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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS

WITH BOUNDED LARGEST PART

JANET J.W. DONG AND KATHY Q. JI

ABSTRACT. A k-regular partition into distinct parts is a partition into distinct parts with no part

divisible by k. In this paper, we provide a general method to establish the unimodality of k-regular

partitions into distinct parts where the largest part is at most km+ k− 1. Let dk,m(n) denote the

number of k-regular partitions of n into distinct parts where the largest part is at most km+ k−1. In

line with this method, we show that d4,m(n)≥ d4,m(n−1) for m≥ 0, 1≤ n≤ 3(m+1)2 and n 6= 4,

and d8,m(n)≥ d8,m(n−1) for m≥ 2 and 1≤ n≤ 14(m+1)2. When 5≤ k ≤ 10 and k 6= 8, we show

that dk,m(n)≥ dk,m(n−1) for m≥ 0 and 1≤ n≤
⌊

k(k−1)(m+1)2

4

⌋
.

1. Introduction

The main theme of this paper is to investigate the unimodality of k-regular partitions into distinct
parts where the largest part is at most km+ k− 1. A k-regular partition into distinct parts is a
partition into distinct parts with no part divisible by k. For example, below are the 4-regular
partitions of 10 into distinct parts,

(10), (9,1), (7,3), (7,2,1), (6,3,1), (5,3,2).

Let dk,m(n) denote the number of k-regular partitions into distinct parts where the largest part is at
most km+k−1. From the example above, we see that d4,1(10) = 4 and d4,2(10) = 6. By definition,
it is easy to see that the generating function of dk,m(n) is given by

Dk,m(q) :=
N(k,m)

∑
n=0

dk,m(n)qn =
m

∏
j=0

(
1+q jk+1

)(
1+q jk+2

)
· · ·
(

1+q jk+k−1
)
,(1.1)

where

N(k,m) =
k(k−1)(m+1)2

2
.

Recall that a polynomial a0 +a1q+ · · ·+aNqN with integer coefficients is called unimodal if for
some 0≤ j ≤ N,

a0 ≤ a1 ≤ ·· · ≤ a j ≥ a j+1 ≥ ·· · ≥ aN ,
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and is called symmetric if for all 0≤ j ≤ N, a j = aN− j, see [16, p. 124, Ex. 50]. It is well-known
that the Gaussian polynomials[

n
k

]
=

(1−qn)(1−qn−1) · · ·(1−qn−k+1)

(1−q)(1−q2) · · ·(1−qk)

are symmetric and unimodal, as conjectured by Cayley [4] in 1856 and confirmed by Sylvester [18]
in 1878 based on semi-invariants of binary forms. For more information, we refer to [3, 9, 11, 13].
Since then, the unimodality of polynomials (or combinatorial sequences) has drawn great attention
in recent decades. In particular, the unimodality of several special k-regular partitions have been
investigated by several authors. For example, the polynomials

(1.2) (1+q)(1+q2) · · ·(1+qm)

are proved to be symmetric and unimodal for m ≥ 1. The first proof of the unimodality of the
polynomials (1.2) was given by Hughes [8] resorting to Lie algebra results. Stanley [15] provided
an alternative proof by using the hard Lefschetz theorem. Stanley [14] also established the general
result of this type based on a result of Dynkin [6]. An analytic proof of the unimodality of the
polynomials (1.2) was attributed to Odlyzko and Richmond [10] by extending the argument of van
Lint [19] and Entringer [7].

Stanley [15] conjectured the polynomials

(1.3) (1+q)(1+q3) · · ·(1+q2m+1)

are symmetric and unimodal for m ≥ 26, except at the coefficients of q2 and q(m+1)2−2. More
precisely, let

(m+1)2

∑
n=0

d2,m(n)qn = (1+q)(1+q3) · · ·(1+q2m+1).

Stanley conjectured that d2,m(n) ≥ d2,m(n− 1) for m ≥ 26, 1 ≤ n ≤
⌊
(m+1)2

2

⌋
and n 6= 2. This

conjecture has been proved by Almkvist [1] via refining the method of Odlyzko and Richmond [10].
Pak and Panova [12] showed that the polynomials (1.3) are strict unimodal by interpreting the
differences between numbers of certain partitions as Kronecker coefficients of representations of Sn.
By refining the method of Odlyzko and Richmond [10], we show that the polynomials

(1.4)
m

∏
j=0

(1+q3 j+1)(1+q3 j+2)

are symmetric and unimodal for m≥ 0, see [5].

In this paper, we aim to establish the symmetry and unimodality of Dk,m(q) for k≥ 4. It should be
noted that the polynomial (1.2) is associated with D1,m(q), while the polynomial (1.3) is associated
with D2,m(q). When k = 3, Dk,m(q) reduces to the polynomial (1.4).

One main result of this paper is to show that D4,m(q) is almost unimodal.
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Theorem 1.1. The polynomials

(1.5)
m

∏
j=0

(1+q4 j+1)(1+q4 j+2)(1+q4 j+3)

are symmetric and unimodal for m ≥ 0, except at the coefficients of q4 and q6(m+1)2−4. More
precisely, let

6(m+1)2

∑
n=0

d4,m(n)qn =
m

∏
j=0

(1+q4 j+1)(1+q4 j+2)(1+q4 j+3).

Then for m≥ 0, d4,m(n)≥ d4,m(n−1) for 1≤ n≤ 3(m+1)2and n 6= 4.

We also provide an effective way to establish the unimodality of Dk,m(q) for k ≥ 5.

Theorem 1.2. For k≥ 5, if there exists m0≥ 0 such that Dk,m0(q) is unimodal and for m0 <m< 8k
3
2

and
⌈

k(k−1)m2

4

⌉
≤ n≤

⌊
k(k−1)(m+1)2

4

⌋
,

(1.6) dk,m(n)≥ dk,m(n−1),

then Dk,m(q) is unimodal for m≥ m0.

By utilizing Theorem 1.2 and conducting tests with Maple, we obtain the following two conse-
quences.

Corollary 1.3. When 5≤ k ≤ 10 and k 6= 8, the polynomials
m

∏
j=0

(
1+q jk+1

)(
1+q jk+2

)
· · ·
(

1+q jk+k−1
)

are symmetric and unimodal for m≥ 0.

Corollary 1.4. The polynomials
m

∏
j=0

(
1+q8 j+1)(1+q8 j+2) · · ·(1+q8 j+7)

are symmetric and unimodal for m≥ 2.

It should be noted that Zhan and Zhu [20] explored the unimodality of k-regular partitions into
distinct parts where the largest is at most kn+ j, with 0≤ j ≤ k−1, by extending the methodology
presented in this paper.

2. A key lemma

This section is devoted to the proof of the following lemma. It turns out that this lemma figures
prominently in the proofs of Theorem 1.1 and Theorem 1.2.
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Lemma 2.1. If k ≥ 4, m≥ 8k
3
2 and k(k−1)m2

4 ≤ n≤ k(k−1)(m+1)2

4 , then

(2.1) dk,m(n)> dk,m(n−1).

Before demonstrating Lemma 2.1, we collect several identities and inequalities which will be
useful in its proof.

eix = cos(x)+ isin(x),(2.2)

cos(2x) = 2cos2(x)−1,(2.3)

sin(2x) = 2sin(x)cos(x),(2.4)

2sin(α)cos(β ) = sin(α +β )+ sin(α−β ),(2.5)

sin(x)≥ xe−x2/3 for 0≤ x≤ 2,(2.6)

cos(x)≥ e−γx2
for |x| ≤ 1, (γ =− lncos(1) = 0.615626 . . .),(2.7)

x− x3

6
≤ sin(x)≤ x for x≥ 0,(2.8)

cos(x)≤ e−x2/2 for |x| ≤ π

2
,(2.9)

|cos(x)| ≤ exp
(
−1

2
sin2(x)− 1

4
sin4(x)

)
,(2.10) ∣∣∣∣sin(nx)

sin(x)

∣∣∣∣≤ n for x 6= iπ, i = 0,1,2, . . . ,(2.11)

n

∑
k=1

sin2(kx) =
n
2
− sin((2n+1)x)

4sin(x)
+

1
4

for x 6= iπ, i = 0,1,2, . . . ,(2.12)

n

∑
k=1

sin4(kx) =
3n
8
− sin((2n+1)x)

4sin(x)
+

sin((2n+1)2x)
16sin(2x)

+
3
16

for x 6= iπ
2
, i = 0,1,2, . . . .(2.13)

The identity (2.2) is Euler’s identity, see [17, p. 4]. The formulas (2.3)–(2.5) of trigonometric
functions can be found in [2, Chap. 8]. The inequalities (2.6)–(2.11) are due to Odlyzko and
Richmond [10, p. 81]. The identities (2.12) and (2.13) have been proved in [5].

We are now in a position to prove Lemma 2.1 by considering dk,m(n) as the Fourier coefficients
of Dk,m(q) and proceeding to estimate its integral.

Proof of Lemma 2.1: Putting q = e2iθ in (1.1), we get

Dk,m(e2iθ ) =
m

∏
j=0

(1+(e2iθ ) jk+1)(1+(e2iθ ) jk+2) · · ·(1+(e2iθ ) jk+k−1)
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(2.2)
=

m

∏
j=0

k−1

∏
l=1

(1+ cos(2( jk+ l)θ)+ isin(2( jk+ l)θ))

(2.3)&(2.4)
=

m

∏
j=0

k−1

∏
l=1

(
2cos2(( jk+ l)θ)+2isin(( jk+ l)θ)cos(( jk+ l)θ)

)
(2.2)
=

m

∏
j=0

k−1

∏
l=1

2cos(( jk+ l)θ)exp(i( jk+ l)θ)

= 2(k−1)(m+1) exp(iN(k,m)θ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ).(2.14)

Using Taylor’s theorem [17, pp. 47–49], we derive that

dk,m(n) =
1

2πi

∫ π
2

− π
2

Dk,m
(
e2iθ
)

(e2iθ )
n+1 d

(
e2iθ
)

=
1
π

∫ π
2

− π
2

Dk,m

(
e2iθ
)

e−2inθ dθ

(2.14)
=

2(k−1)(m+1)

π

∫ π
2

− π
2

exp(i(N(k,m)−2n)θ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ

(2.2)
=

2(k−1)(m+1)

π

∫ π
2

− π
2

(cos((N(k,m)−2n)θ)+ isin((N(k,m)−2n)θ))

×
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

Observe that ∫ π
2

− π
2

sin((N(k,m)−2n)θ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ = 0,

so we conclude that

dk,m(n) =
2(k−1)(m+1)+1

π

∫ π
2

0
cos((N(k,m)−2n)θ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

To show that dk,m(n) increases with n, we take the derivative with respect to n,

∂

∂n
dk,m(n) =

2(k−1)(m+1)+2

π

∫ π
2

0
θ sin((N(k,m)−2n)θ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

Let N(k,m)−2n = µ , and let

Ik,m(µ) =
∫ π

2

0
θ sin(µθ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

Thus it suffices to show that

(2.15) Ik,m(µ)> 0 for k ≥ 4, m≥ 8k
3
2 and 0 < µ ≤ k(k−1)(2m+1)

2
.
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We will separate the integral Ik,m(µ) into three parts,

Ik,m(µ) =

{∫ 2π

k(k−1)(2m+1)

0
+
∫ π

2km+2(k−1)

2π

k(k−1)(2m+1)

+
∫ π

2

π

2km+2(k−1)

}
θ sin(µθ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ

= I(1)k,m(µ)+ I(2)k,m(µ)+ I(3)k,m(µ),

and aim to show that when k ≥ 4, m≥ 8k
3
2 and 0 < µ ≤ k(k−1)(2m+1)

2 ,

(2.16) I(1)k,m(µ)>
∣∣∣I(2)k,m(µ)

∣∣∣+ ∣∣∣I(3)k,m(µ)
∣∣∣ ,

from which, it is immediate that (2.15) is valid.

We first estimate the value of I(1)k,m(µ). Recall that

(2.17) I(1)k,m(µ) =
∫ 2π

k(k−1)(2m+1)

0
θ sin(µθ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

When 0≤ θ ≤ 4
k(k−1)(2m+1) , we see that 0≤ µθ ≤ 2 and 0≤ ( jk+ l)θ ≤ 1 for 0≤ j ≤ m and 1≤

l ≤ k−1. Using (2.6) and (2.7), we deduce that

sin(µθ)≥ µθ exp
(
−µ2θ 2

3

)
and cos(( jk+ l)θ)≥ exp

(
−γ( jk+ l)2

θ
2) .

Hence

θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)

≥ µθ
2 exp

(
−µ2θ 2

3

)
exp

(
−γθ

2
m

∑
j=0

k−1

∑
l=1

( jk+ l)2

)

≥ µθ
2 exp

(
−

k2(k−1)2(m+ 1
2)

2θ 2

3

)

× exp
(
−γθ

2k(k−1)
(

km3

3
+ km2 +

(6k−1)m
6

+
2k−1

6

))
.

Put

ck(m) = k2(k−1)2
(

1
3m

+
1

3m2 +
1

12m3

)
+ γk(k−1)

(
k
3
+

k
m
+

6k−1
6m2 +

2k−1
6m3

)
.

When k ≥ 4 and m≥ 8k
3
2 , we find that

ck(m)≤ ck

(
8k

3
2

)
= k

1
2 (k−1)2

(
1

3 ·8
+

1

3 ·82k
3
2
+

1
12 ·83k3

)

+ γk2(k−1)
(

1
3
+

1

8k
3
2
+

6− k−1

6 ·82k3 +
2− k−1

6 ·83k
9
2

)
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≤ k3
(

1
24

+
1

192k
3
2
+

1
6144k3 + γ

(
1
3
+

1

8k
3
2
+

1
64r3 +

1

1536k
9
2

))

≤ k3
(

1
24

+
1

192 ·4 3
2
+

1
6144 ·43

+0.616 ·
(

1
3
+

1

8 ·4 3
2
+

1
64 ·43 +

1

1536 ·4 9
2

))
(by k ≥ 4)

< 0.26k3 := ck,

and so

(2.18) θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)≥ µθ
2 exp

(
−ckm3

θ
2) .

Applying (2.18) to (2.17), we deduce that when k ≥ 4, m≥ 8k
3
2 and 0 < µ ≤ k(k−1)(2m+1)

2 ,

I(1)k,m(µ) =
∫ 2π

k(k−1)(2m+1)

0
θ sin(µθ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ

≥
∫ 4

k(k−1)(2m+1)

0
θ sin(µθ)

m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ

≥
∫ 4

k(k−1)(2m+1)

0
µθ

2 exp
(
−ckm3

θ
2)dθ

=

{∫
∞

0
−
∫

∞

4
k(k−1)(2m+1)

}
µθ

2 exp
(
−ckm3

θ
2)dθ

=
µ

2c
3
2
k m

9
2

(∫
∞

0
v

1
2 e−vdv−

∫
∞

16ckm3

k2(k−1)2(2m+1)2

v
1
2 e−vdv

)

=
µ

2c
3
2
k m

9
2

(√
π

2
−
∫

∞

16ckm3

k2(k−1)2(2m+1)2

v
1
2 e−vdv

)
.

When m≥ 8k
3
2 , we see that

16ckm3

k2(k−1)2(2m+1)2 ≥
16 ·0.26k3 ·83k

9
2

k2(k−1)2(2 ·8k
3
2 +1)2

≥ 16 ·0.26k3 ·83k
9
2

k2k2(17k
3
2 )2

=
2129.92

√
k

289
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≥ 2129
√

4
289

> 14.7 (by k ≥ 4),(2.19)

so ∫
∞

16ckm3

k2(k−1)2(2m+1)2

v
1
2 e−vdv <

∫
∞

14.7
v

1
2 e−vdv < 1.64×10−6.

As a result, we can assert that when k ≥ 4, m≥ 8k
3
2 and 0 < µ ≤ k(k−1)(2m+1)

2 ,

I(1)k,m(µ)>
µ

2c
3
2
k m

9
2

(√
π

2
−1.64×10−6

)
>

3.34µ

k
9
2 m

9
2
.(2.20)

We now turn to estimate the value of I(2)k,m(µ) given by

(2.21) I(2)k,m(µ) =
∫ π

2km+2(k−1)

2π

k(k−1)(2m+1)

θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

When 2π

k(k−1)(2m+1) ≤ θ ≤ π

2km+2(k−1) , we have 0≤ ( jk+ l)θ ≤ π

2 for 0≤ j ≤m and 1≤ l ≤ k−1.
In light of (2.9), we derive that

cos(( jk+ l)θ)≤ exp
(
−( jk+ l)2θ 2

2

)
.

Hence ∣∣∣∣∣ m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)

∣∣∣∣∣
≤ exp

(
−1

2
θ

2
m

∑
j=0

k−1

∑
l=1

( jk+ l)2

)

= exp
(
−1

2
k(k−1)θ 2

(
km3

3
+ km2 +

(6k−1)m
6

+
2k−1

6

))

≤ exp

(
− π2

2k(k−1)
(
m+ 1

2

)2

(
km3

3
+ km2 +

(6k−1)m
6

+
2k−1

6

))
(

by
2π

k(k−1)(2m+1)
≤ θ ≤ π

2km+2(k−1)

)

= exp

(
− π2

2k(k−1)
· km

3
·

m2 +3m+ 6k−1
2k + 2k−1

2km

m2 +m+ 1
4

)

≤ exp
(
− π2

2k(k−1)
· km

3

)
= exp

(
− π2m

6(k−1)

)
< exp

(
−π2m

6k

)
.(2.22)

Applying (2.22) to (2.21), and in view of (2.8) and (2.20), we derive that when k ≥ 4, m≥ 8k
3
2 and

0 < µ ≤ k(k−1)(2m+1)
2 ,

|I(2)k,m(µ)|
(2.8)
≤ µ exp

(
−π2m

6k

)∫ π

2km+2(k−1)

2π

k(k−1)(2m+1)

θ
2dθ
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART 9

≤ µπ3

3

(
1

(2km+2(k−1))3 −
8

(k(k−1)(2m+1))3

)
exp
(
−π2m

6k

)

≤ µπ3

3(2km+2(k−1))3 exp
(
−π2m

6k

)

≤ µπ3

3(8m)3 exp
(
−π2m

6k

)
(by k ≥ 4)

(2.20)
≤ π3k

9
2 m

3
2

5130
exp
(
−π2m

6k

)
I(1)k,m(µ).(2.23)

Define

fk(m) :=
π3k

9
2 m

3
2

5130
exp
(
−π2m

6k

)
.

We claim that f ′k(m)< 0 for k ≥ 4 and m≥ 8k
3
2 . Since fk(m)> 0 for k ≥ 4 and m≥ 8k

3
2 , we have

(2.24)
d

dm
fk(m) =

d
dm

eln fk(m) = fk(m)
d

dm
ln fk(m).

Observe that when k ≥ 4 and m≥ 8k
3
2 ,

d
dm

ln fk(m) =
3

2m
− π2

6k
≤ 3

2 ·8k
3
2
− π2

6k
=

π2

6k

(
9

8π2k
1
2
−1
)
< 0,

and this yields that f ′k(m)< 0 for k ≥ 4 and m≥ 8k
3
2 as claimed. Consequently,

fk(m)≤ fk(8k
3
2 ) =

8
3
2 π3

5130
k

27
4 exp

(
−4π2k

1
2

3

)
.(2.25)

Applying (2.25) to (2.23), we obtain

|I(2)k,m(µ)| ≤
8

3
2 π3

5130
k

27
4 exp

(
−4π2k

1
2

3

)
I(1)k,m(µ).(2.26)

Define

h1(k) := exp

(
−4π2k

1
2

3

)
k

27
4 .

Since h1(k)> 0 for k ≥ 4, we find that

(2.27)
d
dk

h1(k) =
d
dk

elnh1(k) = h1(k)
d
dk

lnh1(k),

and since

d
dk

lnh1(k) =
27
4k
− 2π2

3k
1
2

=
1
k

(
27
4
− 2π2k

1
2

3

)

≤ 1
k

(
27
4
− 4π2

3

)
(by k ≥ 4)
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART10

<−6
k
< 0,

it follows that h′1(k)< 0 for k ≥ 4. Hence h1(k)≤ h1(4) for k ≥ 4. Therefore,

|I(2)k,m(µ)|
(2.26)
≤ 8

3
2 π3

5130
exp
(
−8π2

3

)
·4

27
4 I(1)k,m(µ)

< 5.89×10−9I(1)k,m(µ).(2.28)

Finally, we turn to estimate the value of I(3)k,m(µ) defined by

(2.29) I(3)k,m(µ) =
∫ π

2

π

2km+2(k−1)

θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

Let C =
{ iπ

2k |i = 1,2, . . . ,k
}

, it is easy to see that∫
C

θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ = 0,

so

(2.30) I(3)k,m(µ) =
∫[

π

2km+2(k−1) ,
π
2

]
\C

θ sin(µθ)
m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)dθ .

When π

2km+2(k−1) ≤ θ ≤ π

2 and θ 6= iπ
2k (i = 1,2, . . . ,k), by (2.10), (2.12) and (2.13), we deduce that∣∣∣∣∣ m

∏
j=0

k−1

∏
l=1

cos(( jk+ l)θ)

∣∣∣∣∣
(2.10)
≤ exp

(
−1

2

m

∑
j=0

k−1

∑
l=1

sin2(( jk+ l)θ)− 1
4

m

∑
j=0

k−1

∑
l=1

sin4(( jk+ l)θ)

)

= exp

(
−1

2

(
km+k−1

∑
j=1

sin2( jθ)−
m

∑
j=1

sin2( jkθ)

)

−1
4

(
km+k−1

∑
j=1

sin4( jθ)−
m

∑
j=1

sin4( jkθ)

))

(2.12)&(2.13)
= exp

(
−11(k−1)(m+1)

32
+

3sin((2km+2k−1)θ)
16sin(θ)

−sin((2km+2k−1)2θ)

64sin(2θ)
− 3sin((2m+1)kθ)

16sin(kθ)
+

sin((2m+1)2kθ)

64sin(2kθ)

)
:= Ek,m(θ).(2.31)

We claim that for k ≥ 4, m≥ 8k
3
2 and π

2km+2(k−1) ≤ θ ≤ π

2 (where θ 6= iπ
2k , i = 1,2, . . . ,k),

(2.32) Ek,m(θ)< exp(−0.381m−0.224) .
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART11

We approach the proof of (2.32) through a two-step process. First, we consider the interval
π

2km+2(k−1) ≤ θ < π

2k . Since π

2km+2(k−1) ≤ θ < 2θ < kθ < π

2 , by (2.8), we get

sin(iθ)≥ sin
(

iπ
2km+2(k−1)

)

≥ iπ
2km+2(k−1)

−

(
iπ

2km+2(k−1)

)3

6

≥ iπ
2km+2(k−1)

1−

(
kπ

2km+2(k−1)

)2

6

 ,(2.33)

where i = 1, 2, k. Applying (2.11) and (2.33) in (2.31), we obtain

Ek,m(θ)≤ exp
(
−11(k−1)(m+1)

32
+

3
16sin(θ)

+
1

64sin(2θ)
+

3
16sin(kθ)

+

∣∣∣∣sin((2m+1)2kθ)

64sin(2kθ)

∣∣∣∣)

(2.33)&(2.11)
≤ exp

−11(k−1)(m+1)
32

+
2m+1

64
+

3

16

(
π

2km+2(k−1)

(
1−

(
kπ

2km+2(k−1)

)2

6

))

+
1

64

(
2π

2km+2(k−1)

(
1−

(
kπ

2km+2(k−1)

)2

6

)) +
3

16

(
kπ

2km+2(k−1)

(
1−

(
kπ

2km+2(k−1)

)2

6

))


= exp

(12−11k)m
32

+
23−22k

64
+

24+25k

128k

(
π

2km+2(k−1)

(
1−

(
kπ

2km+2(k−1)

)2

6

))


= exp

(12−11k)m
32

+
23−22k

64
+

(24+25k)(2km+2(k−1))

128πk
(

1− π2k2

6(2km+2(k−1))2

)
 .

When k ≥ 4 and m≥ 8k
3
2 , we have

1− π2k2

6(2km+2(k−1))2 ≥ 1− π2k2

6
(

16k
5
2 +2(k−1)

)2 (by m≥ 8k
3
2 )
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART12

= 1− π2

6
(

16k
3
2 +2−2k−1

)2

≥ 1− π2

6
(

16 ·4 3
2 +2− 1

2

)2 (by k ≥ 4)

= 1− π2

100621.5
> 0.9999.

It follows that for k ≥ 4, m≥ 8k
3
2 and π

2km+2(k−1) ≤ θ < π

2k ,

Ek,m(θ)≤ exp
(
(12−11k)m

32
+

23−22k
64

+
(24+25k)(2km+2(k−1))

0.9999 ·128πk

)

= exp
((

12−11k
32

+
24+25k

0.9999 ·64π

)
m+

23−22k
64

+
(24+25k)(1− k−1)

0.9999 ·64π

)
≤ exp((0.495−0.219k)m+0.479−0.219k)

≤ exp(−0.381m−0.397) (by k ≥ 4).(2.34)

Next we consider the interval π

2k ≤ θ ≤ π

2 and θ 6= iπ
2k (i = 1,2, . . . ,k). Employing (2.8) and (2.11),

we deduce that

Ek,m(θ)≤ exp
(
−11(k−1)(m+1)

32
+

3
16sin(θ)

+

∣∣∣∣sin((2km+2k−1)2θ)

64sin(2θ)

∣∣∣∣+ ∣∣∣∣3sin((2m+1)kθ)

16sin(kθ)

∣∣∣∣+ ∣∣∣∣sin((2m+1)2kθ)

64sin(2kθ)

∣∣∣∣)
(2.11)
≤ exp

(
−11(k−1)(m+1)

32
+

3
16sin

(
π

2k

)
+

2km+2k−1
64

+
3(2m+1)

16
+

2m+1
64

)

(2.8)
≤ exp

−11(k−1)(m+1)
32

+
3

16
(

π

2k

(
1− ( π

2k)
2

6

))

+
2km+2k−1

64
+

3(2m+1)
16

+
2m+1

64

)

= exp

(3
4
− 5k

16

)
m− 5k

16
+

17
32

+
3k

8π

(
1− π2

24k2

)


≤ exp
((

3
4
− 5k

16

)
m− 5k

16
+

17
32

+
3k

0.9742 ·8π

)
(by k ≥ 4)
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART13

≤ exp
((

3
4
− 5k

16

)
m+

17
32
−0.189k

)
≤ exp(−0.5m−0.224) (by k ≥ 4).(2.35)

Combining (2.34) and (2.35) yields (2.32), so the claim is verified. Substituting (2.32) to (2.30),
and in view of (2.8) and (2.20), we derive that

|I(3)k,m(µ)|
(2.8)
≤ µ exp(−0.381m−0.224)

∫ π
2

π

2km+2(k−1)

θ
2dθ

≤ µπ3

3

(
1
8
− 1

(2km+2(k−1))3

)
exp(−0.381m−0.224)

≤ µπ3

24
exp(−0.381m−0.224)

(2.20)
≤ π3k

9
2 m

9
2

3.34 ·24
exp(−0.381m−0.224) I(1)k,m(µ).(2.36)

Define

gk(m) :=
π3k

9
2 m

9
2

3.34 ·24
exp(−0.381m−0.224) .

Since when k ≥ 4 and m≥ 8k
3
2 , we have gk(m)> 0 and

d
dm

gk(m) =
d

dm
elngk(m)

= gk(m)
d

dm
lngk(m)

= gk(m)

(
9

2m
−0.381

)

≤ gk(m)

(
9

2 ·8 ·4 3
2
−0.381

)
<−0.31gk(m)< 0,

it follows that g′k(m)< 0 when k ≥ 4 and m≥ 8k
3
2 , and so for k ≥ 4 and m≥ 8k

3
2 ,

gk(m)≤ gk(8k
3
2 ) =

8
9
2 π3k

45
4

3.34 ·24
exp
(
−3.048k

3
2 −0.224

)
.(2.37)

Define

h2(k) := exp
(
−3.048k

3
2 −0.224

)
k

45
4 .

When k ≥ 4, we have h2(k)> 0 and

d
dk

h2(k) =
d
dk

elnh2(k)

= h2(k)
d
dk

lnh2(k)
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART14

= h2(k)

(
45
4k
−3.048 · 3k

1
2

2

)

≤ h2(k)

(
45

4 ·4
−3.048 · 3

√
4

2

)
(by k ≥ 4)

<−6.3h2(k)< 0,

so h′2(k)< 0 for k ≥ 4, and hence for k ≥ 4,

gk(m)≤ 8
9
2 π3

3.34 ·24
exp
(
−3.048 ·4

3
2 −0.224

)
·4

45
4 < 0.55.(2.38)

Substituting (2.38) into (2.36), we have

(2.39) |I(3)k,m(µ)|< 0.55I(1)k,m(µ).

Combining (2.28) and (2.39) yields (2.16), and so (2.15) is valid. This leads to (2.1) holds for k≥ 4,
m≥ 8k

3
2 and k(k−1)m2

4 ≤ n≤ k(k−1)(m+1)2

4 , and so Lemma 2.1 is verified.

3. Proofs of Theorem 1.1 and Theorem 1.2

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. Prior to that, we demonstrate
the symmetry of Dk,m(q).

Theorem 3.1. For k ≥ 0, the polynomials Dk,m(q) are symmetric.

Proof. Replacing q by q−1 in (1.1), we find that

Dk,m(q−1) =
m

∏
j=0

(
1+q−( jk+1)

)(
1+q−( jk+2)

)
· · ·
(

1+q−( jk+k−1)
)

= q−N(k,m)
m

∏
j=0

(
1+q jk+1

)(
1+q jk+2

)
· · ·
(

1+q jk+k−1
)

= q−N(k,m)Dk,m(q).

To wit,

Dk,m(q) = qN(k,m)Dk,m(q−1),

from which, it follows that Dk,m(q) is symmetric. This completes the proof.

We give an inductive proof of Theorem 1.1 with the aid of Lemma 2.1.

Proof of Theorem 1.1: From Theorem 3.1, we see that D4,m(q) is symmetric. Hence in order to
prove Theorem 1.1, it suffices to show that

(3.1) d4,m(n)≥ d4,m(n−1) for m≥ 0, 1≤ n≤ 3(m+1)2 and n 6= 4.
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART15

Recall that d4,m(n) counts the number of 4-regular partitions into distinct parts where the largest
part is at most 4m+3, it is easy to check that for m≥ 0,

(3.2) d4,m(0) = d4,m(1) = d4,m(2) = 1, d4,m(3) = 2, d4,m(4) = 1.

Here we assume that d4,m(n) = 0 when n < 0. It can be checked that (3.1) holds when 0≤ m≤ 63.
In the following, we will demonstrate its validity for the case when m≥ 64. However, our main
objective is to show that when m≥ 64,

(3.3) d4,m(n)≥ d4,m(n−1), for 5≤ n ≤ 12m+20

and

(3.4) d4,m(n)≥ d4,m(n−1)+1, for 12m+21≤ n ≤ 3(m+1)2,

which immediately led to (3.1). It can be checked that (3.3) and (3.4) are valid when m = 64. It
remains to show that (3.3) and (3.4) hold when m > 64. We proceed by induction on m. Assume
that (3.3) and (3.4) are valid for m−1, namely

(3.5) d4,m−1(n)≥ d4,m−1(n−1), for 5≤ n ≤ 12m+8

and

(3.6) d4,m−1(n)≥ d4,m−1(n−1)+1, for 12m+9≤ n ≤ 3m2.

We aim to show that (3.3) and (3.4) hold.

Comparing coefficients of qn in

D4,m(q) =
(
1+q4m+1)(1+q4m+2)(1+q4m+3)D4,m−1(q),

we obtain the following recurrence relation:

d4,m(n) = d4,m−1(n)+d4,m−1(n−4m−1)+d4,m−1(n−4m−2)

+d4,m−1(n−4m−3)+d4,m−1(n−8m−3)+d4,m−1(n−8m−4)

+d4,m−1(n−8m−5)+d4,m−1(n−12m−6),(3.7)

thereby leading to

d4,m(n)−d4,m(n−1) = d4,m−1(n)−d4,m−1(n−1)

+d4,m−1(n−4m−1)−d4,m−1(n−4m−4)

+d4,m−1(n−8m−3)−d4,m−1(n−8m−6)

+d4,m−1(n−12m−6)−d4,m−1(n−12m−7).(3.8)

When 5≤ n ≤ 12m+20 and n 6= 12m+10, applying (3.5) and (3.6) to (3.8), we see that

d4,m(n)−d4,m(n−1)≥ 0.
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UNIMODALITY OF k-REGULAR PARTITIONS INTO DISTINCT PARTS WITH BOUNDED LARGEST PART16

When n = 12m+10, we observe that

d4,m−1(n−12m−6)−d4,m−1(n−12m−7) = d4,m−1(4)−d4,m−1(3) =−1.

But by (3.6), we have

d4,m−1(n)−d4,m−1(n−1) = d4,m−1(12m+10)−d4,m−1(12m+9)≥ 1,

which leads to d4,m(n)−d4,m(n−1)≥ 0 when n = 12m+10. To sum up, we get

d4,m(n)−d4,m(n−1)≥ 0, for 5≤ n ≤ 12m+20,

and so (3.3) is valid. Applying (3.5) and (3.6) to (3.8) again, we infer that

(3.9) d4,m(n)−d4,m(n−1)≥ 1, for 12m+21≤ n ≤ 3m2.

In view of Lemma 2.1, we see that

(3.10) d4,m(n)−d4,m(n−1)≥ 1, for 3m2 < n≤ 3(m+1)2.

Combining (3.9) and (3.10), we confirm that (3.4) holds. Together with (3.3), we deduce (3.1)
holds, and so D4,m(q) is unimodal, except at the coefficients of q4 and qN(4,m)−4. This completes
the proof of Theorem 1.1.

We conclude this paper with the proof of Theorem 1.2 by the utilization of Lemma 2.1.

Proof of Theorem 1.2: Given k ≥ 5 and m0 ≥ 0, assume that Dk,m0(q) is unimodal. We proceed
to show that the polynomial Dk,m(q) is unimodal for m≥ m0 by induction on m. Considering the

symmetry of Dk,m(q), it suffices to show that for m > m0 and 1≤ n≤
⌊

k(k−1)(m+1)2

4

⌋
,

(3.11) dk,m(n)≥ dk,m(n−1).

Assume that (3.11) is valid for m−1, that is, for m > m0 and 1≤ n≤
⌊

k(k−1)m2

4

⌋
,

(3.12) dk,m−1(n)≥ dk,m−1(n−1).

We intend to show that (3.11) holds for m > m0 and 1 ≤ n ≤
⌊

k(k−1)(m+1)2

4

⌋
. By comparing the

coefficients of qn in the polynomial

Dk,m(q) =
(

1+qkm+1
)(

1+qkm+2
)
· · ·
(

1+qkm+k−1
)

Dk,m−1(q),

it can be determined that

dk,m(n) = ∑
i j=0 or km+ j

1≤ j≤k−1

dk,m−1(n− i1−·· ·− ik−1),

which leads to

dk,m(n)−dk,m(n−1)

= ∑
i j=0 or km+ j

1≤ j≤k−1

(
dk,m−1(n− i1−·· ·− ik−1)−dk,m−1(n− i1−·· ·− ik−1−1)

)
.(3.13)
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Utilizing (3.12) in (3.13) yields that the validity of (3.11) for m > m0 and 1≤ n≤
⌊

k(k−1)m2

4

⌋
. In

view of Lemma 2.1, we see that (3.11) holds for m ≥ 8k
3
2 and

⌈
k(k−1)m2

4

⌉
≤ n ≤

⌊
k(k−1)(m+1)2

4

⌋
.

Given the condition that (3.11) holds for m0 < m < 8k
3
2 and

⌈
k(k−1)m2

4

⌉
≤ n≤

⌊
k(k−1)(m+1)2

4

⌋
, we

reach the conclusion that (3.11) is valid for m > m0 and 1≤ n≤
⌊

k(k−1)(m+1)2

4

⌋
. Therefore, Dk,m(q)

is unimodal for m≥ m0. Thus, we complete the proof of Theorem 1.2.
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