n) denote the number of
partitions of n of the form (i, ..., ws), where
Tj — Tjt+k—1 = 2, at most r — 1 of the 7; are equal to 1.

If mj— Wiyk—o <1, then mj+ -+ + Tjjk—2 = r—1 (mod 2).
Then, fork>r>1 and n> 0,

Ao(—;1,k,r;n) = By(—; 1, k, r; n).

@ D.M. Bressoud, A generalization of the Rogers-Ramanujan identities for
all moduli, J. Combin. Theory, Ser. A 27 (1979) 64-68. 14/64



The sketch of the proof given by Bressoud

Based on the following function

00 anqkn2+(k—r+1)n(_1)nq(;) (1 _ qu(2n+1)r)

Hurl03%0) =2 @ala™ e

Bressoud then proved that for 1 < i< k,|q| < 1,
(=& Qoodik-1)/2,2(0:150%) = D Ao(—; 1,k r;n)g"
n>0
oo

1
= Hl_iqn’

n=1
nZ0,+r (mod 2k)

(_q;q)oo-j(k—l)/2,r/2(0;1§q2) = ZBO(_;l’kvr;n)qn'
n>0
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The corresponding g-identity

Bressoud obtained the following g-identity, which can be viewed as
a companion to his partition identity.

Theorem (Bressoud, 1980)
Fork>r>1,

NE NG+ N4 Ny

q
N1>--->2Nk1>0 (@G DN —Ns - (T DN =N, (G755 )N,

i 1

- H 17qn'

n=1

nZ0,£r (mod 2k)

A

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)

54pp.
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A general theme

A(n; congruence conditions on parts)

0

B(n; gap conditions on parts)
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Some classical partition identities

@ Euler's partition theorem: The number of partitions of n into
parts = 1 (mod 2) is equal to the number of partitions

m = (7w, m2,...,m) of nwith m; — 7y > 1for 1 <i<{—1.
1
—G @)oo = 5
(=45 @)ee (65 4o

@ Schur's theorem: The number of partitions of n into parts
= +1 (mod 6) is equal to the number of partitions
m = (m1,m2,...,m¢) of nwith m; — 7y >3 for 1 < /< /(-1
with strict inequality if 7; =0 (mod 3).

q3”2 2-3n. 3 14+3n. 3 1
E (=0 (=0 " G )0 =
= (q% ¢%)n ! = (9.6%: 0%
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Some classical partition identities

@ The Gollnitz-Gordon theorem |: The number of partitions of n
into parts = 1,4, or 7 (mod 8) is equal to the number of

partitions m = (71, ma, ..., m¢) of n with m; — 71 > 2 for
1 < i< ¢ —1 with strict inequality if 7; = 0 (mod 2).
z" -

@ The Gollnitz-Gordon theorem |I: The number of partitions of
n into parts = 3,4, or 5 (mod 8) is equal to the number of
partitions m = (71,72, ..., m) of n with m; — 711 > 2 for
1 < i</ —1 with strict inequality if 7; =0
(mod 2). Furthermore, mp > 3 .

9" 2" (—q; 4%, 1
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Andrews’ combinatorial generalization

Theorem (Andrews-Gollnitz-Gordon, 1967)

@ For k>r>1, let A1(1;2, k, r;n) denote the number of
partitions of n into parts # 2 (mod 4) and # 0, £(2r — 1)

(mod 4k).
@ For k>r>1, let Bi(1;2, k,r;n) denote the number of
partitions of n of the form (my,...,ms) such that no odd part

is repeated, mj — mj k1 = 2 with strict inequality if 7; is even,
and at most r — 1 of the m; are less than or equal to 2.
Then, fork>r>1 and n> 0,

A1(1;2,k,r;n) = Bi(1;2,k, r; n).

When k=2 and r =1, this theorem reduces to GGT-II. When
k=2 and r= 2, this theorem reduces to GGT-I.

@ G.E. Andrews, A generalization of the Géllnitz-Gordon partition theorems,

Proc. Amer. Math. Soc. 18 (1967) 945-952.
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The sketch of the proof

Andrews first introduced the following function

oo anqkn2+(k—r)nan(1 _ qu2nr)(aan+1)oo(afl)n

prd (9)n(xq")o0

Hir(a;x; q) =

and let

Jir(3; % q) = Hir(a; xq; q) — axqHy 1 (a3 xq; q).
He then proved that for 1 < i< k,|q| < 1,
Jl=a 5567 = Y AL, krn)g"
n>0

(g% g1 oo (¢P L, g2 ks g*h) o

(95 9)oo

Jl=a7515¢7) = D Bi(1;2,krn)q".
n>0

)
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The corresponding g-identity

Theorem (Bressoud, equation (3.8))
Fork>r>1,

1-2Np. 2 2(NE 4+ N2 ANyt 4Ny
(—g' %M ), @M H N =)

NlZ"'§k1ZO (qz; qQ)Nl—NZ T (q2; qQ)Nkfz—qu (qZ; qQ)NkA

(0% q1)oo (q2 1, gtF 2L ks g10) o

(9 @)oo

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)
54pp.
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A further generalization

Assume that oy, s, ..., a) and 7 are integers such that for 1 << ),
O0<a; < ---<ax<n, and a;=1n—ar;1-;

Theorem (Bressoud, Mem. Amer. Math. Soc., 1980)

Let \, k, rand j=0 or 1 be the integers such that (2k+ j)/2 > r> X > 0.
Then

Z qn(N%+~-+NE,1+N,+~-~+Nk,1)

Ny>- >Ny >0 (q’fl; qn)leNQ T (qm qn)Nkfszkfl (q(Q’D"% q(27j)")’\/k71

A A
< [J(=a" ™ q"n [ [ (a7 ™1 g e
s=1 s=2
(=g, ..., —q®; q")oo (¢ 2), qkmr=2H) | qn(Zk=2t), gn(Zk=2t)y
- (975 G") oo
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The Aj-partition function

Definition

Let \, k, rand j=0 or 1 be the integers such that (2k+ j)/2 > r> X > 0.
Define the partition function Aj(cu, ..., ax;n, k, r;n) to be the number of
partitions of n into parts congruent to 0, au, . ..,ax (mod n) such that

@ If X\ is even, then only multiples of 1 may be repeated and no part is
congruent to 0, +n(r— X/2) (mod n(2k — X + )));

@ If \is odd and j = 1, then only multiples of 77/2 may be repeated, no part is
congruent to 7 (mod 27), and no part is congruent to 0, +n(2r — \)/2
(mod n(2k — A +1));

@ If A is odd and j = 0, then only multiples of 77/2 which are not congruent to
n(2k — X\)/2 (mod n(2k — \)) may be repeated, no part is congruent to 7
(mod 27), no part is congruent to 0 (mod 27(2k — X)), and no part is
congruent to £7(2r — X)/2 (mod n(2k — X)).

A

Remark: Recall that a1, a2, ..., ax and 7 are integers such that for 1 < i< ),
0<ai <---<ax<mn and o« =n—axyi—i. When X is odd, observing
that

N = axg1)/2 T Op1—(A+1)/2 = 2Q(a11)/2,

we see that 17 must be even in such case.
24/64



The generating function of Aj-partition function

By the definition, it's not difficult to see that for k> r> X >0,
k+j—1>Xand j=0or1,

ZAj(ala sy QXS T k7 r n)qn
n>0

1

(—¢™, ..., =g g oo

y (qn(r—%), qn(2k—r—%+1')’ G RRATD) (k=2
(G q")oo
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The Bj-partition function

Definition

Let \, k, rand j=0 or 1 be the integers such that (2k+ j)/2 > r> X > 0.
Define Bj(c1, . .., ax;n, k, r;n) to be the number of partitions of n of the form
(m1,...,ms) where m; > miy1 satisfying the following conditions:

(1) m=0,a1,...,ax (modn);

(2) Only multiples of 7 may be repeated,

(3) 7w — mitk—1 > n with strict inequality if | 7;

(4) Atmost r — 1 of the 7; are less than or equal to 7;

(5) If i < Tiyk—2 + n with strict inequality if 7 { 7r;, then
[mi/n] + - + [Firk—2/n] = r— 14 Vx(m) (mod 2 —j),

where V: (N) (or V(N) for short) denotes the number of parts not exceeding N
which are not divided by 7 in 7 and [ ] denotes the greatest integer function.
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Bressoud’s conjecture

Conjecture (Bressoud)

Let \, k, rand j=0 or 1 be the integers such that (2k+ j)/2 > r> X > 0.

Then

Z Bf(a17 sy QXS k7 r n)qn

n>0
NNG 4+ ANE_ | +Npt 4N 1)

_ q
N1>”'§k—1>0 (qn§ qn)Nl_NQ U (qn? qn)Nk—2_Nk—1 (q(2—j)7l; q(Q_j)n)Nk—l

A

« H n as—nNs, qn)Ns H(iqnfavanNs_l;qn)oo.

s=2

N

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)
54pp.
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Bressoud's conjecture |l

Conjecture (Bressoud)

Let A\, k, rand j= 0 or 1 be the integers such that
(2k+/)/2>r>X>0. Then forn> 0,

Ai(at,...,ax;in, k r;n) = Bj(ai,...,ax;n, k r;n).

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)
54pp.
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Special cases

o Euler's partition theorem: A=0,n=1,j=0,k=3,r=2.

@ Shur's theorem: A=k=r=2 a1 =1, a0 =2,n=3,j= 1.

@ Rogers-Ramanujan identities: A=0,n=1,j=1,k=2,r=1
or 2.

@ Rogers-Ramanujan-Gordon identity: A =0,n=1,j=1.

@ Rogers-Ramanujan-Bressoud identity: A=0,7=1,j=0.

@ The Gollnitz-Gordon identity I, II:
A=1lay=1n=2,j=1,k=2,r=10r2.

@ Andrews' generalization of the Gollnitz-Gordon identity:
A=1lap=1,n=2,j=1

@ Bressoud's generalization of the Gollnitz-Gordon identity:
A=1lay=1,n=2,j=0.
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Bressoud-Gollnitz-Gordon theorem

Theorem (Bressoud-GolInitz-Gordon)

@ Fork>r>1, let Ao(1;2, k, r; n) denote the number of partitions of n
into parts # 2 (mod 4), # 2k — 1 (mod 4k — 2) may be repeated, no part
is multiples of 8k — 4, and # £(2r— 1) (mod 4k — 2).

@ Fork>r>1, let By(1;2, k, r; n) denote the number of partitions of n of
the form (w1, ..., 7s) such that no odd part is repeated, mj — Tjyk—1 > 2
with strict inequality if ; is even, at most r — 1 of the m; are less than or
equal to 2, and if mj — witk—2 < 2 with strict inequality if ; is odd, then

7I'j+ 000 +7I'j+k_2 =r—1 + Vﬂ-(ﬂ'j) (mod 2),
where V. (N) (or V(N) for short) denotes the number of odd parts not
exceeding N in 7.

Fork>r>1and n>0,

A0(1727 kvr;n) = 80(127 k7 r n)'

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)
54pp.
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The corresponding g-identities

Fork>r>1,

1—-2N;.

3 (—¢" M P n g

(q2’ qZ)Nl_N2 o (qQ’ q2)Nk_2—Nk_1 (q47 q4)Nk_1

2(NE+-+NE_ +Npt--4Ny_1)

N1 2>-->Ny—1>0

(0% Yoo (1, gk 21 gth =2 gth2) o

(95 9) oo

@ D.M. Bressoud, Analytic and combinatorial generalizations of
Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24(227) (1980)
54pp.
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Some progress on Bressoud's conjecture

e S. Kim and A.J. Yee (2014) gave a proof of Bressoud's
conjecture for j=1 and A = 2.

@ S. Kim and A.J. Yee, Partitions with part difference conditions and
Bressoud's conjecture, J. Combin. Theory Ser. A 126 (2014) 35-609.

Let A\, k, rbe the integers such that k> r> X\ > 0. Then

Z Bl(Oél,OZQ; m, ka r n)qn

n>0
Z qn(N§+--~+Nﬁ,1+Nr+-~+Nk_1)

Ny >Ny >0 (@GN N =N, (@5 ) Ny —N 1 (G 4 N,

% (_qn—al —nNq : qn)Nl (_qn—ag—nNg; qn)N2 (_qn—a2+7]N1 : qn)oc
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Some progress on Bressoud's conjecture

e S. Kim (2018) proved Bressoud’s conjecture holds for j = 1.
@ S. Kim, Bressoud’s conjecture, Adv. Math. 325 (2018) 770-813.

251(01.~~-70A§77, k,r;n)q"

n>0
= (_qa17 ceey _qoz)\; qn)oo
(qn(,,%)7 qn(gk,,,%+1)7 GIERATD), gn(Zk=A+1)y
) (97:G")oo
= ZAl(al, ooy, korn)g".

n>0

@ When \ = 2, and note that a1 + a2 =7,
> Bi(ar,az;n, kr;n)g"

n>0

— (7qa1 qaz qu) % (qn(’*l)’ qn(2k7r)’ qn(2k71); qn(2k71))00
’ ’ (@79 oo

R—R—G

= (=" =" X Y Bi(—im k= L= 1:n)g".
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Some progress on Bressoud's conjecture

@ Recently, we proved Bressoud's conjecture holds for j = 0.

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and
Bressoud'’s conjecture, |, Adv. Math. 404 (2022), Paper No. 108449,
81 pp.

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and
Bressoud's conjecture, Il, submitted. pp.53.
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Overpartition

Definition (Corteel and Lovejoy, 2004)

An overpartition w of n is a partition of n in which the first
occurrence of a number can be overlined.

For example: There are fourteen overpartitions of 4.

@ @

1) Gy G G
(2,2) (2,2)

(2,1,1) (?, ,1) (2,1,1) (Q,l,l)
(1,1,1,1) (1,1,1,1)

Let p(n) denote the number of overpartitions of n. Then

Z p(n)qn — (_q; q)oo ‘

= (a5 9)oc

@ S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356

(2004), no. 4, 1623-1635. 35 /68



Except appearing in the theory of partitions and g-series,
overpartitions arise in the following areas:
@ Symmetric functions

ﬁ F. Brenti, Determinants of super-Schur functions, lattice paths, and
dotted plane partitions, Adv. Math. 98 (1999) 27-64. (dotted

partitions)

B P. Desrosiers, L. Lapointe and P. Mathieu, Classical symmetric
functions in superspace, J. Algebraic Combin 24 (2006) 209-238.

(superpartitions)
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@ Representation theory
@ S.-J. Kang and J.-H. Kwon, Crystal bases of the Fock space
representations and string functions, J. Algebra 280 (2004) 313-349.
@ Mathematical physics (jagged partitions)

@ J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan
J. 10 (2005) 215-235.

@ J.-F. Fortin, P. Jacob and P. Mathieu, Generating function for
K-restricted jagged partitions, Electron. J. Comb. 12 (2005) 17 p.

@ Combinatorics

@ C. Bessenrodt and |. Pak, Partition congruences by involutions,
European J. Comb. 25 (2004) 1139-1149. Joint partitions

@ I. Pak, Partition Bijections, a Survey, Ramanujan J. 12 (2006) 5-75.
(Standard MacMahon diagrams (Pak, Section 2.1.3))
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An overpartition analogue of Rogers-Ramanujan-Gordon

Theorem (Chen-Shi-Sang, 2013)

o For k> r>1, let Aj(—;1,k,r,n) denote the number of
overpartitions of n such that non-overlined parts # 0, £r
(mod 2k), and for k= r, let A;(—; 1, k, k; n) denote the
number of overpartitions of n into parts not divided by k.

® Fork>r>1, let Bi(—;1,k,r,n) denote the number of
overpartitions w of n of the form (my,...,ms), where
T — Tirk—1 => 1 with strict inequality if 7; is non-overlined,
and at most r— 1 of the w; are equal to 1 .

Then for k> r>1 and n > 0,

Ai(—;1,k r,n) = Bi(—; 1,k rn).

@ W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi, The
Rogers-Ramanujan-Gordon thoerem for overpartitions, Proc. London
Math. Soc. 106 (3) (2013) 1371-1393
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The corresponding g-identities

Theorem (Chen-Shi-Sang, 2013)

1—N . NZA4- N2 Ny g+ 4Ny

Z (—q s @)n—1(1+ gr)g™t
(G5 DN, - (9 DN N1 (T DN,y

N12>->Nj_

(=4 9)oo(q", 7", 4% *F)
(:9) oo

@ W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi, The
Rogers-Ramanujan-Gordon thoerem for overpartitions, Proc. London
Math. Soc. 106 (3) (2013) 1371-1393.
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The sketch of the proof

Based on the following function

anqkn2+(k—r) 3 (1 qu2nr)(aan+1)oo(a—1)n

—0 (q)n(xq )oo

Hir(a;x; q) =

Chen, Sang and Shi then proved that for 1 < i< k,|q| < 1,

Hi(=1/gq:q9) = Y Ai(—;1,krn)q

n>0

(=4:9)o0(q, ", % ™)

(45 @)oo ’
Hi (=1/q,q;9) = ZE1(—;1,k,r;n)q"
n>0
2
- > (=g ™ g)n, - 1(1+q O A
N> >N (@ @)n, (q7q)Nk—2*Nk—1(q;q)Nk—1
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An overpartition analogue of Bressoud-Gordon-identities

Theorem (Chen-Sang-Shi)
@ For k> r>1, let Ao(—;1, k, r; n) denote the number of overpartitions of
n such that non-overlined parts # 0, £r (mod 2k — 1);

@ For k> r>1, let Bo(—; 1, k, r; n) denote the number of overpartitions
7w = (1,72, ...,m¢) of n, where w; > Tiyr—1 + 1 with strict inequality if
7; is non-overlined for 1 < i< £ — k+ 1, at most r— 1 of the w; are equal
tol, and for1 < i< ¥l —k+ 2, if mi < wiyk—2 + 1 with strict inequality if
i is overlined, then i+ ---+ Mipg—2 = r— 1+ Vr(m;) (mod 2),
where Vi (N) (or Vi (N) for short) denotes the number of overlined parts not
exceeding N in 7.

Then, for k> r>1 and n > 0,

Z()(_7 17 k7 r n) = EO(_7 17 ka r I'I).
v

@ W.Y.C. Chen, D.D.M. Sang and D.Y.H. Shi, An overpartition analogue of
Bressoud's theorem of Rogers-Ramanujan-Gordon type, Ramanujan J. 37
(2015) 653-679.
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The corresponding analytic identities

Theorem (Sang-Shi, 2015)

1—Nj.

Mot Ny Nt Neet (1 4 =) (— gl =M gy

Z q

Moo s0 (DN (G Do niy (65 )

2k—r—1 2k—1. 2k—1
e T B IS

(95 9)oo

(—4:9)0(q

@ D.D.M. Sang and D.Y.H. Shi, An Andrews-Gordon type identity for
overpartitions, Ramanujan J. 37 (2015) 653-679.
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The overpartition analogue of Aj-partition function

Definition (Aj-partition function)

Let A\, k, randj=0 or 1 be the integers such that (2k+1—j)/2>r> X >0
and k+j— 1> \. Define Aj(ax,...,ax;n, k, r;n) to be the number of
overpartitions of n satisfying mj = 0, a1, .. .,ax (mod 1) such that

@ [If X is even, then only multiplies of 1 may be non-overlined and there is no
non-overlined part congruent to 0, £n(r— A/2) (mod n(2k — X+ j—1));

@ If X is odd and j =1, then only multiples of /2 may be non-overlined, no
non-overlined part is congruent to n(2k — X\)/2 (mod n(2k — X)), no
non-overlined part is congruent to n (mod 2n), no non-overlined part is
congruent to 0 (mod 2n(2k — X)), no non-overlined part is congruent to
+n(2r—A)/2 (mod n(2k— X)), and no overlined part is congruent to /2
(mod n) and not congruent to n(2k — \)/2 (mod n(2k — X)),

@ If )\ is odd and j= 0, then only multiples of /2 may be non-overlined, no
non-overlined part is congruent to n (mod 2n), no non-overlined part is
congruent to 0, £n(2r— \)/2 (mod n(2k — X\ — 1)), and no overlined part
is congruent to n/2 (mod 7).

v

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and
Bressoud's conjecture, |, Adv. Math. 404 (2022), Paper No. 108449, 81
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The overpartition analogue of Bj-partition function

Definition (Bj-partition function)

Let A, k, rand j=0 or 1 be the integers such that k > r > A > 0
and k— 1+ j> X. Define Bj(au1, ..., ax;m, k, r; n) to be the
number of overpartitions of n of the form (my,...,ms) where

;i > Tiw1 satisfying the following conditions:

(1) mi=0,0q,...,a) (mod n);

(2) Only multiples of 7 may be non-overlined;

(3) 7 > mipk—1 + n with strict inequality if 7r; is non-overlined;
(4) At most r — 1 of the 7; are less than or equal to 7;

(5) If m; < mipk—o + n with strict inequality if 7; is overlined, then

[mif/n] + -+ + [Fivk—2/n] = r— 1+ V(m;) (mod 2 — j).
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@ Observe that for an overpartition 7 counted by Bj(a, ...,
ax;n, k, r; n) without overlined parts divisible by 7, if we
change overlined parts in 7 to non-overlined parts, then we
get an ordinary partition counted by Bj(a1, ..., ax;n, k, r;n).

@ Hence we say that Ej(al, ..., ax; 1, k, r;n) can be considered
as an overpartition analogue of Bj(a, ..., ax;n, k, r;n).
o Similarly,
ZO(alv"'aa)\;Tb ka r n) — Al(ala”'aa)\;n?kvr;n)
Zl(alw"va)\;n? k7 r n) — AO(OKI;--wOC)\%??, kar;n)
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The generating function of Zj

By definition, it is easy to see that for k> r> A >0, k+,j—1> A

and j=0or 1,
sz(ala < Q03T k7 r n)qn
n>0
= (=9, ..., =99 (—9" 9"

(q1r=3) | qn(k=r=3+i=1)  qn(Zk=tj=1); gn(2k=A+j=1))
(47 4")oo

X

Hence, we have

ZZj(alw <y AT kv r n)qn

n>0

(0% G0 > Arj(on,...,anin, kr;n)g".
n>0
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The relation between El and B,

Theorem (He-Ji-Zhao, 2022)
Fork>r>X>0and k> \>0,

Zgl(ala <o A5, k,l’; n)qn

n>0

= (=q"qN)00 Y _ Bolcus, ..., axin, k1, n)q"
n>0

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and
Bressoud's conjecture, I, Adv. Math. 404 (2022), Paper No. 108449, 81
pp.

47 /64



The sketch of the proof of Bressoud's conjecture

(_qTI’ qn)oo Z AU(O(]_, e, 3T, ka r n)qn
n>0

= Zzl(ala s QST k7 r n>qn
n>0

7777 -
= E Bi(ay,...,ax;n, k r;n)q"
n>0

M1
- (_qﬁ; qn)OO Z B()(CY[, cee, Q)G T), kv r n)qn
n>0
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An overpartition analogue of Bressoud's conjecture for

=

By generalizing Kim’s method, we main show that

Zél(al) e, Q5T ku r n)qn
n>0

(=g, o, =™, " @)oo (¢ 3), 1K) g2k N); gn2k—A)
(97 4")oo

Theorem (He-Ji-Zhao)

Let A, k, r and n be the integers such that k> r> X > 0 and
k> X. Then for n > 0,

Al(()él,. <y QNS T k7 r n) :El(alw <y QNS T k7 g n)'

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and

Bressoud's conjecture, Il, submitted. arXiv: 2001.00162: /64



The sketch of the proof of A, = B;

By generalizing Kim's method, we main show that

Zél(al) e, Q5T ka r n)qn

n>0
(20—, = q1)ao(q12), qIRR), g, g2k N)
(9" 9" oo
= ZZI(QL ..... ax;n, k,r,n)q"
n>0

When A = 2, and note that a1 + a2 = 7,

Zél(a17a2:77, k,r;n)q"

n>0
(=q"; q")oo (g7, g1FhTrm ) gn(2k=2), gn(h=2)y
(975 9") oo

Chen— Sang— Shi o n
= (_q 17 7 OO X E Bl 7777 7 17 n)q .
n>0

=(=9",-9"%19")o0 x
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The sketch of proof of the relation between B; and B,

Zél(alw"?a)\;n: k,nn)q"

n>0

(a5 4"o0 > Bolo, ..., anim, krn)q".
n>0

Let D,, denote the set of partitions with distinct parts divisible by
7.

Let A\, k and r be integers such that k> r> XA >0 and k> ).
There is a bijection ® between D, x By(a,...,ax;n, k,r) and
Bi(aa,...,ax;n, k, r), namely, for a pair
(¢, ) € Dy x Bo(au, ..., ax;m, k, r), we have

= q)(Cv/'L) < 81(041, < QST k7 I’) such that |7T| = |<—| + |1U’|
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The sketch of proof

The bijection ® is constructed via merging ¢ and

€ By(a, ..., ax;n, k, r) to produce an overpartition 7 in
Bi(aa,...,ax;n, kr).

Obeserve that there are no overlined parts divisible by 7 in p.
Moreover, if pj < piyk—2 + 1 with strict inequality if y; is
overlined, then [1;/n] + - + [pipr—2/n] = r— 1+ V(p;)
(mod 2).

Let ¢ = (nCi, ..., nCe, Cet1 - - MCcrm) be a partition with
distinct parts divisible by n where

(> >C>N>Ceqr1 > > Cerm > 0, where N is the
number of (k — 1)-marked parts in RG(u).

In fact, the bijection ® consists of two steps. The first step is
to merge the parts 7(ci1,7Cct2, - - - Ccrm and u so that the
congruence condition does not hold.

The second step is to merge the remaining parts

11, M, ..., nCc of ¢ and p to generate certain ovelined parts
divisible by 7.
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The sketch of the proof of Bressoud's conjecture

(_qTI’ qn)oo Z AU(O(]_, e, 3T, ka r n)qn
n>0

= Zzl(ala s QST k7 r n>qn
n>0

M2 -
= E Bi(ai,...,ax;n, k r,n)q"
n>0

M1
- (_qna qn)oo Z B()(Oél, e, QNG kv r n)qn
n>0
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The relation between B, and B;

Theorem (He-Ji-Zhao, 2022)

Fork>r>AX>0andk—1>)\>0,

ZEO(ah ceey QNS T, k7 r n)qn
n>0

(=9"9") 231 @il 000y

n>0

Fork—1>M\>0,

ZEO(ala cee, N5, k7 k7 n)qn

n>0
(—9" "o E Bi(az,.
n>0

'7aA;777k_

ax;n, k—

1Lk—1

1,r,n)q".

n

;nq".
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An application of this relation

ZZO(alv"')ak;nv ka r n)qn

n>0
. . n
q77 q”] E Al 0617---;00\7777/(;”7’7)57
n>0
Kim's result
= g Bi(ay,...,ax;n, k,r,n)g"
n>0
M1 -
= ZBO(MW-,(%,\;?% k,r,n)q"
n>0
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An overpartition analogue of Bressoud's conjecture for

j=0

Theorem (He-Ji-Zhao)

Let \, k and r be the integers such that k> r> X\ > 0 and
k— 1> X. Then for n > 0,

AO(ala"'ﬂaz\;nakvr;n) :EO(a17"'7a)\;777k7r;n)‘

@ Thomas Y. He, Kathy Q. Ji and Alice X.H. Zhao, Overpartitions and
Bressoud's conjecture, |, Adv. Math. 404 (2022), Paper No. 108449, 81

pp-
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The corresponding g-identities

We also obtain the following analytic form with the aid of Bailey's
pair. For k> r>X>0,

Z q’f](N%-i—'"+/\/2k71+Nr+"'+Nk—1)

Ni>- >Ny >0 (qﬂ; qn)N1—N2 T (qfi; qn)Nk_z—qu(q(Qij)n? q(2—j)n)Nk_1

A

A
x [J(=gmo e gn, [ (=gt g7 o
s=1 s=2

X (L4 q ™) (=g "M gy 1 (=" ) o

= (=% ¢ (=", ... = "¢
(g(r=2)n, q(k=r=3+i=1n_Rk=Ati=1)n, g(Zk=Atj=1)n)

X
("7
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Overpartition analogues of some classical partition

theorems

By the relation of By and B; and the relation of B; and By, we
could obtain overpartition analogues of some classical partition
theorems:

Euler’s partition theorem (new)

Rogers-Ramanujan identities

The Rogers-Ramanujan-Gordon identity

The Rogers-Ramanujan-Bressoud identity

The Gollnitz-Gordon identity (new)

Andrews' generalization of Gollnitz-Gordon identity (new)

Bressoud's generalization of Gollnitz-Gordon identity (new)
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An overpartition analogue of Euler's partition theorem

o Let By(—;1,3,2;n) denote the number of overpartitions
m = (71,72, ...,m) of n, where w; — Tiyo > 1 with strict
inequality if ; is non-overlined for 1 < i < { — 2, and for
1<i<?l—1, ifm <mip1 + 1 with strict inequality if 7; is
overlined, then ; + w1 = 1 + Vi(m;) (mod 2).

o Let Ay(—;1,3,2;n) denote the number of overpartitions of n
such that non-overlined parts # 0,£2 (mod 5).

Then, for n > 0,

EO(iﬂ ]-7 37 27 n) = EU(_v 17 37 27 n)‘
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An overpartition analogue of Euler's partition theorem

Remark: For an overpartition m = (7, mo, ..., m¢) counted by
Bo(—;1,3,2; n), if there are no overlined parts in 7, then

Ve(m) =0 for 1<i</.
This implies that if m; < w1 + 1,
i+ 7T =1+ Ve(m) =1 (mod 2).

Hence we deduce that m; > w1 for 1 < i< /¢ — 1. Therefore, 7 is
a partition into distinct parts. For this reason, the above theorem

can be perceived as an overpartition analogue of Euler's partition

theorem.
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An overpartition analogue of Euler's partition theorem

The generating function version takes the form:

2 . _
> MMV (1 4 g N2) (—g N g) o

N1>N>>0 (0 @) Ny —n, (625 Gy

(—4:9)oo(T, T, 5 @) o
(4 9) o '
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Bressoud’s conjecture

Conjecture (Bressoud)

Let A\, k, rand j= 0 or 1 be the integers such that
(2k+j)/2>r>X>0. Then

> Bilar,...,axin, k rin)g"

n>0
qn(N%+~-~+N§_1+N,+-~+Nk,1)
; N12---;k120 (g7 9" Ny -y - -+ (g7, q")Nk,rNk,l(q(Q_j)"; q(2_j)77)Nk,1
A A
X H(_qn—as—nNs; o H(_qn—aernstl; oo
s=1 s=2

Problem: How to give a direct proof of Bressoud's conjecture?
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An overpartition analogue of Bressoud's conjecture

Conjecture (He-Ji-Zhao)

Let A\, k, rand j= 0 or 1 be the integers such that
(2k+j)/2>r>X>0. Then

Zéj(ala ooo 7CM)\;'I7, k7 r; n)qn

n>0

Z qn(N§+---+Ni_1+N,+---+Nk71)

Ni>-->Nj_ ;>0 (@ ) NN+ (075 G N =Ny (q(2—j)n; q(2—j)77)

% (1 + q_nNr>(_q77_77N>\+l; qn)NAHil(_anran; qn)oo
A A

< [T(=amom g [ (=gt g
s=1 s=2

Problem: How to give a direct proof of this conjecture?
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Thank you for your patience and

enlightening presence!
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