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Abstract. We define the p, q-Legendre-Stirling numbers PSp,q(n, k) of the second
kind, which reduce to the Legendre-Stirling numbers PS(n, k) of the second kind
discovered by Everitt, Littlejohn and Wellman when p = 1 and q = 1 and the
q-Legendre-Stirling numbers PSq(n, k) of the second kind introduced by Mongelli
when p = 1. By introducing 0-1 tableaux of shape λ with even multiplicities, we
give a combinatorial interpretation of the p, q-Legendre-Stirling numbers of the sec-
ond kind. As an application of such a combinatorial interpretation, we derive three
p, q-Legendre-Stirling identities, two of which can be viewed as p, q-analogues of t-
wo results due to Everitt-Littlejohn-Wellman and Andrews-Gawronski-Littlejohn,
respectively. We also show that q-Legendre-Stirling numbers PSq(n, k) of the sec-
ond kind are strongly q-log-concave by constructing a direct injection based on this
combinatorial construction.
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1 Introduction

The main objective of this paper is to introduce the p, q-Legendre-Stirling num-
bers PSp,q(n, k) of the second kind and to give a combinatorial interpretation of
PSp,q(n, k) in terms of 0-1 tableaux. The p, q-Legendre-Stirling numbers of the sec-
ond kind are defined by the following recurrence: For n ≥ k ≥ 1,

PSp,q(n, k) = PSp,q(n− 1, k − 1) + [k]p,q[k + 1]p,qPSp,q(n− 1, k) (1.1)

with the initial conditions PSp,q(0, 0) = 1 and for n ≥ 1,

PSp,q(n, k) = 0 if k ≤ 0 or k > n, (1.2)

where for k ≥ 1,

[k]p,q = pk−1 + pk−2q + · · ·+ pqk−2 + qk−1. (1.3)
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The first few polynomials PSp,q(n, k) (1 ≤ n ≤ 3) are given as follows:

PSp,q(1, 1) = 1

PSp,q(2, 1) = p+ q

PSp,q(2, 2) = 1

PSp,q(3, 1) = p2 + 2pq + q2

PSp,q(3, 2) = p3 + 2p2q + 2pq2 + q3 + p+ q

PSp,q(3, 3) = 1.

When p = 1 and q = 1, PSp,q(n, k) reduce to the Legendre-Stirling numbers PS(n, k)
of the second kind, which were defined by Everitt, Littlejohn and Wellman [8] as the
coefficients in the integral Lagrangian symmetric powers of the classical Legendre
second-order differential expression. Everitt, Littlejohn and Wellman [8], Andrews,
Gawronski and Littlejohn [3] and Egge [7] have shown that the Legendre-Stirling
numbers of the second kind possess many properties with the classical Stirling
numbers of the second kind, such as similar recurrences and generating function-
s. Throughout the paper, we adopt the notation used by Stanley [20] for the Stirling
numbers S(n, k) of the second kind. Since Legendre polynomials are typically writ-
ten {Pn}, we adopt the notation PS(n, k) for the Legendre-Stirling numbers of
the second kind. When p = 1, PSp,q(n, k) become the q-Legendre-Stirling numbers
PSq(n, k) of the second kind introduced by Mongelli [16].

Andrews and Littlejohn [2] and Mongelli [16] provided combinatorial interpreta-
tions of the Legendre-Stirling numbers of the second kind and q-Legendre-Stirling
numbers of the second kind in terms of set partitions, respectively. In this paper, we
give a combinatorial interpretation of the p, q-Legendre-Stirling numbers of the sec-
ond kind in terms of 0-1 tableaux of shape λ with even parts (or 0-1 even tableaux,
for short).

It should be noted that the p, q-Stirling numbers of the second kind was intro-
duced by Wachs and White [21]. For n ≥ k ≥ 1,

Sp,q(n, k) = pk−1Sp,q(n− 1, k − 1) + [k]p,qSp,q(n− 1, k)

with the initial conditions Sp,q(0, 0) = 1 and for n ≥ 1,

Sp,q(n, k) = 0 if k ≤ 0 or k > n.

When p = 1, Sp,q(n, k) reduce to q-Stirling numbers of the second kind introduced
by Gould [9]. The combinatorial interpretation of the p, q-Stirling numbers (or the q-
Stirling numbers) in terms of 0-1 tableaux was explored by Leroux [12] and Medicis
and Leroux [13]. For other combinatorial interpretations of q-Stirling numbers, see,
for example, Cai and Readdy [5], Cai, Ehrenborg and Readdy [6], Gould [9], Milne
[14, 15] and Wachs and White [21].
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We recall some common notation and terminology on partitions as used in [1,
Chapter 1]. Recall that a partition λ of a positive integer n is a finite nonincreasing
sequence of positive integers (λ1, λ2, . . . , λr) such that

∑r
i=1 λi = n. Then λi are

called the parts of λ and λ1 is its largest part. The number of parts of λ is called
the length of λ, denoted by l(λ). In this paper, we adopt the multiplicity notation
of the partition λ. Let λ be the partition with the largest part k. Then we write

λ = (kmk , (k − 1)mk−1 , . . . , 1m1),

where exactly mi parts of λ are equal to i. We call the mi the multiplicity of the part
of size i in λ. The Young diagram of a partition λ = (λ1, . . . , λ`) is a left-justified
array of squares, with λi squares in the i-th row. For instance, below is the Young
diagram of shape λ = (4, 3, 1, 1).

Let Pe(k, n− k) denote the set of partitions into exactly 2n− 2k parts with the
largest part being less than or equal to k such that each multiplicity mi is even for
1 ≤ i ≤ k.

Definition 1.1. Let λ = (λ1, . . . , λ2n−2k) ∈ Pe(k, n − k). A 0-1 tableau of shape λ
(or 0-1 even tableau, for short) is a tableau obtained by filling 0 or 1 into the Young
diagram of λ such that there is exactly one 1 in the (2i − 1)st row and there is at
most one 1 in the 2i-th row for 1 ≤ i ≤ n− k.

Fig. 1 is a 0-1 even tableau of shape λ = (42, 24, 12).

0 1 0 0
0 0 0 1
0 1
0 0
1 0
0 1
1
0

Fig. 1: A 0-1 even tableau of shape λ = (42, 24, 12).

Let T = (T1, . . . , T2n−2k) be a 0-1 even tableau of shape λ = (λ1, . . . , λ2n−2k) ∈
Pe(k, n− k), where Ti represents the i-th row of T . We define the shape of Ti as the
number of squares in its corresponding row of T , denoted sh(Ti). From the above
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assumption, we see that sh(Ti) = λi for 1 ≤ i ≤ 2n − 2k. To give a combinatorial
interpretation of PSp,q(n, k), we need to define inversions and non-inversions of a
0-1 even tableau.

The inversion number of T , denoted by inv(T ), is defined by

inv(T ) =
2n−2k∑
i=1

invi(T ), (1.4)

where invi(T ) counts the number of 0’s to the right side of the 1 occurring in the
i-th row of T with the convention that invi(T ) = λi if there does not exist a 1 in
the i-th row of T . Here we assume that inv(∅) = 0.

The non-inversion number of T , denoted by ninv(T ), is defined by

ninv(T ) =
2n−2k∑
i=1

ninvi(T ), (1.5)

where ninv2i−1(T ) counts the number of 0’s to the left side of the 1 occurring in the
(2i− 1)st row of T and ninv2i(T ) counts the number of 0’s and 1 to the left side of
the 1 occurring in the 2i-th row of T . We make the convention that ninvi(T ) = 0 if
there does not exist a 1 in the i-th row of T . When T = ∅, ninv(T ) = 0.

For example, for the 0-1 even tableau T given in Fig. 1, we have

inv(T ) = 2 + 0 + 0 + 2 + 1 + 0 + 0 + 1 = 6

and
ninv(T ) = 1 + 4 + 1 + 0 + 0 + 2 + 0 + 0 = 8.

We have the following combinatorial interpretation of the p, q-Legendre-Stirling
numbers of the second kind.

Theorem 1.2. For n ≥ k ≥ 1, let T B(n, k) denote the set of 0-1 even tableaux of
shape λ ∈ Pe(k, n− k). Then

PSp,q(n, k) =
∑

T∈T B(n,k)

pninv(T )qinv(T ).

For example, when n = 3 and k = 2, there are two partitions in Pe(2, 1), namely
(22) and (12) and there are eight 0-1 tableaux in T B(3, 2), see Fig. 2.

It is evident that∑
T∈T B(3,2)

pninv(T )qinv(T ) = p3 + 2p2q + 2pq2 + q3 + p+ q.

When p, q = 1, we obtain a new combinatorial interpretation of the Legendre-
Stirling numbers PS(n, k) of the second kind.
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1 0

0 0

inv(T ) = 3

ninv(T ) = 0

0 1

0 0

inv(T ) = 2

ninv(T ) = 1

1 0

1 0

inv(T ) = 2

ninv(T ) = 1

1 0

0 1

inv(T ) = 1

ninv(T ) = 2

0 1

1 0

inv(T ) = 1

ninv(T ) = 2

0 1

0 1

inv(T ) = 0

ninv(T ) = 3

1

0

inv(T ) = 1

ninv(T ) = 0

1

1

inv(T ) = 0

ninv(T ) = 1

Fig. 2: 0-1 even tableau T ∈ T B(3, 2)

Corollary 1.3. For n ≥ k ≥ 1, PS(n, k) counts the number of 0-1 even tableaux of
shape λ ∈ Pe(k, n− k).

As applications, we derive three p, q-Legendre-Stirling identities based on this
combinatorial construction of PSp,q(n, k); see Section 3 for details.

We also establish the strong q-log-concavity of the q-Legendre-Stirling numbers
PSq(n, k) of the second kind by building an injection based on this combinatori-
al construction. The notion of q-log-concavity was introduced by Stanley [19] and
Sagan [17] later introduced the notion of the strong q-log-concavity. A sequence of
polynomials (fn(q))n≥0 over the field of real numbers is called q-log-concave if the
difference

fm(q)2 − fm−1(q)fm+1(q)

has nonnegative coefficients as a polynomial in q for all m ≥ 1. We say that a
sequence of polynomials (fn(q))n≥0 is strongly q-log-concave if

fn(q)fm(q)− fn−1(q)fm+1(q)

has nonnegative coefficients as a polynomial in q for all m ≥ n ≥ 1.

In the literature, q-analogues of many well-known combinatorial numbers have
been shown to be strongly q-log-concave, see, for example, q-binomial coefficients
[4, 11], q-Stirling numbers of the first kind and the second kind [12, 17] and q-
Kaplansky number [10]. In particular, Sagan [18] gave a unified approach to prove
the strong q-log-concavities of q-binomial coefficients and q-Stirling numbers of the
first kind and the second kind by proving that various sequences of elementary and
complete homogeneous symmetric functions are log-concave.

Based on Theorem 1.2, we show the following result by constructing a direct
injection.
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Theorem 1.4. For n ≥ 1 and 1 ≤ k ≤ l ≤ n− 1,

PSp,q(n, k)PSp,q(n, l)− PSp,q(n, k − 1)PSp,q(n, l + 1) (1.6)

has nonnegative coefficients as a polynomial in p, q.

For p = 1, we have the following corollary.

Corollary 1.5. Given a positive integer n, the sequence {PSq(n, k)}1≤k≤n is strongly
q-log-concave.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.2. In Section 3, we give combinatorial derivations of three p, q-Legendre-Stirling
identities relying on Theorem 1.2, two of which can be viewed as p, q-analogues of two
results due to Andrews-Gawronski-Littlejohn [3] and Everitt-Littlejohn-Wellman [8].
In Section 4, we give a proof of Theorem 1.4 by building an injection resorting
to Theorem 1.2. We conclude this paper by pointing out a connection between
p, q-Legendre-Stirling numbers of the second kind and the complete homogeneous
symmetric functions in Section 5.

2 The combinatorial interpretation

The main objective of this section is to give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let

TBp,q(n, k) =
∑

T∈T B(n,k)

pninv(T )qinv(T ). (2.1)

We aim to show that TBp,q(n, k) = PSp,q(n, k) for n ≥ k ≥ 1 by induction on n.

If n = 1, then k = 1, by definition, we see that T B(n, k) = ∅, and so TBp,q(1, 1) =
1, which equals PSp,q(1, 1) = 1. Assume that for m < n, we have

TBp,q(m, k) = PSp,q(m, k) (2.2)

for m ≥ k ≥ 1. We proceed to show that TBp,q(n, k) = PSp,q(n, k) for n ≥ k ≥ 1.
By the recurrence (1.1) of PSp,q(n, k) and (2.2), it suffices to show that

TBp,q(n, k) = TBp,q(n− 1, k − 1) + [k]p,q[k + 1]p,qTBp,q(n− 1, k). (2.3)

Let T = (T1, . . . , T2n−2k) ∈ T B(n, k), where sh(Ti) = λi for 1 ≤ i ≤ 2n − 2k. By
definition, we see that λ1 ≤ k. Let T B(n,= k) denote the set of 0-1 even tableaux
T = (T1, . . . , T2n−2k) in T B(n, k) such that sh(T1) = λ1 = k. Evidently,

T B(n, k) = T B(n− 1, k − 1) ∪ T B(n,= k).
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Using the notation (2.1), we derive that

TBp,q(n, k) = TBp,q(n− 1, k − 1) +
∑

T∈T B(n,=k)

pninv(T )qinv(T ). (2.4)

Let T = (T1, . . . , T2n−2k) ∈ T B(n,= k), where sh(T1) = λ1 = k. Assume that
inv1(T ) = r and inv2(T ) = s. Since λ1 = λ2 = k, we see that 0 ≤ r ≤ k − 1 and
0 ≤ s ≤ k. Moreover, ninv1(T ) = k − r − 1 and ninv2(T ) = k − s. Define

ϕ(T ) = (T3, . . . , T2n−2k).

It is clear that ϕ(T ) ∈ T B(n− 1, k) such that

inv(T ) = inv(ϕ(T )) + r + s

and
ninv(T ) = ninv(ϕ(T )) + k − r − 1 + k − s.

Therefore,

∑
T∈T B(n,=k)

pninv(T )qinv(T ) =
k−1∑
r=0

k∑
s=0

∑
T∈T B(n,=k)

inv1(T )=r,inv2(T )=s

pninv(T )qinv(T )

=
k−1∑
r=0

k∑
s=0

∑
ϕ(T )∈T B(n−1,k)

pninv(ϕ(T ))+k−r−1+k−sqinv(ϕ(T ))+r+s

=
∑

ϕ(T )∈T B(n−1,k)

pninv(ϕ(T ))qinv(ϕ(T ))

(
k−1∑
r=0

pk−r−1qr

)(
k∑
s=0

pk−sqs

)

= [k]p,q[k + 1]p,qTBp,q(n− 1, k). (2.5)

Substituting (2.5) into (2.4), we obtain (2.3). Using the induction hypothesis (2.2)
and the recurrence (1.1) of PSp,q(n, k), we conclude from (2.3) that TBp,q(n, k) =
PSp,q(n, k) for n ≥ k ≥ 1, and the theorem is verified.

3 p, q-Legendre-Stirling identities

In this section, we give combinatorial proofs of three p, q-Legendre-Stirling iden-
tities using the combinatorial construction stated in Theorem 1.2. Before doing this,
we establish the following generating function for 0-1 even tableaux of a regular
shape partition.

Lemma 3.1. Let S(i, l) denote the set of 0-1 even tableaux of shape (i2l). Then∑
T∈S(i,l)

pninv(T )qinv(T ) = ([i]p,q[i+ 1]p,q)
l .
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Proof. Let T = (T1, . . . , T2l) ∈ S(i, l), where sh(Tj) = i for 1 ≤ j ≤ 2l. Assume that
invj(T ) = rj. Under the assumption that T ∈ S(i, l), we derive that 0 ≤ r2j−1 ≤
i − 1 and 0 ≤ r2j ≤ i for 1 ≤ j ≤ l. Moreover, ninv2j−1(T ) = i − 1 − r2j−1 and
ninv2j(T ) = i− r2j. Therefore,∑

T∈S(i,l)

pninv(T )qinv(T )

=
l∑

j=1

i−1∑
r2j−1=0

i∑
r2j=0

l∏
j=1

(
pi−1−r2j−1+i−r2jqr2j−1+r2j

)

=
l∏

j=1

 i−1∑
r2j−1=0

pi−1−r2j−1qr2j−1

 i∑
r2j=0

pi−r2jqr2j


=

l∏
j=1

[i]p,q[i+ 1]p,q

= ([i]p,q[i+ 1]p,q)
l,

as desired. This completes the proof.

We next establish the generating function for 0-1 even tableaux of arbitrarily-
shaped partitions. When p = 1 and q = 1, Theorem 3.2 reduces to the rational
generating function of PS(n, k) due to Everitt, Littlejohn and Wellman [8].

Theorem 3.2. For k ≥ 1,∑
n≥k

PSp,q(n, k)tn =
tk∏k

i=1(1− ([i]p,q[i+ 1]p,q) · t)
. (3.1)

Proof. Let T = (T1, . . . , T2n−2k) ∈ T B(n, k), where sh(Ti) = λi for 1 ≤ i ≤ 2n− 2k.
Since λ = (λ1, . . . , λ2n−2k) ∈ Pe(k, n− k), we may assume that

λ = (kmk , (k − 1)mk−1 , . . . , 1m1),

where mi is even for 1 ≤ i ≤ k. Let T (1) = (T1, . . . , Tmk
) and for 2 ≤ i ≤ k,

T (i) = (Tmk+mk−1+···+mk−i+2+1, . . . , Tmk+mk−1+···+mk−i+1
). Obviously, T (i) is a 0-1 even

tableau of shape (k − i+ 1)mk−i+1 . Moreover,

T =
k⋃
i=1

T (i), inv(T ) =
k∑
i=1

inv(T (i)), and ninv(T ) =
k∑
i=1

ninv(T (i)).

The assumption that mi is even allows us to assume that mi = 2mi for 1 ≤ i ≤ k.
Then

m1 + · · ·+mk = n− k.
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Hence, by Theorem 1.2, we derive that

PSp,q(n, k)tn

=
∑

T∈T B(n,k)

pninv(T )qinv(T )tn

=
∑

T (1),...,T (k)

m1+···+mk=n−k

tm1+···+mk+kp
∑k

i=1 ninv(T
(i))q

∑k
i=1 inv(T

(i))

=
∑

T (1),...,T (k)

m1+···+mk=n−k

tm1+···+mk+k

k∏
i=1

pninv(T
(i))qinv(T

(i))

=
∑

m1+···+mk+k=n

tm1+···+mk+k

k∏
i=1

(∑
T (i)

pninv(T
(i))qinv(T

(i))

)
. (3.2)

By definition, we see that T (i) is a 0-1 even tableau of shape (k − i + 1)mk−i+1 for
1 ≤ i ≤ k. It follows from Lemma 3.1 that for 1 ≤ i ≤ k,∑

T (i)

pninv(T
(i))qinv(T

(i)) = ([k − i+ 1]p,q[k − i+ 2]p,q)
mk−i+1 . (3.3)

Substituting (3.3) into (3.2), we obtain∑
n≥k

PSp,q(n, k)tn

= tk
∑

m1,m2,...,mk≥0

([1]p,q[2]p,q)
m1 ([2]p,q[3]p,q)

m2 · · · ([k]p,q[k + 1]p,q)
mk tm1+m2+···+mk

= tk
k∏
i=1

∑
n≥0

([i]p,q[i+ 1]p,q)
n tn

=
tk∏k

i=1(1− ([i]p,q[i+ 1]p,q) · t)
,

as desired. This completes the proof.

The following recurrence relation can be viewed as a p, q-analogue of a vertical
recurrence relation of PS(n, k) due to Andrews, Gawronski, Littlejohn [3]. In fact,
Theorem 3.3 can also be deduced from Theorem 3.2 using generating function ap-
proach. Here we aim to give a combinatorial proof of Theorem 3.3 based on Theorem
1.2.

Theorem 3.3. For n ≥ k ≥ 1,

PSp,q(n+ 1, k + 1) =
n∑
j=k

([k + 1]p,q[k + 2]p,q)
n−jPSp,q(j, k). (3.4)
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Proof. Let T = (T1, . . . , T2n−2k) ∈ T B(n + 1, k + 1), where sh(Ti) = λi for 1 ≤ i ≤
2n−2k. Under the fact that λ = (λ1, . . . , λ2n−2k) ∈ Pe(k+1, n−k), we assume that

λ = ((k + 1)mk+1 , kmk , . . . , 1m1),

where mi is even for 1 ≤ i ≤ k+ 1. We divide T into two disjoint 0-1 even tableaux
T (1) and T (2), where

T (1) = (T1, . . . , Tmk+1
)

and
T (2) = (Tmk+1+1, . . . , T2n−2k).

Obviously, T (1) is a 0-1 even tableau of shape (k + 1)mk+1 and T (2) is a 0-1 even
tableau of shape λ̂ = (kmk , (k − 1)mk−1 , . . . , 1m1) satisfying

inv(T ) = inv(T (1)) + inv(T (2)) and ninv(T ) = ninv(T (1)) + ninv(T (2)).

Since mk+1 is even, we may assume that mk+1 = 2j, where 0 ≤ j ≤ n − k. Then
λ̂ ∈ Pe(k, n− k − j). Hence, by Theorem 1.2, we derive that

PSp,q(n+ 1, k + 1)

=
∑

T∈T B(n+1,k+1)

pninv(T )qinv(T )

=
n−k∑
j=0

 ∑
T (1)of shape (k+1)2j

pninv(T
(1))qinv(T

(1))

 ∑
T (2)of shape λ̂∈Pe(k,n−k−j)

pninv(T
(2))qinv(T

(2))

 .

(3.5)

In view of Theorem 1.2, we have∑
T (2) of shape λ̂∈Pe(k,n−k−j)

pninv(T
(2))qinv(T

(2)) = PSp,q(n− j, k). (3.6)

Using Lemma 3.1, we get∑
T (1) of shape (k+1)2j

pninv(T
(1))qinv(T

(1)) = ([k + 1]p,q[k + 2]p,q)
j. (3.7)

Substituting (3.6) and (3.7) into (3.5), we obtain (3.4). This completes the proof.

We finish this section by giving a combinatorial derivation of the following re-
sult. In fact, Theorem 3.4 can also be obtained from Theorem 3.2 using generating
function techniques.

Theorem 3.4. For n ≥ k ≥ 1,

(n−k)PSp,q(n, k) =
n−k∑
j=1

PSp,q(n−j, k) ·(([1]p,q[2]p,q)
j+ · · ·+([k]p,q[k+1]p,q)

j). (3.8)
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Proof. Let T = (T1, . . . , T2n−2k) ∈ T B(n, k), where sh(Ti) = λi for 1 ≤ i ≤ 2n− 2k.
A 0-1 even tableau T is called a colored 0-1 even tableau if there exists a colored
2i-th part T2i. Let T Bc(n, k) denote the set of colored 0-1 even tableaux of shape
λ ∈ Pe(k, n− k). By the definition of colored 0-1 even tableaux, we see that∑

T c∈T Bc(n,k)

pninv(T
c)qinv(T

c) = (n− k)
∑

T∈T B(n,k)

pninv(T )qinv(T ). (3.9)

Hence it follows from Theorem 1.2 that

(n− k)PSp,q(n, k) =
∑

T c∈T Bc(n,k)

pninv(T
c)qinv(T

c). (3.10)

We proceed to show that∑
T c∈T Bc(n,k)

pninv(T
c)qinv(T

c)

=
n−k∑
j=1

PSp,q(n− j, k) · (([1]p,q[2]p,q)
j + · · ·+ ([k]p,q[k + 1]p,q)

j). (3.11)

Recall that S(i, j) denotes the set of 0-1 even tableaux of shape (i2j). To prove
(3.11), we will build a bijection ψ between T Bc(n, k) and ∪n−kj=1 ∪ki=1 T B(n− j, k)×
S(i, j).

Let T c = (T1, . . . , T2n−2k) ∈ T Bc(n, k), where T2m is colored (1 ≤ m ≤ n − k).
Assume that sh(T2m) = i and t is the smallest integer such that sh(T2t+1) = i.
Define

R = (T1, . . . , T2t, T2m+1, . . . , T2n−2k) and S = (T2t+1, . . . , T2m).

Set m = t+ j. It is clear that S ∈ S(i, j) and R ∈ T B(n− j, k) and this process is
reversed. Moreover,

inv(T c) = inv(R) + inv(S) and ninv(T c) = ninv(R) + ninv(S).

Hence ∑
T c∈T Bc(n,k)

pninv(T
c)qinv(T

c)

=
n−k∑
j=1

k∑
i=1

∑
(R,S)∈T B(n−j,k)×S(i,j)

pninv(R)+ninv(S)qinv(R)+inv(S)

=

n−k∑
j=1

∑
R∈T B(n−j,k)

pninv(R)qinv(R)

 k∑
i=1

∑
S∈S(i,j)

pninv(S)qinv(S)

 . (3.12)
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Invoking Theorem 1.2, we get∑
R∈T B(n−j,k)

pninv(R)qinv(R) = PSp,q(n− j, k). (3.13)

In light of Lemma 3.1, we have∑
S∈S(i,j)

pninv(S)qinv(S) = ([i]p,q[i+ 1]p,q)
j . (3.14)

Substituting (3.13) and (3.14) into (3.12), we obtain (3.11). Combining (3.9) and
(3.11) yields (3.8). Thus, we complete the proof.

4 q-Log-concavity

The goal of this section is to give a combinatorial proof of Theorem 1.4. In view
of Theorem 1.2, it suffices to show the following combinatorial assertion. Butler’s
bijection [4] for the strong q-log-concavity of q-binomial coefficients and Leroux’s
bijection [12] for the strong q-log-concavity of q-Stirling numbers of the second kind
figure prominently in our proof of the following result.

Theorem 4.1. For n ≥ 1 and 1 ≤ k ≤ l ≤ n − 1, there is a weight preserving
injection Φ from T B(n, k−1)×T B(n, l+1) to T B(n, k)×T B(n, l). More precisely,
for (T,W ) ∈ T B(n, k − 1)× T B(n, l + 1), we have

Φ(T,W ) = (T̂ , Ŵ ) ∈ T B(n, k)× T B(n, l)

such that
ninv(T̂ ) + ninv(Ŵ ) = ninv(T ) + ninv(W ) (4.1)

and
inv(T̂ ) + inv(Ŵ ) = inv(T ) + inv(W ). (4.2)

Proof. Let T = (T1, . . . , T2n−2k+2) ∈ T B(n, k − 1), where sh(Ti) = λi for 1 ≤ i ≤
2n−2k+2 and letW = (W1, . . . ,W2n−2l−2) ∈ T B(n, l+1), where sh(Wi) = µi for 1 ≤
i ≤ 2n− 2l − 2. We proceed to construct Φ(T,W ) = (T̂ , Ŵ ) ∈ T B(n, k)× T B(n, l)
satisfying conditions (4.1) and (4.2) via two steps.

We first construct (T ,W ) ∈ T B(n + 1, k) × T B(n − 1, l) based on (T,W ) ∈
T B(n, k − 1)× T B(n, l + 1) such that

ninv(T ) + ninv(W ) = ninv(T ) + ninv(W ) (4.3)

and
inv(T ) + inv(W ) = inv(T ) + inv(W ). (4.4)
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We then construct (T̂ , Ŵ ) ∈ T B(n, k)×T B(n, l) relying on (T ,W ) ∈ T B(n+1, k)×
T B(n− 1, l) such that

ninv(T̂ ) + ninv(Ŵ ) = ninv(T ) + ninv(W ) (4.5)

and
inv(T̂ ) + inv(Ŵ ) = inv(T ) + inv(W ). (4.6)

Combining (4.3), (4.4), (4.5) and (4.6), we could conclude that (T̂ , Ŵ ) ∈ T B(n, k)×
T B(n, l) satisfying conditions (4.1) and (4.2).

Step 1. There are two cases.

Case 1.1. If sh(W1) = µ1 ≤ l, then let T = T and W = W . Clearly, T ∈
T B(n+ 1, k) and W ∈ T B(n− 1, l), which satisfy the conditions (4.3) and (4.4).

Case 2.1. If sh(W1) = µ1 = l + 1, then we assume that

Wi = Wi,1Wi,2 · · ·Wi,µi ,

where Wi,j = 0 or 1 for 1 ≤ j ≤ µi. We now divide Wi into two parts W
(1)
i and W

(2)
i ,

where

W
(1)
i =

Wi,1Wi,2 · · ·Wi,l−k+1, if µi > l − k + 1,

Wi,1Wi,2 · · ·Wi,µi , if µi ≤ l − k + 1,

and

W
(2)
i =

Wi,l−k+2Wi,l−k+3 · · ·Wi,µi , if µi > l − k + 1,

∅, if µi ≤ l − k + 1.

Let W (2) = (W
(2)
1 , . . . ,W

(2)
2n−2l−2), where sh(W

(2)
i ) = µ

(2)
i . Then

µ(2) = (µ
(2)
1 , . . . , µ

(2)
2n−2l−2) (4.7)

is a partition with even multiplicities such that µ
(2)
1 = k and l(µ(2)) ≤ 2n−2l−2. Let

T = (T1, . . . , T2n−2k+2) ∈ T B(n, k − 1), where sh(Ti) = λi for 1 ≤ i ≤ 2n − 2k + 2.
By definition, we have

λ = (λ1, . . . , λ2n−2k+2) ∈ Pe(k − 1, n− k + 1). (4.8)

We further assume that
Ti = Ti,1Ti,2 · · ·Ti,λi ,

where Ti,j = 0 or 1 for 1 ≤ j ≤ λi. Assume that J is the minimum integer such that

λJ−1 ≥ µ
(2)
J . We make the convention that λ0 = 0. It is easy to see that such J exists

since 2n − 2k + 2 ≥ 2n − 2l − 2 under the assumption that k ≤ l. Combining the
minimum of J and the fact that λ and µ(2) are partitions with even multiplicities, we
derive that J must be odd. In this case, we assume that J = 2r−1 for 2 ≤ r ≤ n− l.
Moreover, the minimum of J implies that λi ≤ λi−1 < µ

(2)
i for 1 ≤ i ≤ J−1 = 2r−2.
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Define
W

(2)
= (W

(2)

1 , . . . ,W
(2)

2r−2,W
(2)

2r−1, . . .W
(2)

2n−2l−2)

and
T = (T 1, . . . , T 2r−2, T 2r−1, . . . , T 2n−2k+2),

where

W
(2)

i =



Ti,1 Ti,2 · · ·Ti,λi , if 1 ≤ i ≤ 2r − 2 and 1 ∈ W (2)
i and 1 ∈ Ti,

W
(2)
i,1 W

(2)
i,2 · · ·W

(2)
i,λi
, if 1 ≤ i ≤ 2r − 2 and 1 ∈ W (1)

i

or 1 ≤ i ≤ 2r − 2 and 1 6∈ Wi

or 1 ≤ i ≤ 2r − 2 and 1 6∈ Ti and 1 ∈ W (2)
i ,

W
(2)
i,1 W

(2)
i,2 · · ·W

(2)

i,µ
(2)
i

, if 2r − 1 ≤ i ≤ 2n− 2l − 2,

(4.9)
and

T i =



W
(2)
i,1 · · · W

(2)

i,µ
(2)
i

, if 1 ≤ i ≤ 2r − 2 and 1 ∈ W (2)
i and 1 ∈ Ti,

Ti,1 Ti,2 · · ·Ti,λi W
(2)
i,λi+1 · · · W

(2)

i,µ
(2)
i

, if 1 ≤ i ≤ 2r − 2 and 1 ∈ W (1)
i

or 1 ≤ i ≤ 2r − 2 and 1 6∈ Wi

or 1 ≤ i ≤ 2r − 2 and 1 6∈ Ti and 1 ∈ W (2)
i ,

Ti,1 Ti,2 · · · Ti,λi , if 2r − 1 ≤ i ≤ 2n− 2k + 2.

(4.10)
Here 1 ∈ Si means there exists 1 ≤ j ≤ l(Si) such that Si,j = 1.

Let W = (W 1, . . . ,W 2n−2l−2), where

W i =

Wi,1 Wi,2 · · · Wi,l−k 1 ∪W (2)

i , if 1 6∈ Ti and W
(2)
i,j = 1 for λi + 1 ≤ j ≤ µi,

W
(1)
i ∪W

(2)

i , otherwise.

(4.11)
We proceed to show that (T ,W ) ∈ T B(n + 1, k) × T B(n − 1, l) satisfying the
conditions (4.3) and (4.4).

First, by definition, we see that the shape of T is

λ = (µ
(2)
1 , . . . , µ

(2)
2r−2, λ2r−1, λ2r, . . . , λ2n−2k+2)

and the shape of W
(2)

is

µ(2) = (λ1, . . . , λ2r−2, µ
(2)
2r−1, µ

(2)
2r , . . . , µ

(2)
2n−2l−2).

Since J = 2r − 1 is the minimum integer such that λJ−1 ≥ µ
(2)
J , we deduce that

λ2r−1 ≤ λ2r−3 = λJ−2 < µ
(2)
J−1 = µ

(2)
2r−2.
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It implies that λ and µ are partitions. Clearly,

`(λ) = 2n− 2k + 2, λ1 = µ
(2)
1 = k,

and so
λ ∈ Pe(k, n− k + 1).

Moreover,
`(µ(2)) ≤ 2n− 2l − 2, µ

(2)
1 = λ1 ≤ k − 1.

From the construction (4.11), we see that the shape of W is µ = (µ1, . . . , µ2n−2l−2),

where µ1 = µ
(2)
1 + l − k + 1. Hence we derive that

µ ∈ Pe(l, n− l − 1).

By the constructions (4.9) and (4.10), it is not hard to check that T ∈ T B(n+ 1, k)
and W ∈ T B(n − 1, l), which satisfy (4.3) and (4.4). Moreover, it can be checked
that this process is reversible.

Step 2. We intend to construct (T̂ , Ŵ ) ∈ T B(n, k)×T B(n, l) relying on (T ,W )
obtained in Step 1. Let

T = (T 1, . . . , T 2n−2k+2) ∈ T B(n+ 1, k),

where sh(T i) = λi for 1 ≤ i ≤ 2n− 2k + 2 and let

W = (W 1, . . . ,W 2n−2l−2) ∈ T B(n− 1, l),

where sh(W i) = µi for 1 ≤ i ≤ 2n− 2l − 2. By definition, we have

λ = (λ1, . . . , λ2n−2k+2) ∈ Pe(k, n− k + 1)

and
µ = (µ1, . . . , µ2n−2l−2) ∈ Pe(l, n− l − 1).

Let I be the minimum integer such that λ2l−2k+2+I−1 ≥ µI . It is easy to see that
such I exists since 2n − 2k + 2 > 2n − 2l − 2 under the assumption that k ≤ l.
Moreover, from the fact that λ and µ are partitions with even multiplicities and the
minimum of I, we deduce that I must be odd. In this case, we could assume that
I = 2s− 1 for 1 ≤ s ≤ n− l.

Define
T̂ = (T 1, . . . , T 2l−2k+2s,W 2s−1,W 2s, . . . ,W 2n−2l−2) (4.12)

and
Ŵ = (W 1, . . . ,W 2s−2, T 2l−2k+2+2s−1, . . . , T 2n−2k+2) (4.13)

We next show that T̂ ∈ T B(n, k) and Ŵ ∈ T B(n, l) satisfying (4.5) and (4.6).

First, by definition, we see that the shape of T̂ is

λ̂ = (λ1, . . . , λ2l−2k+2s, µ2s−1, µ2s, . . . , µ2n−2l−2)
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and the shape of Ŵ is

µ̂ = (µ1, . . . , µ2s−2, λ2l−2k+2s+1, . . . , λ2n−2k+2).

Since I(= 2s − 1) is the minimum integer such that λ2l−2k+2+I−1 ≥ µI , we derive
that

λ2l−2k+2s+1 ≤ λ2l−2k+2s−1 = λ2l−2k+2+I−2 < µI−1 = µ2s−2.

It implies that λ̂ and µ̂ are partitions. Moreover, it is evident that

`(λ̂) = 2n− 2k, λ̂1 = λ1 ≤ k

and
`(µ̂) = 2n− 2l, µ̂1 ≤ µ1 ≤ l.

Hence we derive that

λ̂ ∈ Pe(k, n− k) and µ̂ ∈ Pe(l, n− l).

From the constructions (4.12) and (4.13), we conclude that T̂ ∈ T B(n, k) and Ŵ ∈
T B(n, l), which satisfy (4.5) and (4.6). Moreover, this process is reversible. Thus,
we complete the proof.

5 Concluding remarks

Recently, Mongelli [16] observed that the Legendre-Stirling numbers of the second
kind are specializations of the complete homogeneous symmetric functions. Recall
that the k-th complete homogeneous symmetric function hk(x1, x2, . . . , xn) is given
by

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik

for k ≥ 1 and h0(x1, . . . , xn) = 1 by convention. Mongelli [16] observed that

PS(n, k) = hn−k(2, 6, . . . , k(k + 1)),

where PS(n, k) is the Legendre-Stirling numbers of the second kind. Mongelli [16]
further defined the q-Legendre-Stirling numbers by

PSq(n, k) = H
x(x+1)
j,n (q) = hn−k([1]q[2]q, [2]q[3]q, . . . , [k]q[k + 1]q),

where [k]q = 1 + q+ · · ·+ qk−1 and gave a combinatorial interpretation of PSq(n, k)
in terms of a specialized set partitions.

We would like to point out that the p, q-Legendre-Stirling numbers of the sec-
ond kind can also be expressed in terms of the complete homogeneous symmetric
functions, namely,

PSp,q(n, k) = hn−k([1]p,q[2]p,q, . . . , [k]p,q[k + 1]p,q). (5.1)
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In this way, Theorem 3.2 is a specialization of the generating function of hk(x1, x2, . . . ,
xn) and Theorem 1.4 is a specialization of a result due to Sagan [18, Theorem 2.6]. As
mentioned in the introduction, the main objective of this paper is to give a combina-
torial interpretation of PSp,q(n, k) in terms of 0-1 even tableaux. This combinatorial
construction enables us to give combinatorial derivations of three p, q-Legendre-
Stirling identities and a direct combinatorial proof of q-log-concavity of PSq(n, k).
It would be interesting to see other applications of this combinatorial construction
of PSp,q(n, k).
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