
The (α, β)-Eulerian Polynomials and Descent-Stirling
Statistics on Permutations

Kathy Q. Ji

Center for Applied Mathematics
Tianjin University

Tianjin 300072, P.R. China

kathyji@tju.edu.cn

Abstract. Carlitz and Scoville introduced the polynomials An(x, y|α, β), which we refer
to as the (α, β)-Eulerian polynomials. These polynomials count permutations based on
Eulerian-Stirling statistics, including descents, ascents, left-to-right maxima, and right-
to-left maxima. Carlitz and Scoville obtained the generating function of An(x, y|α, β). In
this paper, we introduce a new family of polynomials, Pn(u1, u2, u3, u4|α, β), defined on
permutations, incorporating descent-Stirling statistics including valleys, exterior peaks,
right double descents, left double ascents, left-to-right maxima, and right-to-left maxima.
By employing the grammatical calculus introduced by Chen, we establish the connection
between the generating function of Pn(u1, u2, u3, u4|α, β) and the generating function of
the (α, β)-Eulerian polynomials An(x, y|α, β) introduced by Carlitz and Scoville. Using
this connection, we derive the generating function of Pn(u1, u2, u3, u4|α, β), which can be
specialized to obtain the (α, β)-extensions of generating functions for peaks, left peaks,
double ascents, right double ascents and left-right double ascents given by David-Barton,
Elizalde and Noy, Entringer, Gessel, Kitaev and Zhuang. Moreover, we establish two rela-
tions between Pn(u1, u2, u3, u4|α, β) and An(x, y|α, β), which enable us to derive (α, β)-
extensions of results of Stembridge, Petersen, Brändén, and Zhuang. We also obtain the
left peak version of Stembridge’s formula and the peak version of Petersen’s formula,
along with their respective (α, β)-extensions, by utilizing these two relations. Specializ-
ing (α, β)-extensions of Stembridge’s formula and the left peak version of Stembridge’s
formula allows us to derive the (α, β)-extensions of the tangent and secant numbers.
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1 Introduction

The objective of this paper is to investigate the polynomials involving descent-Stirling
statistics. Let us first recall Eulerian, Stirling and descent statistics on permutations. Let
Sn denote the set of permutations on [n] := {1, 2, . . . , n}. We say that i is a descent of
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σ = σ1σ2 · · ·σn ∈ Sn if 1 ≤ i < n and σi > σi+1. The Eulerian polynomials are defined
by

An(x) :=
∑
σ∈Sn

xdes(σ)+1 (1.1)

with the convention that A0(x) = 1, where des(σ) counts the number of descents of σ.
The generating function of An(t) is well known:∑

n≥0

An(x)
tn

n!
=

1− x
1− xe(1−x)t

. (1.2)

Eulerian polynomials carry a profound historical legacy and play a pivotal role across
diverse combinatorial landscapes. For an extensive analysis, please refer to Petersen [29].

A permutation statistic whose generating function is given by (1.1) is called Eulerian.
Let σ = σ1 · · ·σn ∈ Sn. A number 1 ≤ i < n for which σi < σi+1 is called an ascent
of σ and a number 1 ≤ i < n for which σi > i is called an excedance of σ. Let asc(σ)
denote the number of ascents of σ and let exc(σ) denote the number of excedances of σ.
It is known that asc(σ) and exc(σ) are Eulerian statistics, see MacMahon [25, p.186] and
Stanley [25, p.186]. To wit,

An(x) :=
∑
σ∈Sn

xdes(σ)+1 =
∑
σ∈Sn

xasc(σ)+1 =
∑
σ∈Sn

xexc(σ)+1.

A permutation statistic is called a Stirling statistic if∑
σ∈Sn

xsst(σ) = x(x+ 1)(x+ 2) · · · (x+ n− 1). (1.3)

That is, sst has the same generating function as the unsigned Stirling number of the
first kind. See [34, Proposition 1.3.7]. Here we describe five Stirling statistics. The first
is the number of cycles in a decomposition of σ into disjoint cycles, including those
of length 1, which is denoted cyc(σ). For the permutation σ = 27 1 8 3 6 5 4, its cycle
decomposition is (1 2 7 5) (4 8) (6), and so cyc(σ) = 3. Let σ = σ1σ2 · · ·σn ∈ Sn. A
left-to-right maximum (resp. a left-to-right minimum) of σ is an element σi such that
σj < σi (resp. σj > σi) for every j < i and a right-to-left maximum (resp. a right-
to-left minimum) of σ is an element σi such that σj < σi (reps. σj > σi ) for every
j > i. Let LRmax(σ), LRmin(σ), RLmax(σ) and RLmin(σ) denote the number of left-
to-right maxima, left-to-right minima, right-to-left maxima and right-to-left minima of σ,
respectively. For the permutation σ = 27 1 8 3 6 5 4, we see that

LRmax(σ) = 3, LRmin(σ) = 2, RLmax(σ) = 4, RLmin(σ) = 3.

It is well known that∑
σ∈Sn

xcyc(σ) =
∑
σ∈Sn

xLRmax(σ) =
∑
σ∈Sn

xRLmax(σ) =
∑
σ∈Sn

xLRmin(σ) =
∑
σ∈Sn

xRLmin(σ)

(1.4)

= x(x+ 1)(x+ 2) · · · (x+ n− 1). (1.5)
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Carlitz and Scoville [4] considered the following polynomials involving Eulerian-
Stirling statistics, which we refer to as the (α, β)-Eulerian polynomials:

An(x, y|α, β) =
∑

σ∈Sn+1

xasc(σ)ydes(σ)αLRmax(σ)−1βRLmax(σ)−1. (1.6)

They obtained the following generating function of An(x, y|α, β):
Theorem 1.1. (Carlitz and Scoville [4, Theorem 9])∑

n≥0

An(x, y|α, β)
tn

n!
= (1 + xF (x, y; t))α (1 + yF (x, y; t))β , (1.7)

where F (x, y; t) is given by

F (x, y; t) =
ext − eyt

xeyt − yext
. (1.8)

It’s worth mentioning that Carlitz and Scoville [4] used the terms fall for descent and
rise for ascent. They referred to a left-to-right maximum and a right-to-left maximum of
a permutation as a left upper record and a right upper record of a permutation.

Note that when α = 0, β = 1 and x = 1, the polynomials An(x, y|α, β) reduce
to the classical Eulerian polynomials An(y) given by (1.1). Accordingly, we recover the
generating function (1.2) of An(y) by setting α = 0, β = 1 and x = 1 in (1.7).

When x = y = 1 and β = 0, it is not difficult to find that

An(1, 1|α, 0) =
∑
σ∈Sn

αLRmax(σ) (1.9)

and by (1.7), we see that∑
n≥0

An(1, 1|α, 0)
tn

n!
= (1 + F (1, 1; t))α =

(
1

1− t

)α
. (1.10)

Comparing the coefficients of tn/n! yields the generating function (1.4).

We would also like to mention that Foata and Schützenberger [16] introduced the fol-
lowing polynomial, which incorporates Eulerian-Stirling statistics and has been referred
to as the q-analogue of Eulerian polynomials by Brenti [3]:

An(x, q) =
∑
σ∈Sn

xexc(σ)qcyc(σ). (1.11)

The grammar of An(x, q) was found by Ma-Ma-Yeh-Zhu [24]. Brenti [3] obtained the
following generating function of An(x, q) and showed that An(x, q) is log-concave and
unimodal.

1 +
∑
n≥1

An(x, q)
tn

n!
=

(
et(x−1) − x

1− x

)−q
. (1.12)
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Thanks to the first fundamental transformation of Foata and Schützenberger [16], we
see that q-Eulerian polynomial (1.11) is a special case of (α, β)-Eulerian polynomials
An(x, y|α, β). More precisely, we have

An(x, q) =
∑
σ∈Sn

xexc(σ)qcyc(σ) =
∑
σ∈Sn

xdes(σ)qLRmax(σ) = An(1, x|q, 0).

Consequently, we can retrieve the generating function (1.12) forAn(x, q) by setting x = 1
and β = 0 and replacing y and α with x and q respectively in (1.7). It should be noted that
the polynomials An(x, q) has been shown to be related to the 1/k-Eulerian polynomials,
see Savage and Viswanathan [31] and Ma and Mansour [23] for example.

The descent statistics are related to the Eulerian statistics, which are permutation s-
tatistics that depend only on the descent and length of a permutation, see Gessel and
Zhuang [19], Zhuang [36, 37]. The classical descent statistics include variations of peaks
and valleys, double ascents and double descents. In this paper, we adopt the terminology
for these descent statistics provided by Gessel and Zhuang [19] and Zhuang [36, 37]. For
the detailed definitions of these descent statistics, see Section 2.

Carlitz and Scoville [4] considered the generating function on the joint distribution of
the number of exterior peaks, the number of descents and the number of ascents. It should
be noted that an exterior peak is referred to as a maximum by Carlitz and Scoville [4].

Theorem 1.2. (Carlitz and Scoville [4, Theorem 2]) Let W (σ) denote the number of
exterior peaks of σ (see Definition 2.1). Then

∑
n≥0

 ∑
σ∈Sn+1

uW(σ)−1vdes(σ)wasc(σ)

 tn

n!
= (1 + yF (x, y; t)) (1 + xF (x, y; t)) , (1.13)

where F (x, y; t) was given by (1.8) and

x =
(w + v) +

√
(w + v)2 − 4uvw

2
, y =

(w + v)−
√
(w + v)2 − 4uvw

2
. (1.14)

Goulden and Jackson [20, Exercise 3.3.46] and Stanley [34, Exercise 1.61] reformulat-
ed Carlitz and Scoville’s result in terms of left double ascents and right double descents,
see Definition 2.8 and Definition 2.9. It should be noted that Goulden and Jackson [20, Ex-
ercise 3.3.46] and Stanley [34, Exercise 1.61] refer to a left double ascent as a double rise,
a right double descent as a double fall. A valley is called a modified minimum by Goulden
and Jackson [20, Exercise 3.3.46].

Let V (σ), lda(σ) and rdd(σ) denote the number of valleys of σ, left double ascents
of σ, right double descents of σ respectively (see Section 2). Goulden and Jackson [20,
Exercise 3.3.46] and Stanley [34, Exercise 1.61] reformulated Theorem 1.2 as

∑
n≥1

(∑
σ∈Sn

u
V(σ)
1 u

W(σ)−1
2 u

lda(σ)
3 u

rdd(σ)
4

)
tn

n!
= F (x, y; t), (1.15)
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where x+ y = u3 + u4 and xy = u1u2.

Fu [18] provided a grammatical proof of (1.15). Pan and Zeng [27] provided inv q-
analogue of (1.15). Differentiating both sides of (1.15) with respect to t, we have

Theorem 1.3. (Carlitz and Scoville II [4, Theorem 2])

∑
n≥0

 ∑
σ∈Sn+1

u
V(σ)
1 u

W(σ)−1
2 u

lda(σ)
3 u

rdd(σ)
4

 tn

n!
= (1 + yF (x, y; t)) (1 + xF (x, y; t)) ,

(1.16)
where x+ y = u3 + u4 and xy = u1u2.

Setting u1 = u3 = w, u2 = uv and u4 = v in Theorem 1.3, and using (2.2) and (2.11),
one could recover Theorem 1.2.

The main objective of this paper is to investigate the following polynomial involving
descent-Stirling statistics.

Pn(u1, u2, u3, u4|α, β) =
∑

σ∈Sn+1

u
V(σ)
1 u

W(σ)−1
2 u

rdd(σ)
3 u

lda(σ)
4 αLRmax(σ)−1βRLmax(σ)−1.

(1.17)
By using the grammatical calculus introduced by Chen [5], we establish the connection
between the generating function of Pn(u1, u2, u3, u4|α, β) and the generating function
(1.6) of An(x, y|α, β).

Theorem 1.4. We have∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!
= (1 + yF (x, y; t))

α+β
2 (1 + xF (x, y; t))

α+β
2 e

1
2
(β−α)(u3−u4)t,

(1.18)
where x+ y = u3 + u4, xy = u1u2 and F (x, y; t) is given by (1.8).

When α = β = 1 in Theorem 1.4, we recover Theorem 1.3.

Using Theorem 1.4, we derive the following generating function of Pn(u1, u2, u3, u4|α, β).

Theorem 1.5. We have∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!
= e

1
2
(β−α)(u3−u4)t ×

(
cosh

(
t

2

√
(u3 + u4)2 − 4u1u2

)

− u3 + u4√
(u3 + u4)2 − 4u1u2

sinh

(
t

2

√
(u3 + u4)2 − 4u1u2

))−(α+β)
.

As applications of Theorem 1.5, we obtain (α, β)-extensions of the generating func-
tions of peaks, left peaks, double ascents, right double ascents and left-right double as-
cents (see Theorems 4.2, 4.3, 4.4, 4.5 and 4.6). For more detailed explanations on the
generating functions of these statistics, please see Section 2.
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Based on Theorem 1.5, we obtain the following explicit expression of Pn(u1, u2, u3, u4;α, β)
when α + β = −1. In particular, we obtain the following interesting enumerative conse-
quences.

Theorem 1.6. Let M(σ) denote the number of interior peaks of σ. When α + β = −1
and for n ≥ 1,∑

σ∈Sn+1

uM(σ)αLRmin(σ)−1βRLmin(σ)−1 =

{
(1− u)bn2 c, if n is even,

−(1− u)bn2 c, if n is odd.
(1.19)

Theorem 1.7. Let L(σ) denote the number of left peaks of σ. For n ≥ 1,∑
σ∈Sn

uL(σ)(−1)RLmin(σ) =

{
(1− u)bn2 c, if n is even,

−(1− u)bn2 c, if n is odd.

Theorem 1.8. Let rda(σ) denote the number of right double ascents of σ. For n ≥ 1,

2n
∑

σ∈Sn+1

urda(σ)
(
−1

2

)LRmin(σ)+RLmin(σ)−2

=

{
((1 + u)2 − 4)b

n
2
c, if n is even,

−(1 + u)((1 + u)2 − 4)b
n
2
c, if n is odd.

(1.20)

Combining Theorem 1.1 and Theorem 1.4, we derive two relations between Pn(u1, u2,
u3, u4|α, β) and An (x, y|α, β) (see Theorem 6.1 and Theorem 6.2). These two relations
enable us to establish (α, β)-extensions of the relations related to the Eulerian polynomial
due to Stembridge, Petersen, Brändén and Zhuang, see Theorems 1.9, 6.4, 6.5 and 6.9. We
also obtain the left peak version of Stembridge’s formula and peak version of Petersen’s
formula (see Theorem 6.3 and Theorem 6.7) and their (α, β)-extensions, see Theorem
1.10 and Theorem 6.6. The following two consequences can be viewed as the (α, β)-
extensions of Stembridge’s formula and the left peak version of Stembridge’s formula

Theorem 1.9. For n ≥ 1,∑
σ∈Sn

(xy)M(σ)

(
x+ y

2

)n−2M(σ)−1

αLRmin(σ)−1βRLmin(σ)−1

=
∑
σ∈Sn

xdes(σ)yn−des(σ)−1
(
α + β

2

)LRmin(σ)+RLmin(σ)−2

, (1.21)

where M(σ) counts the number of interior peaks of σ.

Theorem 1.10. For n ≥ 0,∑
σ∈Sn

(xy)L(σ)
(
x+ y

2

)n−2L(σ)
βRLmin(σ)

=
∑

σ∈Sn+1

xdes(σ)yn−des(σ)
(
β

2

)LRmin(σ)+RLmin(σ)−2

, (1.22)
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where L(σ) counts the number of left peaks of σ.

Specializing Theorem 1.9 and Theorem 1.10 allows us to derive the (α, β)-extensions
of the tangent and secant numbers. Recall that the tangent number E2n+1 and the secant
number E2n are defined by∑

n≥0

E2n+1
t2n+1

(2n+ 1)!
= tan(t) and

∑
n≥0

E2n
t2n

(2n)!
= sec(t).

A permutation σ = σ1σ2 · · · σn ∈ Sn is down-up (or alternating) if σ1 > σ2 < σ3 > σ4 <
. . . and a permutation σ = σ1σ2 · · ·σn ∈ Sn is up-down (or reverse alternating) if σ1 <
σ2 > σ3 < σ4 > . . .. The down-up permutations in S4 are 2 1 4 3, 3 1 4 2, 3 2 4 1, 4 1 3 2,
4 2 3 1 and the up-down permutations in S4 are 3 4 1 2, 2 4 1 3, 2 3 1 4, 1 4 2 3, 1 3 2 4. It
is easy to show that the number of down-up permutations of [n] equals the number of
up-down permutations of [n]. André [1] showed that En counts the number of down-up
(or up-down) permutations of [n].

Euler [14] found the following interesting relation: For n ≥ 1,

∑
σ∈Sn

(−1)exc(σ) =

(−1)n−1
2 En, if n is odd,

0, if n is even.
(1.23)

Roselle [30] obtained the following parallel result to Euler involving secant numbers: For
n ≥ 1,

∑
σ∈Dn

(−1)exc(σ) =

(−1)n2En, if n is even,

0, if n is odd,
(1.24)

where Dn counts the number of permutations in Sn without fixed points. It should be
noted many different q-analogues of (1.23) and (1.24) have been established by [15, 21,
32, 33].

Setting x = −1 and y = 1 in Theorem 1.9, we have

Theorem 1.11. Let Sa
n denote the set of up-down permutations of [n]. For n ≥ 1,

∑
σ∈Sn

(−1)des(σ)
(
α + β

2

)LRmin(σ)+RLmin(σ)−2

=

(−1)n−1
2

∑
σ∈San

αLRmin(σ)−1βRLmin(σ)−1, if n is odd,

0, if n is even.
(1.25)

Setting x = −1 and y = 1 in Theorem 1.10, we have
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Theorem 1.12. Let Sa
n denote the set of down-up permutations of [n]. For n ≥ 1,∑
σ∈Sn+1

(−1)des(σ)
(
β

2

)LRmin(σ)+RLmin(σ)−2

=

(−1)n2
∑

σ∈San
βRLmin(σ), if n is even,

0, if n is odd.
(1.26)

Setting α = β = 1 in Theorem 1.11, we could recover Euler’s relation (1.23) with
the aid of the first fundamental transformation of Foata and Schützenberger [16]. Setting
β = 1 in Theorem 1.12, we obtain the following identity, which seems to be new.

∑
σ∈Sn+1

(−1)des(σ)
(
1

2

)LRmin(σ)+RLmin(σ)−2

=

(−1)n2En, if n is even,

0, if n is odd.
(1.27)

Combining (1.24) and (1.27), we obtain the following identity:∑
σ∈Sn+1

(−1)des(σ)
(
1

2

)LRmin(σ)+RLmin(σ)−2

=
∑
σ∈Dn

(−1)exc(σ). (1.28)

It would be interesting to give a combinatorial proof of the above identity.

This paper is organized as follows. Section 2 provides a review of some classical de-
scent statistics, including left peaks, interior peaks, exterior peaks, valleys, left double
ascents, double ascents, right double ascents, left-right ascents, left double descents, dou-
ble descents, right double descents, left-right descents. We then collect the generating
functions associated with these statistics and their relations with the Eulerian polynomi-
als. Section 3 is dedicated to proving the main result of this paper (Theorem 1.4) using
the grammatical calculus introduced by Chen [5]. In Section 4, we first derive the gen-
erating function of Pn(u1, u2, u3, u4|α, β) using Theorem 1.4. We then present (α, β)-
extensions of some known generating functions related to descent statistics by special-
izing the generating function of Pn(u1, u2, u3, u4|α, β). Section 5 aims to establish an
explicit expression of Pn(u1, u2, u3, u4|α, β) when α + β = −1. This result can be spe-
cialized to obtain Theorems 1.6, 1.7, and 1.8. In Section 6, we first establish two relations
between Pn(u1, u2, u3, u4|α, β) and An (x, y|α, β) using Theorem 1.4. We then derive
(α, β)-extensions of some known relations between descent statistics and the Eulerian
polynomials given by Stembridge, Petersen, Brändén and Zhuang by specializing these
two relations.

2 Descent statistics

In this section, we begin by revisiting classical descent statistics, which encompass
variations related to peaks, valleys, double ascents, and double descents. We then collect
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the generating functions associated with these statistics and their relationships with Eu-
lerian polynomials. Here we follow Stanley’s terminology for peaks and its variations, as
described in [34, Exercise 1.61]. For double ascents, double descents and their variations,
we adhere to the definitions provided by Zhuang in [36].

Definition 2.1 (Variations in peaks). Given a permutation σ = σ1 · · · σn,

(1) we say that i is a left peak of σ if 1 ≤ i < n and σi−1 < σi > σi+1 under the
assumption that σ0 = σn+1 = 0. Let L(σ) denote the number of left peaks of σ.

(2) we say that i is an interior peak (or a peak for short) of σ if 1 < i < n and
σi−1 < σi > σi+1. Let M(σ) denote the number of peaks of σ.

(3) we say that i is an exterior peak of σ if 1 ≤ i ≤ n and σi−1 < σi > σi+1 under the
assumption that σ0 = σn+1 = 0. Let W (σ) denote the number of exterior peaks of
σ.

(4) we say that i is a valley of σ if 1 ≤ i ≤ n and σi−1 > σi < σi+1 under the
assumption that σ0 = σn+1 = 0. Let V(σ) denote the number of valleys of σ.

For the permutation σ = 71 3 8 5 9 6 2 4 ∈ S9, we see that

L(σ) = 3, M(σ) = 2, W (σ) = 4, V(σ) = 3.

Note that the symbols L(σ), M(σ), and W (σ) used in this context were introduced by
Chen and Fu [7], which are meaningful and easy to remember. The letter L looks like
having a peak on the left. It should also be noted that Carlitz and Scoville [4] refer to an
exterior peak as a maximum, while Goulden and Jackson [20, Exercise 3.3.46] describe
it as a modified maximum. Similarly, Goulden and Jackson [20, Exercise 3.3.46] term a
valley as a modified minimum.

It is evident that for σ ∈ Sn,

V(σ) = W(σ)− 1 (2.1)

and ∑
σ∈Sn

uM(σ) =
∑
σ∈Sn

uV(σ) =
∑
σ∈Sn

uW(σ)−1 (2.2)

Hence it suffices to consider left peak and interior peak. The generating function for the
left peak polynomials is attribute to Gessel [26, Sequence A008971], see Zhuang [36,
Theorem 10].

Theorem 2.2 (Gessel). We have

∑
n≥0

(∑
σ∈Sn

uL(σ)

)
tn

n!
=

√
1− u√

1− u cosh
(
t
√
1− u

)
− sinh

(
t
√
1− u

) . (2.3)
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The following presents the generating function for the peak polynomials. As brought
up by Stanley [34], the generating function of the peak polynomials can be deduced from
an equation of David-Barton [10], see Chen and Fu [8] for more information. The equiv-
alent formulae have been found by Entringer [13], Kitaev [22] and Zhuang [36, Theorem
9].

Theorem 2.3. We have∑
n≥0

(∑
σ∈Sn

uM(σ)

)
tn

n!
=

√
1− u cosh

(
t
√
1− u

)
√
1− u cosh

(
t
√
1− u

)
− v sinh

(
t
√
1− u

) . (2.4)

Chen and Fu [9] provide a grammatical proof of (2.3) and (2.4).

Stembridge [35] first considered the relation between the peak polynomials and the
Eulerian polynomials. He obtained the following relation between the peak polynomials
and the Eulerian polynomials in the study of his theory of enriched P -partitions, which
was rediscovered by Brändén [2] with the aid of the “modified Foata-Strehl action”, a
variant of a group action on permutations originally defined by Foata and Strehl [17].

Theorem 2.4 (Stembridge). For n ≥ 1,∑
σ∈Sn

xdes(σ) =

(
1 + x

2

)n−1 ∑
σ∈Sn

(
4x

(1 + x)2

)M(σ)

. (2.5)

Petersen [28, Observation 3.1.2] established a relation between the left peak polyno-
mials and the Eulerian polynomials, stated as follows.

Theorem 2.5 (Petersen). For n ≥ 1,

(1+x)n
∑
σ∈Sn

(
4x

(1 + x)2

)L(σ)

=
n∑
k=1

(
n

k

)
2k(1−x)n−k

∑
σ∈Sk

xdes(σ)+1+(1−x)n. (2.6)

Chen and Fu [8] provided grammatical proofs of (2.5) and (2.6).

Recently, Zhuang [37] established two relations between the joint polynomials of
peaks (or left peaks ) and descents and the Eulerian polynomials.

Theorem 2.6. (Zhuang [37, Theorem 4.2]) For n ≥ 1,∑
σ∈Sn

uM(σ)+1vdes(σ)+1 =

(
1 + b

1 + ab

)n+1 ∑
σ∈Sn

ades(σ)+1, (2.7)

where

a =
(1 + v)2 − 2uv − (1 + v)

√
(1 + v)2 − 4uv

2uv
(2.8)

and

b =
1 + v2 − 2uv − (1− v)

√
(1 + v)2 − 4uv

2(1− u)v
. (2.9)
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Theorem 2.7. (Zhuang [37, Theorem 4.7]) For n ≥ 1,

∑
σ∈Sn

uL(σ)vdes(σ) =
1

(1 + ab)n

(
n∑
k=1

(
n

k

)
(1 + b)k(1− a)n−k

∑
σ∈Sk

ades(σ)+1 + (1− a)n
)
,

(2.10)
where a and b are defined by (2.8) and (2.9).

Definition 2.8 (Variations in double ascents). Given a permutation σ = σ1 · · ·σn,

(1) we say that i is a left double ascent of σ if 1 ≤ i < n and σi−1 < σi < σi+1 under
the assumption that σ0 = 0. Let lda(σ) denote the number of left double ascents of
σ.

(2) we say that i is a double ascent of σ if 1 < i < n and σi−1 < σi < σi+1. Let da(σ)
denote the number of double ascents of σ.

(3) we say that i is a right double ascent of σ if 1 < i ≤ n and σi−1 < σi < σi+1

under the assumption that σn+1 = +∞. Let rda(σ) denote the number of right
double ascents of σ.

(4) we say that i is a left-right double ascent of σ if 1 ≤ i ≤ n and σi−1 < σi < σi+1

under the assumption that σ0 = 0 and σn+1 = +∞. Let lrda(σ) denote the number
of left-right double ascents of σ.

Definition 2.9 (Variations in double descents). Given a permutation σ = σ1 · · ·σn,

(1) we say that i is a left double descent of σ if 1 ≤ i < n and σi−1 > σi > σi+1

under the assumption that σ0 = +∞. Let ldd(σ) denote the number of left double
descents of σ.

(2) we say that i is a double descent of σ if 1 < i < n and σi−1 > σi > σi+1. Let
dd(σ) denote the number of double descents of σ.

(3) we say that i is a right double descent of σ if 1 < i ≤ n and σi−1 > σi > σi+1

under the assumption that σn+1 = 0. Let rdd(σ) denote the number of right double
descents of σ.

(4) we say that i is a left-right double ascent of σ if 1 ≤ i ≤ n and σi−1 > σi > σi+1

under the assumption that σ0 = +∞ and σn+1 = 0. Let lrdd(σ) denote the number
of left-right double ascents of σ.

For the permutation σ = 71 3 8 5 9 6 2 4 ∈ S9, we see that

da(σ) = 1, lda(σ) = 1, rda(σ) = 2, lrda(σ) = 2

and
dd(σ) = 1, ldd(σ) = 2, rdd(σ) = 1, lrdd(σ) = 2.

11



By definition, we see that for σ ∈ Sn,

des(σ) = W(σ) + rdd(σ)− 1, asc(σ) = W(σ) + lda(σ)− 1 (2.11)

and
des(σ) = L(σ) + dd(σ), asc(σ) = L(σ) + lrda(σ)− 1. (2.12)

It is evident from taking reverses and complements that we only need to consider dou-
ble ascents, right double ascents and left-right double ascents. By generalizing Gessel’s
reciprocity formula for noncommutative symmetric functions, Zhuang gave a systematic
method for obtaining the generating functions for double ascents, right double ascents
and left-right double ascents. It should be noted that the equivalent form of the generat-
ing function for double ascents was established by Elizalde and Noy [12]. Elizalde and
Noy [12] referred to a double descent as a proper double descent.

Theorem 2.10. (Elizalde and Noy [12], Zhuang [36, Theorem 12])

∑
n≥0

(∑
σ∈Sn

uda(σ)

)
tn

n!
=

ve
(1−u)

2
t

v cosh
(
1
2
vt
)
− (1 + u) sinh

(
1
2
vt
) , (2.13)

where v =
√

(u+ 1)2 − 4.

Theorem 2.11. (Zhuang [36, Theorem 13])

∑
n≥0

(∑
σ∈Sn

urda(σ)

)
tn

n!
=
v cosh

(
1
2
vt
)
+ (1− u) sinh

(
1
2
vt
)

v cosh
(
1
2
vt
)
− (1 + u) sinh

(
1
2
vt
) (2.14)

and ∑
n≥0

(∑
σ∈Sn

ulrda(σ)

)
tn

n!
=

ve
(u−1)

2
t

v cosh
(
1
2
vt
)
− (1 + u) sinh

(
1
2
vt
) , (2.15)

where v =
√

(u+ 1)2 − 4.

3 The grammatical derivation for Theorem 1.4

The main objective of this section is to give a proof of Theorem 1.4 by using the
grammatical calculus introduced by Chen [5]. A context-free grammar G over a set V =
{x, y, z, . . .} of variables is a set substitution rules replacing a variable in V by a Laurent
polynomial of variables in V . For a context-free grammar G over V , the formal derivative
D with respect to G is defined as a linear operator acting on Laurent polynomials with
variables in V such that each substitution rule is treated as the common differential rule
that satisfies the following relations:

D(u+ v) = D(u) +D(v) (3.1)

D(uv) = D(u)v + uD(v). (3.2)

12



Hence, it obeys the Leibniz’s rule

Dn(uv) =
n∑
k=0

(
n

k

)
Dk(u)Dn−k(v).

For a constant c, we have D(c) = 0.

A formal derivative D with respect to G is also associated with an exponential gener-
ating function. For a Laurent polynomial w of variables in V , let

Gen(G)(w, t) =
∑
n≥0

Dn(w)
tn

n!
. (3.3)

Then, by (3.1) and (3.2), we derive that

Gen(G)(u+ v, t) = Gen(G)(u, t) + Gen(G)(v, t). (3.4)

Gen(G)(uv, t) = Gen(G)(u, t)Gen(G)(v, t). (3.5)

For more information on the grammatical calculus, we refer to Chen [5] and Chen and
Fu [6, 8].

Dumont [11] showed the following grammar

G1 = {x→ xy, y → xy}. (3.6)

generates the Eulerian polynomials An(x). More precisely, let DG1 be the formal deriva-
tive with respect to the grammar G1 given by (3.6), then for n ≥ 1,

Dn
G1
(y) = xAn(x, y|0, 1),

Here we adopt the notion An(x, y|α, β) given by (1.6) to represent the bivariate Eulerian
polynomials, where

xAn(x, y|0, 1) =
∑
σ∈Sn

xasc(σ)+1ydes(σ)+1

Chen and Fu [7] showed that

Gen(G1)(y, t) :=
∑
n≥0

Dn
G1
(y)

tn

n!
= x(1 + yF (x, y; t)), (3.7)

where F (x, y; t) is given in (1.8). Together with Dumont’s result, they provided a gram-
matical proof of the generating function (1.2) of An(x).

Similarly, it can be shown that

Gen(G1)(x, t) :=
∑
n≥0

Dn
G1
(x)

tn

n!
= y(1 + xF (x, y; t)). (3.8)

In this section, we first show that the following grammar

G̃ = {a→ aαu4, b→ bβu3, u4 → u1u2, u3 → u1u2, u1 → u1u3, u2 → u2u4}. (3.9)

can be used to generate the polynomial Pn(u1, u2, u3, u4|α, β). More precisely,
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Theorem 3.1. Let DG̃ be the formal derivative with respect to the grammar defined in
(3.9), we have

Dn
G̃
(ab) = abPn(u1, u2, u3, u4|α, β). (3.10)

Based on Theorem 3.1, we give a proof of Theorem 1.4 using the grammatical calcu-
lus. More precisely, it suffices to demonstrate the following theorem.

Theorem 3.2. Let DG̃ be the formal derivative with respect to the grammar defined in
(3.9), we have

Gen(G̃)(ab, t) = ab (1 + yF (x, y; t))
α+β
2 (1 + xF (x, y; t))

α+β
2 e

1
2
(β−α)(u3−u4)t, (3.11)

where x+ y = u3 + u4 and xy = u1u2 and F (x, y; t) is given by (1.8).

3.1 A grammatical labeling of Pn(u1, u2, u3, u4|α, β)

To prove Theorem 3.1, we are required to give the combinatorial definition of Pn(u1, u2, u3, u4|α, β)
involving the left-to-right minima and the right-to-left minima. Recall that the comple-
ment of σ = σ1 · · ·σn ∈ Sn is given by

σc = (n+ 1− σ1)(n+ 1− σ2) · · · (n+ 1− σn).

For example, if σ = 71 3 8 5 6 2 4, then the complement of σ is given by σc = 28 6 1 4 3 7 5.

Evidently, the complement provides a bijection between Sn and Sn. Moreover, for
σ ∈ Sn and σc is the complement of σ, we have

asc(σ) = des(σc), des(σ) = asc(σc), (3.12)

lda(σ) = ldd(σc), rdd(σ) = rda(σc), (3.13)

LRmax(σ) = LRmin(σc), RLmax(σ) = RLmin(σc) (3.14)

and
W(σ)− 1 = V(σ) = M(σc). (3.15)

Hence we find that An(x, y|α, β) and Pn(u1, u2, u3, u4|α, β) can also be interpreted as
follows:

An(x, y|α, β) =
∑

σ∈Sn+1

xdes(σ)yasc(σ)αLRmin(σ)−1βRLmin(σ)−1 (3.16)

and

Pn(u1, u2, u3, u4|α, β) =
∑

σ∈Sn+1

(u1u2)
M(σ)u

rda(σ)
3 u

ldd(σ)
4 αLRmin(σ)−1βRLmin(σ)−1. (3.17)

Please take note that the polynomial Pn(u1, u2, u3, u4|α, β) encompasses interior peaks,
right double ascents, and left double descents. However, it’s worth mentioning that left
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peaks, left-right double ascents, and double descents can also be characterized by special-
izing the polynomial Pn(u1, u2, u3, u4|α, β). More precisely, setting α = 0 in (3.17), we
find that

Pn(u1, u2, u3, u4|0, β) =
∑

σ∈Sn+1

(u1u2)
M(σ)u

rda(σ)
3 u

ldd(σ)
4 0LRmin(σ)−1βRLmin(σ)−1

=
∑

σ∈Sn+1

σ1=1

(u1u2)
M(σ)u

rda(σ)
3 u

ldd(σ)
4 βRLmin(σ)−1

Given σ = (1, σ2, . . . , σn+1) ∈ Sn+1. Define σ = (σ2 − 1, σ3 − 1, . . . , σn+1 − 1). It is
easy to check that σ ∈ Sn and

M(σ) = L(σ), rda(σ) = lrda(σ), ldd(σ) = dd(σ), RLmin(σ)− 1 = RLmin(σ).

Moreover, this process is reversible. Hence we derive that

Pn(u1, u2, u3, u4|0, β) =
∑
σ∈Sn

(u1u2)
L(σ)u

lrda(σ)
3 u

dd(σ)
4 βRLmin(σ). (3.18)

Using the same argument, we have

An(x, y|α, 0) =
∑
σ∈Sn

xdes(σ)+1yasc(σ)αLRmin(σ) (3.19)

and

An(x, y|0, β) =
∑
σ∈Sn

xdes(σ)yasc(σ)+1βRLmin(σ) (3.20)

We are now in a position to show Theorem 3.1 by using the grammatical labeling. The
notion of a grammatical labeling was introduced by Chen and Fu [6].

Let σ = σ1σ2 · · · σn ∈ Sn. For 1 ≤ i ≤ n + 1, recall that the position i is said to be
the position immediately before σi, whereas the position n+1 is meant to be the position
after σn. The labeling for Pn(u1, u2, u3, u4|α, β) can be described as follows. We patch
+∞ to σ at both ends so that there are n + 1 positions between two adjacent elements.
For 1 ≤ i ≤ n+ 1, we label the position i as follows:

• If i = 1, then label it by a;

• If i = n+ 1, then label it by b;

• If i is a right double ascent, then label the position i by u3;

• If i− 1 is a left double descent, then label the position i by u4;

• If i is a peak, then label the position i by u2 and label the position i+ 1 by u1;
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• If σj is a left-to-right minimum and σj 6= 1, then label α below σj;

• If σj is a right-to-left minimum and σj 6= 1, then label β below σj .

The weight ω of σ is defined to be the product of all the labels. Below is an example,

7 1 2 8 3 6 5 4

−→
+∞ a 7 u4 1 u3 2 u2 8 u1 3 u2 6 u1 5 u4 4 b +∞

α β β β

If σ has k peaks, d1 right double ascents, d2 left double descents, and m1 left-to-right
minima and m2 right-to-left minima, then its weight is given by

ω(σ) = ab(u1u2)
kud13 u

d2
4 α

m1−1βm2−1.

From the definition of the above labeling, we see that

abPn(u1, u2, u3, u4|α, β) =
∑

σ∈Sn+1

ω(σ). (3.21)

Proof of Theorem 3.1. We proceed by induction on n. For n = 0, the statement is obvi-
ous. Assume that this assertion holds for n−1. To show that it is valid for n, we represent
a permutation σ = σ1σ2 · · ·σn in Sn by patching +∞ at both ends so that there are
n + 1 positions between two adjacent elements, and these are n + 1 positions to insert
the element n + 1 into σ to generate a permutation in Sn+1. Suppose that π is permu-
tation in Sn+1 obtained from σ by inserting the element n + 1 at the position i, where
1 ≤ i ≤ n+ 1. We consider the following six cases:

Case 1: If i is labeled by a in the labeling of σ, that means that i = 1, then the
first position and the second position of π are labeled by a and u4 in the labeling of π
respectively. Moreover, n+1 is the left-to-right minimum of π, so label α below n+1. In
this case, we find that the change of weights of π is consistent with the substitution rule
a→ aαu4.

+∞ a σ1 · · ·

α
⇒

+∞ a n+ 1 u4 σ1 · · ·

α α · · ·
.

Case 2: If i is labeled by b in the labeling of σ, that means i = n+1, then the changes
of weights caused by the insertion are coded by the rule b→ bβu3.

· · · σn b +∞

· · · β
⇒
· · · σn u3 n+ 1 b +∞

· · · β β
.

Case 3: If i is labeled by u3 in the labeling of σ, then the position i of π is labeled
by u2 and the position i + 1 of π is labeled by u1 in the labeling of π, so the change of
weights of π is consistent with the substitution rule u3 → u1u2.

· · · σi−1 u3 σi · · · ⇒ · · ·σi−1 u2 n+ 1 u1 σi · · · .
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Case 4: If i is labeled by u4 in the labeling of σ, then it can be checked that the change
of weights is in accordance with the rule u4 → u1u2, see the figure below.

· · · σi−1 u4 σi · · · ⇒ · · · σi−1 u2 n+ 1 u1 σi · · · .

Case 5: If i is labeled by u1 in the labeling of σ, then it can be checked that the change
of weights is in accordance with the rule u1 → u1u3, see the figure below.

· · · σi−2 u2 σi−1 u1 σi · · · ⇒ · · ·σi−2 u3 σi−1 u2 n+ 1 u1 σi · · · .

Case 6: If i is labeled by u2 in the labeling of σ, then it can be checked that the change
of weights is in accordance with the rule u2 → u2u4, see the figure below.

· · · σi−1 u2 σi u1 σi+1 · · · ⇒ · · · σi−1 u2 n+ 1 u1 σi u4 σi+1 · · · .

Summing up all the cases shows that this assertion is valid for n. This completes the
proof.

3.2 Proof of Theorem 3.2

We are now in a position to give a grammatical derivation of Theorem 1.4. By em-
ploying Theorem 3.1, it is sufficient to demonstrate Theorem 3.2.

Proof of Theorem 3.2. Let DG̃1
is the formal derivative with respect to the grammar

G̃1 = {u4 → u1u2, u3 → u1u2, u1 → u1u3, u2 → u2u4}. (3.22)

We first show that

Gen(G̃1)(u1u2, t) :=
∑
n≥0

Dn
G̃1
(u1u2)

tn

n!

= xy(1 + yF (x, y; t))(1 + xF (x, y; t)) (3.23)

and

Gen(G̃1)(u1, t) :=
∑
n≥0

Dn
G̃1
(u1)

tn

n!

= u1
√
(1 + yF (x, y; t))(1 + xF (x, y; t))e

(u3−u4)t
2 , (3.24)

where x+ y = u3 + u4 and xy = u1u2 and F (x, y; t) is given by (1.8).

Recall that DG1 is the formal derivative with respect to the grammar (3.6) and DG̃1
is

the formal derivative with respect to the grammar (3.22). If we set x + y = u3 + u4 and
xy = u1u2, we find that

DG1(xy) = xy(x+ y) = u1u2(u3 + u4) = DG̃1
(u1u2) (3.25)
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and
DG1(x+ y) = 2xy = 2u1u2 = DG̃1

(u3 + u4). (3.26)

We claim that for n ≥ 1,
Dn
G1
(xy) = Dn

G̃1
(u1u2). (3.27)

By (3.25), we see that (3.27) is valid when n = 1. Assume that (3.27) holds for n. Observe
that Dn

G1
(xy) is symmetric in x, y, so we may write Dn

G1
(xy) in the following form:

Dn
G1
(xy) =

bn+2
2
c∑

j=1

aj(xy)
j(x+ y)n+2−2j, (3.28)

where aj are positive integers. By the induction hypothesis, we see that

Dn
G̃1
(u1u2) = Dn

G1
(xy).

and so

Dn
G̃1
(u1u2) =

bn+2
2
c∑

j=1

aj(u1u2)
j(u3 + u4)

n+2−2j (3.29)

Applying DG1 to (3.28), we obtain that

Dn+1
G1

(xy) =

bn+2
2
c∑

j=1

ajj(xy)
j−1(x+ y)n−2j+2DG1(xy)

+

bn+2
2
c∑

j=1

aj(n− 2j + 2)(xy)j(x+ y)n−2j+1DG1(x+ y)

Since x+ y = u3 + u4 and xy = u1u2, we find that

Dn+1
G1

(xy) =

bn+2
2
c∑

j=1

ajj(u1u2)
j−1(u3 + u4)

n−2j+2DG1(xy)

+

bn+2
2
c∑

j=1

aj(n− 2j + 2)(u1u2)
j(u3 + u4)

n−2j+1DG1(x+ y) (3.30)

Applying (3.25) and (3.26) into (3.30), and by (3.29), we conclude that

Dn+1
G1

(xy) = Dn+1

G̃1
(u1u2),

and so (3.27) also is valid for n+ 1, and hence the claim is verified. Therefore, we obtain

Gen(G̃1)(u1u2, t) = Gen(G1)(xy, t). (3.31)
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By applying the multiplicative property (3.5), we can deduce from (3.7) and (3.8) that

Gen(G1)(xy, t) =
∑
n≥0

Dn
G1
(xy)

tn

n!
= xy(1 + yF (x, y; t))(1 + xF (x, y; t)). (3.32)

Substituting (3.32) into (3.31), we obtain (3.23).

To prove (3.24), we first observe that

DG̃1
(u1u

−1
2 ) = u1u

−1
2 (u3 − u4). (3.33)

Since
DG̃1

(u3 − u4) = 0,

it follows that for n ≥ 0,

Dn
G̃1
(u1u

−1
2 ) = u1u

−1
2 (u3 − u4)n.

Hence

Gen(G̃1)(u1u
−1
2 , t) :=

∑
n≥0

Dn
G̃1
(u1u

−1
2 )

tn

n!
= u1u

−1
2 e(u3−u4)t. (3.34)

By the multiplicative property (3.5), we deduce from (3.23) and (3.34) that

(Gen(G̃1)(u1, t))
2 = Gen(G̃1)(u1u

−1
2 , t)Gen(G̃1)(u1u2, t)

= u21((1 + yF (x, y; t))(1 + xF (x, y; t)))e(u3−u4)t,

from which, we obtain (3.24).

Let α, β be two fixed numbers. We see that

DG̃1
(uα2 ) = αuα−12 DG̃1

(u2) = αuα2u4, (3.35)

DG̃1
(uβ1 ) = βuβ−11 DG̃1

(u1) = βuβ1u3. (3.36)

Let DG̃ is the formal derivative with respect to the grammar (3.9). Setting a = uα2 and
b = uβ1 , then by (3.35) and (3.36), we find that

DG̃1
(uα2 ) = DG̃(a) and DG̃1

(uβ1 ) = DG̃(b).

Moreover, it is easy to check that

DG̃1
(u1) = DG̃(u1), DG̃1

(u2) = DG̃(u2), DG̃1
(u3) = DG̃(u3), and DG̃1

(u4) = DG̃(u4).

Hence we can use the induction on n to deduce that for n ≥ 0,

Dn
G̃1
(uα2 ) = Dn

G̃
(a) and Dn

G̃1
(uβ1 ) = Dn

G̃
(b).

Consequently, for n ≥ 0,
Dn
G̃
(ab) = Dn

G̃1
(uα2u

β
1 ). (3.37)
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It follows that

Gen(G̃)(ab, t) = Gen(G̃1)(uα2u
β
1 , t)

= (Gen(G̃1)(u2u1, t))
α(Gen(G̃1)(u1, t))

β−α

= uβ1u
α
2 (1 + yF (x, y; t))

α+β
2 (1 + xF (x, y; t))

α+β
2 e

1
2
(β−α)(u3−u4)t

= ab (1 + yF (x, y; t))
α+β
2 (1 + xF (x, y; t))

α+β
2 e

1
2
(β−α)(u3−u4)t

as desired. This completes the proof of Theorem 3.2.

It should be noted that the generating functions (3.23) and (3.24) in the proof of The-
orem 1.4 could also be derived by using the results of Fu [18].

4 The generating functions

In this section, we give a proof of Theorem 1.5 with the aid of Theorem 1.4. We
then derive many consequences of Theorem 1.5, which provide (α, β)-extensions of the
generating functions of peaks, left peaks, double ascents, right double ascents and left-
right double ascents.

Proof of Theorem 1.5. From Theorem 1.4, we see that∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!

= ((1 + xF (x, y; t))(1 + yF (x, y; t)))
α+β
2 e

1
2
(β−α)(u3−u4)t, (4.1)

where x+ y = u3 + u4, xy = u1u2.

Recall that

F (x, y; t) =
ext − eyt

xeyt − yext
,

we find that

1 + xF (x, y; t) =
(x− y)ext

xeyt − yext

=

(
− x

y − x
e(y−x)t +

y

y − x

)−1
. (4.2)

Similarly, we have

1 + yF (x, y; t) =

(
y

y − x
e(x−y)t − x

y − x

)−1
. (4.3)
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Since x+ y = u3 + u4 and xy = u1u2, it follows that

x =
(u3 + u4)−

√
(u3 + u4)2 − 4u1u2
2

, (4.4)

y =
(u3 + u4) +

√
(u3 + u4)2 − 4u1u2
2

. (4.5)

Hence, we have

y − x =
√

(u3 + u4)2 − 4u1u2, (4.6)

x

y − x
= −1

2
+

1

2

(u3 + u4)√
(u3 + u4)2 − 4u1u2

, (4.7)

y

y − x
=

1

2
+

1

2

(u3 + u4)√
(u3 + u4)2 − 4u1u2

. (4.8)

Putting (4.6), (4.7) and (4.8) into (4.2), we obtain

− x

y − x
e(y−x)t +

y

y − x

=
et
√

(u3+u4)2−4u1u2 + 1

2
− (u3 + u4)√

(u3 + u4)2 − 4u1u2

et
√

(u3+u4)2−4u1u2 − 1

2

=
1

e−
t
2

√
(u3+u4)2−4u1u2

(
cosh

(
t

2

√
(u3 + u4)2 − 4u1u2

)

− (u3 + u4)√
(u3 + u4)2 − 4u1u2

sinh

(
t

2

√
(u3 + u4)2 − 4u1u2

))
.

Similarly, plugging (4.6), (4.7) and (4.8) into (4.3), we derive that

− x

y − x
+

y

y − x
e(x−y)t

=
1

e
t
2

√
(u3+u4)2−4u1u2

(
cosh

(
t

2

√
(u3 + u4)2 − 4u1u2

)

− (u3 + u4)√
(u3 + u4)2 − 4u1u2

sinh

(
t

2

√
(u3 + u4)2 − 4u1u2

))
.

Consequently,

(1 + xF (x, y; t))(1 + yF (x, y; t)) =

(
cosh

(
t

2

√
(u3 + u4)2 − 4u1u2

)

− (u3 + u4)√
(u3 + u4)2 − 4u1u2

sinh

(
t

2

√
(u3 + u4)2 − 4u1u2

))−2
. (4.9)
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Substituting (4.9) into (4.1) yields the generating function of Pn(u1, u2, u3, u4|α, β) as
stated in Theorem 1.5. This completes the proof.

Setting α = 0 in Theorem 1.5, and by (3.18) , we have

Theorem 4.1. We have

∑
n≥0

(∑
σ∈Sn

(u1u2)
L(σ)u

lrda(σ)
3 u

dd(σ)
4 βRLmin(σ)

)
tn

n!
= e

β
2
(u3−u4)t ×

(
cosh

(
t

2

√
(u3 + u4)2 − 4u1u2

)

− u3 + u4√
(u3 + u4)2 − 4u1u2

sinh

(
t

2

√
(u3 + u4)2 − 4u1u2

))−β
.

Setting u1 = u2 = u and u3 = u4 = v in Theorem 4.1, and using (2.12), we derive the
following β-extension of the generating function for the left peak polynomials.

Theorem 4.2. We have

∑
n≥0

(∑
σ∈Sn

u2L(σ)vn−2L(σ)βRLmin(σ)

)
tn

n!

=

( √
v2 − u2√

v2 − u2 cosh
(
t
√
v2 − u2

)
− v sinh

(
t
√
v2 − u2

))β

.

Setting β = 1 in Theorem 4.2, we recover the generating function (2.3) for the left
peak polynomials established by Gessel [26, Sequence A008971].

Setting u1 = u2 = u4 = 1 and u3 = u in Theorem 4.1, we acquire the β-extension of
the generating function for left-right double ascents, from which we recover the generat-
ing function (2.15) for the left-right double ascents by setting β = 1.

Theorem 4.3. We have

∑
n≥0

(∑
σ∈Sn

ulrda(σ)βRLmin(σ)

)
tn

n!

= e
β(u−1)

2
t

 √
(u+ 1)2 − 4√

(u+ 1)2 − 4 cosh
(
t
2

√
(u+ 1)2 − 4

)
− (1 + u) sinh

(
t
2

√
(u+ 1)2 − 4

)
β

.

Setting u1 = u2 = u3 = 1 and u4 = u in Theorem 4.1, and by taking reverse of
a permutation, we obtain the α-extension of the generating function for double ascents.
This allows us to retrieve the generating function (2.13) for double ascents when α = 1.
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Theorem 4.4. We have∑
n≥0

(∑
σ∈Sn

uda(σ)αLRmin(σ)

)
tn

n!

= e
α(1−u)

2
t

 √
(u+ 1)2 − 4√

(u+ 1)2 − 4 cosh
(
t
2

√
(u+ 1)2 − 4

)
− (1 + u) sinh

(
t
2

√
(u+ 1)2 − 4

)
α

.

Setting u1 = u2 = u and u3 = u4 = v in Theorem 1.5 and using (3.17), we arrive at

Theorem 4.5. We have

∑
n≥0

 ∑
σ∈Sn+1

u2M(σ)vn−2M(σ)αLRmin(σ)−1βRLmin(σ)−1

 tn

n!

=

( √
v2 − u2√

v2 − u2 cosh
(
t
√
v2 − u2

)
− v sinh

(
t
√
v2 − u2

))α+β

.

By setting v = α = β = 1 in Theorem 4.5, replacing u with
√
u, and performing

integration on both sides with respect to t, we retrieve the generating function (2.4) for
the peak polynomials.

Setting u1 = u2 = u4 = 1 and u3 = u in Theorem 1.5 and using (3.17) gives that

Theorem 4.6. We have

∑
n≥0

 ∑
σ∈Sn+1

urda(σ)αLRmin(σ)−1βRLmin(σ)−1

 tn

n!
= e

(β−α)(u−1)
2

t

×

 √
(u+ 1)2 − 4√

(u+ 1)2 − 4 cosh
(
t
2

√
(u+ 1)2 − 4

)
− (1 + u) sinh

(
t
2

√
(u+ 1)2 − 4

)
α+β

.

Setting α = β = 1 in Theorem 4.6 and then integrating both sides of the mentioned
identity with respect to t, we bring back the generating function (2.14) for the right double
ascents.

5 The expression of Pn(u1, u2, u3, u4|α, β) with α+β = −1

This section is dedicated to deriving an explicit expression of Pn(u1, u2, u3, u4;α, β)
when α + β = −1 by utilizing Theorem 1.5.
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Theorem 5.1. When α + β = −1 and for n ≥ 1,

2nPn(u1, u2, u3, u4|α, β) (5.1)

=

bn
2
c∑

k=0

(
n

2k

)
((u3 + u4)

2 − 4u1u2)
k(β − α)n−2k(u3 − u4)n−2k

− (u3 + u4)

bn
2
c∑

k=0

(
n

2k + 1

)
((u3 + u4)

2 − 4u1u2)
k(β − α)n−2k−1(u3 − u4)n−2k−1.

Proof. When α + β = −1, and if we let v =
√

(u3 + u4)2 − 4u1u2, then Theorem 1.5
becomes∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!

= e
1
2
(β−α)(u3−u4)t ×

(
cosh

(
1

2
vt

)
− u3 + u4

v
sinh

(
1

2
vt

))

= e
1
2
(β−α)(u3−u4)t ×

(∑
n≥0

v2n

22n
t2n

(2n)!
− (u3 + u4)

(∑
n≥0

v2n

22n+1

t2n+1

(2n+ 1)!

))

=

(∑
n≥0

(β − α)n(u3 − u4)n

2n
tn

n!

)
×

(∑
n≥0

v2n

22n
t2n

(2n)!
− (u3 + u4)

(∑
n≥0

v2n

22n+1

t2n+1

(2n+ 1)!

))

=
∑
n≥0

tn

n!

(∑
k≥0

(
n

2k

)
(β − α)n−2k(u3 − u4)n−2k

v2k

2n

−(u3 + u4)
∑
k≥0

(
n

2k + 1

)
(β − α)n−2k−1(u3 − u4)n−2k−1

v2k

2n

)
.

Comparing the coefficients of tn/n! on the both sides yields (5.1). This completes the
proof.

Setting u3 = u4 = u1 = 1 and u2 = u in Theorem 5.1 and using (3.17) yields
Theorem 1.6. Theorem 1.7 follows from Theorem 1.6 by setting α = 0.

By choosing α = β = −1/2 in Theorem 5.1, we derive that

Theorem 5.2. For n ≥ 1,

2nPn

(
u1, u2, u3, u4| −

1

2
,−1

2

)

=

{
((u3 + u4)

2 − 4u1u2)
bn
2
c, if n is even,

−(u3 + u4)((u3 + u4)
2 − 4u1u2)

bn
2
c, if n is odd.
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Setting u1 = u2 = u4 = 1, u3 = u in Theorem 5.2 and employing (3.17) yields
Theorem 1.8.

6 Relations between Pn(u1, u2, u3, u4|α, β) andAn(x, y|α, β)

In this section, we begin by presenting two relations between Pn(u1, u2, u3, u4|α, β)
and An(x, y|α, β) and give their proofs. Subsequently, we derive several consequences
from these connections. These specific derivations will not only yield the (α, β)-extensions
of the related relations associated with the Eulerian polynomial due to Stembridge, Pe-
tersen, Brändén and Zhuang, but will also provide the left peak version of Stembridge’s
formula, the peak version of Petersen’s formula and their (α, β)-extensions.

6.1 Two relations

Theorem 6.1. For n ≥ 0,

Pn(u1, u2, u3, u4|α, β) =
n∑
k=0

(
n

k

)
Ak

(
x, y|α + β

2
,
α + β

2

)
(β − α)n−k(u3 − u4)n−k

2n−k
,

(6.1)
where x+ y = u3 + u4 and xy = u1u2.

Proof. Combining Theorem 1.1 and Theorem 1.4, we derive that∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!

= e
1
2
(β−α)(u3−u4)t

∑
k≥0

Ak

(
x, y|α + β

2
,
α + β

2

)
tk

k!

=

(∑
m≥0

(β − α)m(u3 − u4)m

2m
tm

m!

)(∑
k≥0

Ak

(
x, y|α + β

2
,
α + β

2

)
tk

k!

)

=
∑
n≥0

tn

n!

(
n∑
k=0

(
n

k

)
Ak

(
x, y|α + β

2
,
α + β

2

)
(β − α)n−k(u3 − u4)n−k

2n−k

)
. (6.2)

Equating the coefficients of tn/n! yields the result.
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Theorem 6.2. For n ≥ 0,

Pn(u1, u2, u3, u4|α, β)

=
n∑
k=0

(
n

k

)
Ak (x, y|0, α+ β) (αx− βy + (β − α)u3)n−k (6.3)

=
n∑
k=0

(
n

k

)
Ak (x, y|α + β, 0) (αy − βx+ (β − α)u3)n−k (6.4)

where x+ y = u3 + u4 and xy = u1u2.

Proof. Since, by (1.8), we see that

1 + xF (x, y; t) =
(x− y)ext

xeyt − yext

and

1 + yF (x, y; t) =
(x− y)eyt

xeyt − yext
.

Hence

(1 + xF (x, y; t))(1 + yF (x, y; t)) =
(x− y)2e(x+y)t

(xeyt − yext)2
,

so that

((1 + xF (x, y; t))(1 + yF (x, y; t)))
α+β
2 e

1
2
(β−α)(u3−u4)t

=

(
x− y

xeyt − yext

)α+β
e

(
(β−α)(u3−u4)

2
+

(α+β)(x+y)
2

)
t

= (1 + yF (x, y; t))α+βe

(
(β−α)(u3−u4)

2
+

(α+β)(x−y)
2

)
t (6.5)

= (1 + xF (x, y; t))α+βe

(
(β−α)(u3−u4)

2
+

(α+β)(y−x)
2

)
t (6.6)

Applying (1.7) into (6.5), and applying Theorem 1.4, we find that∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!

= (1 + yF (x, y; t))α+βe

(
(β−α)(u3−u4)

2
+

(α+β)(x−y)
2

)
t

=

(∑
k≥0

Ak (x, y|0, α+ β)
tk

k!

)(∑
m≥0

(αx− βy + (β − α)u3)m
tm

m!

)
,

where the last line follows from the relation x+ y = u3 + u4. Equating the coefficients of
tn/n! yields the relation (6.3).
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If we plug (1.7) into (6.5), and by Theorem 1.4, we derive that∑
n≥0

Pn(u1, u2, u3, u4|α, β)
tn

n!

= (1 + xF (x, y; t))α+βe

(
(β−α)(u3−u4)

2
+

(α+β)(y−x)
2

)
t

=

(∑
k≥0

Ak (x, y|α + β, 0)
tk

k!

)(∑
m≥0

(αy − βx+ (β − α)u3)m
tm

m!

)
.

Equating the coefficients of tn/n! yields the relation (6.4). This completes the proof of
Theorem 6.2.

6.2 Some consequences

Setting u3 = u4 and u1 = u2 in Theorem 6.1, we find that

u3 = u4 =
x+ y

2
and u1 = u2 =

√
xy, (6.7)

and using the combinatorial definition (3.16) of An(x, y|α, β) and the combinatorial def-
inition (3.17) of Pn(u1, u2, u3, u4|α, β), we obtain Theorem 1.9. Setting α = β = 1 and
y = 1 in Theorem 1.9, we reacquire the relation (2.5) due to Stembridge.

Choosing α = 0 in Theorem 1.9 yields Theorem 1.10. Setting β = 1 and y = 1 in
Theorem 1.10, we obtain the following consequence, which can be viewed as the left peak
version of Stembridge’s formula.

Theorem 6.3. For n ≥ 1,

∑
σ∈Sn+1

xdes(σ)
(
1

2

)LRmin(σ)+RLmin(σ)−2

=

(
1 + x

2

)n ∑
σ∈Sn

(
4x

(1 + x)2

)L(σ)

. (6.8)

Setting α = β, u1 = uv, u2 = u3 = w and u4 = v in Theorem 6.1, and by (3.16)
and (3.17), and invoking (2.11), (3.12) (3.13) and (3.15), we deduce the following conse-
quence, which can be viewed as the α-extension of Zhuang’s relation (2.7).

Theorem 6.4. For n ≥ 1,∑
σ∈Sn

uM(σ)vdes(σ)wasc(σ)αLRmin(σ)+RLmin(σ)−2

=
∑
σ∈Sn

xdes(σ)yasc(σ)αLRmin(σ)+RLmin(σ)−2, (6.9)

where

x =
(w + v)−

√
(w + v)2 − 4uvw

2
, (6.10)
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and

y =
(w + v) +

√
(w + v)2 − 4uvw

2
. (6.11)

Note that (6.10) and (6.11) follows from (4.4) and (4.5) upon setting u1 = uv, u2 =
u3 = w and u4 = v. Setting α = 1, w = 1, a = x/y and b = (y− 1)/(1− x) in Theorem
6.4, we regain the relation (2.7) established by Zhuang [37, Theorem 4.2].

By choosing α = 0, u3 = u4 and u1 = u2 in (6.4) of Theorem 6.2, and using (3.18)
and (3.19), we derive that the β-extension of Petersen’s relation, from which we recover
the relation (2.6) by setting y = 1 and β = 1.

Theorem 6.5. For n ≥ 1,∑
σ∈Sn

(xy)L(σ)
(
x+ y

2

)n−2L(σ)
βRLmin(σ)

=
n∑
k=1

(
n

k

)
(β(y − x))n−k

2n−k

(∑
σ∈Sk

xdes(σ)+1yasc(σ)βLRmin(σ)

)

+

(
(β(y − x))

2

)n
. (6.12)

Setting u3 = u4 and u1 = u2 in (6.4) of Theorem 6.2, and using (3.17) and (3.19), we
get

Theorem 6.6. For n ≥ 1,∑
σ∈Sn+1

(xy)M(σ)

(
x+ y

2

)n−2M(σ)

αLRmin(σ)−1βRLmin(σ)−1

=
n∑
k=1

(
n

k

)
((α + β)(y − x))n−k

2n−k

(∑
σ∈Sk

xdes(σ)+1yasc(σ)(α + β)LRmin(σ)

)

+

(
((α + β)(y − x))

2

)n
. (6.13)

By setting y = 1 and α = β = 1 in Theorem 6.6, we derive the following relation,
which can be viewed as the peak version of Petersen’s formula (2.6).

Theorem 6.7. For n ≥ 1,(
1 + x

2

)n ∑
σ∈Sn+1

(
4x

(1 + x)2

)M(σ)

=
n∑
k=1

(
n

k

)
(1− x)n−k

∑
σ∈Sk

xdes(σ)+12LRmin(σ) + (1− x)n.
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Setting u1 = uv, u2 = u3 = w and u4 = v in (6.4) of Theorem 6.2, and using (3.17)
and (3.19), we obtain the following consequence. As we will see, this result can be viewed
as the (α, β)-extensions of the peak version of Zhuang’s relation (2.10).

Theorem 6.8. For n ≥ 1,∑
σ∈Sn+1

uM(σ)vdes(σ)wasc(σ)αLRmin(σ)−1βRLmin(σ)−1 (6.14)

=
n∑
k=1

(
n

k

)
(αy − βx+ (β − α)w)n−k

(∑
σ∈Sk

xdes(σ)+1yasc(σ)(α + β)LRmin(σ)

)

+ (αy − βx+ (β − α)w)n , (6.15)

where x and y are given by (6.10) and (6.11) respectively.

The following consequence follows from Theorem 6.8 by setting α = 0.

Theorem 6.9. For n ≥ 0,∑
σ∈Sn

uL(σ)vdes(σ)wn−des(σ)βRLmin(σ)

=
n∑
k=1

(
n

k

)
(β(w − x))n−k

(∑
σ∈Sk

xdes(σ)+1yasc(σ)βLRmin(σ)

)
+ (β(w − x))n , (6.16)

where x and y are given by (6.10) and (6.11) respectively.

Setting β = 1, w = 1, a = x/y and b = (y − 1)/(1− x) in Theorem 6.9, we recover
the relation (2.10) due to Zhuang [37, Theorem 4.7].
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Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1970.

[17] D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative
properties of the tangen and secant numbers, Math. Z. 137 (1974) 257–264.

[18] A.M. Fu, A context-free grammar for peaks and double descents of permutations,
Adv. in Appl. Math. 100 (2018) 179–196.

[19] I.M. Gessel and Y. Zhuang, Shuffle-compatible permutation statistics, Adv. Math.
332 (2018) 85–141.

[20] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Courier Corporation,
2004.

[21] M. Josuat-Vergés, A q-enumeration of alternating permutations, European J. Com-
bin. 31 (7) (2010) 1892–1906.

[22] S. Kitaev, Introduction to partially ordered patterns, Discrete Appl. Math. 115 (2007)
929–944.

[23] S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permuta-
tions, Discrete Math. 338 (2015) 1468–1472.

[24] S.-M. Ma, J. Ma, Y.-N. Yeh and B.-X. Zhu, Context-free grammars for several poly-
nomials associated with Eulerian polynomials, Electron. J. Combin. 25 (2018) Paper
No. 1.31, 17 pp.

30



[25] P. A. MacMahon, Combinatory analysis, Two volumes, Chelsea Publishing Co.,
New York, 1960.

[26] The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[27] Q. Pan and J. Zeng, A q-analogue of generalized Eulerian polynomials with appli-

cations, Adv. Appl. Math. 104 (2019) 85–99.
[28] T.K. Petersen, Descents, Peaks, and P -partitions, PhD thesis, Brandeis University,

2006.
[29] T.K. Petersen, Eulerian Numbers, Birkhäuser Advanced Texts: Basler Lehrbücher,
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