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1 Introduction

This paper is concerned with the following three mock theta functions of order 3 defined
by Ramanujan,

f(q) =

∞
∑

n=0

qn
2

(−q; q)2n
, (1.1)

�(q) =
∞
∑

n=0

qn
2

(−q2; q2)n
, (1.2)

 (q) =

∞
∑

n=1

qn
2

(q; q2)n
. (1.3)

Mock theta functions have been extensively studied, see, for example, Andrews [8],
Fine [17, Chapters 2-3], Gordon and McIntosh [18], and Ono [19]. These functions not
only have remarkable analytic properties, but also are closely connected to the theory
of partitions, see, for example, Agarwal [1], Andrews [4, 9], Andrews and Garvan [7],
Andrews, Eriksson, Petrov and Romik [10], and Choi and Kim [14].
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In this paper, we find two involutions on partitions that imply two partition identities
for Ramanujan’s third order mock theta functions �(−q) and  (−q). We also give an
involution for Fine’s partition theorem on the mock theta function f(q). These three
partition identities lead to the following two identities (1.4) and (1.5) of Ramanujan

�(−q)− 2 (−q) = f(q), (1.4)

�(−q) + 2 (−q) =
(q; q)∞
(−q; q)2∞

, (1.5)

where we have adopted the standard notation

(a; q)n = (1− a)(1− aq) ⋅ ⋅ ⋅ (1− aqn−1),

(a; q)∞ =

∞
∏

n=0

(1− aqn), ∣q∣ < 1.

The first proofs of (1.4) and (1.5) were given by Watson [20]. Fine [17, p. 60] found
another proof by using transformation formulas.

Andrews [3] defined the following functions as generalizations of Ramanujan’s mock
theta functions and he later found that these generalizations were already in Ramanujan’s
“lost” notebook [6],

f(�; q) =
∞
∑

n=0

qn
2−n�n

(−q; q)n(−�; q)n
, (1.6)

�(�; q) =
∞
∑

n=0

qn
2

(−�q; q2)n
, (1.7)

 (�; q) =

∞
∑

n=1

qn
2

(�; q2)n
. (1.8)

When � = q, the above functions reduce to Ramanujan’s mock theta functions. Fur-
thermore, Andrews showed these three functions turn out to be mock theta functions for
� = qr, where r is any positive integer. More importantly, Ramanujan’s identities (1.4)
and (1.5) can be extended to the functions f(�; q), �(�; q) and  (�; q),

�(−�;−q)− (1 + �q−1) (−�;−q) = f(�; q), (1.9)

�(−�;−q) + (1 + �q−1) (−�;−q) =
(q; q)∞

(−q; q)∞(−�; q)∞
, (1.10)

see Andrews [3, p. 78, Eqs. (3a)–(3b)]. Clearly, the above identities (1.9) and (1.10)
specialize to (1.4) and (1.5) by setting � = q.

The connection between Ramanujan’s third order mock theta function and the theory
of partitions was first explored by Fine. In [17, p. 55, Chapter 3], he derived the following
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identity from his transformation formula:

f(q) = 1 +
∑

k≥1

(−1)k−1qk

(−q; q)k
= 1 +

1

(−q; q)∞

∑

k≥1

(−1)k−1qk(−qk+1; q)∞. (1.11)

In fact, (1.11) can be easily established from the combinatorial definition (2.1) of f(q).
The following partition identity for f(q) can be deduced from (1.11).

Theorem 1.1 (Fine) Let pdo(n) denote the number of partitions of n into distinct parts

with the smallest part being odd. Then

(−q; q)∞f(q) = 1 + 2
∑

n≥1

pdo(n)q
n. (1.12)

The following partition identities can be derived from our involutions.

Theorem 1.2 We have

(−q; q)∞�(−q) = 1 +

∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

. (1.13)

Theorem 1.3 We have

2(−q; q)∞ (−q) = −
∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

. (1.14)

It can be seen that the above partition identities lead to Ramanujan’s identities (1.4)
and (1.5). It follows from Theorem 1.2 and Theorem 1.3 that

(−q; q)∞�(−q)∓ 2(−q; q)∞ (−q)

= 1 +
∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

∓

(

−
∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

)

.

Using Theorem 1.1 and Gauss’ identity

∞
∑

k=−∞

(−1)kqk
2

=
(q; q)∞
(−q; q)∞

. (1.15)

we arrive at Ramanujan’s identities (1.4) and (1.5).

In fact, we can deduce two partition identities for �(−q) and  (−q) analogous to
Fine’s identity for f(q) by employing the following partition theorem of Bessenrodt and
Pak [12] which extends a theorem of Fine in [16, Theorem 5]. It is worth mentioning that
there are other involutions which also imply this partition theorem, see, Berndt, Kim and
Yee [11], Chen and Liu [13], and Yee [21, 22].
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Theorem 1.4 (Bessenrodt and Pak) Let pedo(n) (p
o
do(n)) denote the number of parti-

tions of n into even (odd ) distinct parts with the smallest part being odd. Then

∞
∑

n=1

[pedo(n)− podo(n)]q
n =

∞
∑

k=1

(−1)kqk
2

. (1.16)

In light of Theorem 1.4, we deduce the following two partition identities from Theorems
1.2 and 1.3 respectively.

Theorem 1.5 We have

(−q; q)∞�(−q) = 1 + 2
∑

n≥1

pedo(n)q
n. (1.17)

Theorem 1.6 We have

(−q; q)∞ (−q) = −
∑

n≥1

podo(n)q
n. (1.18)

This paper is organized as follows. In Section 2, we provide an involution for Fine’s
theorem 1.1. In Sections 3 and 4, we give two involutions that imply the partition
identities for �(−q) and  (−q) stated in Theorems 1.2 and 1.3. Section 5 is devoted to
partition identities for f(�q; q), �(−�q;−q), and  (−�q;−q) based on our involutions,
which lead to Andrews’ identities (1.9) and (1.10).

2 An involution for Fine’s theorem

In this section we give an involution for Fine’s partition theorem. Let P denote the set
of partitions, and let D denote the set of partitions with distinct parts. For technical
reasons, it is necessary to assume that the sets P and D contain the empty partition. The
rank of a partition �, denoted by r(�), is defined as the largest part minus the number
of parts, as introduced by Dyson [15]. The empty partition is assumed to have rank
zero. The sum of parts of a partition � is denoted by ∣�∣. A pair of partitions (�, �) is
called a bipartition of n if ∣�∣+ ∣�∣ = n. Fine [17, p.49] found the following combinatorial
interpretation for f(q),

f(q) =
∑

�∈P

(−1)r(�)q∣�∣. (2.1)

Thus,

(−q; q)∞f(q) =
∑

(�,�)∈P×D

(−1)r(�)q∣�∣+∣�∣. (2.2)
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Therefore, to prove Theorem 1.1, it suffices to establish the following relation
∑

(�,�)∈P×D

(−1)r(�)q∣�∣+∣�∣ = 1 + 2
∑

n≥1

pdo(n)q
n. (2.3)

We shall construct a sign reversing involution to justify (2.3). Recall that an involution
� on a set A is a bijection on A such that � 2 is the identity map. If any element a in A
is given a sign which is either plus or minus, then an involution is called sign reversing
provided that �(a) and a have opposite signs. For the purpose of constructing sign
reversing involutions, throughout this paper, all involutions are assumed to contain no
fixed points.

Proof of Theorem 1.1. For a bipartition (�, �) ∈ P ×D , let s(�) denote the smallest part
of �, m(�) denote the number of occurrences of the largest part of � and l(�) denote the
number of parts of �. We set s(�) = +∞ if � = ∅ and m(�) = +∞ if � = ∅. Let U be
the set of the empty bipartition (∅, ∅), bipartitions (∅, �) ∈ P × D with s(�) being odd
and bipartitions (�, �) ∈ P ×D, where � = (1, 1, . . . , 1), l(�) is odd, and s(�) > l(�). Let
Vn be the set of bipartitions (�, �) of n that are in P ×D but not in U .

We claim that the weighted sum of the set U equals the right-hand side of (2.3),
namely,

∑

(�, �)∈U

(−1)r(�)q∣�∣+∣�∣ = 1 + 2
∑

n≥1

pdo(n)q
n. (2.4)

For a bipartition (∅, �) ∈ U , by definition, � is a partition into distinct parts with the
smallest part being odd. For a bipartition (�, �) ∈ U , where � = (1, 1, . . . , 1), since l(�)
is odd, we see that r(�) is even. Thus we get partition � ∈ D with s(�) being odd by
moving all the parts of � to � as a single part. Hence we have verified (2.4).

We now proceed to construct a sign reversing involution Υ on Vn so that the weighted
sum of Vn vanishes. Hence the theorem is proved. To do so, let (�, �) ∈ Vn. We define
Υ(�, �) by the following procedure. We consider two cases.

(1) If s(�) ≤ m(�), then set Υ(�, �) to be the bipartition obtained from (�, �) by delet-
ing the smallest part in � and adding 1 to each of the first s(�) parts �1, �2, . . . , �s(�)
of �.

(2) If s(�) > m(�), then set Υ(�, �) to be the bipartition obtained from (�, �) by
subtracting 1 from each of the first m(�) parts �1, �2, . . . , �m(�) of � and adding a
part of size m(�) to �.

It is straightforward to check that the above mapping Υ is an involution on Vn and
changes the parity of the rank of �. This completes the proof.

For example, there are eight bipartitions (�, �) ∈ P ×D of 4 with the rank of � being
even,

((3), (1)), ((2, 1), (1)), ((1, 1, 1), (1)), ((1), (2, 1)), ((2, 2), ∅), (∅, (4)), ((1), (3)), (∅, (3, 1)),
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while there are six bipartitions (�, �) ∈ P ×D of 4 with the rank of � being odd,

((4), ∅), ((3, 1), ∅), ((2, 1, 1), ∅), ((2), (2)), ((1, 1), (2)), ((1, 1, 1, 1), ∅),

and there is only one partition of 4 into distinct parts with the smallest part being odd,
i.e., (3, 1). Meanwhile, the set U includes bipartitions ((1), (3)) and (∅, (3, 1)) which both
correspond to (3, 1).

The involution Υ yields the following correspondence:

((3), (1)) ↔ ((4), ∅), ((2, 1), (1)) ↔ ((3, 1), ∅), ((1, 1, 1), (1)) ↔ ((2, 1, 1), ∅),

((1), (2, 1)) ↔ ((2), (2)), ((2, 2), ∅) ↔ ((1, 1), (2)), (∅, (4)) ↔ ((1, 1, 1, 1), ∅).

3 A partition identity for �(−q)

In this section, we shall prove the partition identity for �(−q) as stated in Theorem 1.2.
Let us begin with an interpretation of �(−q) given by Fine [17, p.49]. Let DO denote
the set of partitions with distinct odd parts. Like the conventions for P and D in the
previous section, we assume that the set DO contains the empty partition and we further
set (�1+1)/2 = 0 if � = ∅. In this notation, Fine’s combinatorial interpretation of �(−q)
asserts that

�(−q) =
∑

�∈DO

(−1)
�1+1

2 q∣�∣. (3.1)

Note that Choi and Kim found another interpretation of �(q) in terms of n-color partitions
[14, Theorem 3.1]. From (3.1) we have

(−q; q)∞�(−q) =
∑

(�,�)∈DO×D

(−1)
�1+1

2 q∣�∣+∣�∣. (3.2)

Therefore, Theorem 1.2 can be deduced from the following relation

∑

(�,�)∈DO×D

(−1)
�1+1

2 q∣�∣+∣�∣ = 1 +

∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

. (3.3)

We shall construct a sign reversing involution Φ for (3.3). In order to deal with the
sum

∑

k≥1(−1)kqk
2

on the right-hand side of (3.3), special attention has to be paid to
partitions of the form Qk = (2k − 1, 2k − 3, . . . , 1). Notice that Qk is a partition of k2.

Proof of Theorem 1.2. The right-hand side of (3.3) corresponds to the following bipar-
titions: (1) The empty bipartition (∅, ∅). (2) Bipartitions (∅, �) ∈ DO × D with s(�)
being odd. (3) Bipartitions (Qk, ∅) for k ≥ 1. Let W denote the set consisting of all such
bipartitions, and let Xn denote the set of bipartititions of n in DO × D but not in W .
We aim to construct an involution Φ on Xn.
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To describe the involution Φ, we introduce some notation. Assume that � ∈ DO. We
define c(�) to be the maximum number of consecutive odd parts of � starting with the
first part. For example, c(11, 9, 7, 3, 1) = 3. For a partition � ∈ D, define so(�) (se(�)) to
be the smallest odd (even) part of �, where we set so(�) = +∞ (se(�) = +∞) if � has
no odd (even) part.

The map Φ consists of two parts. Let (�, �) be a bipartition in Xn. We shall denote
Φ(�, �) by (�′, �′).

Part I of Φ. If 2c(�) ≥ se(�), then �
′ is obtained from � by adding 2 to each of the first

se(�)/2 parts �1, �2, ⋅ ⋅ ⋅ , �se(�)/2 of �, and �′ is obtained from � by removing its smallest
even part.

If 2c(�) < se(�) and �c(�) > 1, then �′ is obtained from � by subtracting 2 from each
of the first c(�) parts �1, �2, . . . , �c(�) of �, and �

′ is obtained from � by adding a part of
size 2c(�).

It is easy to see the above procedure is well defined and the remaining bipartitions
that are not covered in this part are those bipartitions (Qk, �) with se(�) > 2k for k ≥ 1
and (∅, �) with s(�) being even. This is the task of the second part of the involution. For
convenience, we set Q0 = ∅.

Part II of Φ. If se(�) > so(�) + (2k − 1), then set �′ = Qk−1 and set �′ to be the
partition obtained from � by deleting its smallest odd part and adding an even part of
size so(�) + (2k − 1) to �.

If se(�) ≤ so(�) + (2k − 1), then �′ = Qk+1 and �′ is obtained from � by deleting its
smallest even part and adding an odd part of size se(�)− (2k + 1).

It is readily seen that Φ is an involution on Xn and it changes the parity of (�1+1)/2.
This completes the proof.

For example, when n = 7, there are six bipartitions (�, �) ∈ DO × D such that
(�1 + 1)/2 is odd,

((5), (2)), ((5, 1), (1)), ((1), (6)), ((1), (4, 2)), ((1), (3, 2, 1)), ((1), (5, 1)),

and there are ten bipartitions (�, �) ∈ DO ×D such that (�1 + 1)/2 is even,

((7), ∅), ((3, 1), (2, 1)), ((3, 1), (3)), ((3), (4)), ((3), (3, 1)),

(∅, (7)), (∅, (6, 1)), (∅, (5, 2)), (∅, (4, 3)), (∅, (4, 2, 1)).

Whereas the set W consists of bipartitions (∅, (7)), (∅, (6, 1)), (∅, (4, 3)), (∅, (4, 2, 1)).

The involution Φ gives the following pairs of bipartitions:

((5), (2)) ↔ ((7), ∅), ((5, 1), (1)) ↔ ((3, 1), (2, 1)), ((1), (6)) ↔ ((3, 1), (3)),

((1), (4, 2)) ↔ ((3), (4)), ((1), (3, 2, 1)) ↔ ((3), (3, 1)) ((1), (5, 1)) ↔ (∅, (5, 2)).
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4 A partition identity for  (−q)

The objective of this section is to prove Theorem 1.3 for  (−q). There is also a com-
binatorial interpretation of  (−q) given by Fine [17, p.49]. Let OC denote the set of
partitions into odd parts without gaps. For obvious reasons, here we need to assume that
the set OC does not contain the empty partition. Fine [17, p.49] showed that

 (−q) =
∑

�∈OC

(−1)l(�)q∣�∣. (4.1)

Note that Agarwal [1, 2] found two combinatorial interpretations for  (q) by using q-
difference equations. Let D0 denote the set of partitions with distinct parts where the
zero part is allowed. So the number of partitions of n in the set D0 is twice the number
of partitions of n in the set D. Hence we have

2(−q; q)∞ (−q) =
∑

(�,�)∈OC×D0

(−1)l(�)q∣�∣+∣�∣. (4.2)

Thus Theorem 1.3 can be rewritten as follows

∑

(�,�)∈OC×D0

(−1)l(�)q∣�∣+∣�∣ = −
∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

. (4.3)

Proof of Theorem 1.3. Let Y denote the set of bipartitions (Qk, ∅) and bipartitions
((1), �) ∈ OC ×D0, where se(�) + 1 < so(�). Let Zn denote the set of bipartitions (�, �)
of n in the set OC ×D0 but not in the set Y . We claim that the weighted sum of the set
Y equals the right-hand side of (4.3), that is,

∑

(�,�)∈Y

(−1)l(�)q∣�∣+∣�∣ = −
∞
∑

n=1

pdo(n)q
n +

∞
∑

k=1

(−1)kqk
2

, (4.4)

since the bipartitions ((1), �) ∈ Y correspond to the sum −
∑∞

n=1 pdo(n)q
n by adding 1 to

the smallest part of � and the bipartitions (Qk, ∅) correspond to the sum
∑

k≥1(−1)kqk
2

.
Therefore, in order to prove Theorem 1.3, it suffices to construct an involution Ψ on the
set Zn so that the bipartitions in Zn cancel each other in the corresponding weighted sum.

Let rp(�) be the smallest part of � which occurs at least twice in �, and let rp(�) = +∞
if � has no repeated parts. For (�, �) ∈ Zn, let (�

′

, �
′

) = Ψ(�, �). The involution Ψ can
be defined by the following procedure.

Part I of Ψ. If so(�) > rp(�), then let �
′

be the partition obtained from � by deleting
a part of size rp(�) and let �

′

be the partition derived from � by adding a part of size
rp(�). On the other hand, if so(�) ≤ rp(�), then let �

′

be the partition obtained from �
by adding a part of size so(�) and let �

′

be the partition derived from � by deleting a
part of size so(�).
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The above process is well defined and the bipartitions not covered by this part are
those bipartitions (Qk, �) for which so(�) > 2k − 1. We continue to describe the second
part of Ψ.

Part II of Ψ. Assume that (Qk, �) is a bipartition such that so(�) > 2k − 1. If � has a
zero part, then set �

′

= Qk−1 and set �
′

to be the partition obtained from � by adding a
part of size 2k − 1 and deleting the zero part.

If � has no zero part and so(�) = 2k + 1, then set �
′

= Qk+1 and set �
′

to be the
partition obtained from � by removing a part of size 2k + 1 and adding a zero part.

It can be seen that the above mapping is well defined except for those bipartitions
(Qk, �) such that � has no zero part and so(�) > 2k + 1. Indeed, it is the purpose of the
third part of Ψ to deal with these remaining bipartitions.

Part III of Ψ. If so(�) > se(�) + (2k − 1), then set �
′

= Qk−1 and set �
′

to be the
partition obtained from � by deleting the smallest even part of � and adding an odd part
of size se(�) + (2k − 1).

If so(�) ≤ se(�) + (2k− 1), then set �
′

= Qk+1 and set �
′

to be the partition obtained
from � by deleting the smallest odd part of � and adding an even part of size so(�) −
(2k + 1).

It can be checked that the map Ψ is an involution on Zn and it changes the parity of
the length of �. This completes the proof.

For example, when n = 4 there are six bipartitions (�, �) ∈ OC ×D0 such that l(�)
is odd,

((1), (3)), ((1, 1, 1), (1)), ((1, 1, 1), (1, 0)), ((1), (2, 1)), ((1), (2, 1, 0)), ((1), (3, 0)).

and there are six bipartitions (�, �) ∈ OC ×D0 such that l(�) is even,

((3, 1), ∅), ((3, 1), (0)), ((1, 1, 1, 1), ∅), ((1, 1, 1, 1), (0)), ((1, 1), (2)), ((1, 1), (2, 0)).

Notice that there are two bipartitions ((3, 1), ∅) and ((1), (3, 0)) in Y corresponding to the
partition (3, 1).

The involution Ψ is illustrated as follows:

((1), (3)) ↔ ((3, 1), (0)), ((1, 1, 1), (1)) ↔ ((1, 1, 1, 1), ∅), ((1), (2, 1)) ↔ ((1, 1), (2)),

((1), (2, 1, 0)) ↔ ((1, 1), (2, 0)), ((1, 1, 1), (1, 0)) ↔ ((1, 1, 1, 1), (0)).

As another example, the involution Ψ gives the following correspondence:

((9, 7, 5, 3, 1), (16, 15, 8, 6, 2))↔ ((7, 5, 3, 1), (16, 15, 11, 8, 6)).

This example involves the Part III in the construction of Ψ.
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5 Andrews’ generalizations

This section is devoted to proofs of Andrews’ identities (1.9) and (1.10). First, we give
combinatorial interpretations for f(�q; q), �(−�q;−q), and  (−�q;−q) by extending the
arguments of Fine. More precisely, we have the following partition theoretic interpreta-
tions.

Theorem 5.1 We have

f(�q; q) =
∑

�∈P

(−1)r(�)��1q∣�∣, (5.1)

�(−�q;−q) =
∑

�∈DO

(−1)
�1+1

2 �
�1+1

2
−l(�)q∣�∣, (5.2)

 (−�q;−q) =
∑

�∈OC

(−1)l(�)�l(�)−
�1+1

2 q∣�∣. (5.3)

Proof. Recall that

f(�q; q) =
∞
∑

n=0

qn
2

�n

(−q; q)n(−�q; q)n
,

it is easy to check that (5.1) follows from the Durfee square dissection of a partition � ∈ P ,
see Figure 1.

�nqn
2

� ��⋅ ⋅ ⋅ −� ⋅ ⋅ ⋅ −� −�

−1

−1

−1
⋅⋅
⋅

1/(−�q; q)n

1
(−q;q)n

Figure 1: The Durfee square dissection.

From the definition of �(�; q), we see that

�(−�q;−q) =
∞
∑

n=0

(−1)nqn
2

(−�q2; q2)n
.
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The term (−1)nqn
2

corresponds to a partition � of the form Qn = (2n−1, 2n−3, . . . , 3, 1),
which has weight (−1)(�1+1)/2. Moreover, 1/(−�q2; q2)n is the generating function for
partitions � with at most n even parts and with no odd parts. The weight of such a
partition is endowed with weight (−�)�1/2.

Define � = �+� = (�1+�1, �2+�2, . . .). We see that � ∈ DO, namely, � is a partition
into distinct odd parts. Now, the weight of � equals (−1)(�1+1)/2�(�1+1)/2−l(�). So (5.2)
has been verified.

For the combinatorial interpretation for  (−�q;−q), we note that

 (−�q;−q) =
∞
∑

n=1

(−1)nqn
2

(−�q; q2)n
.

The summand can be expanded as follows

(−1)nqn
2

(−�q; q2)n
=

−q

1 + �q

−q3

1 + �q3
⋅ ⋅ ⋅

−q2n−1

1 + �q2n−1

= (−q + �q1+1 − �2q1+1+1 ⋅ ⋅ ⋅ )(−q3 + �q3+3 − �2q3+3+3 + ⋅ ⋅ ⋅ )

⋅ ⋅ ⋅ (−q2n−1 + �q2(2n−1) − �2q3(2n−1) ⋅ ⋅ ⋅ ).

It follows that the summand (−1)nqn
2

/(−�q; q2)n is the generating function of partitions
� in OC with the largest part not exceeding 2n− 1 and with weight (−1)l(�)�l(�)−(�1+1)/2.
This proves (5.3).

We can extend Fine’s partition theorem to Andrews’ function f(�q; q). According to
the combinatorial interpretation (5.1) of f(�q; q), we obtain

(−�q; q)∞f(�q; q) =
∑

(�, �)∈P×D

(−1)r(�)��1+l(�)q∣�∣+∣�∣,

which can be restated as follows by using the sets U and Vn defined in Section 2,

(−�q; q)∞f(�q; q) = 1 +
∑

(∅, �)∈U

�l(�)q∣�∣ +
∑

(�, �)∈U

(−1)r(�)��1+l(�)q∣�∣+∣�∣

+
∑

n≥1

qn
∑

(�, �)∈Vn

(−1)r(�)��1+l(�). (5.4)

It can be seen that the involution Υ defined on the set Vn in Section 2 preserves the
quantity �1 + l(�) but changes the parity of r(�). This yields

∑

(�, �)∈Vn

(−1)r(�)��1+l(�) = 0. (5.5)

As we have seen before, each bipartition (�, �) ∈ U can be viewed as a partition � ∈ D
with s(�) being odd, and whose weight is �l(�). Consequently, using (5.4) and (5.5), we
obtain the following partition theorem.
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Theorem 5.2 Let Pdo denote the set of partitions into distinct parts with the smallest

part being odd. Then

(−�q; q)∞f(�q; q) = 1 + 2
∑

�∈Pdo

�l(�)q∣�∣. (5.6)

Next, we give a generalization of Theorem 1.2 to �(−�q;−q). By the combinatorial
interpretation (5.2), we find that

(−�q; q)∞�(−�q;−q) =
∑

(�,�)∈DO×D

(−1)
�1+1

2 �
�1+1

2
−l(�)+l(�)q∣�∣+∣�∣

= 1 +
∑

(Qk,∅)∈W

(−1)kq∣Qk∣ +
∑

(∅,�)∈W

�l(�)q∣�∣

+
∑

n≥1

qn
∑

(�,�)∈Xn

(−1)
�1+1

2 �
�1+1

2
−l(�)+l(�), (5.7)

where the sets W and Xn are defined in Section 3. Moreover, we observe that the involu-
tion Φ defined on the set Xn in Section 3 changes the parity of (�1 + 1)/2 and preserves
the quantity

l(�)− l(�) +
�1 + 1

2
.

So we have
∑

(�,�)∈Xn

(−1)
�1+1

2 �
�1+1

2
−l(�)+l(�) = 0. (5.8)

In view of (5.7) and (5.8), we obtain the following partition identity for �(−�q;−q).

Theorem 5.3 We have

(−�q; q)∞�(−�q;−q) = 1 +
∑

�∈Pdo

�l(�)q∣�∣ +
∞
∑

k=1

(−1)kqk
2

. (5.9)

We are now in a position to give a generalization of Theorem 1.3 to  (−�q;−q). By
the combinatorial interpretation (5.3), we find that

(−�; q)∞ (−�q;−q) =
∑

(�,�)∈OC×D0

(−1)l(�)�l(�)−
�1+1

2
+l(�)q∣�∣+∣�∣

=
∑

(Qk, ∅)∈Y

(−1)kq∣Qk∣ −
∑

((1), �)∈Y

�l(�)q∣�∣+1

+
∑

n≥1

qn
∑

(�,�)∈Zn

(−1)l(�)�l(�)−
�1+1

2
+l(�), (5.10)
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where the sets Y and Zn are defined in Section 4. It can be verified that the involution
Ψ defined on the set Zn in Section 4 changes the parity of l(�) and keeps the quantity

l(�)−
�1 + 1

2
+ l(�)

invariant. So we get
∑

(�,�)∈Zn

(−1)l(�)�l(�)−
�1+1

2
+l(�) = 0. (5.11)

As we have seen in Section 4, each bipartition ((1), �) ∈ Y can be viewed as a partition
� ∈ Pdo with weight �l(�). Using (5.10) and (5.11), we deduce the following partition
theorem.

Theorem 5.4 We have

(−�; q)∞ (−�q;−q) = −
∑

�∈Pdo

�l(�)q∣�∣ +

∞
∑

k=1

(−1)kqk
2

. (5.12)

Based on the above partition theorems for f(�q; q), �(−�q;−q) and  (−�q;−q), we
can deduce Andrews’ generalizations of Ramanujan’s identities. More precisely, it follows
from Theorem 5.3 and Theorem 5.4 that

(−�q; q)∞�(−�q;−q)∓ (−�; q)∞ (−�q;−q)

= 1 +
∑

�∈Pdo

�l(�)q∣�∣ +

∞
∑

k=1

(−1)kqk
2

∓

(

−
∑

�∈Pdo

�l(�)q∣�∣ +

∞
∑

k=1

(−1)kqk
2

)

.

By Theorem 5.2 and Gauss’ identity (1.15), we obtain identities (1.9) and (1.10) by
replacing �q with �.
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