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Abstract

Stanley defined a partition function t(n) as the number of partitions λ of n such
that the number of odd parts of λ is congruent to the number of odd parts of the
conjugate partition λ′ modulo 4. We show that t(n) equals the number of partitions
of n with an even number of hooks of even length. We derive a closed-form formula
for the generating function for the numbers p(n) − t(n). As a consequence, we see
that t(n) has the same parity as the ordinary partition function p(n). A simple
combinatorial explanation of this fact is also provided.

1 Introduction

This note is concerned with the partition function t(n) introduced by Stanley [8, 9]. We
shall give a combinatorial interpretation of t(n) in terms of hook lengths and shall prove
that t(n) and the partition function p(n) have the same parity. Moreover, we compute
the generating function for p(n) − t(n).

We shall adopt the common notation on partitions in Andrews [1] or Andrews and
Eriksson [3]. A partition λ = (λ1, λ2, λ3, . . . , λr) of a nonnegative integer n is a nonin-
creasing sequence of nonnegative integers such that the sum of the components λi equals
n. A part is meant to be a positive component, and the number of parts of λ is called
the length, denoted l(λ). The conjugate partition of λ is defined by λ′ = (λ′

1, λ′

2, . . . , λ′

t),
where λ′

i (1 6 i 6 t, t = l(λ)) is the number of parts in (λ1, λ2, . . . , λr) which are greater
than or equal to i. The number of odd parts in λ = (λ1, λ2, . . . , λr) is denoted by O(λ).

For |q| < 1, the q-shifted factorial is defined by

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), n > 1,

and
(a; q)∞ = (1 − a)(1 − aq)(1 − aq2) · · · ,
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see Gasper and Rahman [5].
Stanley [8, 9] introduced the partition function t(n) as the number of partitions λ of

n such that O(λ) ≡ O(λ′) (mod 4), and obtained the following formula

t(n) =
1

2
(p(n) + f(n)) , (1.1)

where p(n) is the number of partitions of n and f(n) is determined by the generating
function

∞
∑

n=0

f(n)qn =
∏

i>1

(1 + q2i−1)

(1 − q4i)(1 + q4i−2)2
. (1.2)

Andrews [2] obtained the following closed-form formula for the generating function of
t(n)

∞
∑

n=0

t(n)qn =
(q2; q2)2

∞
(q16; q16)5

∞

(q; q)∞(q4; q4)5
∞

(q32; q32)2
∞

. (1.3)

He also derived the congruence relation

t(5n + 4) ≡ 0 (mod 5). (1.4)

In this note, we shall consider the complementary partition function of t(n), namely,
the partition function u(n) = p(n)−t(n), which is the number of partitions λ of n such that
O(λ) 6≡ O(λ′) (mod 4). We obtain a closed-form formula for the generating function of
u(n) which implies that Stanley’s partition function t(n) and ordinary partition function
p(n) have the same parity for any n. We also present a simple combinatorial explanation
of this fact. Furthermore, we derive formulas for the generating functions for the numbers
u(4n), u(4n+ 1), u(4n+2) and u(4n+ 3), which are analogous to the generating function
formulas for the partition functions t(4n), t(4n+1), t(4n+2) and t(4n+3) due to Andrews
[2]. In the last section, we find combinatorial interpretations for t(n) and u(n) in terms
of hooks of even length.

2 The generating function formula

In this section, we shall derive a generating function formula for the partition function
u(n) = p(n) − t(n). The proof is similar to Andrews’ proof of (1.3) for t(n). As a
consequence, one sees that t(n) and p(n) have the same parity for any nonnegative integer
n. This fact also has a simple combinatorial interpretation. We shall also compute the
generating functions for the numbers u(4n), u(4n + 1), u(4n + 2) and u(4n + 3).

Theorem 2.1 We have

∞
∑

n=0

u(n)qn =
2q2(q2; q2)2

∞
(q8; q8)2

∞
(q32; q32)2

∞

(q; q)∞(q4; q4)5
∞

(q16; q16)∞
. (2.5)
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Proof. We notice that the definition of t(n) implies

u(n) = p(n) − t(n) =
p(n) − f(n)

2
. (2.6)

Hence we have

∞
∑

n=0

u(n)qn =
1

2

(

1

(q; q)∞
−

(−q; q2)∞
(q4; q4)∞(−q2; q4)2

∞

)

=
1

2

(

(−q; q2)∞
(q4; q4)∞(q2; q4)2

∞

−
(−q; q2)∞

(q4; q4)∞(−q2; q4)2
∞

)

=
(−q; q2)∞

2(q4; q4)2
∞

(q2; q4)2
∞

(−q2; q4)2
∞

(

(q4; q4)∞(−q2; q4)2
∞
− (q4; q4)∞(q2; q4)2

∞

)

.

Using Jacobi’s triple product identity [4, p.10]

∞
∑

n=−∞

znqn2

= (−zq; q2)∞(−q/z; q2)∞(q2; q2)∞, (2.7)

we see that

(q4; q4)∞(−q2; q4)2
∞

=
∞

∑

n=−∞

q2n2

(2.8)

and

(q4; q4)∞(q2; q4)2
∞

=

∞
∑

n=−∞

(−1)nq2n2

. (2.9)

Clearly,
∞

∑

n=−∞

q2n2

−

∞
∑

n=−∞

(−1)nq2n2

= 2

∞
∑

n=−∞

q2(2n+1)2 . (2.10)

Thus we obtain

∞
∑

n=0

u(q)qn =
(−q; q2)∞

(q4; q4)2
∞

(q2; q4)2
∞

(−q2; q4)2
∞

∞
∑

n=−∞

q2(2n+1)2

=
q2(−q; q2)∞

(q4; q4)2
∞

(q4; q8)2
∞

∞
∑

n=−∞

q8n2+8n. (2.11)

Using Jacobi’s triple product identity, we find

∞
∑

n=−∞

q8n2+8n = (−q16; q16)∞(−1; q16)∞(q16; q16)∞. (2.12)

Observe that
(−1; q16)∞ = 2(−q16; q16)∞. (2.13)
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In view of (2.11), we get

∞
∑

n=0

u(q)qn =
2q2(−q16; q16)∞(−q16; q16)∞(−q; q2)∞(q16; q16)∞

(q4; q4)2
∞

(q4; q8)2
∞

=
2q2(q32; q32)∞(−q; q2)∞(−q16; q16)∞

(q4; q4)2
∞

(q4; q8)2
∞

.

Now,

(−q; q2)∞ =
(q2; q2)2

∞

(q; q)∞(q4; q4)∞
, (2.14)

(q4; q8)∞ =
(q4; q4)∞
(q8; q8)∞

(2.15)

and

(−q16; q16)∞ =
(q32; q32)∞
(q16; q16)∞

. (2.16)

Consequently,

∞
∑

n=0

u(q)qn =
2q2(q32; q32)∞(q8; q8)2

∞
(q2; q2)2

∞
(q32; q32)∞

(q4; q4)2
∞

(q4; q4)2
∞

(q; q)∞(q4; q4)∞(q16; q16)∞

=
2q2(q2; q2)2

∞
(q8; q8)2

∞
(q32; q32)2

∞

(q; q)∞(q4; q4)5
∞

(q16; q16)∞
.

This completes the proof.

Corollary 2.2 For n > 0,
t(n) ≡ p(n) (mod 2).

We remark that there is a simple combinatorial explanation of the above parity prop-
erty. We observe that for any partition λ of n,

O(λ) ≡ O(λ′) (mod 2) (2.17)

because we have both O(λ) ≡ n (mod 2) and O(λ′) ≡ n (mod 2). By the definition of
u(n) and relation (2.17), we deduce that u(n) equals the number of partitions of n such
that

O(λ) −O(λ′) ≡ 2 (mod 4). (2.18)

Suppose λ is a partition counted by u(n). From (2.18) it is evident that its conjugation
λ′ is also counted by u(n). Once more, from (2.18) we deduce that O(λ) and O(λ′) are
not equal, so that λ is different from λ′. Thus we reach the conclusion that u(n) must be
even, and so t(n) has the same parity as p(n) since p(n) = t(n) + u(n).

In view of (2.6), we have the following congruence relation.
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Corollary 2.3 For n > 0,
f(n) ≡ p(n) (mod 4).

Theorem 2.1 enables us to derive the generating functions for u(4n + i), where i =
0, 1, 2, 3. Andrews [2] has obtained formulas for the generating functions of t(4n + i) for
i = 0, 1, 2, 3.

Theorem 2.4 We have

∞
∑

n=0

u(4n)qn = 2q2(q16; q16)∞(−q; q16)∞(−q15; q16)∞V (q),

∞
∑

n=0

u(4n + 1)qn = 2q(q16; q16)∞(−q3; q16)∞(−q13; q16)∞V (q),

∞
∑

n=0

u(4n + 2)qn = 2(q16; q16)∞(−q7; q16)∞(−q9; q16)∞V (q),

∞
∑

n=0

u(4n + 3)qn = 2(q16; q16)∞(−q5; q16)∞(−q11; q16)∞V (q),

where

V (q) =
(q2; q2)2

∞
(q8; q8)2

∞

(q; q)5
∞

(q4; q4)∞
.

Proof. By Theorem 2.1, we find

∞
∑

n=0

u(n)qn =
2q2(q2; q2)2

∞

(q; q)∞
V (q4)

=
2q2(q2; q2)∞

(q; q2)∞
V (q4)

Since
1

(q; q2)∞
= (−q; q)∞ (2.19)

and
(q2; q2)∞ = (q; q)∞(−q; q)∞, (2.20)

we have

∞
∑

n=0

u(n)qn = 2q2(q; q)∞(−q; q)∞(−q; q)∞V (q4)

= q2(q; q)∞(−1; q)∞(−q; q)∞V (q4).
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Using Jacobi’s triple product identity, we get

(q; q)∞(−1; q)∞(−q; q)∞ =

∞
∑

n=−∞

q
n(n+1)

2 . (2.21)

Thus we have

∞
∑

n=0

u(n)qn = q2
∞

∑

n=−∞

q
n(n+1)

2 V (q4) = 2q2
∞

∑

n=0

q
n(n+1)

2 V (q4). (2.22)

It is easy to check that
∞

∑

n=0

q
n(n+1)

2 =

∞
∑

n=−∞

q2n2
−n. (2.23)

In virtue of (2.22), we get

∞
∑

n=0

u(n)qn = 2q2
∞

∑

n=−∞

q2n2
−nV (q4)

= 2q2

3
∑

i=0

∞
∑

k=−∞

q2(4k+i)2−(4k+i)V (q4). (2.24)

For i = 0, extracting the terms of the form q4j+2 in (2.24) for any integer j, we obtain

∞
∑

n=0

u(4n + 2)q4n+2 = 2q2
∞

∑

j=−∞

q32j2
−4jV (q4).

Again, Jacobi’s triple product identity gives

∞
∑

j=−∞

q32j2
−4j = (q64; q64)∞(−q28; q64)∞(−q36; q64)∞. (2.25)

Hence we get

∞
∑

n=0

u(4n + 2)q4n+2 = 2q2(q64; q64)∞(−q28; q64)∞(−q36; q64)∞V (q4),

which simplifies to

∞
∑

n=0

u(4n + 2)qn = 2(q16; q16)∞(−q7; q16)∞(−q9; q16)∞V (q).

The remaining cases can be verified using similar arguments. This completes the proof.
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3 Combinatorial interpretations for t(n) and u(n)

In [8, Proposition 3.1], Stanley found three partition statistics that have the same parity
as (O(λ) − O(λ′))/2, and gave several combinatorial interpretations for t(n). We shall
present combinatorial interpretations of partition functions t(n) and u(n) in terms of the
number of hooks of even length. For the definition of hook lengths, see Stanley [7, p.
373]. A hook of even length is called an even hook. The following theorem shows that
the number of even hooks has the same parity as (O(λ) −O(λ′))/2.

Theorem 3.1 For any partition λ of n, O(λ) ≡ O(λ′) (mod 4) if and only if λ has an

even number of even hooks.

Proof. We use induction on n. It is clear that Theorem 3.1 holds for n = 1. Suppose
that it is true for all partitions of n. We aim to show that the conclusion also holds for
all partitions of n + 1. Let λ be a partition of n + 1 and v = (i, j) be any inner corner of
the Young diagram of λ, that is, the removal of the square v gives a Young diagram of a
partition of n. Let λ− denote the partition obtained by removing the square v from the
Young diagram of λ. We use He(λ) to denote the number of squares with even hooks in
the Young diagram of λ. We claim that

He(λ) ≡ He(λ
−) (mod 2) if and only if λi ≡ λ′

j (mod 2). (3.26)

Let T (λ, v) denote the set of all squares in the Young diagram of λ which are in the
same row as v or in the same column as v. After removing the square v from the Young
diagram of λ, the hook lengths of the squares in T (λ, v) decrease by one. Meanwhile,
the hook lengths of other squares remain the same. Furthermore, if λi and λ′

j have the
same parity, then the number of squares in T (λ, v) is even. This implies that the parity
of the number of squares in T (λ, v) of even hook length coincides with the parity of the
number of squares in T (λ, v) of odd hook length. Similarly, for the case when λi and
λ′

j have different parities, it can be shown that the number of squares in T (λ, v) of even
hook length is of opposite parity to the number of squares in T (λ, v) of odd hook length.
Hence we arrive at (3.26).

By the inductive hypothesis, we see that O(λ−) ≡ O((λ−)′) (mod 4) if and only if
He(λ

−) is even. For any inner corner v = (i, j) of λ, if λi ≡ λ′

j (mod 2), then O(λ) ≡ O(λ′)
(mod 4) if and only if O(λ−) ≡ O((λ−)′) (mod 4). By (3.26), we find that in this case,
He(λ) and He(λ

−) have the same parity. Thus the assertion holds for any partition λ of
n+1. The case that λi 6≡ λ′

j (mod 2) can be justified in the same manner. This completes
the proof.

From Theorem 3.1, we obtain a combinatorial interpretation for Stanley’s partition
function t(n), which can be recast as a combinatorial interpretation for u(n).

Theorem 3.2 The partition function t(n) is equal to the number of partitions of n with

an even number of even hooks, and the partition function u(n) is equal to the number of

partitions of n with an odd number of even hooks.
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Combining Theorem 2.1 and Theorem 3.2, we have the following parity property.

Corollary 3.3 For any positive integer n, the number of partitions of n with an odd

number of even hooks is always even.

Since f(n) = t(n) − u(n), from Theorem 3.2 we see that f(n) can be interpreted as
a signed counting of partitions of n with respect to the number of even hooks, as stated
below.

Corollary 3.4 The function f(n) equals the number of partitions of n with an even num-

ber of even hooks minus the number of partitions of n with an odd number of even hooks.

To conclude, we remark that Corollary 3.4 can also be deduced from an identity of
Han [6, Corollary 5.2 ] by setting t = 2.
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