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Combining hook length formulas and
BG-ranks for partitions via the Littlewood decomposition

Guo-Niu HAN and Kathy Q. JI

ABSTRACT. — Recently, the first author has studied hook length
formulas for partitions in a systematic manner. In the present paper we
show that most of those hook length formulas can be generalized and
include more variables via the Littlewood decomposition, which maps
each partition to its t-core and t-quotient. In the case t = 2 we ob-
tain new formulas by combining hook lengths and BG-ranks introduced
by Berkovich and Garvan. As applications, we list several multivari-
able generalizations of classical and new hook length formulas, including
the Nekrasov-Okounkov, the Han-Carde-Loubert-Potechin-Sanborn, the
Bessenrodt-Bacher-Manivel, the Okada-Panova and the Stanley-Panova
formulas.
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1. Introduction

The hook lengths of partitions are widely studied in Partition Theory,
Algebraic Combinatorics and Group Representation Theory. Recently, the
first author has studied hook length formulas for partitions in a systematic
manner. See [Ha08d] for the motivation of this new study of hook length
formulas. In the present paper the term “hook length formula” means a
formula involving the hook length of partitions in the following form:

∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(h)
∑

h∈H(λ)

ρ2(h) = f(q),

where ρ1, ρ2: N
∗ → K are two maps of the set of positive integers to some

field K and f(q) ∈ K[[q]] is a formal power series in q with coefficients
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in K such that f(0) = 1. In the above formula P is the set of all integer
partitions λ with |λ| denoting the integer partitioned by λ and H(λ) the
classical multiset of hook lengths associated with λ [Ha08d]. See [An76,
p.1; La01, p.1; St99, p.287] for the basic notions on partitions. Let us list
several hook length formulas having the above hook length form.

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2
= exp(q),(1.1)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h
= exp

(

q +
q2

2

)

,(1.2)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1 − qk
,(1.3)

∑

λ∈P

q|λ|
∑

h∈H(λ)

hβ =
∏

m≥1

1

1 − qm
×

∑

k≥1

kβ+1 qk

1 − qk
,(1.4)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h

1 + zh

1 − zh
= exp

(
1 + z

1 − z
q +

q2

2

)

,(1.5)

∑

λ∈P

q|λ|
∏

h∈H(λ)

(
1 − z

h2

)
=

∏

k≥1

(1 − qk)z−1,(1.6)

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)qr+1 exp(q),(1.7)

where

C(r) =
1

2(r + 1)2

(
2r

r

)(
2r + 2

r + 1

)

,

∑

λ∈P

q|λ|
∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2k = exp(q)
k∑

i=0

T (k + 1, i+ 1)C(i)qi+1.(1.8)

In (1.8) T (k, i) is the central factorial number defined in (9.2) and (9.3).

Formulas (1.1) and (1.2) are two well-known hook length formulas in
Group Representation Theory, which could be deduced directly from the
Robinson-Schensted-Knuth correspondence [Ha08d]. Formula (1.3) is the
traditional generating function for partitions that goes back to Euler. For-
mula (1.4) could be deduced from a result due to Bessenrodt [Be98, BM02,
Ha08a]. Formula (1.5) was conjectured by the first author [Ha08b] and
then proved by Carde et al. [CLPS08]. Formula (1.6) was obtained by
Nekrasov and Okounkov [NO06], and re-discovered by the first author us-
ing the hook length expansion technique [Ha08a, Ha08d]. Formula (1.7)
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was conjectured by Okada [St08] and proved by Panova [Pa08]. Formula
(1.8) was first stated by Stanley [St08, Pa08] and generalizes the marked
hook formulas [Ha08c].

Recall that a partition λ is a t-core if it has no hook equal to t. For
example, the only 2-cores are the “staircase” partitions (k, k − 1, . . . , 1).
The Littlewood decomposition is a well-known bijection which maps each
partition λ to its t-core µ and t partitions λ0, λ1, . . . , λt−1 such that |λ| =

|µ| + t
∑t−1

i=0 |λi| . From this bijection, it is immediate to obtain the well-
known identity [Kn98. p.69, p.612; St99, p.468; GKS90] for t-cores:

(1.9)
∑

λ

q|λ| =
∏

k≥1

(1 − qtk)t

1 − qk
,

where the sum ranges over all t-cores. When t = 2 it yields Gauss’s
identity:

(1.10)
∑

k≥0

q(
k+1

2 ) =
∏

k≥1

(1 − q2k)2

1 − qk
=

∏

k≥1

1 − q2k

1 − q2k−1
.

Recently, Chen, Ji and Wilf [CJW08] found that the Littlewood decompo-
sition for t = 2 implies the following enumerative result due to Berkovich
and Garvan [BG06]

(1.11)
∑

λ∈P

q|λ|bBG(λ) =
∏

k≥1

1

(1 − q2k)2
×

+∞∑

j=−∞

bjqj(2j−1),

where BG(λ) denotes the BG-rank of the partition λ defined as follows.
First, fill each box in the Ferrers diagram of λ with alternating ±1’s,
chessboard style, beginning with a +1 in the (1, 1) position (see Fig. 1.1).
The sum of these entries is the BG-rank of λ. For example, the BG-rank
of λ = (6, 3, 3, 1) is −1.

−
+ − +
− + −
+ − + − + −

Fig. 1.1. BG-rank

1
4 2 1
5 3 2
9 7 6 3 2 1

Fig. 1.2. Hook lengths

In the present paper, we show that most of the hook length formulas
(in particular examples (1.1–1.8)) can be further refined if the generating
function for t-core (1.9), or the BG-rank formula (1.11) are taken into ac-
count. Our main results are the following theorems which will be proved
in Section 2 by using the combinatorial properties of the Littlewood de-
composition.
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Theorem 1.1. If the series fα(q), gα(q) and the functions ρ1(h), ρ2(h)
satisfy the relations

∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(αh) = fα(q),(1.12)

and

∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ1(αh)
∑

h∈H(λ)

ρ2(αh) = gα(q),(1.13)

then, for any positive integer t, the following identity holds:

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

= tft(xq
t)t−1gt(xq

t)
∏

k≥1

(1 − qtk)t

(1 − qk)
,(1.14)

where Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}.
For example, the hook lengths of all boxes for the partition λ=(6, 3, 3, 1)

have been written in each box in Fig. 1.2, so that H(λ) = {1, 4, 2, 1, 5, 3, 2,
9, 7, 6, 3, 2, 1}. Consequently, H2(λ) = {4, 2, 2, 6, 2} and H3(λ) = {3, 9, 6,
3}.
Theorem 1.2. If the series fα(q), gα(q) and the functions ρ1(h), ρ2(h)
satisfy relations (1.12) and (1.13), then

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ1(h)
∑

h∈H2(λ)

ρ2(h)

= 2f2(xq
2)g2(xq

2)

+∞∑

j=−∞

bjqj(2j−1).(1.15)

Let ρ1(h) = 1 in Theorems 1.1 and 1.2, then fα(q) =
∏

k≥1 1/(1 − qk)
using the generating function for partitions (1.3). Thus, we obtain the
following two specializations.

Theorem 1.3 (Addition Theorem). If the series gα(q) and the func-
tion ρ(h) satisfy the relation

(1.16)
∑

λ∈P

q|λ|
∑

h∈H(λ)

ρ(αh) = gα(q),
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then, for any positive integer t,

∑

λ∈P

q|λ|x#Ht(λ)
∑

h∈Ht(λ)

ρ(h)

= tgt(xq
t)

∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t−1(1 − qk)
.(1.17)

Theorem 1.4 (Addition BG-Theorem). If the series gα(q) and the
function ρ(h) satisfy relation (1.16), then

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∑

h∈H2(λ)

ρ(h)

= 2g2(xq
2)

∏

k≥1

1

1 − (xq2)k

+∞∑

j=−∞

bjqj(2j−1).(1.18)

Let ρ2(h) = 1 in Theorems 1.1 and 1.2. Then

gt(xq
t) = x

d

dx
ft(xq

t).

Thus, we are led to the following two results obtained by integrating both
sides of (1.14) and (1.15) with respect to x.

Theorem 1.5 (Multiplication Theorem). If the series fα(q) and the
function ρ(h) satisfy the relation

(1.19)
∑

λ∈P

q|λ|
∏

h∈H(λ)

ρ(αh) = fα(q),

then, for any positive integer t, the following identity holds:

(1.20)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ(h) =
(
ft(xq

t)
)t ∏

k≥1

(1 − qtk)t

(1 − qk)
.

Theorem 1.6 (Multiplication BG-Theorem). If the series fα(q) and
the function ρ(h) satisfy relation (1.19), then

(1.21)
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ(h) =
(
f2(xq

2)
)2

+∞∑

j=−∞

bjqj(2j−1).

Take the weight function ρ(h) = (t − h)ρ̃(h) with the special value
ρ(t) = 0 in Theorems 1.5 and 1.6. Then the series ft(q) is equal to 1,
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since only the empty partition has no hook equal to one (see (1.19)). We
recover the generating function (1.9) for t-cores from Theorem 1.5 and the
following generating function for 2-cores by the BG-rank from Theorem 1.6

∑

λ:2-core

q|λ|bBG(λ) =
+∞∑

j=−∞

bjqj(2j−1).

As applications of Theorems 1.1-1.6, we derive the generalizations of
formulas (1.1–1.8) in Sections 3–9, respectively. We should like to single
out the following specializations.

Corollary 1.7 [Set x = 1 in Theorem 3.5]. We have

∑

λ∈P

q|λ|y#{h=2}bBG(λ)cWL(λ)

=
∏

k≥1

(1 + (y − 1)cq2k)2

(1 − cq2k)2

+∞∑

j=−∞

bjqj(2j−1),

where {h = 2} := {h ∈ H(λ), h = 2} and WL(λ) is defined in (2.1).

Corollary 1.8 [Set x = 1 and t = 2 in Theorem 4.4]. We have

∑

λ∈P

q|λ|
∏

h∈H2(λ)

1

h
= exp

(

q2 +
q4

4

)
∏

k≥1

(1 − q2k)2

1 − qk
.

Corollary 1.9 [Set x = 1 in Theorem 5.2]. We have

∑

λ∈P

q|λ|bBG(λ)
∏

h∈H2(λ)

1

h

1 + zh

1 − zh
= exp

(
1 + z2

1 − z2
q2 +

q4

4

) +∞∑

j=−∞

bjqj(2j−1).

Corollary 1.10 [Set x = 1 and replace z by 2z in Theorem 6.2]. We have

∑

λ∈P

q|λ|bBG(λ)
∏

h∈H2(λ)

(
1 − 2z

h2

)
=

∏

k≥1

1

(1 − q2k)2−z
×

+∞∑

j=−∞

bjqj(2j−1).

Corollary 1.11 [Set β = −1, t = 2, x = 1/q in Theorem 7.5]. We have

∑

λ∈P

q#{h:odd}
∑

h∈H2(λ)

1

h
=

∏

k≥1

(1 + qk)2

1 − qk

∑

k≥1

qk

1 − qk
.

Note that the proof of Corollary 1.7 needs further combinatorial tech-
niques developed in Theorem 2.1; it cannot be deduced from Theorem
1.6.
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2. Combinatorial properties of the Littlewood Decomposition

In this section we prove Theorems 1.1 and 1.2 by using some combi-
natorial properties of a classical bijection which maps each partition to
its t-core and t-quotient. This bijection probably goes back to Littlewood
[Li51] or Nakayama [Na40], which will be referred to as the Littlewood

decomposition. There are several ways to describe it [Ma95, p.12; St99,
p.468; JK81, p.75; GKS90]. Here we give a description in terms of binary
sequences [AF04; St99, p.468].

Let W be the set of bi-infinite binary sequences beginning with infinitely
many 0’s and ending with infinitely many 1’s. Each element w of W
can be represented by (bi)i = · · · b−3b−2b−1b0b1b2b3 · · ·. However, the
representation is not unique, since for any fixed integer k the sequence
(bi+k)i also represents w. The canonical representation of w is the unique
sequence (ci)i = · · · c−3c−2c−1c0c1c2c3 · · · such that

#{i ≤ −1, ci = 1} = #{i ≥ 0, ci = 0}.

It will be further denoted by · · · c−3c−2c−1.c0c1c2c3 · · · with a dot symbol
inserted between the letters c−1 and c0.

There is a natural one-to-one correspondence between P and W (see,
e.g. [St99, p.468; AF04] for more detail). Let λ be a partition. We encode
each horizontal edge of λ by 1 and each vertical edge by 0. Reading
these (0,1)-encodings from top to bottom and from left to right yields a
binary word u. By adding infinitely many 0’s to the left and infinitely
many 1’s to the right of u we get an element w = · · · 000u111 · · · ∈ W .
Clearly, the map ψ : λ 7→ w is a one-to-one correspondence between P
and W . The canonical representation of ψ(λ) will be denoted by Cλ.
For example, take λ = (4, 3, 3, 1, 1, 1). Then u = 1000110010, so that
w = · · · 0001000110010111 · · · and Cλ = (ci)i = · · · 000100011.0010111 · · ·

1

2

3

6 2 1

7 3 2

9 5 4 1

Fig. 2.1. Partition and (0,1)-sequence

1

1 1

1

0

0

0

0

0

0
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Theorem 2.1. Let t be a positive integer. The Littlewood decomposition
Ωt maps a partition λ to (µ;λ0, λ1, . . . , λt−1) such that

(P1) µ is a t-core and λ0, λ1, . . . , λt−1 are partitions;

(P2) |λ| = |µ| + t(|λ0| + |λ1| + · · · + |λt−1|);
(P3) {h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

The vector (λ0, λ1, . . . , λt−1) is usually called the t-quotient of the parti-
tion λ.

Proof. Let us briefly describe the bijection Ωt (see, e.g., [AF04; St99,
p.468]). Split the canonical representation Cλ = (ci)i of the partition λ
into t sections. This means that the subsequence wk = (cit+k)i is extracted
for each k = 0, 1, . . . , t − 1. The k-th entry λk of the t-quotient of λ is
defined to be the inverse image ψ−1(wk) of the subsequence wk. With
the above example w0 = · · · 00101011 · · · and w1 = · · · 0000100111 · · ·, so
that λ0 = (2, 1) and λ1 = (1, 1). Property (P3) holds since H(λ0) =
{1, 3, 1}, H(λ1) = {1, 2} and H2(λ) = {2, 2, 6, 2, 4} (See Fig. 2.1–2.4).
Note that the subsequence wk defined by wk = (cit+k)i is not necessarily
the canonical representation. For that reason we do not reproduce the dot
symbol “.” in the corresponding rows in the following table.

Cλ · · · 0 0 0 1 0 0 0 1 1 . 0 0 1 0 1 1 1 1 1 · · ·
w0 · · · 0 1 0 1 0 1 1 1 1 · · ·
v0 · · · 0 0 0 1 1 1 1 1 1 · · ·
w1 · · · 0 0 0 0 1 0 0 1 1 · · ·
v1 · · · 0 0 0 0 0 0 1 1 1 · · ·
Cµ · · · 0 0 0 0 0 0 0 1 0 . 1 0 1 1 1 1 1 1 1 · · ·

1
3 1

Fig. 2.2. Partition λ0

1
2

Fig. 2.3. Partition λ1

1
3 1

Fig. 2.4. The 2-core µ

For each subsequence wk we continually replace the subword 10 by 01.
The final resulting sequence is of the form · · · 000111 · · · and is denoted
by vk. The t-core of the partition λ is defined to be the partition µ
such that the t sections of the canonical representation Cµ are exactly
v0, v1, . . . , vt−1. With the above example we have µ = (2, 1). Properties
(P2) and (P3) can be derived from the following basic fact: each box of λ
is in one-to-one correspondence with the ordered pair of integers (i, j) such
that i < j and ci = 1, cj = 0 and the hook length of that box is equal to
j − i.
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The process above is reversible. Given t + 1 partitions (µ;λ0, λ1, . . . ,
λt−1) where µ is a t-core, we first split the canonical representation Cµ =
(di)i of the partition µ into t sections, namely, we form the subsequence
vk = (dit+k)i for k = 0, 1, . . . , t − 1. Clearly, every subsequence vk is of
the form · · · 000111 · · ·, since µ is t-core. Let wk = ψ(λk). Note that
the representation of wk is not unique. We choose the one which can be
obtained by continually replacing the subword 01 of vk by 10. We then
obtain the partition λ whose canonical representation Cλ = (ci)i consists
of such sequences w0, w1, . . . , wt−1. This means that (cit+k)i = wk for
k = 0, 1, . . . , t− 1.

For the case t = 2, the Littlewood decomposition Ω2 has more combina-
torial properties in addition to (P1)–(P3). To describe our new properties,
we need a new statistic called the weak length WL(λ) defined by means of
the multiplicity notation

λ = 〈1m1 , 2m2 , . . . , rmr〉

of the partition λ. Recall that this means that exactly mi of the parts of
λ are equal to i, so that `(λ) =

∑r
j=1mj . Let k be the smallest part such

that mk is even. Then, the weak length WL(λ) of λ is defined to be

(2.1) WL(λ) =
k−1∑

j=1

(
mj − 1

2

)

+
mk

2
+

r∑

j=k+1

mj .

For example, the weak length of λ = (4, 3, 3, 1, 1, 1) = 〈13, 20, 32, 41〉 is 4.

Theorem 2.2. When t = 2, the Littlewood decomposition Ω2 has the
further two properties.

(P4) BG(λ) =

{
`(µ)+1

2 , if BG(λ) > 0,

− `(µ)
2 , if BG(λ) ≤ 0;

(P5) WL(λ) = `(λ0) + `(λ1).

Proof. From the description of the Littlewood decomposition Ω2, it follows
that the 2-core µ of the partition λ is obtained from the canonical repre-
sentation Cλ = (ci)i by continually choosing i with ci = 1 and ci+2 = 0,
and then replacing ci by 0 and ci+2 by 1. Such an operation is equivalent
to removing a horizontal or vertical pair of adjacent cells from the Young
diagram of λ. The BG-rank of the partition λ and of its 2-core µ are then
equal. On the other hand, the BG-rank of a 2-core of length k is (k+1)/2
if k is odd, and −k/2 if k is even [CJW08]. This shows that Property (P4)
holds.
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Given a partition λ = 〈1m1 , 2m2 , . . . , hmh〉 let u = (ui)i≥0 be the (0, 1)-
encoding of λ. Then u is the sequence of the form

(2.2) u = 1 00 · · ·
︸ ︷︷ ︸

m1

1 00 · · ·
︸ ︷︷ ︸

m2

1 00 · · ·
︸ ︷︷ ︸

m3

1 · · · · · ·
︸ ︷︷ ︸

···

1 00 · · ·0
︸ ︷︷ ︸

mh

Clearly, the number of 0’s in u is equal to the length `(λ) of λ. Let m be
the smallest positive integer such that u2m+1 6= 0, so that u2j+1 = 0 for
0 ≤ j ≤ m− 1. From the description of the Littlewood decomposition Ω2

given in the proof of Theorem 2.1, it follows that the sum of the lengths of
λ0 and λ1 is equal to `(λ) −m. On the other hand, let k be the smallest
part of λ such that its multiplicity mk is even. From (2.2), it follows that

m = (
∑k

j=1mj + k − 1)/2, where m is the smallest positive integer such

that u2m+1 6= 0. Thus, Property (P5) holds by an easy calculation.

We are ready to prove Theorems 1.1 and 1.2 by using the above prop-
erties of the Littlewood decomposition.

Proof of Theorem 1.1. By properties (P1)–(P3) of the Littlewood decom-
position Ωt in Theorem 2.1 we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

=
∏

k≥1

(1 − qtk)t

1 − qk

t−1∑

i=0




∑

λ∈P

qt|λ|x#H(λ)
∏

h∈H(λ)

ρ1(th)





t−1

×




∑

λi∈P

qt|λi|x#H(λi)
∏

h∈H(λi)

ρ1(th)
∑

h∈H(λi)

ρ2(th)





=
∏

k≥1

(1 − qtk)t

1 − qk

t−1∑

i=0

ft(xq
t)t−1gt(xq

t)

=tft(xq
t)t−1gt(xq

t)
∏

k≥1

(1 − qtk)t

1 − qk
,

where the third equation follows from formulas (1.12) and (1.13) by re-
placing q by xqt and setting α = t.

Proof of Theorem 1.2. From properties (P1)–(P4) of the Littlewood de-
composition Ω2 in Theorems 2.1 and 2.2, we get

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

ρ1(h)
∑

h∈H2(λ)

ρ2(h)
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=

+∞∑

j=−∞

bjqj(2j−1) × 2




∑

λ∈P

q2|λ|x#H(λ)
∏

h∈H(λ)

ρ1(2h)



×




∑

λ∈P

q2|λ|x#H(λ)
∏

h∈H(λ)

ρ1(2h)
∑

h∈H(λ)

ρ2(2h)





=2f2(xq
2)g2(xq

2)
+∞∑

j=−∞

bjqj(2j−1),

where the last equation follows from formulas (1.12) and (1.13) by replac-
ing q by xq2 and setting α = 2.

3. Generating function for partitions

In this section we give several generalizations of generating function
for partitions (1.3). First, we obtain the following two generalizations by
applying Theorems 1.5 and 1.6 with the weight function ρ(h) = 1.

Theorem 3.1 [Ha08c, Corollary 5.1]. We have
∑

λ∈P

q|λ|x#Ht(λ) =
∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t(1 − qk)
.

Theorem 3.2. We have
∑

λ∈P

q|λ|x#H2(λ)bBG(λ) =
∏

k≥1

1

(1 − (xq2)k)2

+∞∑

j=−∞

bjqj(2j−1).

In fact, we can obtain more generalizations by means of the combina-
torial properties of the Littlewood decomposition. Before doing this, we
need the following lemma.

Lemma 3.3. We have
∑

λ∈P

q|λ|y#{h=1}c`(λ) =
∏

k≥1

1 + (y − 1)cqk

1 − cqk
.

Proof.
∑

λ∈P

q|λ|y#{h=1}c`(λ) =
∏

k≥1

(1 + ycqk + yc2q2k + yc3q3k + · · ·)

=
∏

k≥1

(1 +
ycqk

1 − cqk
)

=
∏

k≥1

1 + (y − 1)cqk

1 − cqk
.

The following theorem unifies Theorem 3.1 and another result of the
first author [Ha08c, Theorem 1.4]

11



Theorem 3.4. We have
∑

λ∈P

q|λ|x#Ht(λ)y#{h=t} =
∏

k≥1

(1 − qtk)t(1 + (y − 1)(xqt)k)t

(1 − qk)(1 − (xqt)k)t
.

Proof. From properties (P1)–(P3) of the bijection Ωt in Theorem 2.1 we
get

∑

λ∈P

q|λ|x#Ht(λ)y#{h=t} =
∏

k≥1

(1 − qtk)t

1 − qk
×

(∑

λ∈P

qt|λ|x#H(λ)y#{h=1}
)t

=
∏

k≥1

(1 − qtk)t

1 − qk
×

(∑

λ∈P

(xqt)|λ|y#{h=1}
)t

=
∏

k≥1

(1 − qtk)t(1 + (y − 1)(xqt)k)t

(1 − qk)(1 − (xqt)k)t
,

where the last identity follows from Lemma 3.3 by replacing q by xq2 and
setting c = 1.

The following theorem gives a generalization of Theorem 3.2.

Theorem 3.5. We have
∑

λ∈P

q|λ|x#H2(λ)y#{h=2}bBG(λ)cWL(λ)

=
∏

k≥1

(1 + (y − 1)c(xq2)k)2

(1 − c(xq2)k)2

+∞∑

j=−∞

bjqj(2j−1).

Proof. From properties (P1)–(P5) of the bijection Ω2 in Theorems 2.1 and
2.2 we get

∑

λ∈P

q|λ|x#H2(λ)y#{h=2}bBG(λ)cWL(λ)

=
(∑

λ∈P

q2|λ|x#H(λ)y#{h=1}c`(λ)
)2

×
+∞∑

j=−∞

bjqj(2j−1)

=
(∑

λ∈P

(xq2)|λ|y#{h=1}c`(λ)
)2

×
+∞∑

j=−∞

bjqj(2j−1)

=
∏

k≥1

(1 + (y − 1)c(xq2)k)2

(1 − c(xq2)k)2

+∞∑

j=−∞

bjqj(2j−1),

where the last identity follows from Lemma 3.3 by replacing q by xq2.

Setting x = y = b = 1 in Theorem 3.5 and using Gauss’ identity (1.10)
we obtain the following corollary.
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Corollary 3.6. We have

(3.1)
∑

λ∈P

q|λ|cWL(λ) =
∏

k≥1

(1 − q2k)

(1 − q2k−1)(1 − cq2k)2
.

By definition (2.1) of the weak length WL(λ) we also have

∑

λ∈P

q|λ|cWL(λ) =
∑

k≥1

k−1∏

j=1

(qj + cq3j + c2q5j + · · ·)

× (1 + cq2k + c2q4k + · · ·)

×
+∞∏

j=k+1

(1 + cqj + c2q2j + · · ·)

=
∑

k≥1

q(
k

2)
k∏

j=1

1

1 − cq2j

+∞∏

j=k+1

1

1 − cqj

=
+∞∏

j=1

1

1 − cqj

∑

k≥1

q(
k

2)
k∏

j=1

1 − cqj

1 − cq2j
.(3.2)

Combining (3.1) and (3.2) we get the following identity which is a special
case of q-Gauss second identity [GR90, p.237, Eq.(II.11)] for a =

√
cq, b =√

q.

(3.3)
∑

k≥0

q(
k+1

2 )
k+1∏

j=1

1 − cqj

1 − cq2j
=

∏

k≥1

(1 − cq2k−1)(1 − q2k)

(1 − q2k−1)(1 − cq2k)
.

4. Two classical hook length formulas

The two multiplication theorems are also applicable to the two classical
hook length formulas (1.1) and (1.2) [Ha08d], themselves obtainable from
the Robinson-Schensted-Knuth correspondence (see, for example, [Kn98,
p.49-59; St99, p.324]). When applying Theorems 1.5 and 1.6 with the
weight function ρ(h) = 1/h2, we get the following generalizations of (1.1).

Theorem 4.1 [Ha08c, Corollary 5.4]. We have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2
= exp

(
xqt

t

)
∏

k≥1

(1 − qtk)t

1 − qk
.

Theorem 4.2.

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2
= exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1).

The following result is immediate from Theorem 4.2 by setting x = 1
and comparing the coefficients of b0 on both sides.
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Corollary 4.3. We have

∑

λ∈P,BG(λ)=0

q|λ|
∏

h∈H2(λ)

1

h2
= exp

(
q2

2

)

.

Corollary 4.3 could also be derived from formula (1.5) by setting z =
−1. Note that, for any partition λ, the number of odd hooks in λ is
greater than or equal to the number of even hooks in λ. Moreover, when
the numbers of odd hooks and of even hooks in λ are equal, the BG-rank
of λ is equal to 0.

The following theorems are generalizations of (1.2). They are imme-
diate consequences of Theorems 1.5 and 1.6 with the weight function
ρ(h) = 1/h:

Theorem 4.4. We have

(4.1)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h
= exp

(

xqt +
x2q2t

2t

)
∏

k≥1

(1 − qtk)t

1 − qk
.

Theorem 4.5. We have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h

= exp

(

xq2 +
x2q4

4

) +∞∑

j=−∞

bjqj(2j−1).(4.2)

By comparing the coefficients of xnqtn on both sides of (4.1) we have
the following result.

Corollary 4.6. We have

∑

λ`tn,#Ht(λ)=n

∏

h∈Ht(λ)

1

h
=

bn

2
c

∑

j=0

1

j!(n− 2j)!(2t)j
.

Setting x = 1 and comparing the coefficients of b0 on both sides of (4.2)
yields the following result.

Corollary 4.7. We have

∑

λ∈P,BG(λ)=0

q|λ|
∏

h∈H2(λ)

1

h
= exp

(

q2 +
q4

4

)

.
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5. The Han-Carde-Loubert-Potechin-Sanborn formula

In [Ha08b] the first author found the hook length formula (1.5), related
to partitions and permutations. Formula (1.5) has recently been proved
by Carde et al. [CLPS08]. Formula (1.5) is an interpolation between the
two classical hook length formulas. It reduces to (1.2) when z = 0. When
q is replaced by 1−z

1+z q and z is equal to 1, formula (1.5) yields (1.1).

When ρ(h) = (1 + zh)/(h(1 − zh)), the series fα(q) defined in (1.19)
has the following explicit form:

fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

αh

1 + zαh

1 − zαh
= exp

(
1 + zα

1 − zα

q

α
+

q2

2α2

)

.

Hence, Theorems 1.5 and 1.6 imply the following generalizations of (1.5).

Theorem 5.1. Let t be a positive integer. Then

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h

1 + zh

1 − zh

= exp

(
1 + zt

1 − zt
xqt +

x2q2t

2t

)
∏

k≥1

(1 − qtk)t

(1 − qk)
.

Theorem 5.2. We have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h

1 + zh

1 − zh

= exp

(
1 + z2

1 − z2
xq2 +

x2q4

4

) +∞∑

j=−∞

bjqj(2j−1).

When z = 0, Theorems 5.1 and 5.2 reduce to Theorems 4.4 and 4.5
respectively. When x is replaced by 1−z

1+zx and z = 1, Theorems 5.1 and
5.2 give back Theorems 4.1 and 4.2, respectively.

6. The Nekrasov-Okounkov formula

Formula (1.6) can be seen as an explicit expansion formula for the pow-
ers of the Euler Product in terms of partition hook lengths. It was first
discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten
theory and random partitions [NO06] and re-discovered by the first au-
thor [Ha08a] by means of an appropriate hook length expansion technique
[Ha08d]. An elementary proof of the Nekrasov-Okounkov formula is given
in [Ha08c].

Theorems 1.5 and 1.6 with the weight function ρ(h) = 1 − z/h2 yield
the following generalizations of (1.6).
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Theorem 6.1 [Ha08c, Theorem 1.2]. We have

(6.1)
∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

(
1 − z

h2

)
=

∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t−z/t(1 − qk)
.

Theorem 6.2. We have
∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

(
1 − z

h2

)

=
∏

k≥1

1

(1 − (xq2)k)2−z/2
×

+∞∑

j=−∞

bjqj(2j−1).(6.2)

Corollary 6.3. We have

(6.3)
∑

λ`2n+j(2j−1), BG(λ)=j

∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

h2 =
3n+ 1

2n(n− 1)!
.

Proof. Clearly, the left-hand side of (6.3) is the coefficient of

q2n+j(2j−1)bjxn(−z)n−1

on the left-hand side of (6.2). Using the following identity (see [St99,
p.316])

(6.4)
∏

m≥1

1

1 − qm
= exp

(∑

k≥1

qk

k(1 − qk)

)
,

the right-hand side of (6.2) can be written:

R =
∏

k≥1

1

(1 − (xq2)k)2
exp




−z
2

∑

k≥1

(xq2)k

k(1 − (xq2)k)





+∞∑

j=−∞

bjqj(2j−1).

Thus,

[q2n+j(2j−1)bjxn(−z)n−1]R

= [q2nxn(−z)n−1]
∏

k≥1

1

(1 − (xq2)k)2
exp




−z
2

∑

k≥1

(xq2)k

k(1 − (xq2)k)





= [q2nxn]
1

2n−1(n− 1)!

∏

k≥1

1

(1 − (xq2)k)2




∑

k≥1

(xq2)k

k(1 − (xq2)k)





n−1

= [q2x]
1

2n−1(n− 1)!

1

(1 − (xq2))2

(
1

(1 − (xq2)
+

xq2

2(1 − (xq2)2)

)n−1

=
1

2n−1(n− 1)!
(2 + n− 1 +

n− 1

2
)

=
3n+ 1

2n(n− 1)!
.
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Corollary 6.3 could also be derived from Theorem 9.2 by setting x =
1, k = 1 and comparing the coefficients of bjq2n+j(2j−1) on both sides.

Setting x = 1 and comparing the coefficients of (−z)bj on both sides of
(6.2) leads to the following corollary.

Corollary 6.4. We have

∑

λ∈P, BG(λ)=j

q|λ|
∑

h∈H2(λ)

1

h2
=

qj(2j−1)

2
∏

k≥1(1 − q2k)2

∑

k≥1

q2k

k(1 − q2k)
.

Corollary 6.4 could also be deduced from Theorem 7.6 by setting β =
−2, x = 1, and comparing the coefficients of bj on both sides.

7. The Bessenrodt-Bacher-Manivel formula

Formula (1.4) deals with power sums of hook lengths. Its proof is based
on an elegant result about the multi-set of hook lengths and the multi-
set of parts of all partitions of n due to Bessenrodt, Bacher and Manivel
[Be98, BM02]. See also [Ha08a] for some historical remarks. Each hook
length h can be split into h = a+ l + 1, where a is the arm length and l
the leg length (see [St99, p.457]). The ordered pair (a, l) is called a hook

type.

Theorem 7.1 [Bessenrodt-Bacher-Manivel]. Let n ≥ k ≥ 1 be two
integers. Then, for every positive j < k, the total number of occurrences
of the part k among all partitions of n is equal to the number of boxes,
whose hook type is (j, k − j − 1).

Theorem 7.1 implies in particular that the total number of hooks of
given hook type (j, k− j − 1) occuring in all partitions of n depends only
on the length k and not on the particular hook type itself. Since there
are exactly k distinct hook types for hooks of length k, the total number
of hooks of length k in all partitions of n is k times the total number of
occurrences of the part k among all partitions of n. For each partition λ
let mk(λ) denote the number of parts in λ equal to k. Then

∑

λ`n

#{h ∈ H(λ), h = k} =
∑

λ`n

k ×mk(λ).

In fact, the following more general result can be deduced from Theo-
rem 7.1.

Corollary 7.2. For each positive integer n, t, and each complex number β
we have

(7.1)
∑

λ`n

∑

h∈Ht(λ)

hβ =
∑

λ`n

∑

k≥1

(tk)β+1mtk(λ).

We next prove the following theorem that generalizes formula (1.4).
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Theorem 7.3. For any positive integer t and complex number β we have

∑

λ∈P

q|λ|
∑

h∈Ht(λ)

hβ =
∏

m≥1

1

1 − qm
×

∑

k≥1

(tk)β+1 qtk

1 − qtk
.

By Corollary 7.2, we see that Theorem 7.3 is equivalent to the next
Theorem.

Theorem 7.4. We have

∑

n≥1

qn
∑

λ`n

∑

k≥1

(tk)βmtk(λ) =
∏

m≥1

1

1 − qm
×

∑

k≥1

(tk)β qtk

1 − qtk
.

Proof. Given a fixed positive integer k divisible by t, it is known that

∑

λ∈P

kβmk(λ)q|λ| =
(
kβqk + 2kβq2k + 3kβq3k + · · ·

) ∏

m6=k

1

1 − qm

=

(

kβ−1q
d

dq

qk

1 − qk

)
∏

m6=k

1

1 − qm

=

(

kβ qk

(1 − qk)2

)
∏

m6=k

1

1 − qm

= kβ qk

1 − qk

∏

m≥1

1

1 − qm
.

Hence, we have

∑

n≥1

qn
∑

λ`n

∑

k≥1

(tk)βmtk(λ) =
∏

m≥1

1

1 − qm

∑

k≥1

(tk)β qtk

1 − qtk
.

We now give two generalizations of (1.4) by applying Theorems 1.3 and
1.4 with the weight function ρ(h) = hβ . Notice that Theorem 7.5 reduces
to Theorem 7.3 when x = 1. However, it cannot be proved directly using
the Bessenrodt-Bacher-Manivel theorem.

Theorem 7.5. For any complex number β and positive integer t we have

∑

λ∈P

q|λ|x#Ht(λ)
∑

h∈Ht(λ)

hβ

=
∏

k≥1

(1 − qtk)t

(1 − (xqt)k)t(1 − qk)

∑

k≥1

(tk)β+1 (xqt)k

1 − (xqt)k
.
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Theorem 7.6. For any complex number β we have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∑

h∈H2(λ)

hβ

=
∏

k≥1

1

(1 − (xq2)k)2

∑

k≥1

(2k)β+1 (xq2)k

1 − (xq2)k
×

+∞∑

j=−∞

bjqj(2j−1).

The specializations β = 1 and β = −1 of Theorems 7.5 and 7.6 are
worth mentioning and are not reproduced. A further specialization with
β = −1, t = 2, x = 1/q implies Corollary 1.11.

8. The Okada-Panova formula

Formula (1.7) is the generating function form of the Okada-Panova
formula (8.1), which was conjectured by Okada and proved by Panova
[St08, Pa08]:

(8.1)
1

n!

∑

λ`n

f2
λ

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)

r∏

j=0

(n− j),

where C(r) is defined in (1.7). By the hook length formula

(8.2) fλ =
n!

∏

h∈H(λ) h
,

formula (8.1) can be written as

∑

λ`n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

(h2 − i2) = C(r)
1

(n− r − 1)!
.

It is easy to see that formula (1.7) is the generating function version of
the above formula.

We now give a generalization of Okada-Panova formula (1.7) by using
Theorems 1.1 and 1.2 with the weight functions ρ1(h) = 1

h2 and ρ2(h) =
∏r

i=1(h
2 − i2). By the classical hook formula (1.1), it is known that

(8.3) fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q

α2

)

.

Recall that

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2).
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To evaluate gα(q) we introduce a family of polynomials (Br,k(α))0≤k≤r

defined by the following relations:

Br,0(α) =
r∏

j=1

(α2 − j2),

Br,k(α) = [α2(k + 1)2 − r2]Br−1,k(α) + α2Br−1,k−1(α)

for 1 ≤ k ≤ r − 1,

Br,r(α) = α2r.

The first values of the polynomials Br,k(α) are:

B1,0(α) = α2 − 1, B1,1(α) = α2,

B2,0(α) = (α2 − 1)(α2 − 22), B2,1(α) = 5α2(α2 − 1), B2,2(α) = α4,

B3,0(α) = (α2 − 1)(α2 − 22)(α2 − 32), B3,1(α) = 7α2(α2 − 1)(3α2 − 7),

B3,2(α) = 14α4(α2 − 1), B3,3(α) = α6,

Lemma 8.1. For any complex number α, we have

r∏

j=1

(α2x2 − j2) =

r∑

k=0

Br,k(α)

k∏

j=1

(x2 − j2).

Proof. Let pr(α) =
∏r

j=1(α
2x2 − j2) and write

pr(α) =

r∑

k=0

B′
r,k(α)pk(1).

We need to show that (B′
r,k(α)) satisfy the same relations as (Br,k(α)).

From the definition of pr(α) we have

pr(α) = (α2x2 − r2)

r−1∑

k=0

B′
r−1,k(α)pk(1)

=

r−1∑

k=0

B′
r−1,k(α)[α2(x2 − (k + 1)2) + α2(k + 1)2 − r2]pk(1)

= α2
r−1∑

k=0

B′
r−1,k(α)pk+1(1) +

r−1∑

k=0

[α2(k + 1)2 − r2]B′
r−1,k(α)pk(1)

= α2
r∑

k=1

B′
r−1,k−1(α)pk(1) +

r−1∑

k=0

[α2(k + 1)2 − r2]B′
r−1,k(α)pk(1).
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Since the pk(1)’s are linearly independent, we obtain the following recur-
rences.

(8.4) B′
r,r(α) = α2B′

r−1,r−1(α), B′
r,0(α) = (α2 − r2)B′

r−1,0(α)

and for 0 < k < r

B′
r,k(α) = α2B′

r−1,k−1(α) + [α2(k + 1)2 − r2]B′
r−1,k(α).

Iterating recurrence (8.4) (r− 1) times and using the fact B ′
0,0(α) = 1, we

obtain B′
r,r(α) = α2r, B′

r,0(α) =
∏r

j=1(α
2 − j2).

Thus we can express the series gα(q) from Lemma 8.1 and Okada-
Panova (1.7) as follows.

Proposition 8.2. We have

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2)

= exp
( q

α2

) r∑

k=0

Br,k(α)C(k)
( q

α2

)k+1

.(8.5)

Proof.

gα(q) =
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∏

i=1

((αh)2 − i2)

=
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

r∑

k=0

Br,k(α)
k∏

j=1

(h2 − j2)

=
r∑

k=0

Br,k(α)
∑

λ∈P

( q

α2

)|λ| ∏

h∈H(λ)

1

h2

∑

h∈H(λ)

k∏

j=1

(h2 − j2)

=

r∑

k=0

Br,k(α)C(k)
( q

α2

)k+1

exp
( q

α2

)

,

where the last equation follows from (1.7).

From the definition of Br,k(α) in Lemma 8.1 it is known that for any
positive integer t, Br,k(t) = 0 for r ≥ t(k+ 1). Combining (8.3) and (8.5),
we see that Theorems 1.1 and 1.2 give the following generalizations of
Okada-Panova’s formula (1.7).

21



Theorem 8.3. For any positive integer t and r we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

r∏

i=1

(h2 − i2)

= t exp

(
xqt

t

)
∏

k≥1

(1 − qtk)t

1 − qk

r∑

k=d r−t+1

t
e

Br,k(t)C(k)

(
xqt

t2

)k+1

.

Theorem 8.4. For any positive integer r we have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

r∏

i=1

(h2 − i2)

= 2 exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1)
r∑

k=d r−1

2
e

Br,k(2)C(k)

(
xq2

4

)k+1

.

9. The Stanley-Panova formula

In [Ha08d], the first author conjectured that

1

n!

∑

λ`n

f2
λ

∑

h∈H(λ)

h2k

is a polynomial function in n of degree k+1. Stanley and Panova proved a
generalization of this conjecture and deduced the following explicit formula
of this summation from Okada’s conjecture [St08, Pa08]:

(9.1)
1

n!

∑

λ`n

f2
λ

∑

h∈H(λ)

h2k =

k∑

i=0

T (k + 1, i+ 1)C(i)

i∏

j=0

(n− j),

where T (k, i) is a central factorial number [St99, ex.5.8] defined for k ≥ 1
and i ≥ 1 by

T (k, 0) = T (0, i) = 0, T (1, 1) = 1,(9.2)

T (k, i) = i2T (k − 1, i) + T (k − 1, i− 1) for (k, i) 6= (1, 1).(9.3)

By hook length formula (8.2) one can easily see that formula (1.8) is the
generating function form of formula (9.1).

We now give two generalizations of Stanley-Panova’s formula (1.8) by
using Theorems 1.1 and 1.2 with the weight functions ρ1(h) = 1/h2 and
ρ2(h) = h2k. By the classical hook formula (1.1) we know that

fα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q

α2

)

.
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From the Stanley-Panova formula (1.8) it is known that

gα(q) =
∑

λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2

∑

h∈H(λ)

α2kh2k

= α2k exp
( q

α2

) k∑

i=0

T (k + 1, i+ 1)C(i)
( q

α2

)i+1

.

Thus, Theorems 1.1 and 1.2 imply the following generalizations of Stanley-
Panova’s formula (1.8).

Theorem 9.1. For any positive integer t and k we have

∑

λ∈P

q|λ|x#Ht(λ)
∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

h2k

= t2k+1 exp

(
xqt

t

)
∏

j≥1

(1 − qtj)t

1 − qj

k∑

i=0

T (k + 1, i+ 1)C(i)

(
xqt

t2

)i+1

.

Theorem 9.2. For any positive integer k we have

∑

λ∈P

q|λ|x#H2(λ)bBG(λ)
∏

h∈H2(λ)

1

h2

∑

h∈H2(λ)

h2k

= 22k+1 exp

(
xq2

2

) +∞∑

j=−∞

bjqj(2j−1)
k∑

i=0

T (k + 1, i+ 1)C(i)

(
xq2

4

)i+1

.
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