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Abstract

Stanley defined a partition function ¢(n) as the number of partitions A of n such
that the number of odd parts of A is congruent to the number of odd parts of the
conjugate partition A’ modulo 4. We show that ¢(n) equals the number of partitions
of n with an even number of hooks of even length. We derive a closed-form formula
for the generating function for the numbers p(n) — t(n). As a consequence, we see
that t(n) has the same parity as the ordinary partition function p(n). A simple
combinatorial explanation of this fact is also provided.

1 Introduction

This note is concerned with the partition function ¢(n) introduced by Stanley [8, 9]. We
shall give a combinatorial interpretation of ¢(n) in terms of hook lengths and shall prove
that t(n) and the partition function p(n) have the same parity. Moreover, we compute
the generating function for p(n) — t(n).

We shall adopt the common notation on partitions in Andrews [1] or Andrews and
Eriksson [3]. A partition A = (A1, A2, A3, ..., A) of a nonnegative integer n is a nonin-
creasing sequence of nonnegative integers such that the sum of the components \; equals
n. A part is meant to be a positive component, and the number of parts of A is called
the length, denoted [(\). The conjugate partition of A is defined by X' = (A, A}, ..., X)),
where X, (1 <i < ¢, t=1[()\)) is the number of parts in (A1, Ag,..., A,) which are greater
than or equal to i. The number of odd parts in A = (A1, g, ..., A.) is denoted by O(\).

For |q| < 1, the ¢-shifted factorial is defined by

(@;9)n=(1—-a)1—aq)---(1—aqd"™"), n>1,

and
(a;¢)00 = (1 = a)(1 = ag)(1 — ag®) - - -,

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #N31 1



see Gasper and Rahman [5].

Stanley [8, 9] introduced the partition function #(n) as the number of partitions A of
n such that O(A) = O(XN) (mod 4), and obtained the following formula

(p(n) + f(n)), (1.1)

N —

t(n) =

where p(n) is the number of partitions of n and f(n) is determined by the generating
function

> n (1 + q2i—1)
;f(n)q ~-lla=mars7 (1.2)

i>1

Andrews [2] obtained the following closed-form formula for the generating function of

t(n)

- w5 a2 ("5 "),
2 = (o (1:3)

n=0

He also derived the congruence relation
t(bn+4) = 0 (mod 5). (1.4)

In this note, we shall consider the complementary partition function of ¢(n), namely,
the partition function u(n) = p(n)—t(n), which is the number of partitions A of n such that
O(\) # O(XN) (mod 4). We obtain a closed-form formula for the generating function of
u(n) which implies that Stanley’s partition function ¢(n) and ordinary partition function
p(n) have the same parity for any n. We also present a simple combinatorial explanation
of this fact. Furthermore, we derive formulas for the generating functions for the numbers
u(4n),u(4n+1),u(4n+2) and u(4n + 3), which are analogous to the generating function
formulas for the partition functions ¢(4n), t(4n+1), t(4n+2) and t(4n+3) due to Andrews
[2]. In the last section, we find combinatorial interpretations for #(n) and w(n) in terms
of hooks of even length.

2 The generating function formula

In this section, we shall derive a generating function formula for the partition function
u(n) = p(n) — t(n). The proof is similar to Andrews’ proof of (1.3) for t(n). As a
consequence, one sees that t(n) and p(n) have the same parity for any nonnegative integer
n. This fact also has a simple combinatorial interpretation. We shall also compute the
generating functions for the numbers u(4n), u(4n + 1), u(4n + 2) and u(4n + 3).

Theorem 2.1 We have

f: ()" = 2¢%(¢% ¢*)% (6% )% (6% )2
O G e 2 (0 %)

n=0
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Proof. We notice that the definition of ¢(n) implies

Hence we have

3 u(n)g" = % (( 1L (6P 2 )

oo (040N (=2 )2

( (66 (66w )
(7% aY)oo(a®¢")% (0% 0% o (—a% a3

_ (q-q2) 44 o e 44 o 4
- 2(g% ¢M2 (¢ gD (-3 gD (2% 4 oe (=4 050 = (65 005 4)5) -

Using Jacobi’s triple product identity [4, p.10]

n=0

N —

D2 = (—20P)oo(—0/ 7% 0) oo (0% 1) oo (2.7)
we see that .
(7% q")oo Z 7" (2.8)
and -
(0" ¢ (a5 a2 = Y (1), (2.9)
Clearly,
Z q2n2 . Z n 2n -9 Z q 2(2n+1)2 (210>
Thus we obtain
- ( 4, q = 2(2n+1)2
U q
; (¢% 9% (6% q ) n;oo
q2 = 8n2+8
n + n
q 2.11
(5 dY n_z_:oo (2.11)

Using Jacobi’s triple product identity, we find

o0

Z q8n2+8n = (—¢"%; ¢'%) 0 (—1; ¢%) oo (4% ¢') e (2.12)

n=—oo

Observe that
(—1;¢"%)0 = 2(—¢"% ¢") 0. (2.13)
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In view of (2.11), we get

- —4"% 0" oo (1'% ") 0o (=4 6P 0 (0% 0" 0
2o (@ VL (0 )L
_ 2¢%(0%10%) oo (4 ) (=" ¢'%)
(g% "3 (d% ¢®)%
Now, ,
() = (2.14)
(") = % (2.15)
and
6. 16y _ (@707)
(¢4 = (@ ) (2.16)
Consequently,
iu n_2q( q)(qq)(qQ)(q,Q)
— (7% 4%)2 (0% 4%)3%(¢5 Do (a4 o (4% ¢"%) o
_ 2¢%(¢% )5 (0% 0°)5 (0% 47) 5
(4 )oo(q"; ¢")3 (4" )0
This completes the proof. |

Corollary 2.2 Forn >0,
t(n) = p(n) (mod 2).

We remark that there is a simple combinatorial explanation of the above parity prop-
erty. We observe that for any partition A\ of n,

O\ =0\N) (mod 2) (2.17)

because we have both O(\) = n (mod 2) and O(N') = n (mod 2). By the definition of
u(n) and relation (2.17), we deduce that u(n) equals the number of partitions of n such
that

ON) —O(\N)=2 (mod 4). (2.18)
Suppose A is a partition counted by w(n). From (2.18) it is evident that its conjugation
A is also counted by wu(n). Once more, from (2.18) we deduce that O(\) and O()N') are
not equal, so that \ is different from A'. Thus we reach the conclusion that u(n) must be
even, and so t(n) has the same parity as p(n) since p(n) = t(n) + u(n).

In view of (2.6), we have the following congruence relation.
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Corollary 2.3 Forn > 0,

f(n) = p(n) (mod 4).

Theorem 2.1 enables us to derive the generating functions for w(4n + i), where i =
0,1,2,3. Andrews [2] has obtained formulas for the generating functions of ¢(4n + i) for

i=0,1,2,3.

Theorem 2.4 We have

oo
> ul
n=0

(0% ") oo (40" oe (=" ")V (q),

i u(dn +1)¢" = 2q(¢"% ¢")oo (=% ") o (=4 %)V (9),
n=0

i u(dn +2)¢" = 2(4"% ¢")oo (=47 ¢'%)oo(—¢" ¢%) V (9),

n=0

i u(4n +3)q" = 2(¢"% ¢")oe (0% ¢'%) s (—4¢"": ¢"%) sV (q),
n=0

where
V(q)_(q 10%)2 (4% ¢°)2%

(45 0)5.(q% 4*)oo

Proof. By Theorem 2.1, we find

Since

and

we have

oo
> uln
n=0

- w2035 5,
;u(m (4 9) V@)
C2¢3(% 4P oo 4
(@) V@)
1
(¢ %) oo = (¢ Do (2.19)
(0% 400 = (€ Doo(—C D)oo (2.20)

(¢ 0) oo (=@ oo (—0: D)V (¢*)

= ¢*(¢; @)oo (=15 @) s (=3 7) s V ().
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Using Jacobi’s triple product identity, we get

n(n+1)
(@ Doo(—1; 0)oo( Z ¢z . (2.21)
Thus we have
> n > n(n+1) > n(n+1)
Zu(n)q = ¢ Z g 2 Vi(gh :2q2Zq = V(g"). (2.22)
n=0 n=-—oo n=0

It is easy to check that

Zq"(’?” - Z g (2.23)

n=—oo

In virtue of (2.22), we get

Zu n)q" = 2¢° Z ¢V (gY)

n= n=—oo

_ 2q2z Z q2(4k+z 4k+Z)V(q4). (2‘24)

=0 k=—00

For i = 0, extracting the terms of the form ¢%*2 in (2.24) for any integer j, we obtain

Zu 4TL+2) An+2 2q2 Z q32] —4]V( )

n= j=—o00

Again, Jacobi’s triple product identity gives

o
Z q32j 4 _ (q64; q64)oo(_q28;q64)oo(_q36; q64)oo- (225)

j=—o0

Hence we get
3 uldn + 20 = 2076 ) (0% )~ )V (0
n=0
which simplifies to
i u(dn +2)¢" = 2("%¢'%) oo (=45 4") e (—4": ')V ().
n=0

The remaining cases can be verified using similar arguments. This completes the proof.
|
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3 Combinatorial interpretations for ¢(n) and u(n)

In [8, Proposition 3.1], Stanley found three partition statistics that have the same parity
as (O(X) — O(X))/2, and gave several combinatorial interpretations for ¢(n). We shall
present combinatorial interpretations of partition functions ¢(n) and u(n) in terms of the
number of hooks of even length. For the definition of hook lengths, see Stanley [7, p.
373]. A hook of even length is called an even hook. The following theorem shows that
the number of even hooks has the same parity as (O(\) — O(X))/2.

Theorem 3.1 For any partition A of n, O(A\) = O(XN) (mod 4) if and only if A\ has an
even number of even hooks.

Proof. We use induction on n. It is clear that Theorem 3.1 holds for n = 1. Suppose
that it is true for all partitions of n. We aim to show that the conclusion also holds for
all partitions of n + 1. Let A be a partition of n + 1 and v = (7, j) be any inner corner of
the Young diagram of A, that is, the removal of the square v gives a Young diagram of a
partition of n. Let A~ denote the partition obtained by removing the square v from the
Young diagram of \. We use H.()\) to denote the number of squares with even hooks in
the Young diagram of A\. We claim that

He(A) = He(A7) (mod 2) if and only if A;=X; (mod 2). (3.26)

Let 7(\,v) denote the set of all squares in the Young diagram of A which are in the
same row as v or in the same column as v. After removing the square v from the Young
diagram of A, the hook lengths of the squares in 7 (A, v) decrease by one. Meanwhile,
the hook lengths of other squares remain the same. Furthermore, if \; and )\;» have the
same parity, then the number of squares in 7 (\,v) is even. This implies that the parity
of the number of squares in 7 (\,v) of even hook length coincides with the parity of the
number of squares in 7 (\,v) of odd hook length. Similarly, for the case when \; and
N; have different parities, it can be shown that the number of squares in 7' (A, v) of even
hook length is of opposite parity to the number of squares in 7 (\, v) of odd hook length.
Hence we arrive at (3.26).

By the inductive hypothesis, we see that O(A™) = O((A7)") (mod 4) if and only if
H.(\7)is even. For any inner corner v = (4, j) of A, if \; = A} (mod 2), then O(\) = O(X)
(mod 4) if and only if O(A7) = O((A7)") (mod 4). By (3.26), we find that in this case,
H.(\) and H.(A™) have the same parity. Thus the assertion holds for any partition A of
n+1. The case that \; Z A} (mod 2) can be justified in the same manner. This completes
the proof. |

From Theorem 3.1, we obtain a combinatorial interpretation for Stanley’s partition

function t(n), which can be recast as a combinatorial interpretation for u(n).

Theorem 3.2 The partition function t(n) is equal to the number of partitions of n with
an even number of even hooks, and the partition function u(n) is equal to the number of
partitions of n with an odd number of even hooks.
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Combining Theorem 2.1 and Theorem 3.2, we have the following parity property.

Corollary 3.3 For any positive integer n, the number of partitions of n with an odd
number of even hooks is always even.

Since f(n) = t(n) — u(n), from Theorem 3.2 we see that f(n) can be interpreted as
a signed counting of partitions of n with respect to the number of even hooks, as stated
below.

Corollary 3.4 The function f(n) equals the number of partitions of n with an even num-
ber of even hooks minus the number of partitions of n with an odd number of even hooks.

To conclude, we remark that Corollary 3.4 can also be deduced from an identity of
Han [6, Corollary 5.2 | by setting t = 2.
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