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Abstract

We give a combinatorial proof of Andrews’ smallest parts partition function with
the aid of rooted partitions introduced by Chen and the author.

1 Introduction

We adopt the common notation on partitions as used in [1]. A partition λ of a positive
integer n is a finite nonincreasing sequence of positive integers

λ = (λ1, λ2, . . . , λr)

such that
∑r

i=1 λi = n. Then λi are called the parts of λ. The number of parts of λ is
called the length of λ, denoted by l(λ). The weight of λ is the sum of parts, denoted by
|λ|. We let P(n) denote the set of partitions of n.

Let spt(n) denote the number of smallest parts in all partitions of n and ns(λ) denote
the number of the smallest parts in λ, we then have

spt(n) =
∑

λ∈P(n)

ns(λ). (1.1)

Below is a list of the partitions of 4 with their corresponding number of smallest parts.
We see that spt(4) = 10.

λ ∈ P(4) ns(λ)

(4) 1

(3, 1) 1

(2, 2) 2

(2, 1, 1) 2

(1, 1, 1, 1) 4
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The rank of a partition λ introduced by Dyson [6] is defined as the largest part minus
the number of parts, which is usually denoted by r(λ) = λ1 − l(λ). Let N(m,n) denote
the number of partitions of n with rank m. Atkin and Garvan [4] define the kth moment
of the rank by

Nk(n) =
+∞
∑

m=−∞

mkN(m,n). (1.2)

In [2], Andrews shows the following partition function on spt(n) analytically:

Theorem 1.1 (Andrews)

spt(n) = np(n) −
1

2
N2(n), (1.3)

where p(n) is the number of partitions of n.

At the end of the paper, Andrews states that “In addition the connection of N2(n)/2 to
the enumeration of 2-marked Durfee symbols in [3] suggests the fact that there are also
serious problems concerning combinatorial mappings that should be investigated.” In this
paper, we give a combinatorial proof of (1.3) with the aid of rooted partitions introduced
by Chen and the author [5], instead of using a 2-marked Durfee symbols.

A rooted partition of n can be formally defined as a pair of partitions (α, β), where
|α| + |β| = n and β is a nonempty partition with equal parts. The union of the parts of
α and β are regarded as the parts of the rooted partition (α, β).

Example 1.2 There are twelve rooted partitions of 4:

(∅, (4)) ((1), (3)) ((3), (1)) ((2), (2))

(∅, (2, 2)) ((1, 1), (2)) ((2, 1), (1)) ((2), (1, 1))

((1, 1, 1), (1)) ((1, 1), (1, 1)) ((1), (1, 1, 1)) (∅, (1, 1, 1, 1))

Let RP(n) denote the set of rooted partitions of n.

2 Combinatorial proof

In this section, we will first build the connection between rooted partitions and ordinary
partitions, then interpret np(n), 1

2
N2(n) in terms of rooted partitions (see Theorems 2.2

and 2.5). In this framework, a combinatorial justification of (1.3) reduces to build a
bijection between the set of ordinary partitions of n and the set of the rooted partitions
(α, β) of n with β1 > α1.

We now make a connection between rooted partitions and ordinary partitions by ex-
tending the construction in [5, Theorems 3.5, 3.6].
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Lemma 2.1 The number of rooted partitions of n is equal to the sum of lengths over

partitions of n, namely
∑

(α,β)∈RP(n)

1 =
∑

λ∈P(n)

l(λ). (2.4)

Proof. For a given partition λ = (λ1, λ2, . . . , λl) ∈ P(n), we could get l(λ) distinct rooted
partitions (α, β) of n by designating any part of λ as the part of β and keep the remaining
parts of λ as parts of α. Assume that d is a part that appears md times (md ≥ 2) in
λ, we then choose β as the partition with d repeated i times, where i = 1, 2, . . . , md.
Conversely, for a rooted partition (α, β), we could get an ordinary partition λ by uniting
the parts of α and β. It’s clear to see that there are exactly l(λ) distinct rooted partitions
corresponding to λ in RP(n).

For example, there are five partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1), and
the sum of lengths is twelve. From Example 1.2, we see that there are also twelve rooted
partitions of 4.

We are ready to interpret np(n) in terms of rooted partitions using the construction
in Lemma 2.1.

Theorem 2.2 np(n) is equal to the sum of β1 over all rooted partitions (α, β) of n,
namely

np(n) =
∑

(α,β)∈RP(n)

β1. (2.5)

Proof. As np(n) =
∑

λ∈P(n) |λ|, it suffices to prove
∑

λ∈P(n)

|λ| =
∑

(α,β)∈RP(n)

β1. (2.6)

From Lemma 2.1, one sees that for λ ∈ P(n), there exists exactly l(λ) distinct rooted
partitions (α, β) corresponding to it in RP(n). Furthermore, the sum of β1 over these l(λ)
distinct rooted partitions equals to |λ|, this is because that β is obtained by designating
some equal parts of λ as its parts. Thus we get the identity (2.6).

For example, for the case of n = 4, there are five partitions of 4, so we have 4p(4) = 20.
While the sum of β1 over all twelve rooted partitions (α, β) of 4 is also twenty (see Example
1.2).

For the combinatorial explanation of 1
2
N2(n) in terms of rooted partitions, we first rein-

terpret 1
2
N2(n) in terms of ordinary partitions. Here we need to define the conjugate of the

partition. For a partition λ = (λ1, . . . , λr), the conjugate partition λ′ = (λ′1, λ
′
2, . . . , λ

′
t)

of λ by setting λ′
i to be the number of parts of λ that are greater than or equal to i.

Clearly, l(λ) = λ′
1 and λ1 = l(λ′). Therefore, it’s straightforward to verify the following

partition identity:

∑

λ∈P(n)

λ2
1 =

∑

λ∈P(n)

l(λ)2. (2.7)

We have the following lemma:
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Lemma 2.3
1

2
N2(n) =

∑

λ∈P(n)

l(λ)2 −
∑

λ∈P(n)

[λ1 · l(λ)]. (2.8)

Proof. From the definition of rank and the moment of rank, we know that

1

2
N2(n) =

∑

λ∈P(n)

(λ1 − l(λ))2

2
. (2.9)

Clearly,

∑

λ∈P(n)

(λ1 − l(λ))2

2
=

1

2

∑

λ∈P(n)

λ2
1 +

1

2

∑

λ∈P(n)

l(λ)2 −
∑

λ∈P(n)

[λ1 · l(λ)]. (2.10)

Thus we obtain the combinatorial explanation (2.8) for 1
2
N2(n) when substitute (2.7) into

(2.10).

We next transform Lemma 2.3 on ordinary partitions to the following statement on
rooted partitions by the construction in Lemma 2.1.

Lemma 2.4

1

2
N2(n) =

∑

(α,β)∈RP(n)

[l(α) + l(β)] −
∑

(α,β)∈RP(n)

h(α, β), (2.11)

where h(α, β) denote the largest part of the rooted partition (α, β), that is h(α, β) = β1 if

α1 ≤ β1; otherwise h(α, β) = α1.

Proof. From Lemma 2.1, it’s known that for λ ∈ P(n), we will get exactly l(λ) distinct
rooted partitions (α, β) corresponding to it in RP(n). Furthermore for each of these l(λ)
distinct rooted partitions (α, β), we have l(α) + l(β) = l(λ) and h(α, β) = λ1.

Therefore, the sum of l(α)+ l(β) over all l(λ) rooted partitions (α, β) is equal to l(λ)2,
and we deduce that

∑

λ∈P(n)

l(λ)2 =
∑

(α,β)∈RP(n)

[l(α) + l(β)]. (2.12)

Furthermore, the sum of h(α, β) over all l(λ) rooted partitions (α, β) is equal to λ1 · l(λ),
so we have

∑

λ∈P(n)

[λ1 · l(λ)] =
∑

(α,β)∈RP(n)

h(α, β). (2.13)

According to Lemma 2.3, (2.12), and (2.13), we deduce (2.11).
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When applying the conjugation into α in the rooted partition (α, β), we see that each
rooted partition (α, β) with l(α) corresponds to a rooted partition (α′, β ′) with α′

1 such
that l(α) = α′

1. Thus we obtain the following partition identity:

∑

(α,β)∈RP(n)

l(α) =
∑

(α,β)∈RP(n)

α1. (2.14)

Similarly, when employing the conjugation to β in (α, β), we find that each rooted
partition (α, β) with l(β) corresponds to a rooted partition (α′, β ′) with β ′

1 such that
l(β) = β ′

1. So we have:
∑

(α,β)∈RP(n)

l(β) =
∑

(α,β)∈RP(n)

β1. (2.15)

When subscribe (2.14) and (2.15) into (2.11), we obtain the following combinatorial
interpretation for 1

2
N2(n) in terms of rooted partitions.

Theorem 2.5 1
2
N2(n) is equal to the sum of α1 over all rooted partitions (α, β) of n with

α1 < β1, add the sum of β1 over all rooted partitions (α, β) of n with α1 ≥ β1, namely

1

2
N2(n) =

∑

(α,β)∈RP(n)

α1<β1

α1 +
∑

(α,β)∈RP(n)

α1≥β1

β1. (2.16)

Based on Theorems 2.2 and 2.5, we may reformulate Andrews’ smallest parts partition
function (1.3) as the following theorem:

Theorem 2.6

∑

λ∈P(n)

ns(λ) =
∑

(α,β)∈RP(n)

β1 −









∑

(α,β)∈RP(n)

α1<β1

α1 +
∑

(α,β)∈RP(n)

α1≥β1

β1









. (2.17)

Proof. Evidently, the proof of this theorem is equivalent to the proof of the following
partition identity:

∑

λ∈P(n)

ns(λ) =
∑

(α,β)∈RP(n)

α1<β1

[β1 − α1]. (2.18)

We now build a bijection ψ between the set of ordinary partitions of n and the set of
rooted partitions (α, β) of n with α1 < β1. Furthermore, for λ ∈ P(n) and (α, β) = ψ(λ),
we have ns(λ) = β1 − α1.

The map ψ: For λ ∈ P(n), we will construct a rooted partition (α, β) where β1 > α1.
Assume that l(λ) = l and λ1 = a, consider its conjugate λ′ = (λ′1, λ

′
2, . . . , λ

′
a) where λ′

1 = l.
Supposed that the largest part of λ′ repeats ml times, that is, there are ml parts of size
l in λ′. We then have ns(λ) = λ′1 − λ′ml+1. Define β as the partitions with parts of size l
repeated ml times, and keep the remaining parts of λ′ as parts of α.
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From the above construction, one could see that α1 = λ′ml+1 and β1 = λ′1, that is
β1 > α1. Furthermore, ns(λ) = λ′1 − λ′ml+1 = β1 − α1. Hence the map ψ satisfies the
conditions and one can easily see that this process is reversible. Thus we complete the
proof of Theorem 2.6.

For example, there are five partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). We
also have five rooted partitions (α, β) with α1 < β1.

(∅, (4)) ((1), (3)) (∅, (2, 2)) ((1, 1), (2)) (∅, (1, 1, 1, 1)).

Applying the above bijection, we get the following correspondence:

(4) � (∅, (1, 1, 1, 1)) (3, 1) � ((1, 1), (2)) (2, 2) � (∅, (2, 2))

(2, 1, 1) � ((1), (3)) (1, 1, 1, 1) � (∅, (4)).
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